-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_utils.py
269 lines (224 loc) · 9.66 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import collections
import functools
import torch
import torch.nn as nn
from torch.nn.functional import conv2d, affine_grid, grid_sample
import numpy as np
'''
# repara sampling
def gaussian_sampler(mean, log_var):
x = torch.normal(torch.zeros(mean.size()), torch.ones(mean.size())).to(mean.device)
return mean + x * torch.exp(log_var / 2.)
'''
'''
# channel wise conv
def conv_cross2d(inputs, weights, bias = None, stride = 1, padding = 0, dilation = 1, groups = 1):
outputs = []
for input, weight in zip(inputs, weights):
output = conv2d(
input = input.unsqueeze(0),
weight = weight,
bias = bias,
stride = stride,
padding = padding,
dilation = dilation,
groups = groups
)
outputs.append(output)
outputs = torch.cat(outputs, dim = 0)
return outputs
'''
# shape: maps (batchsize, n_maps, size, size), thetas (batchsize, n_maps, 2, 3)
def spatial_transform2d(maps, thetas):
n_maps = maps.shape[1]
size = maps.shape[2]
maps_ = maps.view(-1, 1, size, size)
thetas_ = thetas.view(-1, 2, 3)
grid = affine_grid(thetas_, maps_.size())
maps_ = grid_sample(maps_, grid)
return maps_.view(-1, n_maps, size, size)
class GraphConvolutionLayer(nn.Module):
def __init__(self, n_agent):
super(GraphConvolutionLayer, self).__init__()
self.attention = nn.Sequential(collections.OrderedDict([
('conv', Conv2dLayer(1, 128, 5, stride=2, normalization='batch', nonlinear='leakyrelu')),
('pool', nn.AdaptiveAvgPool2d(output_size=(1, 1))),
('flat', nn.Flatten(start_dim=1, end_dim=-1)),
]))
@staticmethod
def _get_adjacency(weights):
# assume the graph is undirected, so the adj is symmetric
weights = weights.transpose(2, 1) # (B, 128, N)
inner = -2 * torch.matmul(weights.transpose(2, 1), weights)
x2 = torch.sum(weights**2, dim=1, keepdim=True)
adj = x2 + inner + x2.transpose(2, 1)
return adj
@staticmethod
def _normalize(adj, eps=1e-8):
row_sum = torch.sum(adj, dim=1)
row_inv = 1.0 / torch.sqrt(row_sum + eps)
row_inv = torch.diag_embed(row_inv)
adj = torch.bmm(torch.bmm(row_inv, adj), row_inv)
return adj
def forward(self, feature_maps):
B, N, H, W = feature_maps.size()
attention_features = feature_maps.reshape(B * N, H, W).unsqueeze(1) # (B*N, 1, H, W)
weights = self.attention(attention_features)
weights = weights.reshape(B, N, -1)
adj = self._normalize(self._get_adjacency(weights)) # (B, N, N)
feature_maps = feature_maps.view(B, N, H * W)
feature_maps = torch.bmm(adj, feature_maps)
feature_maps = feature_maps.view(B, N, H, W)
return feature_maps
class Conv2dLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
normalization='batch', nonlinear='relu'):
if padding is None:
padding = (kernel_size - 1) // 2
bias = (normalization is None or normalization is False)
modules = [nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias
)]
if normalization is not None and normalization is not False:
if normalization == 'batch':
modules.append(nn.BatchNorm2d(num_features=out_channels))
else:
raise NotImplementedError(
'unsupported normalization layer: {0}'.format(normalization))
if nonlinear is not None and nonlinear is not False:
if nonlinear == 'relu':
modules.append(nn.ReLU(inplace=True))
elif nonlinear == 'leakyrelu':
modules.append(nn.LeakyReLU(inplace=True))
elif nonlinear == 'tanh':
modules.append(nn.Tanh())
else:
raise NotImplementedError(
'unsupported nonlinear activation: {0}'.format(nonlinear))
super(Conv2dLayer, self).__init__(*modules)
class DeConv2dLayer(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=None, dilation=1, groups=1,
normalization='batch', nonlinear='relu'):
if padding is None:
padding = (kernel_size - 1) // 2
bias = (normalization is None or normalization is False)
modules = [nn.ConvTranspose2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
output_padding=stride-1,
dilation=dilation,
groups=groups,
bias=bias
)]
if normalization is not None and normalization is not False:
if normalization == 'batch':
modules.append(nn.BatchNorm2d(num_features=out_channels))
else:
raise NotImplementedError(
'unsupported normalization layer: {0}'.format(normalization))
if nonlinear is not None and nonlinear is not False:
if nonlinear == 'relu':
modules.append(nn.ReLU(inplace=True))
elif nonlinear == 'leakyrelu':
modules.append(nn.LeakyReLU(inplace=True))
elif nonlinear == 'tanh':
modules.append(nn.Tanh())
else:
raise NotImplementedError(
'unsupported nonlinear activation: {0}'.format(nonlinear))
super(DeConv2dLayer, self).__init__(*modules)
class LinearLayer(nn.Sequential):
def __init__(self, in_features, out_features, normalization='batch', nonlinear='relu'):
bias = (normalization is None or normalization is False)
modules = [nn.Linear(
in_features=in_features,
out_features=out_features,
bias=bias
)]
if normalization is not None and normalization is not False:
if normalization == 'batch':
modules.append(nn.BatchNorm1d(num_features=out_features))
else:
raise NotImplementedError(
'unsupported normalization layer: {0}'.format(normalization))
if nonlinear is not None and nonlinear is not False:
if nonlinear == 'relu':
modules.append(nn.ReLU(inplace=True))
elif nonlinear == 'leakyrelu':
modules.append(nn.LeakyReLU(inplace=True))
else:
raise NotImplementedError(
'unsupported nonlinear activation: {0}'.format(nonlinear))
super(LinearLayer, self).__init__(*modules)
'''
class UBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc = None, submodule = None, outermost = False, innermost = False):
super(UBlock, self).__init__()
self.outermost = outermost
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size = 4, stride = 2, padding = 1, bias = False)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = nn.BatchNorm2d(inner_nc)
uprelu = nn.ReLU(True)
upnorm = nn.BatchNorm2d(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size = 4, stride = 2, padding = 1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc, kernel_size = 4, stride = 2, padding = 1, bias = False)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc, kernel_size = 4, stride = 2, padding = 1, bias = False)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
'''
'''
class UNet(nn.Module):
def __init__(self, in_channels, out_channels, num_layers, ngf = 64):
super(UNet, self).__init__()
unet_block = UBlock(ngf * 8, ngf * 8, input_nc = None, submodule = None, innermost = True)
for i in range(num_layers - 5):
unet_block = UBlock(ngf * 8, ngf * 8, input_nc = None, submodule = unet_block)
unet_block = UBlock(ngf * 4, ngf * 8, input_nc = None, submodule = unet_block)
unet_block = UBlock(ngf * 2, ngf * 4, input_nc = None, submodule = unet_block)
unet_block = UBlock(ngf, ngf * 2, input_nc = None, submodule = unet_block)
unet_block = UBlock(out_channels, ngf, input_nc = in_channels, submodule = unet_block, outermost = True)
self.model = unet_block
def forward(self, input):
return self.model(input)
'''
def _init_weights(m):
if isinstance(m, (nn.Linear, nn.Conv2d)):
if m.weight is not None:
nn.init.kaiming_normal_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, val = 0)
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
if m.weight is not None:
nn.init.normal_(m.weight, mean = 1, std = 1.0)
if m.bias is not None:
nn.init.constant_(m.bias, val = 0)
def init_weights(model):
model.apply(functools.partial(_init_weights))