-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmodal_rso.py
181 lines (148 loc) · 5.87 KB
/
modal_rso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
"""
adapted from https://github.com/coreyhowe999/RSO
Example:
```
modal run modal_rso.py --input-pdb ABC1.pdb --run-name ABC1 --binder-len 60
```
"""
import modal
import os
from datetime import datetime # Add this import
from pathlib import Path
GPU = os.environ.get("MODAL_GPU", "A100")
TIMEOUT = int(os.environ.get("TIMEOUT", 180))
image = (
modal.Image.debian_slim()
.apt_install("wget", "git")
.pip_install(
"numpy",
"pandas",
"biopython",
"jax[cuda]",
"git+https://github.com/sokrypton/ColabDesign.git",
)
.run_commands(
[
"mkdir -p /root/params",
"wget -P /root/params/ https://storage.googleapis.com/alphafold/alphafold_params_2022-12-06.tar",
"tar -xvf /root/params/alphafold_params_2022-12-06.tar -C /root/params/",
"rm /root/params/alphafold_params_2022-12-06.tar",
]
)
)
app = modal.App("rso", image=image)
@app.function(
image=image,
gpu=GPU,
timeout=TIMEOUT * 60,
)
def rso(pdb_name, pdb_str, traj_iters, binder_len, chain, hotspot=None, thresholds=None):
# Import colabdesign modules here
from colabdesign import mk_afdesign_model, clear_mem
from colabdesign.mpnn import mk_mpnn_model
import jax
import jax.numpy as jnp
from colabdesign.af.alphafold.common import residue_constants
import pandas as pd
pdb_path = str(Path("/tmp/in_rso") / pdb_name)
Path(pdb_path).parent.mkdir(parents=True, exist_ok=True)
if thresholds is None:
# e.g. proper thresholds vs extremely permissive
# thresholds = {"rmsd": 2, "plddt": 0.15, "pae": 0.4}
thresholds = {"rmsd": 10, "plddt": 1, "pae": 1}
with open(pdb_path, "w") as f:
f.write(pdb_str)
def add_rg_loss(self, weight=0.1):
"""add radius of gyration loss"""
def loss_fn(inputs, outputs):
xyz = outputs["structure_module"]
ca = xyz["final_atom_positions"][:, residue_constants.atom_order["CA"]]
ca = ca[-self._binder_len :]
rg = jnp.sqrt(jnp.square(ca - ca.mean(0)).sum(-1).mean() + 1e-8)
rg_th = 2.38 * ca.shape[0] ** 0.365
rg = jax.nn.elu(rg - rg_th)
return {"rg": rg}
self._callbacks["model"]["loss"].append(loss_fn)
self.opt["weights"]["rg"] = weight
# Remove all PDB files with 'binder_design' in the file name
for pdb_file in Path(".").glob("**/*binder_design*.pdb"):
pdb_file.unlink()
#
# AFDesign steps
#
clear_mem()
af_model = mk_afdesign_model(protocol="binder")
add_rg_loss(af_model)
af_model.prep_inputs(pdb_filename=pdb_path, chain=chain, hotspot=hotspot, binder_len=binder_len)
#
# Adjust as needed
#
af_model.restart(mode=["gumbel", "soft"])
af_model.set_weights(helix=-0.2, plddt=0.1, pae=0.1, rg=0.5, i_pae=5.0, i_con=2.0)
af_model.design_logits(traj_iters)
af_model.save_pdb("backbone.pdb")
### SEQ DESIGN AND FILTER ####
binder_model = mk_afdesign_model(protocol="binder", use_multimer=True, use_initial_guess=True)
monomer_model = mk_afdesign_model(protocol="fixbb")
# binder_model.set_weights(i_pae=1.0)
mpnn_model = mk_mpnn_model(weights="soluble")
mpnn_model.prep_inputs(pdb_filename="backbone.pdb", chain="A,B", fix_pos="A", rm_aa="C")
samples = mpnn_model.sample_parallel(8, temperature=0.01)
monomer_model.prep_inputs(pdb_filename="backbone.pdb", chain="B")
binder_model.prep_inputs(
pdb_filename="backbone.pdb",
chain="A",
binder_chain="B",
use_binder_template=True,
rm_template_ic=True,
)
results_df = pd.DataFrame()
# output results
for j, seq in enumerate(samples["seq"]):
print("Predicting binder only")
monomer_model.predict(seq=seq[-binder_len:], num_recycles=3)
if monomer_model.aux["losses"]["rmsd"] < thresholds["rmsd"]:
print("Passed! Predicting binder with receptor using AF Multimer")
binder_model.predict(seq=seq[-binder_len:], num_recycles=3)
if monomer_model.aux["losses"]["plddt"] < thresholds["plddt"] and monomer_model.aux["losses"]["pae"] < thresholds["pae"]:
binder_model.save_pdb(f"{Path(pdb_name).stem}_binder_design_{j}.pdb")
results_df.loc[j, "pdb_id"] = f"{Path(pdb_name).stem}_binder_design_{j}.pdb"
results_df.loc[j, "seq"] = seq[-binder_len:]
for key in binder_model.aux["log"]:
results_df.loc[j, key] = binder_model.aux["log"][key]
for weight in af_model.opt["weights"]:
results_df.loc[j, f"weights_{key}"] = weight
else:
print(f"Failed! RMSD: {monomer_model.aux['losses']['rmsd']} >= 2.0")
results_df.to_csv("binder_design_scores.csv", index=False)
return [
(str(out_file), open(out_file, "rb").read())
for out_file in Path(".").glob("**/*")
if Path(out_file).is_file()
if Path(out_file).suffix != ".npz"
]
@app.local_entrypoint()
def main(
input_pdb: str,
num_designs: int = 1,
traj_iters: int = 100,
binder_len: int = 80,
chain: str = "A",
hotspot: str|None = None,
thresholds: str|None = None,
out_dir="./out/rso",
run_name=None,
):
pdb_str = open(input_pdb).read()
today = datetime.now().strftime("%Y%m%d%H%M")[2:]
Path(out_dir).mkdir(parents=True, exist_ok=True)
all_outputs = rso.starmap(
[(Path(input_pdb).name, pdb_str, traj_iters, binder_len, chain, hotspot, thresholds)
for _ in range(num_designs)]
)
for bb_num, outputs in enumerate(all_outputs):
for out_file, out_content in outputs:
output_path = Path(out_dir) / (run_name or today) / str(bb_num) / out_file
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, "wb") as out:
out.write(out_content)