forked from GoogleCloudPlatform/professional-services
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
82 lines (65 loc) · 2.79 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""Classes to demonstrate how to write unit tests for TensorFlow code."""
# Copyright 2020 Google Inc. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl import logging
import tensorflow as tf
@tf.keras.utils.register_keras_serializable(package='Custom')
class LinearBlockFull(tf.keras.layers.Layer):
"""Custom keras liner Layer (serializable)."""
def __init__(self, units=32, **kwargs):
super(LinearBlockFull, self).__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.units),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(shape=(self.units,),
initializer='zeros',
trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
config = super(LinearBlockFull, self).get_config()
custom_config = {'units': self.units}
config.update(custom_config)
return config
class LinearBlock(tf.keras.layers.Layer):
"""Custom keras liner Layer."""
def __init__(self, units=32):
super(LinearBlock, self).__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(shape=(input_shape[-1], self.units),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(shape=(self.units,),
initializer='zeros',
trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_model(dim):
"""Creates a keras model.
Args:
dim: a dimension of an input vector
Returns:
A complied keras model used in tutorial.
"""
model = tf.keras.Sequential([
tf.keras.layers.Dense(64, activation='relu', input_shape=[dim]),
tf.keras.layers.Dense(32, activation='relu'),
tf.keras.layers.Dense(1)
])
model.summary(print_fn=logging.info)
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mse', optimizer=optimizer, metrics=['mae', 'mse'])
return model