Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

KeyError: 'msa_mask' Issue #179

Open
YoshitakaMo opened this issue Jul 25, 2023 · 0 comments
Open

KeyError: 'msa_mask' Issue #179

YoshitakaMo opened this issue Jul 25, 2023 · 0 comments

Comments

@YoshitakaMo
Copy link

I've tried to use FastFold for a large hetero-multimer protein complex, but I encountered this issue.

2023-07-25 14:53:20,908	INFO worker.py:1518 -- Started a local Ray instance.
2023-07-25 14:53:22,253	INFO workflow_access.py:356 -- Initializing workflow manager...
2023-07-25 14:53:24,072	INFO api.py:203 -- Workflow job created. [id="fastfold_data_workflow Tue Jul 25 14:53:22 2023"].
�[2m�[36m(WorkflowManagementActor pid=1387)�[0m 2023-07-25 14:53:24,128	INFO workflow_executor.py:86 -- Workflow job [id=fastfold_data_workflow Tue Jul 25 14:53:22 2023] started.
...
<MSA generation was successfully finished>
...
...
running in multimer mode...
Traceback (most recent call last):
  File "/foo/bar/FastFold/inference.py", line 556, in <module>
    main(args)
  File "/foo/bar/FastFold/inference.py", line 164, in main
    inference_multimer_model(args)
  File "/foo/bar/FastFold/inference.py", line 285, in inference_multimer_model
    processed_feature_dict = feature_processor.process_features(
  File "/foo/bar/FastFold/fastfold/data/feature_pipeline.py", line 124, in process_features
    return np_example_to_features(
  File "/foo/bar/FastFold/fastfold/data/feature_pipeline.py", line 106, in np_example_to_features
    features = input_pipeline_fn(tensor_dict, cfg.common, cfg[mode])
  File "/foo/bar/FastFold/fastfold/data/input_pipeline_multimer.py", line 107, in process_tensors_from_config
    tensors = compose(nonensembled)(tensors)
  File "/foo/bar/FastFold/fastfold/data/data_transforms.py", line 76, in <lambda>
    return lambda x: f(x, *args, **kwargs)
  File "/foo/bar/FastFold/fastfold/data/input_pipeline_multimer.py", line 124, in compose
    x = f(x)
  File "/foo/bar/FastFold/fastfold/data/data_transforms_multimer.py", line 298, in make_msa_profile
    batch['msa_mask'][..., None],
KeyError: 'msa_mask'

I know this issue is similar to #119, but I have no idea for the latest FastFold version. Please let me know the solution.

Computational environment

  • OS: Red Hat Enterprise Linux Server release 7.7
  • CUDA version: CUDA 11.6
  • GCC version: 10.3.0
  • FastFold version: The latest commit, eba4968

The input command was:

FASTAFILE="foo2.fasta"
OUTPUTDIR="./foo2"
DATE="2099-07-14"
DATABASEDIR=/foobar/alphafold/db-v2.3.2
python3.9 ${FASTFOLDDIR}/inference.py ${FASTAFILE} ${DATABASEDIR}/pdb_mmcif/mmcif_files/ \
    --output_dir ${OUTPUTDIR} \
    --gpus 4 \
    --model_preset multimer \
    --max_template_date ${DATE} \
    --relaxation \
    --use_precomputed_alignments ${OUTPUTDIR}/alignments \
    --save_prediction_result True \
    --uniref90_database_path=$DATABASEDIR/uniref90/uniref90.fasta \
    --mgnify_database_path=$DATABASEDIR/mgnify/mgy_clusters_2022_05.fa \
    --bfd_database_path=$DATABASEDIR/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --uniref30_database_path=$DATABASEDIR/uniref30/UniRef30_2021_03 \
    --obsolete_pdbs_path=$DATABASEDIR/pdb_mmcif/obsolete.dat \
    --uniprot_database_path=$DATABASEDIR/uniprot/uniprot.fasta \
    --pdb_seqres_database_path=$DATABASEDIR/pdb_seqres/pdb_seqres.txt \
    --jackhmmer_binary_path=$FASTFOLDDIR/fastfold-conda/bin/jackhmmer \
    --hhblits_binary_path=$FASTFOLDDIR/fastfold-conda/bin/hhblits \
    --hhsearch_binary_path=$FASTFOLDDIR/fastfold-conda/bin/hhsearch \
    --kalign_binary_path=$FASTFOLDDIR/fastfold-conda/bin/kalign
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant