|
1 | 1 | # Changelog
|
2 | 2 |
|
| 3 | +## Jan 19, 2025 |
| 4 | +* Fix loading of LeViT safetensor weights, remove conversion code which should have been deactivated |
| 5 | +* Add 'SO150M' ViT weights trained with SBB recipes, decent results, but not optimal shape for ImageNet-12k/1k pretrain/ft |
| 6 | + * `vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k_ft_in1k` - 86.7% top-1 |
| 7 | + * `vit_so150m_patch16_reg4_gap_384.sbb_e250_in12k_ft_in1k` - 87.4% top-1 |
| 8 | + * `vit_so150m_patch16_reg4_gap_256.sbb_e250_in12k` |
| 9 | +* Misc typing, typo, etc. cleanup |
| 10 | +* 1.0.14 release to get above LeViT fix out |
| 11 | + |
| 12 | +## Jan 9, 2025 |
| 13 | +* Add support to train and validate in pure `bfloat16` or `float16` |
| 14 | +* `wandb` project name arg added by https://github.com/caojiaolong, use arg.experiment for name |
| 15 | +* Fix old issue w/ checkpoint saving not working on filesystem w/o hard-link support (e.g. FUSE fs mounts) |
| 16 | +* 1.0.13 release |
| 17 | + |
| 18 | +## Jan 6, 2025 |
| 19 | +* Add `torch.utils.checkpoint.checkpoint()` wrapper in `timm.models` that defaults `use_reentrant=False`, unless `TIMM_REENTRANT_CKPT=1` is set in env. |
| 20 | + |
| 21 | +## Dec 31, 2024 |
| 22 | +* `convnext_nano` 384x384 ImageNet-12k pretrain & fine-tune. https://huggingface.co/models?search=convnext_nano%20r384 |
| 23 | +* Add AIM-v2 encoders from https://github.com/apple/ml-aim, see on Hub: https://huggingface.co/models?search=timm%20aimv2 |
| 24 | +* Add PaliGemma2 encoders from https://github.com/google-research/big_vision to existing PaliGemma, see on Hub: https://huggingface.co/models?search=timm%20pali2 |
| 25 | +* Add missing L/14 DFN2B 39B CLIP ViT, `vit_large_patch14_clip_224.dfn2b_s39b` |
| 26 | +* Fix existing `RmsNorm` layer & fn to match standard formulation, use PT 2.5 impl when possible. Move old impl to `SimpleNorm` layer, it's LN w/o centering or bias. There were only two `timm` models using it, and they have been updated. |
| 27 | +* Allow override of `cache_dir` arg for model creation |
| 28 | +* Pass through `trust_remote_code` for HF datasets wrapper |
| 29 | +* `inception_next_atto` model added by creator |
| 30 | +* Adan optimizer caution, and Lamb decoupled weighgt decay options |
| 31 | +* Some feature_info metadata fixed by https://github.com/brianhou0208 |
| 32 | +* All OpenCLIP and JAX (CLIP, SigLIP, Pali, etc) model weights that used load time remapping were given their own HF Hub instances so that they work with `hf-hub:` based loading, and thus will work with new Transformers `TimmWrapperModel` |
| 33 | + |
| 34 | +## Nov 28, 2024 |
| 35 | +* More optimizers |
| 36 | + * Add MARS optimizer (https://arxiv.org/abs/2411.10438, https://github.com/AGI-Arena/MARS) |
| 37 | + * Add LaProp optimizer (https://arxiv.org/abs/2002.04839, https://github.com/Z-T-WANG/LaProp-Optimizer) |
| 38 | + * Add masking from 'Cautious Optimizers' (https://arxiv.org/abs/2411.16085, https://github.com/kyleliang919/C-Optim) to Adafactor, Adafactor Big Vision, AdamW (legacy), Adopt, Lamb, LaProp, Lion, NadamW, RMSPropTF, SGDW |
| 39 | + * Cleanup some docstrings and type annotations re optimizers and factory |
| 40 | +* Add MobileNet-V4 Conv Medium models pretrained on in12k and fine-tuned in1k @ 384x384 |
| 41 | + * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k_ft_in1k |
| 42 | + * https://huggingface.co/timm/mobilenetv4_conv_medium.e250_r384_in12k |
| 43 | + * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_ad_r384_in12k |
| 44 | + * https://huggingface.co/timm/mobilenetv4_conv_medium.e180_r384_in12k |
| 45 | +* Add small cs3darknet, quite good for the speed |
| 46 | + * https://huggingface.co/timm/cs3darknet_focus_s.ra4_e3600_r256_in1k |
| 47 | + |
| 48 | +## Nov 12, 2024 |
| 49 | +* Optimizer factory refactor |
| 50 | + * New factory works by registering optimizers using an OptimInfo dataclass w/ some key traits |
| 51 | + * Add `list_optimizers`, `get_optimizer_class`, `get_optimizer_info` to reworked `create_optimizer_v2` fn to explore optimizers, get info or class |
| 52 | + * deprecate `optim.optim_factory`, move fns to `optim/_optim_factory.py` and `optim/_param_groups.py` and encourage import via `timm.optim` |
| 53 | +* Add Adopt (https://github.com/iShohei220/adopt) optimizer |
| 54 | +* Add 'Big Vision' variant of Adafactor (https://github.com/google-research/big_vision/blob/main/big_vision/optax.py) optimizer |
| 55 | +* Fix original Adafactor to pick better factorization dims for convolutions |
| 56 | +* Tweak LAMB optimizer with some improvements in torch.where functionality since original, refactor clipping a bit |
| 57 | +* dynamic img size support in vit, deit, eva improved to support resize from non-square patch grids, thanks https://github.com/wojtke |
| 58 | +* |
| 59 | +## Oct 31, 2024 |
| 60 | +Add a set of new very well trained ResNet & ResNet-V2 18/34 (basic block) weights. See https://huggingface.co/blog/rwightman/resnet-trick-or-treat |
| 61 | + |
| 62 | +## Oct 19, 2024 |
| 63 | +* Cleanup torch amp usage to avoid cuda specific calls, merge support for Ascend (NPU) devices from [MengqingCao](https://github.com/MengqingCao) that should work now in PyTorch 2.5 w/ new device extension autoloading feature. Tested Intel Arc (XPU) in Pytorch 2.5 too and it (mostly) worked. |
| 64 | + |
| 65 | +## Oct 16, 2024 |
| 66 | +* Fix error on importing from deprecated path `timm.models.registry`, increased priority of existing deprecation warnings to be visible |
| 67 | +* Port weights of InternViT-300M (https://huggingface.co/OpenGVLab/InternViT-300M-448px) to `timm` as `vit_intern300m_patch14_448` |
| 68 | + |
| 69 | +### Oct 14, 2024 |
| 70 | +* Pre-activation (ResNetV2) version of 18/18d/34/34d ResNet model defs added by request (weights pending) |
| 71 | +* Release 1.0.10 |
| 72 | + |
| 73 | +### Oct 11, 2024 |
| 74 | +* MambaOut (https://github.com/yuweihao/MambaOut) model & weights added. A cheeky take on SSM vision models w/o the SSM (essentially ConvNeXt w/ gating). A mix of original weights + custom variations & weights. |
| 75 | + |
| 76 | +|model |img_size|top1 |top5 |param_count| |
| 77 | +|---------------------------------------------------------------------------------------------------------------------|--------|------|------|-----------| |
| 78 | +|[mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_r384_in12k_ft_in1k)|384 |87.506|98.428|101.66 | |
| 79 | +|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|288 |86.912|98.236|101.66 | |
| 80 | +|[mambaout_base_plus_rw.sw_e150_in12k_ft_in1k](http://huggingface.co/timm/mambaout_base_plus_rw.sw_e150_in12k_ft_in1k)|224 |86.632|98.156|101.66 | |
| 81 | +|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |288 |84.974|97.332|86.48 | |
| 82 | +|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |288 |84.962|97.208|94.45 | |
| 83 | +|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |288 |84.832|97.27 |88.83 | |
| 84 | +|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |288 |84.72 |96.93 |84.81 | |
| 85 | +|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |288 |84.598|97.098|48.5 | |
| 86 | +|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |288 |84.5 |96.974|48.49 | |
| 87 | +|[mambaout_base_wide_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_wide_rw.sw_e500_in1k) |224 |84.454|96.864|94.45 | |
| 88 | +|[mambaout_base_tall_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_tall_rw.sw_e500_in1k) |224 |84.434|96.958|86.48 | |
| 89 | +|[mambaout_base_short_rw.sw_e500_in1k](http://huggingface.co/timm/mambaout_base_short_rw.sw_e500_in1k) |224 |84.362|96.952|88.83 | |
| 90 | +|[mambaout_base.in1k](http://huggingface.co/timm/mambaout_base.in1k) |224 |84.168|96.68 |84.81 | |
| 91 | +|[mambaout_small.in1k](http://huggingface.co/timm/mambaout_small.in1k) |224 |84.086|96.63 |48.49 | |
| 92 | +|[mambaout_small_rw.sw_e450_in1k](http://huggingface.co/timm/mambaout_small_rw.sw_e450_in1k) |224 |84.024|96.752|48.5 | |
| 93 | +|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |288 |83.448|96.538|26.55 | |
| 94 | +|[mambaout_tiny.in1k](http://huggingface.co/timm/mambaout_tiny.in1k) |224 |82.736|96.1 |26.55 | |
| 95 | +|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |288 |81.054|95.718|9.14 | |
| 96 | +|[mambaout_kobe.in1k](http://huggingface.co/timm/mambaout_kobe.in1k) |224 |79.986|94.986|9.14 | |
| 97 | +|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |288 |79.848|95.14 |7.3 | |
| 98 | +|[mambaout_femto.in1k](http://huggingface.co/timm/mambaout_femto.in1k) |224 |78.87 |94.408|7.3 | |
| 99 | + |
| 100 | +* SigLIP SO400M ViT fine-tunes on ImageNet-1k @ 378x378, added 378x378 option for existing SigLIP 384x384 models |
| 101 | + * [vit_so400m_patch14_siglip_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_378.webli_ft_in1k) - 89.42 top-1 |
| 102 | + * [vit_so400m_patch14_siglip_gap_378.webli_ft_in1k](https://huggingface.co/timm/vit_so400m_patch14_siglip_gap_378.webli_ft_in1k) - 89.03 |
| 103 | +* SigLIP SO400M ViT encoder from recent multi-lingual (i18n) variant, patch16 @ 256x256 (https://huggingface.co/timm/ViT-SO400M-16-SigLIP-i18n-256). OpenCLIP update pending. |
| 104 | +* Add two ConvNeXt 'Zepto' models & weights (one w/ overlapped stem and one w/ patch stem). Uses RMSNorm, smaller than previous 'Atto', 2.2M params. |
| 105 | + * [convnext_zepto_rms_ols.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms_ols.ra4_e3600_r224_in1k) - 73.20 top-1 @ 224 |
| 106 | + * [convnext_zepto_rms.ra4_e3600_r224_in1k](https://huggingface.co/timm/convnext_zepto_rms.ra4_e3600_r224_in1k) - 72.81 @ 224 |
| 107 | + |
| 108 | +### Sept 2024 |
| 109 | +* Add a suite of tiny test models for improved unit tests and niche low-resource applications (https://huggingface.co/blog/rwightman/timm-tiny-test) |
| 110 | +* Add MobileNetV4-Conv-Small (0.5x) model (https://huggingface.co/posts/rwightman/793053396198664) |
| 111 | + * [mobilenetv4_conv_small_050.e3000_r224_in1k](http://hf.co/timm/mobilenetv4_conv_small_050.e3000_r224_in1k) - 65.81 top-1 @ 256, 64.76 @ 224 |
| 112 | +* Add MobileNetV3-Large variants trained with MNV4 Small recipe |
| 113 | + * [mobilenetv3_large_150d.ra4_e3600_r256_in1k](http://hf.co/timm/mobilenetv3_large_150d.ra4_e3600_r256_in1k) - 81.81 @ 320, 80.94 @ 256 |
| 114 | + * [mobilenetv3_large_100.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv3_large_100.ra4_e3600_r224_in1k) - 77.16 @ 256, 76.31 @ 224 |
| 115 | + |
| 116 | +### Aug 21, 2024 |
| 117 | +* Updated SBB ViT models trained on ImageNet-12k and fine-tuned on ImageNet-1k, challenging quite a number of much larger, slower models |
| 118 | + |
| 119 | +| model | top1 | top5 | param_count | img_size | |
| 120 | +| -------------------------------------------------- | ------ | ------ | ----------- | -------- | |
| 121 | +| [vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 87.438 | 98.256 | 64.11 | 384 | |
| 122 | +| [vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_mediumd_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 86.608 | 97.934 | 64.11 | 256 | |
| 123 | +| [vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_384.sbb2_e200_in12k_ft_in1k) | 86.594 | 98.02 | 60.4 | 384 | |
| 124 | +| [vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k](https://huggingface.co/timm/vit_betwixt_patch16_reg4_gap_256.sbb2_e200_in12k_ft_in1k) | 85.734 | 97.61 | 60.4 | 256 | |
| 125 | +* MobileNet-V1 1.25, EfficientNet-B1, & ResNet50-D weights w/ MNV4 baseline challenge recipe |
| 126 | + |
| 127 | +| model | top1 | top5 | param_count | img_size | |
| 128 | +|--------------------------------------------------------------------------------------------------------------------------|--------|--------|-------------|----------| |
| 129 | +| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 81.838 | 95.922 | 25.58 | 288 | |
| 130 | +| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 81.440 | 95.700 | 7.79 | 288 | |
| 131 | +| [resnet50d.ra4_e3600_r224_in1k](http://hf.co/timm/resnet50d.ra4_e3600_r224_in1k) | 80.952 | 95.384 | 25.58 | 224 | |
| 132 | +| [efficientnet_b1.ra4_e3600_r240_in1k](http://hf.co/timm/efficientnet_b1.ra4_e3600_r240_in1k) | 80.406 | 95.152 | 7.79 | 240 | |
| 133 | +| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 77.600 | 93.804 | 6.27 | 256 | |
| 134 | +| [mobilenetv1_125.ra4_e3600_r224_in1k](http://hf.co/timm/mobilenetv1_125.ra4_e3600_r224_in1k) | 76.924 | 93.234 | 6.27 | 224 | |
| 135 | + |
| 136 | +* Add SAM2 (HieraDet) backbone arch & weight loading support |
| 137 | +* Add Hiera Small weights trained w/ abswin pos embed on in12k & fine-tuned on 1k |
| 138 | + |
| 139 | +|model |top1 |top5 |param_count| |
| 140 | +|---------------------------------|------|------|-----------| |
| 141 | +|hiera_small_abswin_256.sbb2_e200_in12k_ft_in1k |84.912|97.260|35.01 | |
| 142 | +|hiera_small_abswin_256.sbb2_pd_e200_in12k_ft_in1k |84.560|97.106|35.01 | |
| 143 | + |
3 | 144 | ### Aug 8, 2024
|
4 | 145 | * Add RDNet ('DenseNets Reloaded', https://arxiv.org/abs/2403.19588), thanks [Donghyun Kim](https://github.com/dhkim0225)
|
5 | 146 |
|
|
0 commit comments