From 5c3c9d5e2e74a615e549521fee12b7470fb8c3ab Mon Sep 17 00:00:00 2001 From: lloydmeta Date: Fri, 21 Jun 2024 14:09:41 +0900 Subject: [PATCH] Add an RAG via Elasticsearch cookbook I thought it would be useful to provide a cookbook for a RAG backed by Elasticsearch, Huggingface models, and Gemma. Users can easily toggle between vectorisation that is offloaded to ES and self-provided (pre)-vectorisation. This is based on the excellent MongoDB notebook and dataset. Signed-off-by: lloydmeta --- notebooks/en/_toctree.yml | 2 + ...ith_hugging_face_gemma_elasticsearch.ipynb | 3693 +++++++++++++++++ 2 files changed, 3695 insertions(+) create mode 100644 notebooks/en/rag_with_hugging_face_gemma_elasticsearch.ipynb diff --git a/notebooks/en/_toctree.yml b/notebooks/en/_toctree.yml index 85b58533..fd0a37c8 100644 --- a/notebooks/en/_toctree.yml +++ b/notebooks/en/_toctree.yml @@ -27,6 +27,8 @@ title: Detecting Issues in a Text Dataset with Cleanlab - local: annotate_text_data_transformers_via_active_learning title: Annotate text data using Active Learning with Cleanlab + - local: rag_with_hugging_face_gemma_elasticsearch + title: Building a RAG System with Gemma, Elasticsearch and Open Source Models - local: rag_with_hugging_face_gemma_mongodb title: Building A RAG System with Gemma, MongoDB and Open Source Models - local: rag_zephyr_langchain diff --git a/notebooks/en/rag_with_hugging_face_gemma_elasticsearch.ipynb b/notebooks/en/rag_with_hugging_face_gemma_elasticsearch.ipynb new file mode 100644 index 00000000..1a32f533 --- /dev/null +++ b/notebooks/en/rag_with_hugging_face_gemma_elasticsearch.ipynb @@ -0,0 +1,3693 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "qsmx4MGD6QSp" + }, + "source": [ + "# Building A RAG System with Gemma, Elasticsearch and Huggingface Models\n", + "\n", + "\n", + " \"Open\n", + "\n", + "\n", + "\n", + "Authored By: [lloydmeta](https://huggingface.co/lloydmeta)\n", + "\n", + "This notebook walks you through building a Retrieve-Augmented-Generation (RAG) powered by Elasticsearch (ES) and Huggingface models, letting you toggle between ES-vectorising vs self-vectorising.\n", + "\n", + "**Note**: this notebook has been tested with ES 8.12.2." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BIL0BjjF6QSt" + }, + "source": [ + "## Step 0: Installing Libraries\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gVSo_nNOUsdn" + }, + "outputs": [], + "source": [ + "!pip install datasets elasticsearch sentence_transformers transformers eland accelerate" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "asQZzrNASBPI" + }, + "source": [ + "# Step 1: Set up\n", + "\n", + "## Credentials\n", + "\n", + "### Huggingface\n", + "This allows you to authenticate with Huggingface to download models and datasets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 145, + "referenced_widgets": [ + "7be04dc09e00422a8858927263987beb", + "feccb7e71b1f48a89803a73dfebd6e9f", + "926f4867329848f08088dddc09389d1e", + "c8806691e85b49b7a30ad7344b01f15b", + "cd4eeef8ff4c46dcb094d221d7686b0f", + "b104ab42f12848afbb108cd3ea35f6fc", + "fdf2e41df63945a2a987dc8df383c574", + "682aa61284054456acac0897d7f58653", + "d916f435cc2b48c6b92ab7a73fe787e8", + "d0b44d4e7dd649b7babe177eacaf22ac", + "76b418d5cd21446b85f874812157dbe6", + "8884f77987e04b729de715e45ec4980a", + "b3172431661e4775b7db7480b9848e56", + "f927cb36767743c1833e40c8ab535d06", + "6e5fa95e7bf04d3f9924b2d12b167026", + "935e370c9c9b4de59e29659d7e2fab30", + "a8742b6ed5d74a4991f8bfcaa9329d4d", + "95daff21cd684ef498a0fbf8fb26c3d4", + "1a5c9a6bcafc4cc18f2adb815f5fb8b2", + "6eed46c85540437fafafc839f2f8a1ae", + "bca12d9992794e8b9177e0fb164329cc", + "fa3141d67678445ab9da89e530f1f90c", + "daabb92936124bc9896bf4e980797b56", + "b559f826f21c4f4dbeb8054fac973c8e", + "5c0c554416c043ef8d770e7891ef8aa9", + "c8a7a13d97fd4daf8aa517fa2894ac80", + "c1c862d149a644b59ed82a2cb1a2a1e6", + "12bb85b2d8ae4f9c9ae84a156f5a5242", + "197461a1675c44828d540bef443d33de", + "4f6e6cd438a74b3dad5d38f41b5014de", + "b9afd1a8047f4cac9c798ff8fd0ffdcf", + "403180b27dc742ff95a6e705416434fe" + ] + }, + "id": "NL-NG4jjXb0I", + "outputId": "127400a9-5d0a-4317-c104-b335912123b8" + }, + "outputs": [], + "source": [ + "from huggingface_hub import notebook_login\n", + "\n", + "notebook_login()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ov9J5o5AEjzK" + }, + "source": [ + "### Elasticsearch deployment\n", + "\n", + "Let's make sure that you can access your Elasticsearch deployment. If you don't have one, create one at [Elastic Cloud](https://www.elastic.co/search-labs/tutorials/install-elasticsearch/elastic-cloud#creating-a-cloud-deployment)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "2pSSD57kn14y" + }, + "outputs": [], + "source": [ + "from google.colab import userdata\n", + "\n", + "# https://www.elastic.co/search-labs/tutorials/install-elasticsearch/elastic-cloud#finding-your-cloud-id\n", + "CLOUD_ID = userdata.get(\"CLOUD_ID\") # or \"\"\n", + "\n", + "# https://www.elastic.co/search-labs/tutorials/install-elasticsearch/elastic-cloud#creating-an-api-key\n", + "ELASTIC_API_KEY = userdata.get(\"ELASTIC_DEPL_API_KEY\") # or \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uewOyerWGx9p" + }, + "source": [ + "Set up the client and make sure the credentials work." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WDt5s-AFYVZE", + "outputId": "7b5d5e9e-9483-45db-e89f-65b0a014bfa2" + }, + "outputs": [], + "source": [ + "from elasticsearch import Elasticsearch, helpers\n", + "\n", + "# Create the client instance\n", + "client = Elasticsearch(cloud_id=CLOUD_ID, api_key=ELASTIC_API_KEY)\n", + "\n", + "# Successful response!\n", + "client.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xuczg29FFZVN" + }, + "source": [ + "### Choose data and query vectorisation options\n", + "\n", + "Here, you need to make a decision: do you want Elasticsearch to vectorise your data and queries, or do you want to do it yourself?\n", + "\n", + "Setting `USE_ELASTICSEARCH_VECTORISATION` to `True` will make the rest of this notebook set up and use ES-hosted-vectorisation for your data and your querying, but **BE AWARE** that this requires your ES deployment to have at least 1 ML node (I would recommend setting autoscaling to true on your Cloud deployment in case the model you chose is to obig).\n", + "\n", + "If `USE_ELASTICSEARCH_VECTORISATION` is `False`, this notebook will set up and use the provided model \"locally\" for data and query vectorisation.\n", + "\n", + "What should you use for your use case? *It depends* 🤷‍♂️. Running vectorisation on ES means your clients don't have to implement it, so that's the default here; however, if you don't have any ML nodes, or your own embedding setup is better/faster, feel free to toggle it to `False`!\n", + "\n", + "**Note**: if you change these values, you'll likely need to re-run the notebook from this step." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "id": "whuUt6GySrkk" + }, + "outputs": [], + "source": [ + "USE_ELASTICSEARCH_VECTORISATION = True\n", + "\n", + "EMBEDDING_MODEL_ID = \"thenlper/gte-large\"\n", + "# https://huggingface.co/thenlper/gte-large's page shows the dimensions of the model\n", + "# If you use the `gte-base` or `gte-small` embedding models, the numDimension\n", + "# value in the vector search index must be set to 768 and 384, respectively.\n", + "EMBEDDING_DIMENSIONS = 1024" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kF3A7uGc6QSv" + }, + "source": [ + "## Step 2: Data sourcing and preparation\n", + "\n", + "\n", + "The data utilised in this tutorial is sourced from Hugging Face datasets, specifically the\n", + "[MongoDB/embedded_movies dataset](https://huggingface.co/datasets/MongoDB/embedded_movies)." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 232, + "referenced_widgets": [ + "d7ee809863c249bbaa2930bcf3324f80", + "b2cc44bfdac74f03bf7d3c4ea4c20e26", + "30bd645366b4444fb21332972e919891", + "66d3601386f84b26a412d8585dcce3c9", + "05987d50260240759d2c8e82238c16ea", + "e30b65ce624e415bbb11934f5b5485cc", + "8bdc666d4f994665b966c93141fe2127", + "c07b181c9ca847b1879d62b416d4e146", + "07968ca6656b4e6286596241ef72326f", + "1ab3b8c201c040a989d6c2432b5b25fb", + "f7d160ce00e14da6986a4b9f5f8f3800", + "bbb0f98f7d314997af79cbb88a32a423", + "f1fb387e96164bebb598b89d50b1fe94", + "487d91791a18474eb83839181bf11aa5", + "a2cf88face3d46fdb659a8e229302d3d", + "5378a3ca6efd488b98b63b21ef4b7855", + "87b934f652af46b292aaddc104ee3639", + "5af34fe89e344f668a893034c8bf09f8", + "4b12d58703724d7fa9482e444db6cfda", + "9bea19caef4a4b8fa4aee44ef27a70f0", + "eed38bf036914fba9efdc43e90afe5e6", + "5b69e41cecfb4201881910a97ab40a99", + "36fce417432345be9b9cbc4ec0d7f2f7", + "25d1f6d4b4b44d5baec19d1fa11687f8", + "a5390a3411fb4b96a206e4c8a0a866df", + "1be791953b69440e8d576b0846adb2e8", + "d0e35f53ab134570a762a8082aa327d0", + "69ce294ea8b7414599bd1db4823ea52c", + "0ef65a8580074dcebc5aea4de125ff24", + "46f83dce74a240feaa3d6fb7a0886a39", + "cfe8c37347064afeb7dc15df1c19a19f", + "21df47249c724c0ea9cfcd1d63936877", + "671e7c245f264a458ab9abc5f2a321dc" + ] + }, + "id": "5gCzss27UwWw", + "outputId": "901a1ebb-e4e4-4499-fb14-bb9d0f4ebb4a" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d7ee809863c249bbaa2930bcf3324f80", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Downloading readme: 0%| | 0.00/6.18k [00:00 list[float]:\n", + " if USE_ELASTICSEARCH_VECTORISATION:\n", + " raise Exception(\n", + " f\"Disabled when USE_ELASTICSEARCH_VECTORISATION is [{USE_ELASTICSEARCH_VECTORISATION}]\"\n", + " )\n", + " else:\n", + " if not text.strip():\n", + " print(\"Attempted to get embedding for empty text.\")\n", + " return []\n", + "\n", + " embedding = embedding_model.encode(text)\n", + " return embedding.tolist()\n", + "\n", + "\n", + "def add_fullplot_embedding(x):\n", + " if USE_ELASTICSEARCH_VECTORISATION:\n", + " raise Exception(\n", + " f\"Disabled when USE_ELASTICSEARCH_VECTORISATION is [{USE_ELASTICSEARCH_VECTORISATION}]\"\n", + " )\n", + " else:\n", + " full_plots = x[\"fullplot\"]\n", + " return {\"embedding\": [get_embedding(full_plot) for full_plot in full_plots]}\n", + "\n", + "\n", + "if not USE_ELASTICSEARCH_VECTORISATION:\n", + " dataset = dataset.map(add_fullplot_embedding, batched=True)\n", + " dataset[\"train\"]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "i7gZ5fno6QSw" + }, + "source": [ + "\n", + "\n", + "## Step 4: Create a Search Index with vector search mappings.\n", + "\n", + "At this point, we create an index in Elasticsearch with the right index mappings to handle vector searches.\n", + "\n", + "Go here to read more about [Elasticsearch vector capabilities](https://www.elastic.co/what-is/vector-search)." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "n3gERSl_uFO2", + "outputId": "decd14ba-1c6e-40b0-fc9b-877233b7d27f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Creating index movies\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":77: DeprecationWarning: Passing transport options in the API method is deprecated. Use 'Elasticsearch.options()' instead.\n", + " client.indices.create(\n" + ] + }, + { + "data": { + "text/plain": [ + "ObjectApiResponse({'acknowledged': True, 'shards_acknowledged': True, 'index': 'movies'})" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Needs to match the id returned from Eland\n", + "# in general for Huggingface models, you just replace the forward slash with\n", + "# double underscore\n", + "model_id = EMBEDDING_MODEL_ID.replace(\"/\", \"__\")\n", + "\n", + "INDEX_NAME = \"movies\"\n", + "\n", + "index_mapping = {\n", + " \"properties\": {\n", + " \"fullplot\": {\"type\": \"text\"},\n", + " \"plot\": {\"type\": \"text\"},\n", + " \"title\": {\"type\": \"text\"},\n", + " }\n", + "}\n", + "# define index mapping\n", + "if USE_ELASTICSEARCH_VECTORISATION:\n", + " index_mapping[\"properties\"][\"embedding\"] = {\n", + " \"properties\": {\n", + " \"is_truncated\": {\"type\": \"boolean\"},\n", + " \"model_id\": {\n", + " \"type\": \"text\",\n", + " \"fields\": {\"keyword\": {\"type\": \"keyword\", \"ignore_above\": 256}},\n", + " },\n", + " \"predicted_value\": {\n", + " \"type\": \"dense_vector\",\n", + " \"dims\": EMBEDDING_DIMENSIONS,\n", + " \"index\": True,\n", + " \"similarity\": \"cosine\",\n", + " },\n", + " }\n", + " }\n", + "else:\n", + " index_mapping[\"properties\"][\"embedding\"] = {\n", + " \"type\": \"dense_vector\",\n", + " \"dims\": EMBEDDING_DIMENSIONS,\n", + " \"index\": \"true\",\n", + " \"similarity\": \"cosine\",\n", + " }\n", + "\n", + "# flag to check if index has to be deleted before creating\n", + "should_delete_index = True\n", + "\n", + "# check if we want to delete index before creating the index\n", + "if should_delete_index:\n", + " if client.indices.exists(index=INDEX_NAME):\n", + " print(\"Deleting existing %s\" % INDEX_NAME)\n", + " client.indices.delete(index=INDEX_NAME, ignore=[400, 404])\n", + "\n", + "print(\"Creating index %s\" % INDEX_NAME)\n", + "\n", + "\n", + "# ingest pipeline definition\n", + "if USE_ELASTICSEARCH_VECTORISATION:\n", + " PIPELINE_ID = \"vectorize_fullplots\"\n", + "\n", + " client.ingest.put_pipeline(\n", + " id=PIPELINE_ID,\n", + " processors=[\n", + " {\n", + " \"inference\": {\n", + " \"model_id\": model_id,\n", + " \"target_field\": \"embedding\",\n", + " \"field_map\": {\"fullplot\": \"text_field\"},\n", + " }\n", + " }\n", + " ],\n", + " )\n", + "\n", + " INDEX_SETTINGS = {\n", + " \"index\": {\n", + " \"default_pipeline\": PIPELINE_ID,\n", + " }\n", + " }\n", + "else:\n", + " INDEX_SETTINGS = {}\n", + "\n", + "client.indices.create(\n", + " index=INDEX_NAME, mappings=index_mapping, settings=INDEX_SETTINGS, ignore=[400, 404]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "neANZEH96QSx" + }, + "source": [ + "Ingesting data into a Elasticsearch is best done in batches. Luckily `helpers` offers an esasy way to do this." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mH2BAuhYva6U", + "outputId": "e6e14aa6-c912-4572-d247-dc1e23459793" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "batch: start [0], end [100]\n", + "batch: start [100], end [200]\n", + "batch: start [200], end [300]\n", + "batch: start [300], end [400]\n", + "batch: start [400], end [500]\n", + "batch: start [500], end [600]\n", + "batch: start [600], end [700]\n", + "batch: start [700], end [800]\n", + "batch: start [800], end [900]\n", + "batch: start [900], end [1000]\n", + "batch: start [1000], end [1100]\n", + "batch: start [1100], end [1200]\n", + "batch: start [1200], end [1300]\n", + "batch: start [1300], end [1400]\n", + "batch: start [1400], end [1452]\n", + "Data ingestion into Elasticsearch complete!\n" + ] + } + ], + "source": [ + "from elasticsearch.helpers import BulkIndexError\n", + "\n", + "\n", + "def batch_to_bulk_actions(batch):\n", + " for record in batch:\n", + " action = {\n", + " \"_index\": \"movies\",\n", + " \"_source\": {\n", + " \"title\": record[\"title\"],\n", + " \"fullplot\": record[\"fullplot\"],\n", + " \"plot\": record[\"plot\"],\n", + " },\n", + " }\n", + " if not USE_ELASTICSEARCH_VECTORISATION:\n", + " action[\"_source\"][\"embedding\"] = record[\"embedding\"]\n", + " yield action\n", + "\n", + "\n", + "def bulk_index(ds):\n", + " start = 0\n", + " end = len(ds)\n", + " batch_size = 100\n", + " if USE_ELASTICSEARCH_VECTORISATION:\n", + " # If using auto-embedding, bulk requests can take a lot longer,\n", + " # so pass a longer request_timeout here (defaults to 10s), otherwise\n", + " # we could get Connection timeouts\n", + " batch_client = client.options(request_timeout=600)\n", + " else:\n", + " batch_client = client\n", + " for batch_start in range(start, end, batch_size):\n", + " batch_end = min(batch_start + batch_size, end)\n", + " print(f\"batch: start [{batch_start}], end [{batch_end}]\")\n", + " batch = ds.select(range(batch_start, batch_end))\n", + " actions = batch_to_bulk_actions(batch)\n", + " helpers.bulk(batch_client, actions)\n", + "\n", + "\n", + "try:\n", + " bulk_index(dataset[\"train\"])\n", + "except BulkIndexError as e:\n", + " print(f\"{e.errors}\")\n", + "\n", + "print(\"Data ingestion into Elasticsearch complete!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDl8GBg_6QSx" + }, + "source": [ + "## Step 5: Perform Vector Search on User Queries\n", + "\n", + "The following step implements a function that returns a vector search result by generating a query that contains an embedded form of your text query." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "e9RLHJsdwG44" + }, + "outputs": [], + "source": [ + "def vector_search(plot_query):\n", + " if USE_ELASTICSEARCH_VECTORISATION:\n", + " knn = {\n", + " \"field\": \"embedding.predicted_value\",\n", + " \"k\": 10,\n", + " \"query_vector_builder\": {\n", + " \"text_embedding\": {\n", + " \"model_id\": model_id,\n", + " \"model_text\": plot_query,\n", + " }\n", + " },\n", + " \"num_candidates\": 150,\n", + " }\n", + " else:\n", + " question_embedding = get_embedding(plot_query)\n", + " knn = {\n", + " \"field\": \"embedding\",\n", + " \"query_vector\": question_embedding,\n", + " \"k\": 10,\n", + " \"num_candidates\": 150,\n", + " }\n", + "\n", + " response = client.search(index=\"movies\", knn=knn, size=5)\n", + " results = []\n", + " for hit in response[\"hits\"][\"hits\"]:\n", + " id = hit[\"_id\"]\n", + " score = hit[\"_score\"]\n", + " title = hit[\"_source\"][\"title\"]\n", + " plot = hit[\"_source\"][\"plot\"]\n", + " fullplot = hit[\"_source\"][\"fullplot\"]\n", + " result = {\n", + " \"id\": id,\n", + " \"_score\": score,\n", + " \"title\": title,\n", + " \"plot\": plot,\n", + " \"fullplot\": fullplot,\n", + " }\n", + " results.append(result)\n", + " return results\n", + "\n", + "def pretty_search(query):\n", + "\n", + " get_knowledge = vector_search(query)\n", + "\n", + " search_result = \"\"\n", + " for result in get_knowledge:\n", + " search_result += f\"Title: {result.get('title', 'N/A')}, Plot: {result.get('fullplot', 'N/A')}\\n\"\n", + "\n", + " return search_result" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bMou2fWE6QSy" + }, + "source": [ + "## Step 6: Handling user queries and loading Gemma\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z4L4SfueU6PY", + "outputId": "80d8e44f-c244-471e-8855-b011f40dd50d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Query: What is the best romantic movie to watch and why?\n", + "Continue to answer the query by using these Search Results:\n", + "Title: Shut Up and Kiss Me!, Plot: Ryan and Pete are 27-year old best friends in Miami, born on the same day and each searching for the perfect woman. Ryan is a rookie stockbroker living with his psychic Mom. Pete is a slick surfer dude yet to find commitment. Each meets the women of their dreams on the same day. Ryan knocks heads in an elevator with the gorgeous Jessica, passing out before getting her number. Pete falls for the insatiable Tiara, but Tiara's uncle is mob boss Vincent Bublione, charged with her protection. This high-energy romantic comedy asks to what extent will you go for true love?\n", + "Title: Pearl Harbor, Plot: Pearl Harbor is a classic tale of romance set during a war that complicates everything. It all starts when childhood friends Rafe and Danny become Army Air Corps pilots and meet Evelyn, a Navy nurse. Rafe falls head over heels and next thing you know Evelyn and Rafe are hooking up. Then Rafe volunteers to go fight in Britain and Evelyn and Danny get transferred to Pearl Harbor. While Rafe is off fighting everything gets completely whack and next thing you know everybody is in the middle of an air raid we now know as \"Pearl Harbor.\"\n", + "Title: Titanic, Plot: The plot focuses on the romances of two couples upon the doomed ship's maiden voyage. Isabella Paradine (Catherine Zeta-Jones) is a wealthy woman mourning the loss of her aunt, who reignites a romance with former flame Wynn Park (Peter Gallagher). Meanwhile, a charming ne'er-do-well named Jamie Perse (Mike Doyle) steals a ticket for the ship, and falls for a sweet innocent Irish girl on board. But their romance is threatened by the villainous Simon Doonan (Tim Curry), who has discovered about the ticket and makes Jamie his unwilling accomplice, as well as having sinister plans for the girl.\n", + "Title: China Girl, Plot: A modern day Romeo & Juliet story is told in New York when an Italian boy and a Chinese girl become lovers, causing a tragic conflict between ethnic gangs.\n", + "Title: Dark Blue World, Plot: March 15, 1939: Germany invades Czechoslovakia. Czech and Slovak pilots flee to England, joining the RAF. After the war, back home, they are put in labor camps, suspected of anti-Communist ideas. This film cuts between a post-war camp where Franta is a prisoner and England during the war, where Franta is like a big brother to Karel, a very young pilot. On maneuvers, Karel crash lands by the rural home of Susan, an English woman whose husband is MIA. She spends one night with Karel, and he thinks he's found the love of his life. It's complicated by Susan's attraction to Franta. How will the three handle innocence, Eros, friendship, and the heat of battle? When war ends, what then?\n", + ".\n" + ] + } + ], + "source": [ + "# Conduct query with retrival of sources, combining results into something that\n", + "# we can feed to Gemma\n", + "def combined_query(query):\n", + " source_information = pretty_search(query)\n", + " return f\"Query: {query}\\nContinue to answer the query by using these Search Results:\\n{source_information}.\"\n", + "\n", + "\n", + "query = \"What is the best romantic movie to watch and why?\"\n", + "combined_results = combined_query(query)\n", + "\n", + "print(combined_results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j93-caKRLyCZ" + }, + "source": [ + "Load our LLM" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 66, + "referenced_widgets": [ + "7df2ee0761fa473081bc5fcf56c1816a", + "0825dadfe2244306aff3c659ea066671", + "d125cbba952b40f3b84ad969bc144c89", + "2ff4928bb8e84e28952faf6f34cc5e81", + "0a6acff2349844459471cc860c2ba3e5", + "559442b9e3ac4b6487f5b7c4c99f0923", + "c639e3107d194abaac58d023205de168", + "6ff5f27b53f24b89b720b4ca170f2983", + "99bc9a8cd384463782a106dbd5789134", + "6a5b2d73abdb4cd0943d63cb915d6edf", + "fd050b0747794912b42e25dc66b4be25" + ] + }, + "id": "OYGmKVv9mm8g", + "outputId": "244ffd13-7c4c-46ac-f43e-84140a699b01" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7df2ee0761fa473081bc5fcf56c1816a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Loading checkpoint shards: 0%| | 0/2 [00:00Pro Tip: If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. " + } + }, + "b2cc44bfdac74f03bf7d3c4ea4c20e26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e30b65ce624e415bbb11934f5b5485cc", + "placeholder": "​", + "style": "IPY_MODEL_8bdc666d4f994665b966c93141fe2127", + "value": "Downloading readme: 100%" + } + }, + "b3172431661e4775b7db7480b9848e56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b559f826f21c4f4dbeb8054fac973c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b9afd1a8047f4cac9c798ff8fd0ffdcf", + "placeholder": "​", + "style": "IPY_MODEL_403180b27dc742ff95a6e705416434fe", + "value": "Login successful" + } + }, + "b9afd1a8047f4cac9c798ff8fd0ffdcf": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbb0f98f7d314997af79cbb88a32a423": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1fb387e96164bebb598b89d50b1fe94", + "IPY_MODEL_487d91791a18474eb83839181bf11aa5", + "IPY_MODEL_a2cf88face3d46fdb659a8e229302d3d" + ], + "layout": "IPY_MODEL_5378a3ca6efd488b98b63b21ef4b7855" + } + }, + "bca12d9992794e8b9177e0fb164329cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5c0c554416c043ef8d770e7891ef8aa9", + "placeholder": "​", + "style": "IPY_MODEL_c8a7a13d97fd4daf8aa517fa2894ac80", + "value": "Token is valid (permission: write)." + } + }, + "c07b181c9ca847b1879d62b416d4e146": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1c862d149a644b59ed82a2cb1a2a1e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c639e3107d194abaac58d023205de168": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "c8806691e85b49b7a30ad7344b01f15b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "CheckboxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "CheckboxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "CheckboxView", + "description": "Add token as git credential?", + "description_tooltip": null, + "disabled": false, + "indent": true, + "layout": "IPY_MODEL_8884f77987e04b729de715e45ec4980a", + "style": "IPY_MODEL_b3172431661e4775b7db7480b9848e56", + "value": true + } + }, + "c8a7a13d97fd4daf8aa517fa2894ac80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cd4eeef8ff4c46dcb094d221d7686b0f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "Login", + "disabled": false, + "icon": "", + "layout": "IPY_MODEL_f927cb36767743c1833e40c8ab535d06", + "style": "IPY_MODEL_6e5fa95e7bf04d3f9924b2d12b167026", + "tooltip": "" + } + }, + "cfe8c37347064afeb7dc15df1c19a19f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d0b44d4e7dd649b7babe177eacaf22ac": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0e35f53ab134570a762a8082aa327d0": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d125cbba952b40f3b84ad969bc144c89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_6ff5f27b53f24b89b720b4ca170f2983", + "max": 2, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_99bc9a8cd384463782a106dbd5789134", + "value": 2 + } + }, + "d7ee809863c249bbaa2930bcf3324f80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2cc44bfdac74f03bf7d3c4ea4c20e26", + "IPY_MODEL_30bd645366b4444fb21332972e919891", + "IPY_MODEL_66d3601386f84b26a412d8585dcce3c9" + ], + "layout": "IPY_MODEL_05987d50260240759d2c8e82238c16ea" + } + }, + "d916f435cc2b48c6b92ab7a73fe787e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "daabb92936124bc9896bf4e980797b56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_197461a1675c44828d540bef443d33de", + "placeholder": "​", + "style": "IPY_MODEL_4f6e6cd438a74b3dad5d38f41b5014de", + "value": "Your token has been saved to /root/.cache/huggingface/token" + } + }, + "e30b65ce624e415bbb11934f5b5485cc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "eed38bf036914fba9efdc43e90afe5e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f1fb387e96164bebb598b89d50b1fe94": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_87b934f652af46b292aaddc104ee3639", + "placeholder": "​", + "style": "IPY_MODEL_5af34fe89e344f668a893034c8bf09f8", + "value": "Downloading data: 100%" + } + }, + "f7d160ce00e14da6986a4b9f5f8f3800": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f927cb36767743c1833e40c8ab535d06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "fa3141d67678445ab9da89e530f1f90c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "LabelModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "LabelModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "LabelView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c1c862d149a644b59ed82a2cb1a2a1e6", + "placeholder": "​", + "style": "IPY_MODEL_12bb85b2d8ae4f9c9ae84a156f5a5242", + "value": "Your token has been saved in your configured git credential helpers (store)." + } + }, + "fd050b0747794912b42e25dc66b4be25": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "fdf2e41df63945a2a987dc8df383c574": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": "center", + "align_self": null, + "border": null, + "bottom": null, + "display": "flex", + "flex": null, + "flex_flow": "column", + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "50%" + } + }, + "feccb7e71b1f48a89803a73dfebd6e9f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_682aa61284054456acac0897d7f58653", + "placeholder": "​", + "style": "IPY_MODEL_d916f435cc2b48c6b92ab7a73fe787e8", + "value": "

Copy a token from your Hugging Face\ntokens page and paste it below.
Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file.
" + } + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}