@@ -10836,7 +10836,7 @@ struct quantize_state_internal {
1083610836 {}
1083710837};
1083810838
10839- static void llama_convert_tensor_internal (
10839+ static void llama_tensor_dequantize_internal (
1084010840 struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
1084110841 const size_t nelements, const int nthread
1084210842) {
@@ -11177,6 +11177,46 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
1117711177 return new_type;
1117811178}
1117911179
11180+ static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
11181+ std::mutex mutex;
11182+ int counter = 0;
11183+ size_t new_size = 0;
11184+ if (nthread < 2) {
11185+ // single-thread
11186+ return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix);
11187+ }
11188+ auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
11189+ nrows, n_per_row, imatrix]() {
11190+ std::array<int64_t, 1 << 4> local_hist = {};
11191+ const int nrows_per_chunk = chunk_size / n_per_row;
11192+ size_t local_size = 0;
11193+ while (true) {
11194+ std::unique_lock<std::mutex> lock(mutex);
11195+ int first_row = counter; counter += nrows_per_chunk;
11196+ if (first_row >= nrows) {
11197+ if (local_size > 0) {
11198+ for (int j=0; j<int(local_hist.size()); ++j) {
11199+ hist_cur[j] += local_hist[j];
11200+ }
11201+ new_size += local_size;
11202+ }
11203+ break;
11204+ }
11205+ lock.unlock();
11206+ const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
11207+ local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
11208+ first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
11209+ }
11210+ };
11211+ for (int it = 0; it < nthread - 1; ++it) {
11212+ workers.emplace_back(compute);
11213+ }
11214+ compute();
11215+ for (auto & w : workers) { w.join(); }
11216+ workers.clear();
11217+ return new_size;
11218+ }
11219+
1118011220static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
1118111221 ggml_type quantized_type;
1118211222 llama_ftype ftype = params->ftype;
@@ -11289,7 +11329,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
1128911329
1129011330 std::vector<std::thread> workers;
1129111331 workers.reserve(nthread);
11292- std::mutex mutex;
1129311332
1129411333 int idx = 0;
1129511334
@@ -11403,7 +11442,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
1140311442 } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
1140411443 throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
1140511444 } else {
11406- llama_convert_tensor_internal (tensor, f32_conv_buf, workers, nelements, nthread);
11445+ llama_tensor_dequantize_internal (tensor, f32_conv_buf, workers, nelements, nthread);
1140711446 f32_data = (float *) f32_conv_buf.data();
1140811447 }
1140911448
@@ -11424,41 +11463,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
1142411463
1142511464 const int nchunk = (nelements + chunk_size - 1)/chunk_size;
1142611465 const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
11427- if (nthread_use < 2) {
11428- new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
11429- } else {
11430- int counter = 0;
11431- new_size = 0;
11432- auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
11433- nrows, n_per_row, imatrix]() {
11434- std::array<int64_t, 1 << 4> local_hist = {};
11435- const int nrows_per_chunk = chunk_size / n_per_row;
11436- size_t local_size = 0;
11437- while (true) {
11438- std::unique_lock<std::mutex> lock(mutex);
11439- int first_row = counter; counter += nrows_per_chunk;
11440- if (first_row >= nrows) {
11441- if (local_size > 0) {
11442- for (int j=0; j<int(local_hist.size()); ++j) {
11443- hist_cur[j] += local_hist[j];
11444- }
11445- new_size += local_size;
11446- }
11447- break;
11448- }
11449- lock.unlock();
11450- const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
11451- local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
11452- first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
11453- }
11454- };
11455- for (int it = 0; it < nthread_use - 1; ++it) {
11456- workers.emplace_back(compute);
11457- }
11458- compute();
11459- for (auto & w : workers) { w.join(); }
11460- workers.clear();
11461- }
11466+ new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, hist_cur.data(), imatrix, workers, nthread_use);
1146211467
1146311468 LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
1146411469 int64_t tot_count = 0;
0 commit comments