-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathepy_block_1.py
67 lines (59 loc) · 2.59 KB
/
epy_block_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Embedded Python Blocks:
Each time this file is saved, GRC will instantiate the first class it finds
to get ports and parameters of your block. The arguments to __init__ will
be the parameters. All of them are required to have default values!
"""
import numpy as np
import scipy as sci
from gnuradio import gr
class blk(gr.sync_block): # other base classes are basic_block, decim_block, interp_block
"""Embedded Python Block example - a simple multiply const"""
def __init__(self, bit_length=1e-6): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block.__init__(
self,
name='Embedded Python Block', # will show up in GRC
in_sig=[np.byte],
out_sig=[np.byte]
)
# if an attribute with the same name as a parameter is found,
# a callback is registered (properties work, too).
self.bit_length = bit_length
self.state = 0
self.preamble = 0
self.position = 0
print("length of one sample", bit_length)
def work(self, input_items, output_items):
"""example: multiply with constant"""
self.position = self.position + len(input_items[0])
if self.state == 0:
if sum(input_items[0]) > 0:
self.preamble = sum(input_items[0])
print("position of preamble",self.position-self.preamble)
#print(len(input_items[0]), sum(input_items[0]))
#print(input_items[0])
self.state = 1
zeros = np.zeros(len(input_items[0]))
zeros[np.nonzero(input_items[0])[0][0]]=1.
output_items[0][:] = zeros
#output_items[0][:] = np.gradient(input_items[0],0.5)
else:
output_items[0][:] = [0]
elif self.state == 1:
print(len(input_items[0]), sum(input_items[0]))
if sum(input_items[0]) < len(input_items[0]):
self.preamble = self.preamble + sum(input_items[0])
self.state = 2
print("length of preamble",self.preamble)
output_items[0][:] = np.gradient(input_items[0],0.5)
else:
self.preamble = self.preamble + sum(input_items[0])
output_items[0][:] = [1]
else:
output_items[0][:] = [1]
# output_items[0][:] = input_items[0] * self.example_param
# else:
# output_items[0][:] = input_items[0] * self.example_param
#output_items[0][:] = [2]
return len(output_items[0])