-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
173 lines (147 loc) · 7.13 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import random
import tensorflow as tf
import sys
sys.path.append("..")
from model import id_to_arg_scope, id_to_scope, id_to_saverscope, id_to_model, id_to_checkpoint
slim = tf.contrib.slim
_BATCH_NORM_DECAY = 0.9
_BATCH_NORM_EPSILON = 1e-5
class Encoder(object):
def __init__(self, params, mode, W_emb):
self.num_layers = params['encoder_num_layers']
self.hidden_size = params['encoder_hidden_size']
self.emb_size = params['encoder_emb_size']
self.mlp_num_layers = params['mlp_num_layers']
self.mlp_hidden_size = params['mlp_hidden_size']
self.mlp_dropout = params['mlp_dropout']
self.encoder_length = params['encoder_length']
self.vocab_size = params['encoder_vocab_size']
self.dropout = params['encoder_dropout']
self.image_hidden_size = params['image_hidden_size']
self.model_id = "1"
self.W_emb = W_emb
self.mode = mode
def build_encoder(self, image_emb, x, batch_size, is_training):
# process x
self.batch_size = batch_size
assert x.shape.ndims == 2, '[batch_size, length]'
x = tf.gather(self.W_emb, x) # [batch_size, length, emb_size]
x = tf.reshape(x, [-1, self.encoder_length * self.emb_size])
for i in range(self.num_layers):
name = 'encoder/mlp_{}'.format(i)
x = tf.layers.dense(x, self.hidden_size, activation=tf.nn.relu, name=name)
x = tf.layers.dropout(x, self.dropout, training=is_training)
x = tf.layers.batch_normalization(
x, axis=1,
momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON,
center=True, scale=True, training=is_training, fused=True
)
x = tf.nn.l2_normalize(x, dim=-1)
self.arch_emb = x
image = tf.layers.dense(image_emb, self.image_hidden_size, activation=tf.nn.relu, name='image/fc')
image = tf.nn.l2_normalize(image, dim=-1)
self.image_emb = image
# process predictor
x = tf.concat([self.arch_emb, image], axis=1)
for i in range(self.mlp_num_layers):
name = 'predictor/mlp_{}'.format(i)
x = tf.layers.dense(x, self.mlp_hidden_size, activation=tf.nn.relu, name=name)
x = tf.layers.dropout(x, self.mlp_dropout, training=is_training)
self.predict_value = tf.layers.dense(x, 1, activation=tf.sigmoid, name='regression')
return {
'arch_emb' : self.arch_emb,
'image_emb' : self.image_emb,
'predict_value' : self.predict_value,
}
class Model(object):
def __init__(self, image, x, y, params, mode, scope='Encoder', reuse=tf.AUTO_REUSE):
self.image = image
self.x = x
self.y = y
self.params = params
self.batch_size = tf.shape(x)[0]
self.vocab_size = params['encoder_vocab_size']
self.emb_size = params['encoder_emb_size']
self.hidden_size = params['encoder_hidden_size']
self.encoder_length = params['encoder_length']
self.weight_decay = params['weight_decay']
self.mode = mode
self.is_training = self.mode == tf.estimator.ModeKeys.TRAIN
initializer = tf.random_uniform_initializer(-0.1, 0.1)
tf.get_variable_scope().set_initializer(initializer)
self.build_graph(scope=scope, reuse=reuse)
def build_graph(self, scope=None, reuse=tf.AUTO_REUSE):
tf.logging.info("# creating %s graph ..." % self.mode)
# Encoder
with tf.variable_scope(scope, reuse=reuse):
self.W_emb = tf.get_variable('W_emb', [self.vocab_size, self.emb_size])
self.arch_emb, self.predict_value = self.build_encoder()
if self.mode != tf.estimator.ModeKeys.PREDICT:
self.compute_loss()
else:
self.loss = None
self.total_loss = None
def build_encoder(self):
encoder = Encoder(self.params, self.mode, self.W_emb)
res = encoder.build_encoder(self.image, self.x, self.batch_size, self.is_training)
self.image_emb = res['image_emb']
return res['arch_emb'], res['predict_value']
def compute_loss(self):
weights = 1 - tf.cast(tf.equal(self.y, -1.0), tf.float32)
mean_squared_error = tf.losses.mean_squared_error(
labels=self.y,
predictions=self.predict_value,
weights=weights)
tf.summary.scalar('mean_squared_error', mean_squared_error)
self.loss = tf.identity(mean_squared_error, name='squared_error')
total_loss = mean_squared_error + self.weight_decay * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()])
self.total_loss = total_loss
def train(self):
assert self.mode == tf.estimator.ModeKeys.TRAIN
self.global_step = tf.train.get_or_create_global_step()
self.learning_rate = tf.constant(self.params['lr'])
if self.params['optimizer'] == "sgd":
self.learning_rate = tf.cond(
self.global_step < self.params['start_decay_step'],
lambda: self.learning_rate,
lambda: tf.train.exponential_decay(
self.learning_rate,
(self.global_step - self.params['start_decay_step']),
self.params['decay_steps'],
self.params['decay_factor'],
staircase=True),
name="learning_rate")
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
elif self.params['optimizer'] == "adam":
assert float(self.params['lr']) <= 0.001, "! High Adam learning rate %g" % self.params['lr']
opt = tf.train.AdamOptimizer(self.learning_rate)
elif self.params['optimizer'] == 'adadelta':
opt = tf.train.AdadeltaOptimizer(learning_rate=self.learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
gradients, variables = zip(*opt.compute_gradients(self.total_loss))
clipped_gradients, _ = tf.clip_by_global_norm(gradients, self.params['max_gradient_norm'])
self.train_op = opt.apply_gradients(
zip(clipped_gradients, variables), global_step=self.global_step)
tf.identity(self.learning_rate, 'learning_rate')
tf.summary.scalar("learning_rate", self.learning_rate),
tf.summary.scalar("total_loss", self.total_loss),
return {
'train_op' : self.train_op,
'loss' : self.total_loss,
}
def eval(self):
assert self.mode == tf.estimator.ModeKeys.EVAL
return {
'loss': self.total_loss,
}
def infer(self):
assert self.mode == tf.estimator.ModeKeys.PREDICT
grads_on_outputs = tf.gradients(self.predict_value, self.arch_emb)[0]
new_arch_emb = self.arch_emb - self.params['predict_lambda'] * grads_on_outputs
new_arch_emb = tf.nn.l2_normalize(new_arch_emb, dim=-1)
return self.arch_emb, self.predict_value, new_arch_emb