-
Notifications
You must be signed in to change notification settings - Fork 0
/
1_2_read_file_and_count_solution.py
88 lines (71 loc) · 2.89 KB
/
1_2_read_file_and_count_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# MIT License
#
# Copyright (c) 2019 Jaehyeuk Oh, Hyperconnect
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
import logging
import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.transforms.core import _ReiterableChain
def run():
pipeline_options = PipelineOptions(["--runner=DirectRunner"])
p = beam.Pipeline(options=pipeline_options)
# read file
text_filename = "resources/in.txt"
lines = p | 'read' >> ReadFromText(text_filename)
# split words
def find_words(element):
import re
return re.findall(r'[A-Za-z\']+', element)
words = (lines | 'split' >> (beam.FlatMap(find_words)))
# count words
def count_ones(word_ones):
(word, ones) = word_ones
return word, sum(ones)
counts = (words
| 'pair' >> beam.Map(lambda x: (x, 1))
| 'group' >> beam.GroupByKey()
| 'count' >> beam.Map(count_ones))
# aggr to list
def aggr_to_list(values):
try:
if not values:
return values
elif isinstance(values, _ReiterableChain):
return [x for x in values]
elif len(values) == 1:
return values[0]
else:
if isinstance(values[0], list):
return values[0] + [values[1]]
else:
return [x for x in values]
except Exception:
print(values)
pass
aggred_list = counts | 'sort' >> beam.CombineGlobally(aggr_to_list).without_defaults()
# out
aggred_list | 'out' >> beam.Map(lambda x: logging.info(sorted(x, key=lambda x: x[1], reverse=True)))
result = p.run()
result.wait_until_finish()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()