-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexport.py
229 lines (206 loc) · 7.77 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import argparse
import sys
import time
import warnings
sys.path.append("./") # to run '$ python *.py' files in subdirectories
import torch
import torch.nn as nn
from torch.utils.mobile_optimizer import optimize_for_mobile
import models
from models.experimental import attempt_load, End2End
from utils.activations import Hardswish, SiLU
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_device
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default="./yolor-csp-c.pt", help="weights path")
parser.add_argument(
"--img-size", nargs="+", type=int, default=[640, 640], help="image size"
) # height, width
parser.add_argument("--batch-size", type=int, default=1, help="batch size")
parser.add_argument("--dynamic", action="store_true", help="dynamic ONNX axes")
parser.add_argument(
"--dynamic-batch",
action="store_true",
help="dynamic batch onnx for tensorrt and onnx-runtime",
)
parser.add_argument("--grid", action="store_true", help="export Detect() layer grid")
parser.add_argument("--end2end", action="store_true", help="export end2end onnx")
parser.add_argument(
"--max-wh",
type=int,
default=None,
help="None for tensorrt nms, int value for onnx-runtime nms",
)
parser.add_argument("--topk-all", type=int, default=100, help="topk objects for every images")
parser.add_argument("--iou-thres", type=float, default=0.45, help="iou threshold for NMS")
parser.add_argument("--conf-thres", type=float, default=0.25, help="conf threshold for NMS")
parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--simplify", action="store_true", help="simplify onnx model")
parser.add_argument("--fp16", action="store_true", help="CoreML FP16 half-precision export")
parser.add_argument("--int8", action="store_true", help="CoreML INT8 quantization")
parser.add_argument(
"--trt", action="store_true", help="True for tensorrt, false for onnx-runtime"
)
parser.add_argument(
"--cleanup",
action="store_true",
help="True for using onnx_graphsurgeon to sort and remove unused",
)
opt = parser.parse_args()
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
opt.dynamic = opt.dynamic and not opt.end2end
opt.dynamic = False if opt.dynamic_batch else opt.dynamic
print(opt)
set_logging()
t = time.time()
# Load PyTorch model
device = select_device(opt.device)
model = attempt_load(opt.weights, map_location=device) # load FP32 model
labels = model.names
# Checks
gs = int(max(model.stride)) # grid size (max stride)
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
# Input
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(
device
) # image size(1,3,320,192) iDetection
# Update model
for k, m in model.named_modules():
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
if isinstance(m, models.common.Conv): # assign export-friendly activations
if isinstance(m.act, nn.Hardswish):
m.act = Hardswish()
elif isinstance(m.act, nn.SiLU):
m.act = SiLU()
# elif isinstance(m, models.yolo.Detect):
# m.forward = m.forward_export # assign forward (optional)
model.model[-1].export = not opt.grid # set Detect() layer grid export
y = model(img) # dry run
import onnx
print("\nStarting ONNX export with onnx %s..." % onnx.__version__)
f = opt.weights.replace(".pt", ".onnx") # filename
model.eval()
output_names = ["output"]
dynamic_axes = None
if opt.dynamic:
dynamic_axes = {
"images": {0: "batch", 2: "height", 3: "width"}, # size(1,3,640,640)
"output": {0: "batch", 2: "y", 3: "x"},
}
if opt.dynamic_batch:
opt.batch_size = "batch"
dynamic_axes = {
"images": {
0: "batch",
},
}
if opt.end2end and opt.trt:
output_axes = {
"num_dets": {0: "batch"},
"det_boxes": {0: "batch"},
"det_scores": {0: "batch"},
"det_classes": {0: "batch"},
"det_lmks": {0: "batch"},
"det_lmks_mask": {0: "batch"},
}
else:
output_axes = {
"output": {0: "batch"},
}
dynamic_axes.update(output_axes)
if opt.grid:
if opt.end2end:
print(
"\nStarting export end2end onnx model for %s..." % "TensorRT"
if opt.trt
else "onnxruntime"
)
model = End2End(
model=model,
max_obj=opt.topk_all,
iou_thres=opt.iou_thres,
score_thres=opt.conf_thres,
max_wh=opt.max_wh,
trt=opt.trt,
device=device,
)
if opt.end2end and opt.trt:
output_names = [
"num_dets",
"det_boxes",
"det_scores",
"det_classes",
"det_lmks",
"det_lmks_mask",
]
shapes = [
opt.batch_size,
1,
opt.batch_size,
opt.topk_all,
4,
opt.batch_size,
opt.topk_all,
opt.batch_size,
opt.topk_all,
opt.batch_size,
opt.topk_all,
10,
opt.batch_size,
opt.topk_all,
5,
]
else:
output_names = ["output"]
else:
model.model[-1].concat = True
torch.onnx.export(
model,
img,
f,
verbose=False,
opset_version=12,
input_names=["images"],
output_names=output_names,
dynamic_axes=dynamic_axes,
)
# Checks
onnx_model = onnx.load(f) # load onnx model
onnx.checker.check_model(onnx_model) # check onnx model
if opt.end2end and opt.trt:
for i in onnx_model.graph.output:
for j in i.type.tensor_type.shape.dim:
j.dim_param = str(shapes.pop(0))
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
# # Metadata
# d = {'stride': int(max(model.stride))}
# for k, v in d.items():
# meta = onnx_model.metadata_props.add()
# meta.key, meta.value = k, str(v)
# onnx.save(onnx_model, f)
if opt.simplify:
try:
import onnxsim
print("\nStarting to simplify ONNX...")
onnx_model, check = onnxsim.simplify(onnx_model)
assert check, "assert check failed"
except Exception as e:
print(f"Simplifier failure: {e}")
if opt.cleanup:
try:
print("\nStarting to cleanup ONNX using onnx_graphsurgeon...")
import onnx_graphsurgeon as gs
graph = gs.import_onnx(onnx_model)
graph = graph.cleanup().toposort()
onnx_model = gs.export_onnx(graph)
except Exception as e:
print(f"Cleanup failure: {e}")
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
onnx.save(onnx_model, f)
print("ONNX export success, saved as %s" % f)
# Finish
print(
"\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron."
% (time.time() - t)
)