-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathplot_utils.py
221 lines (211 loc) · 11.5 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import numpy as np
import json
import joblib
from argparse import Namespace
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from envs import ENV_LIST, return_environment
from networks import OneStepModelFC, TrajGeneratorFC, DiscriminatorFC
from replay_buffer import ReplayBuffer
from one_step_model import SimpleOneStepModel
from imagination import ImaginationModule
from planner import IterativePlanner
from controller import Controller
def load_experiment(expt_name, param_name=None, load_buffer=False, device="cuda"):
path = "experiments/"+expt_name
params = json.load(open(path+"/experiment_args.json", "r"))
args = Namespace(**params)
G_hidden_sizes = np.array([int(item) for item in args.G_hidden_sizes.split(',')])
D_hidden_sizes = np.array([int(item) for item in args.D_hidden_sizes.split(',')])
OSM_hidden_sizes = np.array([int(item) for item in args.OSM_hidden_sizes.split(',')])
G_optim_opts = args.G_optimiser.split(" ")
D_optim_opts = args.D_optimiser.split(" ")
OSM_optim_opts = args.OSM_optimiser.split(" ")
tau = args.tau
env = return_environment(args.env)
state_dim = env.state_dim
ac_dim = env.ac_dim
goal_dim = env.goal_dim
if args.reg_gan_with_osm:
train_osm = True
else:
train_osm = False
OSM_nets = []
discrim_nets = []
generator_nets = []
for i in range(args.num_osms):
OSM_nets.append(OneStepModelFC(state_dim, ac_dim, hidden_sizes=OSM_hidden_sizes, device=device).to(device))
for i in range(args.num_gans):
discrim_nets.append(DiscriminatorFC(state_dim, goal_dim, ac_dim, hidden_sizes=D_hidden_sizes).to(device))
generator_nets.append(TrajGeneratorFC(state_dim, ac_dim, goal_dim, args.gan_latent_dim, tau,
hidden_sizes=G_hidden_sizes,).to(device))
OSM_opts = []
discrim_opts = []
generator_opts = []
for par, opts, nets in zip([G_optim_opts, D_optim_opts, OSM_optim_opts], [generator_opts, discrim_opts, OSM_opts],
[generator_nets, discrim_nets, OSM_nets]):
if par[0] == "ADAM":
lr = 0.001;
betas = (0.9, 0.999);
weight_decay = 0; # ADAM defaults
if len(par) > 1:
lr = float(par[1])
if len(par) > 2:
betas = (float(par[2]), float(par[3]))
if len(par) > 4:
weight_decay = float(par[4])
for net in nets:
opts.append(torch.optim.Adam(net.parameters(), lr=lr, betas=betas, weight_decay=weight_decay))
elif par[0] == "SGD":
lr = float(par[1]);
momentum = 0;
weight_decay = 0;
if len(par) > 2:
momentum = float(par[2])
if len(par) > 3:
weight_decay = float(par[3])
for net in nets:
opts.append(torch.optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay))
OSM = SimpleOneStepModel(OSM_nets, OSM_opts, l2_reg=args.l2_OSM, device=device)
buffer = ReplayBuffer(capacity=args.buffer_capacity, obs_dim=state_dim, ac_dim=ac_dim, goal_dim=goal_dim, tau=tau,
filter_train_batch=args.filter_train_batch, random_future_goals=args.random_future_goals, env_name=env.name)
imagination = ImaginationModule(generator_nets, discrim_nets, generator_opts, discrim_opts, OSM,
args.gan_latent_dim, tau=tau, l2_reg_D=args.l2_D,
l2_reg_G=args.l2_G, reg_with_osm=args.reg_gan_with_osm,
l2_loss_coeff=args.gan_model_l2,
use_all_osms_for_each_gan=args.use_all_osms_for_each_gan, device=device)
planning_args = {
"num_acs": args.plan_num_init_acs, "max_steps": args.traj_len, "num_copies": args.plan_num_copies,
"num_reps": 1,
"num_iterations": 1, "alpha": args.plan_alpha, "osm_frac": args.planner_osm_frac,
"return_average": args.plan_av_ac, "tol": 0.05, "noise": 0.2
}
planner = IterativePlanner(planning_args)
planner.args = planning_args
controller = Controller(env, imagination, buffer, planner, args.expt_name, init_rand_trajs=args.init_rand_trajs,
filter_rand_trajs=args.filter_rand_trajs,
extra_trajs=args.extra_trajs, traj_len=75, min_traj_len=args.min_traj_len,
exploration_noise=args.exploration_noise, train_OSM=train_osm,
gan_batch_size=args.gan_batch_size, osm_batch_size=args.osm_batch_size,
init_train_gan=args.init_gan_train_its, init_train_OSM=args.init_osm_train_its,
gan_train_per_extra=args.train_per_extra_gan, osm_train_per_extra=args.train_per_extra_osm)
controller.load(buffer=load_buffer, name=param_name)
return controller, planner
def generate_trajectories(imagination, env, num_trajs, object=False, start_state=None, end_goal=None,
start_env_state=None, plot_exact=False, plot_model=True, end_points_only=False,
num_steps=None, return_diff=False, object_only=False, fixed_axes=False, gan_ind=0):
"""
:param imagination: has the gan and OSM
:param env:
:param num_trajs: number of trajectories
:param object: object and robot
:param start_state: start position - will generate by resetting env if None
:param end_goal:
:param start_env_state: - if plot_exact and start_state provided then also need to provide this
:param plot_exact: plot exact trajectory that generated actions produce
:param plot_model: plot trajectory that OSM predicts from generated actions
"""
gan_traj_properties = {"marker": "o", "markersize": 3, "markerfacecolor": (0,0,1,0.2), "markeredgecolor": (0,0,1,0.2),
"linestyle":"-", "color": (0,0,1,0.2)}
model_traj_properties = {"marker": "s", "markersize": 3, "markerfacecolor": (1, 0, 0, 0.2),
"markeredgecolor": (1, 0, 0, 0.2), "linestyle": "-", "color": (1, 0, 0, 0.2)}
emp_traj_properties = {"marker": ">", "markersize": 3, "markerfacecolor": (0, 0, 0, 0.05),
"markeredgecolor": (0, 0, 0, 0.2), "linestyle": "-", "color": (0, 0, 0, 0.2)}
gan_traj_obj_properties = {"marker": "o", "markersize": 3, "markerfacecolor": (1, 0, 0, 0.2),
"markeredgecolor": (1, 0, 0, 0.2), "linestyle": "-", "color": (1, 0, 0, 0.2)}
emp_traj_obj_properties = {"marker": "o", "markersize": 3, "markerfacecolor": (0, 1, 0, 0.2),
"markeredgecolor": (0, 1, 0, 0.2), "linestyle": "-", "color": (0, 1, 0, 0.2)}
if num_steps is None:
num_steps = imagination.tau
if start_state is None:
obs = env.reset()
start_state = obs["observation"]
if plot_exact:
start_env_state = env.save_state()
if end_goal is None:
end_goal = obs["desired_goal"]
tau = imagination.tau
for i in range(len(imagination.G_nets)):
imagination.G_nets[i].eval()
imagination.one_step_model.networks[i].eval()
vals = [] #to sort out axes at the end
vals.append(start_state[0:3])
vals.append(end_goal)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(start_state[0], start_state[1], start_state[2], s=60, c="red")
ax.scatter(end_goal[0], end_goal[1], end_goal[2], s=60, c="black")
if object:
ax.scatter(start_state[3], start_state[4], start_state[5], s=60, c="white", edgecolors="red", linewidths=2)
vals.append(start_state[3:6])
gen_states, gen_actions = imagination.test_traj_rand_gan(np.tile(start_state, (num_trajs, 1)), np.tile(end_goal, (num_trajs, 1)), num_steps=num_steps)
for i in range(num_trajs):
if object_only==False:
if end_points_only:
ax.scatter(gen_states[i, -1, 0], gen_states[i, -1, 1], gen_states[i, -1, 2], c=gan_traj_properties["color"])
else:
ax.plot(gen_states[i, :, 0], gen_states[i, :, 1], gen_states[i, :, 2], **gan_traj_properties)
vals.append(gen_states[:, :, :3].reshape(-1, 3))
if object:
if end_points_only:
ax.scatter(gen_states[i, -1, 3], gen_states[i, -1, 4], gen_states[i, -1, 5], c=gan_traj_obj_properties["color"])
else:
ax.plot(gen_states[i, :, 3], gen_states[i, :, 4], gen_states[i, :, 5], **gan_traj_obj_properties)
vals.append(gen_states[:, :, 3:6].reshape(-1, 3))
if plot_model:
model_states = np.zeros_like(gen_states)
model_states[:, 0, :] = gen_states[:, 0, :]
for j in range(num_steps):
model_states[:, j+1, :] = imagination.one_step_model.predict(model_states[:, j, :], gen_actions[:, j, :])
vals.append(model_states[:, :, :3].reshape(-1, 3))
if object:
vals.append(model_states[:, :, 3:6].reshape(-1, 3))
for i in range(num_trajs):
if object_only == False:
if end_points_only:
ax.scatter(model_states[i, -1, 0], model_states[i, -1, 1], model_states[i, -1, 2], c=model_traj_properties["color"])
else:
ax.plot(model_states[i, :, 0], model_states[i, :, 1], model_states[i, :, 2], **model_traj_properties)
if object:
if end_points_only:
ax.scatter(model_states[i, -1, 3], model_states[i, -1, 4], model_states[i, -1, 5], c=model_traj_properties["color"])
else:
ax.plot(model_states[i, :, 3], model_states[i, :, 4], model_states[i, :, 5], **model_traj_properties)
if plot_exact:
exact_states = np.zeros_like(gen_states)
exact_states[:, 0, :] = gen_states[:, 0, :]
for i in range(num_trajs):
env.restore_state(start_env_state)
for j in range(num_steps):
obs, _, _, _ = env.step(gen_actions[i, j, :])
exact_states[i, j+1, :] = obs["observation"][:gen_states.shape[-1]]
if object_only == False:
if end_points_only:
ax.scatter(exact_states[i, -1, 0], exact_states[i, -1, 1], exact_states[i, -1, 2], c=emp_traj_properties["color"])
else:
ax.plot(exact_states[i, :, 0], exact_states[i, :, 1], exact_states[i, :, 2], **emp_traj_properties)
if object:
if end_points_only:
ax.plot(exact_states[i, -1, 3], exact_states[i, -1, 4], exact_states[i, -1, 5], c=emp_traj_obj_properties["color"])
else:
ax.plot(exact_states[i, :, 3], exact_states[i, :, 4], exact_states[i, :, 5], **emp_traj_obj_properties)
vals.append(exact_states[:, :, :3].reshape(-1, 3))
if object:
vals.append(exact_states[:, :, 3:6].reshape(-1, 3))
if return_diff:
return np.mean(np.linalg.norm(exact_states-gen_states, axis=-1))
vals = np.vstack(vals)
X = vals[:, 0]; Y = vals[:, 1]; Z = vals[:, 2]
max_range = np.array([X.max() - X.min(), Y.max() - Y.min(), Z.max() - Z.min()]).max() / 2.0
mid_x = (X.max() + X.min()) * 0.5
mid_y = (Y.max() + Y.min()) * 0.5
mid_z = (Z.max() + Z.min()) * 0.5
if fixed_axes:
ax.set_xlim(0.8, 1.5)
ax.set_ylim(0.8, 1.5)
ax.set_zlim(0.0, 0.7)
else:
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)