forked from nl8590687/ASRT_SpeechRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SpeechModel261.py
458 lines (347 loc) · 17 KB
/
SpeechModel261.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: nl8590687
"""
import platform as plat
import os
import time
from general_function.file_wav import *
from general_function.file_dict import *
from general_function.gen_func import *
# LSTM_CNN
import keras as kr
import numpy as np
import random
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, Reshape, BatchNormalization # , Flatten
from keras.layers import Lambda, TimeDistributed, Activation,Conv2D, MaxPooling2D,GRU #, Merge
from keras.layers.merge import add, concatenate
from keras import backend as K
from keras.optimizers import SGD, Adadelta, Adam
from readdata24 import DataSpeech
abspath = ''
ModelName='261'
#NUM_GPU = 2
class ModelSpeech(): # 语音模型类
def __init__(self, datapath):
'''
初始化
默认输出的拼音的表示大小是1422,即1421个拼音+1个空白块
'''
MS_OUTPUT_SIZE = 1424
self.MS_OUTPUT_SIZE = MS_OUTPUT_SIZE # 神经网络最终输出的每一个字符向量维度的大小
#self.BATCH_SIZE = BATCH_SIZE # 一次训练的batch
self.label_max_string_length = 64
self.AUDIO_LENGTH = 1600
self.AUDIO_FEATURE_LENGTH = 200
self._model, self.base_model = self.CreateModel()
self.datapath = datapath
self.slash = ''
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
if(system_type == 'Windows'):
self.slash='\\' # 反斜杠
elif(system_type == 'Linux'):
self.slash='/' # 正斜杠
else:
print('*[Message] Unknown System\n')
self.slash='/' # 正斜杠
if(self.slash != self.datapath[-1]): # 在目录路径末尾增加斜杠
self.datapath = self.datapath + self.slash
def CreateModel(self):
'''
定义CNN/LSTM/CTC模型,使用函数式模型
输入层:200维的特征值序列,一条语音数据的最大长度设为1600(大约16s)
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2
隐藏层:全连接层
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax作为激活函数,
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出
'''
input_data = Input(name='the_input', shape=(self.AUDIO_LENGTH, self.AUDIO_FEATURE_LENGTH, 1))
layer_h = Conv2D(32, (3,3), use_bias=False, activation='relu', padding='same', kernel_initializer='he_normal')(input_data) # 卷积层
#layer_h = Dropout(0.05)(layer_h)
layer_h = Conv2D(32, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
#layer_h = Dropout(0.05)(layer_h) # 随机中断部分神经网络连接,防止过拟合
layer_h = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
#layer_h = Dropout(0.1)(layer_h)
layer_h = Conv2D(64, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
#layer_h = Dropout(0.1)(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
#layer_h = Dropout(0.15)(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
layer_h = MaxPooling2D(pool_size=2, strides=None, padding="valid")(layer_h) # 池化层
#layer_h = Dropout(0.15)(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
#layer_h = Dropout(0.2)(layer_h)
layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
layer_h = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h) # 池化层
#layer_h = Dropout(0.2)(layer_h)
#layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
#layer_h = Dropout(0.2)(layer_h)
#layer_h = Conv2D(128, (3,3), use_bias=True, activation='relu', padding='same', kernel_initializer='he_normal')(layer_h) # 卷积层
#layer_h = MaxPooling2D(pool_size=1, strides=None, padding="valid")(layer_h) # 池化层
#test=Model(inputs = input_data, outputs = layer_h)
#test.summary()
layer_h = Reshape((200, 3200))(layer_h) #Reshape层
#layer_h16 = Dropout(0.3)(layer_h16) # 随机中断部分神经网络连接,防止过拟合
layer_h = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h) # 全连接层
inner = layer_h
#layer_h5 = LSTM(256, activation='relu', use_bias=True, return_sequences=True)(layer_h4) # LSTM层
rnn_size=128
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(inner)
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(inner)
gru1_merged = add([gru_1, gru_1b])
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)
gru2 = concatenate([gru_2, gru_2b])
layer_h = gru2
#layer_h20 = Dropout(0.4)(gru2)
layer_h = Dense(128, activation="relu", use_bias=True, kernel_initializer='he_normal')(layer_h) # 全连接层
#layer_h17 = Dropout(0.3)(layer_h17)
layer_h = Dense(self.MS_OUTPUT_SIZE, use_bias=True, kernel_initializer='he_normal')(layer_h) # 全连接层
y_pred = Activation('softmax', name='Activation0')(layer_h)
model_data = Model(inputs = input_data, outputs = y_pred)
#model_data.summary()
labels = Input(name='the_labels', shape=[self.label_max_string_length], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
# Keras doesn't currently support loss funcs with extra parameters
# so CTC loss is implemented in a lambda layer
#layer_out = Lambda(ctc_lambda_func,output_shape=(self.MS_OUTPUT_SIZE, ), name='ctc')([y_pred, labels, input_length, label_length])#(layer_h6) # CTC
loss_out = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_pred, labels, input_length, label_length])
model = Model(inputs=[input_data, labels, input_length, label_length], outputs=loss_out)
model.summary()
# clipnorm seems to speeds up convergence
#sgd = SGD(lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5)
#opt = Adadelta(lr = 0.01, rho = 0.95, epsilon = 1e-06)
opt = Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, decay = 0.0, epsilon = 10e-8)
#model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=sgd)
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer = opt)
# captures output of softmax so we can decode the output during visualization
test_func = K.function([input_data], [y_pred])
#print('[*提示] 创建模型成功,模型编译成功')
print('[*Info] Create Model Successful, Compiles Model Successful. ')
return model, model_data
def ctc_lambda_func(self, args):
y_pred, labels, input_length, label_length = args
y_pred = y_pred[:, :, :]
#y_pred = y_pred[:, 2:, :]
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def TrainModel(self, datapath, epoch = 2, save_step = 1000, batch_size = 32, filename = abspath + 'model_speech/m' + ModelName + '/speech_model'+ModelName):
'''
训练模型
参数:
datapath: 数据保存的路径
epoch: 迭代轮数
save_step: 每多少步保存一次模型
filename: 默认保存文件名,不含文件后缀名
'''
data=DataSpeech(datapath, 'train')
num_data = data.GetDataNum() # 获取数据的数量
yielddatas = data.data_genetator(batch_size, self.AUDIO_LENGTH)
for epoch in range(epoch): # 迭代轮数
print('[running] train epoch %d .' % epoch)
n_step = 0 # 迭代数据数
while True:
try:
print('[message] epoch %d . Have train datas %d+'%(epoch, n_step*save_step))
# data_genetator是一个生成器函数
#self._model.fit_generator(yielddatas, save_step, nb_worker=2)
self._model.fit_generator(yielddatas, save_step)
n_step += 1
except StopIteration:
print('[error] generator error. please check data format.')
break
self.SaveModel(comment='_e_'+str(epoch)+'_step_'+str(n_step * save_step))
self.TestModel(self.datapath, str_dataset='train', data_count = 4)
self.TestModel(self.datapath, str_dataset='dev', data_count = 4)
def LoadModel(self,filename = abspath + 'model_speech/m'+ModelName+'/speech_model'+ModelName+'.model'):
'''
加载模型参数
'''
self._model.load_weights(filename)
self.base_model.load_weights(filename + '.base')
def SaveModel(self,filename = abspath + 'model_speech/m'+ModelName+'/speech_model'+ModelName,comment=''):
'''
保存模型参数
'''
self._model.save_weights(filename+comment+'.model')
self.base_model.save_weights(filename + comment + '.model.base')
f = open('step'+ModelName+'.txt','w')
f.write(filename+comment)
f.close()
def TestModel(self, datapath='', str_dataset='dev', data_count = 32, out_report = False, show_ratio = True, io_step_print = 10, io_step_file = 10):
'''
测试检验模型效果
io_step_print
为了减少测试时标准输出的io开销,可以通过调整这个参数来实现
io_step_file
为了减少测试时文件读写的io开销,可以通过调整这个参数来实现
'''
data=DataSpeech(self.datapath, str_dataset)
#data.LoadDataList(str_dataset)
num_data = data.GetDataNum() # 获取数据的数量
if(data_count <= 0 or data_count > num_data): # 当data_count为小于等于0或者大于测试数据量的值时,则使用全部数据来测试
data_count = num_data
try:
ran_num = random.randint(0,num_data - 1) # 获取一个随机数
words_num = 0
word_error_num = 0
nowtime = time.strftime('%Y%m%d_%H%M%S',time.localtime(time.time()))
if(out_report == True):
txt_obj = open('Test_Report_' + str_dataset + '_' + nowtime + '.txt', 'w', encoding='UTF-8') # 打开文件并读入
txt = '测试报告\n模型编号 ' + ModelName + '\n\n'
for i in range(data_count):
data_input, data_labels = data.GetData((ran_num + i) % num_data) # 从随机数开始连续向后取一定数量数据
# 数据格式出错处理 开始
# 当输入的wav文件长度过长时自动跳过该文件,转而使用下一个wav文件来运行
num_bias = 0
while(data_input.shape[0] > self.AUDIO_LENGTH):
print('*[Error]','wave data lenghth of num',(ran_num + i) % num_data, 'is too long.','\n A Exception raise when test Speech Model.')
num_bias += 1
data_input, data_labels = data.GetData((ran_num + i + num_bias) % num_data) # 从随机数开始连续向后取一定数量数据
# 数据格式出错处理 结束
pre = self.Predict(data_input, data_input.shape[0] // 8)
words_n = data_labels.shape[0] # 获取每个句子的字数
words_num += words_n # 把句子的总字数加上
edit_distance = GetEditDistance(data_labels, pre) # 获取编辑距离
if(edit_distance <= words_n): # 当编辑距离小于等于句子字数时
word_error_num += edit_distance # 使用编辑距离作为错误字数
else: # 否则肯定是增加了一堆乱七八糟的奇奇怪怪的字
word_error_num += words_n # 就直接加句子本来的总字数就好了
if((i % io_step_print == 0 or i == data_count - 1) and show_ratio == True):
#print('测试进度:',i,'/',data_count)
print('Test Count: ',i,'/',data_count)
if(out_report == True):
if(i % io_step_file == 0 or i == data_count - 1):
txt_obj.write(txt)
txt = ''
txt += str(i) + '\n'
txt += 'True:\t' + str(data_labels) + '\n'
txt += 'Pred:\t' + str(pre) + '\n'
txt += '\n'
#print('*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率:', word_error_num / words_num * 100, '%')
print('*[Test Result] Speech Recognition ' + str_dataset + ' set word error ratio: ', word_error_num / words_num * 100, '%')
if(out_report == True):
txt += '*[测试结果] 语音识别 ' + str_dataset + ' 集语音单字错误率: ' + str(word_error_num / words_num * 100) + ' %'
txt_obj.write(txt)
txt = ''
txt_obj.close()
except StopIteration:
print('[Error] Model Test Error. please check data format.')
def Predict(self, data_input, input_len):
'''
预测结果
返回语音识别后的拼音符号列表
'''
batch_size = 1
in_len = np.zeros((batch_size),dtype = np.int32)
in_len[0] = input_len
x_in = np.zeros((batch_size, 1600, self.AUDIO_FEATURE_LENGTH, 1), dtype=np.float)
for i in range(batch_size):
x_in[i,0:len(data_input)] = data_input
base_pred = self.base_model.predict(x = x_in)
#print('base_pred:\n', base_pred)
#y_p = base_pred
#for j in range(200):
# mean = np.sum(y_p[0][j]) / y_p[0][j].shape[0]
# print('max y_p:',np.max(y_p[0][j]),'min y_p:',np.min(y_p[0][j]),'mean y_p:',mean,'mid y_p:',y_p[0][j][100])
# print('argmin:',np.argmin(y_p[0][j]),'argmax:',np.argmax(y_p[0][j]))
# count=0
# for i in range(y_p[0][j].shape[0]):
# if(y_p[0][j][i] < mean):
# count += 1
# print('count:',count)
base_pred =base_pred[:, :, :]
#base_pred =base_pred[:, 2:, :]
r = K.ctc_decode(base_pred, in_len, greedy = True, beam_width=100, top_paths=1)
#print('r', r)
r1 = K.get_value(r[0][0])
#print('r1', r1)
#r2 = K.get_value(r[1])
#print(r2)
r1=r1[0]
return r1
pass
def RecognizeSpeech(self, wavsignal, fs):
'''
最终做语音识别用的函数,识别一个wav序列的语音
'''
#data = self.data
#data = DataSpeech('E:\\语音数据集')
#data.LoadDataList('dev')
# 获取输入特征
#data_input = GetMfccFeature(wavsignal, fs)
#t0=time.time()
data_input = GetFrequencyFeature3(wavsignal, fs)
#t1=time.time()
#print('time cost:',t1-t0)
input_length = len(data_input)
input_length = input_length // 8
data_input = np.array(data_input, dtype = np.float)
#print(data_input,data_input.shape)
data_input = data_input.reshape(data_input.shape[0],data_input.shape[1],1)
#t2=time.time()
r1 = self.Predict(data_input, input_length)
#t3=time.time()
#print('time cost:',t3-t2)
list_symbol_dic = GetSymbolList(self.datapath) # 获取拼音列表
r_str=[]
for i in r1:
r_str.append(list_symbol_dic[i])
return r_str
pass
def RecognizeSpeech_FromFile(self, filename):
'''
最终做语音识别用的函数,识别指定文件名的语音
'''
wavsignal,fs = read_wav_data(filename)
r = self.RecognizeSpeech(wavsignal, fs)
return r
pass
@property
def model(self):
'''
返回keras model
'''
return self._model
if(__name__=='__main__'):
#import tensorflow as tf
#from keras.backend.tensorflow_backend import set_session
#os.environ["CUDA_VISIBLE_DEVICES"] = "1"
#进行配置,使用70%的GPU
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = 0.95
#config.gpu_options.allow_growth=True #不全部占满显存, 按需分配
#set_session(tf.Session(config=config))
datapath = abspath + ''
modelpath = abspath + 'model_speech'
if(not os.path.exists(modelpath)): # 判断保存模型的目录是否存在
os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉
system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断
if(system_type == 'Windows'):
datapath = 'E:\\语音数据集'
modelpath = modelpath + '\\'
elif(system_type == 'Linux'):
datapath = abspath + 'dataset'
modelpath = modelpath + '/'
else:
print('*[Message] Unknown System\n')
datapath = 'dataset'
modelpath = modelpath + '/'
ms = ModelSpeech(datapath)
#ms.LoadModel(modelpath + 'm261/speech_model261_e_0_step_100000.model')
#ms.TrainModel(datapath, epoch = 50, batch_size = 16, save_step = 500)
#t1=time.time()
#ms.TestModel(datapath, str_dataset='train', data_count = 128, out_report = True)
#ms.TestModel(datapath, str_dataset='dev', data_count = 128, out_report = True)
#ms.TestModel(datapath, str_dataset='test', data_count = 128, out_report = True)
#t2=time.time()
#print('Test Model Time Cost:',t2-t1,'s')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00241I0053.wav')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00020I0087.wav')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV')
#r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav')
#print('*[提示] 语音识别结果:\n',r)