You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[Checkpointer] Loading from pretrained_models/resnet50d_ra2-464e36ba.pth fvcore.common.checkpoint WARNING: Some model parameters or buffers are not found in the checkpoint:
#109
Open
116022017144 opened this issue
Feb 20, 2023
· 0 comments
detectron2 INFO: Rank of current process: 0. World size: 1
[02/20 01:25:16] detectron2 INFO: Environment info:
sys.platform linux
Python 3.7.15 (default, Nov 24 2022, 21:12:53) [GCC 11.2.0]
numpy 1.21.5
detectron2 0.5 @/root/anaconda3/envs/sparseinst/lib/python3.7/site-packages/detectron2
Compiler GCC 7.3
CUDA compiler CUDA 11.0
detectron2 arch flags 3.7, 5.0, 5.2, 6.0, 6.1, 7.0, 7.5, 8.0
DETECTRON2_ENV_MODULE
PyTorch 1.7.1 @/root/anaconda3/envs/sparseinst/lib/python3.7/site-packages/torch
PyTorch debug build False
GPU available Yes
GPU 0 A100-SXM4-40GB (arch=8.0)
CUDA_HOME /usr/local/cuda-11.0
Pillow 9.2.0
torchvision 0.8.2 @/root/anaconda3/envs/sparseinst/lib/python3.7/site-packages/torchvision
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0
fvcore 0.1.5.post20221122
iopath 0.1.8
cv2 4.6.0
PyTorch built with:
[02/20 01:25:16] detectron2 INFO: Command line arguments: Namespace(config_file='configs/sparse_inst_r50vd_dcn_giam_aug_1.yaml', dist_url='tcp://127.0.0.1:49152', eval_only=False, machine_rank=0, num_gpus=1, num_machines=1, opts=[], resume=False)
[02/20 01:25:16] detectron2 INFO: Contents of args.config_file=configs/sparse_inst_r50vd_dcn_giam_aug_1.yaml:
BASE: "Base-SparseInst_1.yaml"
MODEL:
WEIGHTS: "pretrained_models/resnet50d_ra2-464e36ba.pth"
BACKBONE:
FREEZE_AT: 0
NAME: "build_resnet_vd_backbone"
RESNETS:
DEFORM_ON_PER_STAGE: [False, False, True, True] # dcn on res4, res5
INPUT:
CROP:
ENABLED: True
TYPE: "absolute_range"
SIZE: (384, 600)
MASK_FORMAT: "polygon"
OUTPUT_DIR: "output/sparse_inst_r50vd_dcn_giam_aug"
[02/20 01:25:16] detectron2 INFO: Running with full config:
CUDNN_BENCHMARK: false
DATALOADER:
ASPECT_RATIO_GROUPING: true
FILTER_EMPTY_ANNOTATIONS: true
NUM_WORKERS: 6
REPEAT_THRESHOLD: 0.0
SAMPLER_TRAIN: TrainingSampler
DATASETS:
PRECOMPUTED_PROPOSAL_TOPK_TEST: 1000
PRECOMPUTED_PROPOSAL_TOPK_TRAIN: 2000
PROPOSAL_FILES_TEST: []
PROPOSAL_FILES_TRAIN: []
TEST:
TRAIN:
GLOBAL:
HACK: 1.0
INPUT:
CROP:
ENABLED: true
SIZE:
TYPE: absolute_range
FORMAT: RGB
MASK_FORMAT: polygon
MAX_SIZE_TEST: 853
MAX_SIZE_TRAIN: 853
MIN_SIZE_TEST: 640
MIN_SIZE_TRAIN:
MIN_SIZE_TRAIN_SAMPLING: choice
RANDOM_FLIP: horizontal
MODEL:
ANCHOR_GENERATOR:
ANGLES:
ASPECT_RATIOS:
NAME: DefaultAnchorGenerator
OFFSET: 0.0
SIZES:
BACKBONE:
FREEZE_AT: 0
NAME: build_resnet_vd_backbone
CSPNET:
NAME: darknet53
NORM: ''
OUT_FEATURES:
DEVICE: cuda
FPN:
FUSE_TYPE: sum
IN_FEATURES: []
NORM: ''
OUT_CHANNELS: 256
KEYPOINT_ON: false
LOAD_PROPOSALS: false
MASK_ON: true
META_ARCHITECTURE: SparseInst
PANOPTIC_FPN:
COMBINE:
ENABLED: true
INSTANCES_CONFIDENCE_THRESH: 0.5
OVERLAP_THRESH: 0.5
STUFF_AREA_LIMIT: 4096
INSTANCE_LOSS_WEIGHT: 1.0
PIXEL_MEAN:
PIXEL_STD:
PROPOSAL_GENERATOR:
MIN_SIZE: 0
NAME: RPN
PVT:
LINEAR: false
NAME: b1
OUT_FEATURES:
RESNETS:
DEFORM_MODULATED: false
DEFORM_NUM_GROUPS: 1
DEFORM_ON_PER_STAGE:
DEPTH: 50
NORM: FrozenBN
NUM_GROUPS: 1
OUT_FEATURES:
RES2_OUT_CHANNELS: 256
RES5_DILATION: 1
STEM_OUT_CHANNELS: 64
STRIDE_IN_1X1: false
WIDTH_PER_GROUP: 64
RETINANET:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_WEIGHTS: &id001
FOCAL_LOSS_ALPHA: 0.25
FOCAL_LOSS_GAMMA: 2.0
IN_FEATURES:
IOU_LABELS:
IOU_THRESHOLDS:
NMS_THRESH_TEST: 0.5
NORM: ''
NUM_CLASSES: 80
NUM_CONVS: 4
PRIOR_PROB: 0.01
SCORE_THRESH_TEST: 0.05
SMOOTH_L1_LOSS_BETA: 0.1
TOPK_CANDIDATES_TEST: 1000
ROI_BOX_CASCADE_HEAD:
BBOX_REG_WEIGHTS:
IOUS:
ROI_BOX_HEAD:
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS:
CLS_AGNOSTIC_BBOX_REG: false
CONV_DIM: 256
FC_DIM: 1024
NAME: ''
NORM: ''
NUM_CONV: 0
NUM_FC: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
SMOOTH_L1_BETA: 0.0
TRAIN_ON_PRED_BOXES: false
ROI_HEADS:
BATCH_SIZE_PER_IMAGE: 512
IN_FEATURES:
IOU_LABELS:
IOU_THRESHOLDS:
NAME: Res5ROIHeads
NMS_THRESH_TEST: 0.5
NUM_CLASSES: 80
POSITIVE_FRACTION: 0.25
PROPOSAL_APPEND_GT: true
SCORE_THRESH_TEST: 0.05
ROI_KEYPOINT_HEAD:
CONV_DIMS:
LOSS_WEIGHT: 1.0
MIN_KEYPOINTS_PER_IMAGE: 1
NAME: KRCNNConvDeconvUpsampleHead
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: true
NUM_KEYPOINTS: 17
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
ROI_MASK_HEAD:
CLS_AGNOSTIC_MASK: false
CONV_DIM: 256
NAME: MaskRCNNConvUpsampleHead
NORM: ''
NUM_CONV: 0
POOLER_RESOLUTION: 14
POOLER_SAMPLING_RATIO: 0
POOLER_TYPE: ROIAlignV2
RPN:
BATCH_SIZE_PER_IMAGE: 256
BBOX_REG_LOSS_TYPE: smooth_l1
BBOX_REG_LOSS_WEIGHT: 1.0
BBOX_REG_WEIGHTS: *id001
BOUNDARY_THRESH: -1
CONV_DIMS:
HEAD_NAME: StandardRPNHead
IN_FEATURES:
IOU_LABELS:
IOU_THRESHOLDS:
LOSS_WEIGHT: 1.0
NMS_THRESH: 0.7
POSITIVE_FRACTION: 0.5
POST_NMS_TOPK_TEST: 1000
POST_NMS_TOPK_TRAIN: 2000
PRE_NMS_TOPK_TEST: 6000
PRE_NMS_TOPK_TRAIN: 12000
SMOOTH_L1_BETA: 0.0
SEM_SEG_HEAD:
COMMON_STRIDE: 4
CONVS_DIM: 128
IGNORE_VALUE: 255
IN_FEATURES:
LOSS_WEIGHT: 1.0
NAME: SemSegFPNHead
NORM: GN
NUM_CLASSES: 54
SPARSE_INST:
CLS_THRESHOLD: 0.005
DATASET_MAPPER: SparseInstDatasetMapper
DECODER:
GROUPS: 4
INST:
CONVS: 4
DIM: 256
KERNEL_DIM: 128
MASK:
CONVS: 4
DIM: 256
NAME: GroupIAMDecoder
NUM_CLASSES: 80
NUM_MASKS: 100
OUTPUT_IAM: false
SCALE_FACTOR: 2.0
ENCODER:
IN_FEATURES:
NAME: InstanceContextEncoder
NORM: ''
NUM_CHANNELS: 256
LOSS:
CLASS_WEIGHT: 2.0
ITEMS:
MASK_DICE_WEIGHT: 2.0
MASK_PIXEL_WEIGHT: 5.0
NAME: SparseInstCriterion
OBJECTNESS_WEIGHT: 1.0
MASK_THRESHOLD: 0.45
MATCHER:
ALPHA: 0.8
BETA: 0.2
NAME: SparseInstMatcher
MAX_DETECTIONS: 100
WEIGHTS: pretrained_models/resnet50d_ra2-464e36ba.pth
OUTPUT_DIR: output/sparse_inst_r50vd_dcn_giam_aug
SEED: -1
SOLVER:
AMP:
ENABLED: false
AMSGRAD: false
BACKBONE_MULTIPLIER: 1.0
BASE_LR: 5.0e-05
BIAS_LR_FACTOR: 1.0
CHECKPOINT_PERIOD: 5000
CLIP_GRADIENTS:
CLIP_TYPE: value
CLIP_VALUE: 1.0
ENABLED: false
NORM_TYPE: 2.0
GAMMA: 0.1
IMS_PER_BATCH: 32
LR_SCHEDULER_NAME: WarmupMultiStepLR
MAX_ITER: 270000
MOMENTUM: 0.9
NESTEROV: false
OPTIMIZER: ADAMW
REFERENCE_WORLD_SIZE: 0
STEPS:
WARMUP_FACTOR: 0.001
WARMUP_ITERS: 1000
WARMUP_METHOD: linear
WEIGHT_DECAY: 0.0001
WEIGHT_DECAY_BIAS: 0.0001
WEIGHT_DECAY_NORM: 0.0
TEST:
AUG:
ENABLED: false
FLIP: true
MAX_SIZE: 4000
MIN_SIZES:
DETECTIONS_PER_IMAGE: 100
EVAL_PERIOD: 7330
EXPECTED_RESULTS: []
KEYPOINT_OKS_SIGMAS: []
PRECISE_BN:
ENABLED: false
NUM_ITER: 200
VERSION: 2
VIS_PERIOD: 0
[02/20 01:25:16] detectron2 INFO: Full config saved to output/sparse_inst_r50vd_dcn_giam_aug/config.yaml
[02/20 01:25:16] d2.utils.env INFO: Using a generated random seed 16543652
[02/20 01:25:20] d2.engine.defaults INFO: Model:
SparseInst(
(backbone): ResNet(
(conv1): Sequential(
(0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(1): FrozenBatchNorm2d(num_features=32, eps=1e-05)
(2): ReLU(inplace=True)
(3): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(4): FrozenBatchNorm2d(num_features=32, eps=1e-05)
(5): ReLU(inplace=True)
(6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
)
(bn1): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(act1): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): Identity()
(1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=64, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act3): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): FrozenBatchNorm2d(num_features=512, eps=1e-05)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act3): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act3): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): FrozenBatchNorm2d(num_features=128, eps=1e-05)
(drop_block): Identity()
(act2): ReLU(inplace=True)
(aa): Identity()
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act3): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): DeformableBottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(512, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
)
)
(1): DeformableBottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
)
(2): DeformableBottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
)
(3): DeformableBottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
)
(4): DeformableBottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
)
(5): DeformableBottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(256, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=256, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=256, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=1024, eps=1e-05)
(act3): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): DeformableBottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(512, 18, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(conv2): DeformConv(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
(act3): ReLU(inplace=True)
(downsample): Sequential(
(0): AvgPool2d(kernel_size=2, stride=2, padding=0)
(1): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
)
)
(1): DeformableBottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(512, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
(act3): ReLU(inplace=True)
)
(2): DeformableBottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act1): ReLU(inplace=True)
(conv2_offset): Conv2d(512, 18, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): DeformConv(in_channels=512, out_channels=512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), dilation=(1, 1), groups=1, deformable_groups=1, bias=False)
(bn2): FrozenBatchNorm2d(num_features=512, eps=1e-05)
(act2): ReLU(inplace=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): FrozenBatchNorm2d(num_features=2048, eps=1e-05)
(act3): ReLU(inplace=True)
)
)
)
(encoder): InstanceContextEncoder(
(fpn_laterals): ModuleList(
(0): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1))
(1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
(2): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(fpn_outputs): ModuleList(
(0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)
(ppm): PyramidPoolingModule(
(stages): ModuleList(
(0): Sequential(
(0): AdaptiveAvgPool2d(output_size=(1, 1))
(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
)
(1): Sequential(
(0): AdaptiveAvgPool2d(output_size=(2, 2))
(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
)
(2): Sequential(
(0): AdaptiveAvgPool2d(output_size=(3, 3))
(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
)
(3): Sequential(
(0): AdaptiveAvgPool2d(output_size=(6, 6))
(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))
)
)
(bottleneck): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1))
)
(fusion): Conv2d(768, 256, kernel_size=(1, 1), stride=(1, 1))
)
(decoder): GroupIAMDecoder(
(inst_branch): GroupInstanceBranch(
(inst_convs): Sequential(
(0): Conv2d(258, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
)
(iam_conv): Conv2d(256, 400, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=4)
(fc): Linear(in_features=1024, out_features=1024, bias=True)
(cls_score): Linear(in_features=1024, out_features=80, bias=True)
(mask_kernel): Linear(in_features=1024, out_features=128, bias=True)
(objectness): Linear(in_features=1024, out_features=1, bias=True)
)
(mask_branch): MaskBranch(
(mask_convs): Sequential(
(0): Conv2d(258, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(5): ReLU(inplace=True)
(6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(7): ReLU(inplace=True)
)
(projection): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
)
)
(criterion): SparseInstCriterion(
(matcher): SparseInstMatcher()
)
)
[02/20 01:25:20] sparseinst.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [RandomFlip(), ResizeShortestEdge(short_edge_length=[400, 500, 600], sample_style='choice'), RandomCrop(crop_type='absolute_range', crop_size=[384, 600]), ResizeShortestEdge(short_edge_length=(416, 448, 480, 512, 544, 576, 608, 640), max_size=853, sample_style='choice')]
[02/20 01:25:36] d2.data.datasets.coco INFO: Loading datasets/coco/annotations/instances_train2017.json takes 16.17 seconds.
[02/20 01:25:37] d2.data.datasets.coco INFO: Loaded 118287 images in COCO format from datasets/coco/annotations/instances_train2017.json
[02/20 01:25:45] d2.data.build INFO: Removed 1021 images with no usable annotations. 117266 images left.
[02/20 01:25:51] d2.data.build INFO: Distribution of instances among all 80 categories:
�[36m| category | #instances | category | #instances | category | #instances |
|:-------------:|:-------------|:------------:|:-------------|:-------------:|:-------------|
| person | 257253 | bicycle | 7056 | car | 43533 |
| motorcycle | 8654 | airplane | 5129 | bus | 6061 |
| train | 4570 | truck | 9970 | boat | 10576 |
| traffic light | 12842 | fire hydrant | 1865 | stop sign | 1983 |
| parking meter | 1283 | bench | 9820 | bird | 10542 |
| cat | 4766 | dog | 5500 | horse | 6567 |
| sheep | 9223 | cow | 8014 | elephant | 5484 |
| bear | 1294 | zebra | 5269 | giraffe | 5128 |
| backpack | 8714 | umbrella | 11265 | handbag | 12342 |
| tie | 6448 | suitcase | 6112 | frisbee | 2681 |
| skis | 6623 | snowboard | 2681 | sports ball | 6299 |
| kite | 8802 | baseball bat | 3273 | baseball gl.. | 3747 |
| skateboard | 5536 | surfboard | 6095 | tennis racket | 4807 |
| bottle | 24070 | wine glass | 7839 | cup | 20574 |
| fork | 5474 | knife | 7760 | spoon | 6159 |
| bowl | 14323 | banana | 9195 | apple | 5776 |
| sandwich | 4356 | orange | 6302 | broccoli | 7261 |
| carrot | 7758 | hot dog | 2884 | pizza | 5807 |
| donut | 7005 | cake | 6296 | chair | 38073 |
| couch | 5779 | potted plant | 8631 | bed | 4192 |
| dining table | 15695 | toilet | 4149 | tv | 5803 |
| laptop | 4960 | mouse | 2261 | remote | 5700 |
| keyboard | 2854 | cell phone | 6422 | microwave | 1672 |
| oven | 3334 | toaster | 225 | sink | 5609 |
| refrigerator | 2634 | book | 24077 | clock | 6320 |
| vase | 6577 | scissors | 1464 | teddy bear | 4729 |
| hair drier | 198 | toothbrush | 1945 | | |
| total | 849949 | | | | |�[0m
[02/20 01:25:51] d2.data.build INFO: Using training sampler TrainingSampler
[02/20 01:25:51] d2.data.common INFO: Serializing 117266 elements to byte tensors and concatenating them all ...
[02/20 01:25:55] d2.data.common INFO: Serialized dataset takes 451.21 MiB
[02/20 01:25:58] fvcore.common.checkpoint INFO: [Checkpointer] Loading from pretrained_models/resnet50d_ra2-464e36ba.pth ...
[02/20 01:25:59] fvcore.common.checkpoint WARNING: Some model parameters or buffers are not found in the checkpoint:
�[34mbackbone.bn1.{bias, weight}�[0m
�[34mbackbone.conv1.0.weight�[0m
�[34mbackbone.conv1.1.{bias, weight}�[0m
�[34mbackbone.conv1.3.weight�[0m
�[34mbackbone.conv1.4.{bias, weight}�[0m
�[34mbackbone.conv1.6.weight�[0m
�[34mbackbone.layer1.0.bn1.{bias, weight}�[0m
�[34mbackbone.layer1.0.bn2.{bias, weight}�[0m
�[34mbackbone.layer1.0.bn3.{bias, weight}�[0m
�[34mbackbone.layer1.0.conv1.weight�[0m
�[34mbackbone.layer1.0.conv2.weight�[0m
�[34mbackbone.layer1.0.conv3.weight�[0m
�[34mbackbone.layer1.0.downsample.1.weight�[0m
�[34mbackbone.layer1.0.downsample.2.{bias, weight}�[0m
�[34mbackbone.layer1.1.bn1.{bias, weight}�[0m
�[34mbackbone.layer1.1.bn2.{bias, weight}�[0m
�[34mbackbone.layer1.1.bn3.{bias, weight}�[0m
�[34mbackbone.layer1.1.conv1.weight�[0m
�[34mbackbone.layer1.1.conv2.weight�[0m
�[34mbackbone.layer1.1.conv3.weight�[0m
�[34mbackbone.layer1.2.bn1.{bias, weight}�[0m
�[34mbackbone.layer1.2.bn2.{bias, weight}�[0m
�[34mbackbone.layer1.2.bn3.{bias, weight}�[0m
�[34mbackbone.layer1.2.conv1.weight�[0m
�[34mbackbone.layer1.2.conv2.weight�[0m
�[34mbackbone.layer1.2.conv3.weight�[0m
�[34mbackbone.layer2.0.bn1.{bias, weight}�[0m
�[34mbackbone.layer2.0.bn2.{bias, weight}�[0m
�[34mbackbone.layer2.0.bn3.{bias, weight}�[0m
�[34mbackbone.layer2.0.conv1.weight�[0m
�[34mbackbone.layer2.0.conv2.weight�[0m
�[34mbackbone.layer2.0.conv3.weight�[0m
�[34mbackbone.layer2.0.downsample.1.weight�[0m
�[34mbackbone.layer2.0.downsample.2.{bias, weight}�[0m
�[34mbackbone.layer2.1.bn1.{bias, weight}�[0m
�[34mbackbone.layer2.1.bn2.{bias, weight}�[0m
�[34mbackbone.layer2.1.bn3.{bias, weight}�[0m
�[34mbackbone.layer2.1.conv1.weight�[0m
�[34mbackbone.layer2.1.conv2.weight�[0m
�[34mbackbone.layer2.1.conv3.weight�[0m
�[34mbackbone.layer2.2.bn1.{bias, weight}�[0m
�[34mbackbone.layer2.2.bn2.{bias, weight}�[0m
�[34mbackbone.layer2.2.bn3.{bias, weight}�[0m
�[34mbackbone.layer2.2.conv1.weight�[0m
�[34mbackbone.layer2.2.conv2.weight�[0m
�[34mbackbone.layer2.2.conv3.weight�[0m
�[34mbackbone.layer2.3.bn1.{bias, weight}�[0m
�[34mbackbone.layer2.3.bn2.{bias, weight}�[0m
�[34mbackbone.layer2.3.bn3.{bias, weight}�[0m
�[34mbackbone.layer2.3.conv1.weight�[0m
�[34mbackbone.layer2.3.conv2.weight�[0m
�[34mbackbone.layer2.3.conv3.weight�[0m
�[34mbackbone.layer3.0.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.0.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.0.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.0.conv1.weight�[0m
�[34mbackbone.layer3.0.conv2.weight�[0m
�[34mbackbone.layer3.0.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.0.conv3.weight�[0m
�[34mbackbone.layer3.0.downsample.1.weight�[0m
�[34mbackbone.layer3.0.downsample.2.{bias, weight}�[0m
�[34mbackbone.layer3.1.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.1.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.1.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.1.conv1.weight�[0m
�[34mbackbone.layer3.1.conv2.weight�[0m
�[34mbackbone.layer3.1.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.1.conv3.weight�[0m
�[34mbackbone.layer3.2.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.2.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.2.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.2.conv1.weight�[0m
�[34mbackbone.layer3.2.conv2.weight�[0m
�[34mbackbone.layer3.2.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.2.conv3.weight�[0m
�[34mbackbone.layer3.3.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.3.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.3.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.3.conv1.weight�[0m
�[34mbackbone.layer3.3.conv2.weight�[0m
�[34mbackbone.layer3.3.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.3.conv3.weight�[0m
�[34mbackbone.layer3.4.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.4.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.4.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.4.conv1.weight�[0m
�[34mbackbone.layer3.4.conv2.weight�[0m
�[34mbackbone.layer3.4.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.4.conv3.weight�[0m
�[34mbackbone.layer3.5.bn1.{bias, weight}�[0m
�[34mbackbone.layer3.5.bn2.{bias, weight}�[0m
�[34mbackbone.layer3.5.bn3.{bias, weight}�[0m
�[34mbackbone.layer3.5.conv1.weight�[0m
�[34mbackbone.layer3.5.conv2.weight�[0m
�[34mbackbone.layer3.5.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer3.5.conv3.weight�[0m
�[34mbackbone.layer4.0.bn1.{bias, weight}�[0m
�[34mbackbone.layer4.0.bn2.{bias, weight}�[0m
�[34mbackbone.layer4.0.bn3.{bias, weight}�[0m
�[34mbackbone.layer4.0.conv1.weight�[0m
�[34mbackbone.layer4.0.conv2.weight�[0m
�[34mbackbone.layer4.0.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer4.0.conv3.weight�[0m
�[34mbackbone.layer4.0.downsample.1.weight�[0m
�[34mbackbone.layer4.0.downsample.2.{bias, weight}�[0m
�[34mbackbone.layer4.1.bn1.{bias, weight}�[0m
�[34mbackbone.layer4.1.bn2.{bias, weight}�[0m
�[34mbackbone.layer4.1.bn3.{bias, weight}�[0m
�[34mbackbone.layer4.1.conv1.weight�[0m
�[34mbackbone.layer4.1.conv2.weight�[0m
�[34mbackbone.layer4.1.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer4.1.conv3.weight�[0m
�[34mbackbone.layer4.2.bn1.{bias, weight}�[0m
�[34mbackbone.layer4.2.bn2.{bias, weight}�[0m
�[34mbackbone.layer4.2.bn3.{bias, weight}�[0m
�[34mbackbone.layer4.2.conv1.weight�[0m
�[34mbackbone.layer4.2.conv2.weight�[0m
�[34mbackbone.layer4.2.conv2_offset.{bias, weight}�[0m
�[34mbackbone.layer4.2.conv3.weight�[0m
�[34mdecoder.inst_branch.cls_score.{bias, weight}�[0m
�[34mdecoder.inst_branch.fc.{bias, weight}�[0m
�[34mdecoder.inst_branch.iam_conv.{bias, weight}�[0m
�[34mdecoder.inst_branch.inst_convs.0.{bias, weight}�[0m
�[34mdecoder.inst_branch.inst_convs.2.{bias, weight}�[0m
�[34mdecoder.inst_branch.inst_convs.4.{bias, weight}�[0m
�[34mdecoder.inst_branch.inst_convs.6.{bias, weight}�[0m
�[34mdecoder.inst_branch.mask_kernel.{bias, weight}�[0m
�[34mdecoder.inst_branch.objectness.{bias, weight}�[0m
�[34mdecoder.mask_branch.mask_convs.0.{bias, weight}�[0m
�[34mdecoder.mask_branch.mask_convs.2.{bias, weight}�[0m
�[34mdecoder.mask_branch.mask_convs.4.{bias, weight}�[0m
�[34mdecoder.mask_branch.mask_convs.6.{bias, weight}�[0m
�[34mdecoder.mask_branch.projection.{bias, weight}�[0m
�[34mencoder.fpn_laterals.0.{bias, weight}�[0m
�[34mencoder.fpn_laterals.1.{bias, weight}�[0m
�[34mencoder.fpn_laterals.2.{bias, weight}�[0m
�[34mencoder.fpn_outputs.0.{bias, weight}�[0m
�[34mencoder.fpn_outputs.1.{bias, weight}�[0m
�[34mencoder.fpn_outputs.2.{bias, weight}�[0m
�[34mencoder.fusion.{bias, weight}�[0m
�[34mencoder.ppm.bottleneck.{bias, weight}�[0m
�[34mencoder.ppm.stages.0.1.{bias, weight}�[0m
�[34mencoder.ppm.stages.1.1.{bias, weight}�[0m
�[34mencoder.ppm.stages.2.1.{bias, weight}�[0m
�[34mencoder.ppm.stages.3.1.{bias, weight}�[0m
[02/20 01:25:59] fvcore.common.checkpoint WARNING: The checkpoint state_dict contains keys that are not used by the model:
�[35mconv1.0.weight�[0m
�[35mconv1.1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mconv1.3.weight�[0m
�[35mconv1.4.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mconv1.6.weight�[0m
�[35mbn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.0.conv1.weight�[0m
�[35mlayer1.0.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.0.conv2.weight�[0m
�[35mlayer1.0.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.0.conv3.weight�[0m
�[35mlayer1.0.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.0.downsample.1.weight�[0m
�[35mlayer1.0.downsample.2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.1.conv1.weight�[0m
�[35mlayer1.1.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.1.conv2.weight�[0m
�[35mlayer1.1.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.1.conv3.weight�[0m
�[35mlayer1.1.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.2.conv1.weight�[0m
�[35mlayer1.2.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.2.conv2.weight�[0m
�[35mlayer1.2.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer1.2.conv3.weight�[0m
�[35mlayer1.2.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.0.conv1.weight�[0m
�[35mlayer2.0.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.0.conv2.weight�[0m
�[35mlayer2.0.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.0.conv3.weight�[0m
�[35mlayer2.0.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.0.downsample.1.weight�[0m
�[35mlayer2.0.downsample.2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.1.conv1.weight�[0m
�[35mlayer2.1.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.1.conv2.weight�[0m
�[35mlayer2.1.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.1.conv3.weight�[0m
�[35mlayer2.1.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.2.conv1.weight�[0m
�[35mlayer2.2.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.2.conv2.weight�[0m
�[35mlayer2.2.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.2.conv3.weight�[0m
�[35mlayer2.2.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.3.conv1.weight�[0m
�[35mlayer2.3.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.3.conv2.weight�[0m
�[35mlayer2.3.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer2.3.conv3.weight�[0m
�[35mlayer2.3.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.0.conv1.weight�[0m
�[35mlayer3.0.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.0.conv2.weight�[0m
�[35mlayer3.0.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.0.conv3.weight�[0m
�[35mlayer3.0.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.0.downsample.1.weight�[0m
�[35mlayer3.0.downsample.2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.1.conv1.weight�[0m
�[35mlayer3.1.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.1.conv2.weight�[0m
�[35mlayer3.1.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.1.conv3.weight�[0m
�[35mlayer3.1.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.2.conv1.weight�[0m
�[35mlayer3.2.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.2.conv2.weight�[0m
�[35mlayer3.2.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.2.conv3.weight�[0m
�[35mlayer3.2.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.3.conv1.weight�[0m
�[35mlayer3.3.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.3.conv2.weight�[0m
�[35mlayer3.3.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.3.conv3.weight�[0m
�[35mlayer3.3.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.4.conv1.weight�[0m
�[35mlayer3.4.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.4.conv2.weight�[0m
�[35mlayer3.4.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.4.conv3.weight�[0m
�[35mlayer3.4.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.5.conv1.weight�[0m
�[35mlayer3.5.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.5.conv2.weight�[0m
�[35mlayer3.5.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer3.5.conv3.weight�[0m
�[35mlayer3.5.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.0.conv1.weight�[0m
�[35mlayer4.0.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.0.conv2.weight�[0m
�[35mlayer4.0.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.0.conv3.weight�[0m
�[35mlayer4.0.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.0.downsample.1.weight�[0m
�[35mlayer4.0.downsample.2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.1.conv1.weight�[0m
�[35mlayer4.1.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.1.conv2.weight�[0m
�[35mlayer4.1.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.1.conv3.weight�[0m
�[35mlayer4.1.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.2.conv1.weight�[0m
�[35mlayer4.2.bn1.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.2.conv2.weight�[0m
�[35mlayer4.2.bn2.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mlayer4.2.conv3.weight�[0m
�[35mlayer4.2.bn3.{bias, num_batches_tracked, running_mean, running_var, weight}�[0m
�[35mfc.{bias, weight}�[0m
The text was updated successfully, but these errors were encountered: