From 67e85fddbf475b7bcd2d6834d0403dcaf469c9fb Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Mon, 7 Oct 2024 06:39:37 +0000 Subject: [PATCH] build based on 7263b5d --- dev/.documenter-siteinfo.json | 2 +- dev/assets/spinspace/addition02.png | Bin 0 -> 324920 bytes dev/assets/spinspace/addition08.png | Bin 0 -> 345891 bytes dev/assets/spinspace/addition09.png | Bin 0 -> 327140 bytes dev/hopffibration.html | 2 +- dev/index.html | 2 +- dev/newsreport.html | 11 ++++++++++- dev/reactionwheelunicycle.html | 2 +- dev/search_index.js | 2 +- 9 files changed, 15 insertions(+), 6 deletions(-) create mode 100644 dev/assets/spinspace/addition02.png create mode 100644 dev/assets/spinspace/addition08.png create mode 100644 dev/assets/spinspace/addition09.png diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json index f00fd06..db55113 100644 --- a/dev/.documenter-siteinfo.json +++ b/dev/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-03T19:33:32","documenter_version":"1.5.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.10.5","generation_timestamp":"2024-10-07T06:39:13","documenter_version":"1.5.0"}} \ No newline at end of file diff --git a/dev/assets/spinspace/addition02.png b/dev/assets/spinspace/addition02.png new file mode 100644 index 0000000000000000000000000000000000000000..d330e398add21fb9e7d284c90054369ed0fabab0 GIT binary patch literal 324920 zcmeFY^K?-6;)2YLv8ej_#T$ok}-K*Fd^Kq@*QA!{}z@7%<{9 z@cBI7&-Xug|M1>xuiZC$-8Z|g>o||&JkIml!c>*zaGsDn!N9=4QIMAgVqjp2VPO1o z{OCUV9fgOYmgvI+O9>?j42+5x>`P-z^xyYffO3);WkavG(0@>x$^(@!Fudt7Fg^xi zU|gWz`nZXK;l_c1vHbx9Lns*ogUB(xQB4GWDTacygofw6-FEC`n48}sY8ZKhx+*`; zQnZLoQJ{-^7yJ0}Jt}$pqU`53UolJqNBgVtAU?G|r@QV=d$lOfnVFfY+MQ{!jcOI7 zn$P%4JvRePY*~DKsux|Pk2`5-;(FbE`PUYRLa))F%Q+bBfk?R0J* zzloXuo?v{8toR@J<`I|I{_PsyJ`S82@>bV={0|)E{|@PYekA=bM*oY^Umf|MsdWDv zpZ^=5|1;y0D}O}38L7(*NtoDv)y;4Z1LLO(!JTcWT+N~I+h)IBCS6%kT=0P;a0+Gd zJNT|F%85CbG~Z7@#uas?Qb?~6dQ@E_^mMS%Ex~Pv2_5JkwPRk~&Q+(<%@*m=%Kf6J zh=rS16O3$v@d!+@iCZD(j!)Xoh_bBt2)zs&UN1QHbWxoBRFe4c0DV{a|NZczejktB z&FMBUFi}U>W^dl-sI1Ao4|j%M-0R2mJF^rU-tFB1tN?uUJGK<$c3qyU*$M7fzr^IEoz$InvS>KbH2wD;#Xrmv7NnKM(2H7 zy}dRL4m$ph1ViUT;QU=DXctj=>&3R44>B{>yt^lf9DKQ3X3%jY8fJ=28GijW;nUl; ztG(IVI83>7|8KRdA@(hZ>=qxDUI4BLN2BfJ4_}pMWT_-%83_sQ@ZF}}N<%bf-demz zzhZnbo-`7VAD*?~{%TI{z1g{JQUdJl?f1C3k{cWE1$ZoYRd51suY2`(JX5ux`AL25 zgM$uw^Ayt_i`L6E^}4xAO~ZT!zBEOJxACoGa{KyIaWMlKM#Rp(D8qPY7*D`H45Tu= zrZ-RE0iUdo4)`3)iQhTWtOo4vR8plMf+}(K}V4|SEFFXzQx((hKbrj3WD&un+`5Rz6spY?J8GMVuE7Q9v z0K^bthl7OBi3abLKS0|G#xNrKBE=TZym+k{ABT9pZoX_;P8MlvmW?jjisE@tRAfPcO^ub_YdJ(Pb-smzs(q|Um0lH(fzs6a(7FoP~^gieW2 zjbQU9^G5S~^Z3zh8mF++q10~)vV)pk-#~)}h{<09nc-~j!!r2z0C`rv z-fu={#x0Yofl&^b?CaqRLhMZ1y=ehI1oV3$jLFWFRDDe5@gf_+q`~1`-_RUO83y~G zi0*s2G`#LpbU{aWKcKtN=z2}@c8#X*R_ZKlBO_***D_Opf~=Sp@;=>jUj~@h=~Euh zHABNT0wAST_Ejb=_ubYcnW6z1Bx}RO)b|FxN__RKs3$dI-4k{-L=D2P;>OC_7B_Si zX!j$u++0IM=_V?oMzt2!muV8EozVWI zB$fB!`@&?VB2aV*x?P`G7u3Zg+O|5RRJ$%|U9FpR8p7s8MUYDA9yZb)dJ2eTQ0uGC zPeT;xx|uELQfC+Iwp@W`$vr=4Bpw=yAsfDu+7rhnEiQ$qL`Sjy2Gq^hvObMMFE6Ff zoo4no$Vq?P;$hesft=ZR7%^fd#p^pyi!iv(+%GGV_EN`1A|HM9GwZ!BRkoJLl)6 zSI#i0QS~vbbwv>5X{6K1lG0{7&sdGU)6J^^L1~Jj*vT>u*!bi~dK;Tl!j+PXqsZXf zHO3^+(XDSORyk3~R%>cg4dsp94?_TZXz=wEo%KQuqAtz(i`I%KTVIw#p3)5w?ocpc zREl(F{;kL3cqq8*-XLXMxf8fZ1HL`T$U-RkGNJL7QKc`zimK@vwHJgsZ@kj`;g zy3=ZvVSo2k zr2kdlba{Gzh+q*dcTW#+2U}{bHp8GHiuMIV9&|&DpNbixtJ#cJ&f6K5{+*$jeDPsW zNROThTbGkvH9r1+3$!*tdV)CTU3&LWLnnPK;QM#g1gd{HQs3B;kO9=R{WD{C2t@bJ^oVHBq}pv+4-CDK+k8< zi(-#wZVr%8Ad@P9*{c_j7h5_GebKz%($R)0`#L=>pfrX}Xk<@U6e{9wlAV%!{8xN%C5f8AN0AJvF^_3XHN$TJO_p#r^-UdENEO2zNmN(YocD zpi`=tC@*RzfVW7|U|WCL`_r6T5+WX840(yR(VmVc;(jMX4L-xcbWbNXYzto2OuAE2 z7+F1Q2F*L%gosv-ULf`yyjQ;23X(C5+?gTKTQl^L!nW5$3ZDx&ZIABCE{8#+h=FQRptf?p8v|M zcYYlYpw%fVVXi+WbDu0@7ur}A6tcVd?C>y4mm)p^NEJ|__Bso-UjTFN_|tOZD4i(i z>1e}ZomlOxK#-*$tGf32a(OeIF@!t7=VWB8a&)jMSPzyA$+Epj-}YVE);CgnMT;Ks z@4HInXAEQ3g;h4^c^Kg#(5~ii7_VF=Z@F5lEJ0`^9!OW7?ito1BDdkTcM{t-O<%Ap zRZv_-MqA{w;hVF>rZEmiMJQ?`S65%)^=whx91>-?95rjXEO?#&-rB4ShB!2K<^dE` z+M8EuLCEV4e4TtKKpeTaxifmX-X0x9=mL_^0~Kja&j|`OxgKEWKy7IH-5h7?Cf z^3wn(Hp16+IYGR6Wu&NIP)zfL(Ypn|_jkeNdVwP6hjAm)>gnKMLWdfK1lw+iN!ey| z#4-a%0B5(H*lU*hqI%vDRoS4cphF0m(bdc@|FdCQKXY0x{-ogV8cguEtF^omALpaK zsX7N=SgVsxw~x4&JFI|2+s^Om&#(foD3QW)O>EY}$mBw%-g~QFuB?lbrJE~tkLa60 z`PMHgdSP6}VuthQr|sgG;_$eHvifZB#)ruPQ&UK_W-`-*FsN2m3+la9$FKF;+7hj` zizj_|MQTakUBH{t>qPd5d5*Kw4f)_#%n0q9P>^z-bL^MKY^zyybkd#&#HNK4$y#EA zx<=nN>{)81RbKT;ZL}ezS@+nPy|gR~9^Xf3-|WkXiVB`flt69rfY!dg#z=V6iac_C#s-&lvVD-_kIjPOm7Ul5i zh!WPJ>x$CSlhZoT)rH(M5b3UcR9&_#v-taPI@0gYenHQ>e*+O)=Z+wML>Z#JShf1L z)@la)^%%0v#}JpO-k2;$#V~@r8o+30C_a7(XcR%>2D?3mu;Nt-#IJ#&TaT z?Wr_vT_q)%tX2=Y=oXRk5@t`BPe@baeJ{*-Kwgz4ks-3N?KOqb7otD99>~(i9gDaN ze!Dl`!-;U=heI$IZ@np}9$V(DhW$_$!X7xb(QCgJMo3iDlh50SL4+Adam1qApaoU` z^N9AcI(sf$KYL^M{IBBpFZ*h+MM2Ik>2&TQ&nDMpXj1J4c3-K~>@@g;{v>JZK1NT; zfAjB@*hafNk21#~V+bCF>QTdHPc=Z8JX4V~6Hl$CLlE7#Ebop|8m^YXyk2WF^X?!s zL^@YX@n+9KR8*WI380lZ_E$R%3<8?DmIeHJgyH136T+8KBVJ!8iiO>DnBJ_lbj&wR z)X3UQJ|ohCFbxdwn5CeQk(WCv`r!3A3U@9@+@Ln>n*C<+bhsaYF1mh*C1u7iK|W;L z@ySGajk&k#wulb|ML?YO!K#|fbKAV*pG#kS0iU*?Klv z&%j1jI5a=WK#qHqSFLN+DTRTiAB&+6+drIh5L}TS2enoE|#-@R3!{K zS5~l_JYZx!Ma_>kM!g|)!#j1zXy2`cp;odn#Tq@>X{L(r(KnVcD;nhftE-|P(1r8P zlgoT|xL_iUa^ltwa~mS{^c<@oZVnT=J?Y}$bgn>ALkf!3ZGgJH^)WB-@FGn7d^#a% zHWS0YnsYdQDudWtg~L=cYEg-&m#Msem4W$hDx|(mg}#gOm3X#!@u5WfGR+>ku0!kD zG<{g-<9S6YN}QWlYdFS660c~PyDCsSxLJ`V^us&5Pr)dd1CMMkGj;UXeAE72q-~@N zyIh+~V(|)rxkGm~j?k?qccHOlZ{NrgO4yRBtbP->n6J7-gTElpU z*)7N+?;X2k0;h%Nc207%yX*{*RZN?jlO?%z#XQx{h{9-hl+jK9L|NHeLr&Cb)c!0# z+fDlR@;QGwYW^CowaqrbKUr=qEG$%W%qx1h$uEAGnAHL|r4VQ7_ubLkperHsM}R_l zeo2Moo8{HDf$A++ITeKLY)h)tYoDKcPiZxA_fY_&`h9<>+RZ0xM9VkO#;POwrQ@|~ zUu4PGK!eJk$JWs;wc8xON8||4G?p2-sav*|D_T>drNR^Q@662p&a5*6t={8#y0&q3 zPSj77rT}{1pTt>E>H2Q}L-@e&e25>xgq~e7^yCUGs>>8~#KP;I_$!Na< z0TIzVUx7@3?DRq2xJ0#?ydf(>dxp}5mW6mo^V`%5@$<2fu>vZuL?ShZv#p_sx}>!i z=vJB|R1+*H)=J49K;&lpou|HW#EudF5Rj+f;(qBU7t*#Ko?Bin!l{;Ee%nP`{LpiS zjQI^{^1ub}9fMmr>sDv8G)c3u>U?L0xU$0F~xK3>G?yvxSa4CrjU z0Om0OG<$BOk94DB)A^`PnvLL4jGm4wC~8g9!N7Lr{<*zuv?i{vW$hRCPg8^f+3(ZEy1(h>5F^s%j z^yof~RK|+r+8W4fJPtJ4#{cTLW$8B=mz`iRx9}+Q-3+I=KW^3}TE_LzJ;!M@B^_nZW0*Q)2_Zio7z2@O@i<8%+h<`FvO zILY^N>q+Qx;_r6>tfZs<1c#~21PhT6@|srbym&Y-cy2#BezOP5U|z*OVliS$8BB|i zlEOTvA4rdrOnW}N>Qm_eJ8Sh@If|tX6LL4%ispYUG*7I$9FsxXM--93H+?fc7ma|` zZ$b7i)7nHC`Ui&jZ+dP7R$G$H%bK0{)=w`2*=e8|)?RI8hVXurlBunk%GxM%L=9=0 zvlxf&HmT+u{rO|)E_Z{=)|~9T*Dp;U>1JKx#1C(ZUO!o9*RpS6&m@A3Zrc=zD19;MN$T z=ore89+S<64~4$CTyVHmm{S!v&T9vL3X|^cFn+vXNna{hN*{#L1?9pUePd& zrkB020hI3x{us9_(Qr*aiz>-X*V#@@-tijTF)%Wk?d*(Ysj8ofO<1V#*$H63nr2e3 z^p8rN&1-yiHf>P6^VT1ZP}_(zc5AY>w<){G?Gv}REk_ic%}H#uuw{%Q5UqPZ;tJf{ z^p=xyU)EpxL#pjv^MVRM(*-U>)B3D#t2Rm}&D1<&TLCWDW&KLD%^lnc; z^zK_2X2D2n+rz1WX}J<^EMFex-rNa3d#FqpPI&A^XPBRFU9t|ujwJJ|Y>ZN$VV)ts zo32(6qZ6NwoBnWVxl#;i%Nz0c+pX3RM!nnc0UvZ&61|N2&4kY>dxc)8-R&oQcc zZ_aOx1~7yl3zEgx^1Lj_nM!K%2$z4|v^+ksDxF0Gip|fahQ5bH5$@MS(Xxg`uN2}H ze;T81ltbBsJkQ_O+m9M(tGzbKt8V^@jxlU?UVPSNnejiW##V)tH@VXXi(#a65!}Gk z#O286mZ^Cu9p3OCkvAD4u}RBcN*g5kS`GOO8Er%Irs(>2XZc$lVD-(u*e;EJ@ONF% zh=hr8NssiGGBgV2jN4apapkD#x~DgYkY{}nP3x(MmV_YF!(96^>ut5iU5%~2D>!ue z&WOpgBhIFSU;z&r?R0q(y?kcV8vWjNo6p!unTCF~-`VU8lP9wEtMrbD2#EAR8H&FC zKwC0TGJYS8HAm(ayos`e+MMnrrIi8`KQT?16`k|th%8?4PWg4te^D2EXIKq27w89r zzNU=%6ssFC$4`a>W*ck0zvjBLDER74PMl-Q&G@j59y)m($=1{>XD};v(7+W_pFH&v4 z**1d{Ae~=OAS^5##d&n!XNbbb%=&|0ks!zTd$5A3X8d!@TpsGKSByhEien*&IpbG1 z!d^7&U2nGhAa?b-!DaE+O9Bkn>kijauM3Vu54iZrg8f=W2W70SzfZ$TCy%>;v>vqy zw!6gc=naGJ9-=jwx$|QpvdeK;5^4F@=qvxCQiHA+nG=Ke60E{5G;PHg!CiSax%I`w z#cpavFN`>fBKDRS$5qp_l>NLL6+!7^_SRK4q#!y)A#uxM2l;T*BbL09*^bzx+Kysq zc}?e@(GYvf8+)9R(Urr2$*~{kh4xr0-EZ5*jVP&Q2Hm!`*#qwSuA0k!GrA(~ORIi^ z*fGItQRhdx_?&sHgI!z_E}I&P`__)Bvg2ovox79d zS@12kFi(759t~m=rr$0?!omgl`C8?MpvbT2jg2h7`b)CFs~(^|k(o!!m7bgzRIu-8fyKX_A0rPrg%-e8SYyN=br;uVoxwI|elE+Tnm zLO_I#s@PMa=Am*Oq_3x@eH-&@n5^z7(>_4%-FOlmueIGodk{|4SC_6Oa^B^g7n;dH z1T&QjQ)GX)NA6N!=wuCO@K=tp6BES9BIkNaIS>L;sLAb%$-l_e^Q=szlcP9GIBh3I zv0p*|3wo71-DoD!2MQzhZgz`NqddH_VWF{>H816k5{%giYC&pLLc5zJzG%uwP-GvoMJt`<3W9#tXc zbsnqXcl8#wo{wKK!L5{H@#| z=>?W#RRs=hD}%&Fp30t{iPz-mdtoQ<7i)clvl4p-M{WHeUlL_C#`E>l>MN_Ykg{-J zRAOuQr;=7>P1%3SFM;6K`d=()S;5oQ!7hiiN`l|anv?aj2kp{@?Uvmn5K%%~N+*GR zSzN8U!ib_3m!2mXdJ}d{RpTuN*0&qMp7?)zO^rOd0>_ioLu_{tRhR6%4Rt}KOwHzv?{bah_rK+lWnvC$k|r!M$@(%7-OBDOhR4oa@H$&mw&=?Pf~JekqoHIg zvlA-%u4>4y)MJ%Eyv_MKoO032z{voQ?^8wkS2z_uLSc$j5mnzoYr*`=tX}GaMZ5}I zp@yDO1O*^gkeeK&pyNo*8lr|^%}!~<2J3JcLAQIV z>>qBG>TC(HlINmwRTL{Q$;UzkGSHKe4x>SsM&;Ww1Kdun8f;4*&v@5frYb)i@?9+~ z&)2oarMyH^v8$n0nckIgpf+iq`izL;Vj!btN7rP9FLV6l0LiqOI>Ko^`e=559y?5 zf@?ER-mOQ4!U0)+{$`SvG*h3yc4i{*Ud zu~d^-zM7L!ETP0GCDlP7i+FGBgMKEyQV3Ozi%-mO)Jq|LTtkE~AMCcN{J!_Dkm^|W z8`XWC;d@aYj|5y3u>&(iZ6Hh1d z(Q*cu^d>zS%^BlXBcMH8?aBj+ZCzJZym;}BbuhZx4aeszn&IoeD)h}G2o$or~ zMhz#w&s2J=&_>9~s*qt=Z)~0#mVh)+@io))tcUwx890dULFilDCWX!WHk6DZe1-dIB?kiFxsUxeDGc0n>_b)Hrk7pFI;Ro?Ek6C*l60J-08vC&1; zJQiF~q{%}=Ut&$A-YTKC0;#OQMed5*6(S>D(4jo3Il8o)?tri*_2Motr~?SqXn`Q4 zq$BqXB9`YGR3Db695jpw@UQp{(c0!TrWJ)bkqzdWFSiE|2<_L{tgZH0)VIY7>xFx; z6zf>C+SQUujg=g!q|)r4JT`YeinN-kqbpVnksStG9|Xs&&4$GD-R^m9{OtiUEKlq< zble!(UQoEK;Z#NvFs|0H+8?zVI58REFT86E9E+<~Pl55W2uzDHyNDo-N&+yQ-)=szjt@-w6&8o3XW_~*Nuef2$$*I=8+Qy4)e%ojSG!C zcd+?L)G5s@d#NXj7>a;xj&mDae?2#V3Bvfb_9%qM!KWW?UZG(#hYrwE_&2)>wIPw^ z&h$^j)Q*N5JUcX#PAE*G4J2|^6?=t z%jcBL6vN`iro@3#R)>XwW|ZhgeL-&pMub_QJmoKpA>?!%?4q1tG&DakS3T_6oA*!i ztC$)qV1BOjI{K~{Is-!sD7Xr)n14lgTZuWAG~0K$x^CUN=z@O3tE8qR3)@H4YKj|l z2-@<%M>>{SgP8%~_G3)r$XN@@Z89klDk1)&UA|lz*SxZ$rSu8&7(CS_rC!1IfBL8& z)3D3m57G))a}b26e6%ZyRy3JQ!J7mRGErd9E57Bu{7A}&@g~7)LrHM{<}4(6$zBXq zHy70NXzdS=(ir-Q@$BxvqlB7K2Rt=AhxJv#K)UAlo|IF28l=J2;cOo*{Ac&!Y8^&C zM{+5zYQ`)M6tSc~;ZcQAg(pWUX2+|3la{~tt%__Ynm&;uf+sHQTVSw*!KMhl;Mw5{ z`(?|+$?a*-7>xF(op1lXA=Ve|(!zQQWc)>^^);)oFnlOFLR@+3@#s0v?t^)IqK{Pk zzrj2|g+IRet?Jzo!2kNgqo-f{4cUAewn4qNX~hatgNz+uda(!E@!u8Q1 z14C@wm(T+L$ds=H+p9$IYU{yQL_iK19EYU-p^RG>a(RgFlD5WO<33(Sb`As65XA(FINTuX!rY&fd{Hl=8_;FyKnz%zfNU?a z{E)}A&fZSwP1WCrA%{Mv;T~?*Yp*H}S*HDGy@Z9Y=D}YIu-AY2S(J0gWALOFU80?5jBQ7eaG>8T<9gLQ%@oAe%`G9`RIe7kBgQ zxzt>~z~UqoMZI;Gw1?J^;>NfMF)ROcB5mP$pjL2p5K}peUu`eB(T*X2@rfH#Wj)P9 zHFz~yO|N<#8<~B1{VAsD_V$q&_#;MTBEq%tMzK6Y9E|Y0DItU7^?gGlXPtVg6e)E} zIP|l%TUxZC{>o)ehxY8r+DRgreh=v*W5t+D91B^DVhKYWY)okQ%LkE_vV0ILV&lLs zT`r@zrj4xY-Jm{ifc1ZW0?K1bQoc|+Vpc36wOt*n z!%e#U=_HB`F8)E7du%=R*dOL;{3EbXVv5oRPbPE%pEs2BJt3N00dLZmQn*F*h^(6D^n1`!)rFhIt+!Q&w(rzds287hbv#ncn!$`XxbmW0sRAg1(0 z_M6s%^-6u#lttPoptOsIznVUJ+(Txcu-X4ueJFa(A!c9ht*xz0L9~yAn0JisbG*v| zLVu_v4e&YA3b53hH(jFYJ8B_Tl$bKdyn27ao3epGm)577JXC z$EIcYjzKb_D#`dgoWVqu_PGP&@mZh}^~9UVkFjUM-hl+o0nV0JMY!Z`XK?^VNe&7a z$zW!Y?eDDuz3)`wmJf|qZVDkcV*FBiq_jsebdwSpL}-0qm$r>e*c0ultdaQ z`;i)j+ULT6xcgFQ^p>8or!RH=S~P#Esx^N{I!*SZ60iCGaU02Hd>7>u;l7NK!|u>M zoCZBs{oZFgA9j439hYTmTK@u!rHe=Tl<$2sv&hgS% zYc}7brs^nC*Y~A%X0N>05lWnqy*b5u5_m4trKT6c;*)k{SX<0r*Ztk*ex6wxV-A9Z z@3Rh%(q)&>uM@c$l~N3&m(%rd4T4Xl6AW*Y^hP zo2l5%t?!{X&7Lf-J6s{Gj$6`(uR@JIzW=4$V90-TvzQSQJfDlX*POht9Eo=y4!^I8 z@y7G#K78qog{-0v1!W-PcV+*j=wv>Oz~}L*vO273i#8(S$p8i$HDJKBezN0B(0;xB z>;z?Sg?)-BsZsB?-TOqnRTmA9N9_gT8~2IncCvd@mi&iN&+im zC5%DL$-vM$(BE@j?t8*o2Bv-5Es^}7UEpaPB{7yULGa2ShU|xEJSCpL(UsDmwqG0y zc*F4^_y?A$j{y9cVLOH<{zh?9zhRk{b3-b$q+y$OGt=3lGkt81?AZl%t+1JL14sLe zT8+DF6WFr^oICL>W9=4J=Ln_pDc#|^({S>ld2COj1GYuO_=PT<#5u|yitZjeSQCjj zieFsip*B6?`0S_%)wEurAU;%AiZEw7-gV~X3*KNHgdWpFuYG|-MJ}utbQSPnv!8zL zY_G)k&RhO8*(tbf*zs2isnxP+_-B$3D+-s|6rD@odPCtQq=L+EKUEH!7Kj)ODX@!@%2LmyyzT`2sCehJyZ*{!aQ6F zC2{4tligBd6P#Gj1Ez!&f`L~r;Ewe|7t2t5mt*_z znicQ81Ld0o_ZzgqnPJYsshc_qXDy%FCDNNbCWo}3A$DY6G`NM>q1TR%sD5ts{TIn< z9(*X(688bMAT}+Rb+tOr=ZLkcM3jY$)h2P(v1Ak*MY(2C>Cw!m=XSea%;HPcnQ)lh zKHYQp{YmL%Jn(JKkdjHbvn_zGQ>?t$ZB|)mF15cms8Gr^yp*4H5F6;~C2V^}_465rA$3<*#JknJo~x3yZn9n%%Y%4TghR%-3`Ov0~Z&su^D*}ogZg(xX*(8 z7$4+3#bt0DO3)ZePs+;py%Z@wN81!8dBdyYp_YQti(ouK6KvlFgUK){K z_W^IXmG>+Y(8y|`j{Amz;=;#OLdhPVXdcCJ5MwO~+#POt%#kXCbIW7~$?C{WwN9MN z`)Eh>;gL&n>SrF3xlWA1x#3$s^zPJs&1Rv@!i~LanbAddfNTwJRn6t=@87Z^twC}2d;^2?V@G4ediLM`HMmgeZt}}cEX3jP^9dCt}JZJkOyS!;D}cR z%>v|wm>Ay>6xWLvymU)!nRc4Nx92XdAC%BQHfcSkKC6=t?YB5%A9pBZ?q^rdp@lNl zIjg>}s80GYnC}wt?w!kb&X*2;ORlIb^0xcW?tjEXOM;aKugW^J(b;HIz7|&mVdvwr z_>9VfH>S9< z(Wx1NJmyxU)4j|XIj{+X2AwumMUm{$>os))L~ZdfedCzSTIZ1!l%|^)X4Y74rve>& z-?c1Ol`N}p{`ZBzXC(}V9(JN-p~0sz8;O7I?_#eBlMo`=UdNVfkA1d zk>>TYN(Fg6uWDb$D0ipX9)2rq$*;NBI3h~0vJr+q{u2VbT7;vnvFyA4mLe$Gp1&D4 z-`WV|<{o;4uJvDz>80aK{+u@up*fm$cO?7id+V4uxpiky7;m1wb&J&wX#mC&$Uch4 zyN~{b4G42>{wZZVUadLQH;si`BND+vizpY+$`za8@RGwOLS%P;O$L zS@AjuFC3V{jG9R^e2Aak&LbSpFOA>*^Qm{aFQWKH;CZfUWdh(k9=ErE@9A~9q12Z` z0f}@<^5JDOa{3PYPf@=>OyVV1rAJkLS(E;WD4pfu63VL23V63zqe1SzJvb3ZcUTeJ zS*~9Xorp%*mLID9gLcatftJxPB(MRvYg*xqT~Gs2vyvFJ~&5lplh3HlrGSYrT z|F8)wOJA_zq;)SWCoLzhFsroQ+T>N(-XA6vrJXtTW`g!5OUS~gll!;$?OEY?bqr(1q?N-0%;M{KRuzc*~=GXiYCk z+1)FIHX96XFX%%e>xE5*7(7BY=12N>sNu?2+YLQ4h%NE>%7;I7+_mP__kJ#}(Mjt|U!Y>>-WSZF z`|6_PB}qM<>#7f@pS*ctt#kpI+zZOydg!jF5xi4ro;jcP>tiK(OQnq^eUwyIZz-{A(W>nvF-XpT&q9A>xkh56H!A5JTWL}Te$yQwc>>TXQRF2V>^UVNYu>*q~^zQqGOXFw1!ez4vC< z5zIR$==HrjEioiO4;U)56djeX9h&R}e9M&mJhvrEJoj6CBe%~MSxAMSz@o5+*;eQ; zC%`OwhClkmnh6apr7|9UC}F1pKD{}=U`)@{5R2|P8r>T4^2uxgg%wg??)*Q@QJMnu-c!A`DGe2om*#EE_R(h~U z@I!P1WEcV`>oBk}M5UNXAHoeDSNf<&q@A~0HfLB?#igi;8I1VQ>6Ff?G(eluYFB=E zeTc8iH=Jw7MlO(h=2>miPdL0g3i{n5(l}@JpiS0L6>xvJ_4MnF2~zmla?IeCW>dBR?GVucK!(D?cQ z|L;O8!LKo$cEy`cbW-YFiHq?;`9kSMzjKLry#_2J8NMYv&@4&U%KQv*Y=pOe+k^QJ z@iFE}J9k@~=3*(-6I#-9i~M1T{8_YQ@VF0^5-WyLzHdn%qlS`^VNf?#B#>g2Hx{ef zY;(THu;#;5B9v+1ceW{@I`~#oTq`%}|)fBjbP5 zb@#9T(lsqe^i}Ig9LA%?2b1?4J&14_e?BW)dDGT}_4AbPox?x437?x^n>_*Ci{!vF zQJwkm5&#Vmq}52VT7RLIYs^|sT;=7?wUQ|DC>zO=M3cqe>yUR-N)QygEig+T$)TL0 zP~YFaK>xY}Ix(7otl)<>KrTL-Azee}@p52iSU90;oRBix%3*!l2VQgg zJBxnZd|Jiyn+fa>x9n-xzo?>o_v^#!Kn3FH&yKIr2K_ZwyFj+vt(x&by8u*}>MBLl>;BL*Be*A2WCP0;#ri76EulX{K2UGhDJ*OTHMIm@^=Rv; z6-G-mXpFDQ7?QAQ2UFpYA6$rGculs;$>lnnQ6UD-?tZ%gN7j2DM%#308+7s-cJ?l3c zg#tiHvJI^G*hFaU5Tp7xn;eA?<`s;)wi&uMln*Yo5+YtDYp!T^QozKJZ94L$N`G3%%v-!uTx%|Y>!4)^lVF%)X z%eko-=flj_2GCb)NFY^=TQ7rcvaN2UethgmzU|mpWO|}AH1X>oztHOk4>%HOiTLBngeXN}{~m_*h9#0(TNT{c5A+XJiC#SYr1b(6-EBN! z3UZ?gcU!OTq#13v_me=I6s72XW$|TOG;L74Wr_D7F=sm4XCu4*rAK8c&*PW;IkU%o z;()S@!3mht9`3tL-lSpEr3P*A3X0;q|7P4Z>EGs8)TjTlHp%v`Ds%&*c$&4p4eo)& z80hA|f*T69m}5;woFoz&BAa|DUC{wB5P4U7d9^9oe#E<96i*YIs=<^(_O8KHo-s^8 z(7bCt1vI0nH@Kg_1hsc}c=G9dbT#QymSpsbU0b}M>A-q4W&vb1AN&GW6Vr*GZD*|O z!WIAR8HGlVu!@o2IU(d%C%#kfH;y`?=k;b$8k>pTk2afxG45-%0ow%fmFp?9XZt^f6H{Vz5nF3XGsY5-?r4`z(rT<|LQ%RF}jRH%RV)C47w+Sw)BC8 zG3bc+nc{P@tv;XSbvQJRtjFLqR1}sRvBhT%D#bK#dz0W?pGqRD*$XT*PlB@g@qUfc z=ugz$|M6S$!)Ud=igRqDO|M!Koq_x6w#TvoQKpN|dycBOR~Q{jnrz$61b9C}r(L#< z+Zpv)>}qZ*>&NCA>`nxyk^PY3YH`sR!{$6ulG1uB_FW=+yncU2s!29b_)jIsLHP5_w2deTmp#`$stB&iB#Cs_ zhtctx^$iFRHbTM>p<~wBx77Ak!D$Sw^86;li&o$zulmbR2)rl~hYJCvQD7Sk6O6g{*o; zOW=!joYrjf-O~=py&S`BeT3nKU2o6Jsaz`IOO*^Si5lmmYSKlqWMPM8Ex$md@!#5?_`oQnWts79*7xF`@?Al2o6lOOr8}>K3{>&OV&mgBDonb+<3Tg& zwj1)FQCgMrf1|WrbvgUFsg&k+7XBxr>R*K%V7BK|l?M;g+TNq#*mq{5!3rU;-`9If zOCIBu#(RXNx_B`=R{egRGd~oG^a_P4DOTDm%2>~_3~(UQGjH}XNX_qp(aaPzT-C>H z0|j%jzHRx^PD?-h{#{=$uQ7H$kZ;zO%vyPh<~-`G%tV&}is<>u5CnooLrh$QfK=!B zl_!yV)e@Z`p&G0zE-DJXs|JgTcZ7)m$O}yZ9sen?@H4F>B9E=b!l{c@VOK^(4^9Ea zv*_Ctx%5oVGXTh&E=xTdeIV2=pYh4p*u4oK)MQ#}INz<$R(otaucb>Jf3P_O^1O2( zFna9;v;Kd1&ad&JA?AMgq;O{c=$$5Qg0f4iPmcA%E6b5dmV7wX_-OhK$07Lo&&m^a zunczi0k!HCghzE8`BtO{H5Y+?iw*Ns72A%ryIi>Ddj9wz{?9m^XFUD7dBb$`l8PR@ z!ftPB^9|py@_zF4B?VcR>}i?m(I5qwGD)T3&$pMjQ=R_w9=YM4xWN*l;x)5fbw%Yl z{Mg0KXceJ366F$-s#5yO8C6K>`}a@UujC@u5;&7ruYZ*_%%>jH1?*+|Urny*3!Z5_ zG4;L+{$tu{uJdp4vaSArEJGVUre8y$aL%V_lpeMuYlVo*Os!E}xm;*nrAp6xFwfnlwi{}ivj2#%^EO-0 ze^r5d`M5sJ9a1r6W##Az3?CgtocIA8aolVcD~t1dZ~66n2hxRNrL097pX zfqSRJui>feitE>c{T=}H!El%qsd(MNa0!mg>yLf#n6(KXfR-0k{h%r;3S6q<(eS$X z6(7T-DOA9&@3{`*rPIv##(;XD0^}ZW|IhvZH|7C!FaIaxeJ7@n54Teu*u1a{q<2nG z6aHuY0zJ3Q2OoXDGiqde?c8rF50Z}zPcLngSKYc~=goONdMCc6-|64tUA`l0Uyz2MP>o;0oDft4_qH2 zlf|Yn(UZ(_ED(7Bs|PqfN;Q|XTDDz)43vI=!T$Oh{7|F%P!(=WM{-fXG8=# zy2g=muvm)8f|s*PZ1r`eZ#hX>y`o+2^gL4`!qLSEpyxK`A1R4s(p!%#b?cL+97oy` zuMtnA4Ki}R5Gq5UupsO06s$X$(!lerT|OL|3_xQm<26j|q|6Ru+hNa^s>Fnctf0zX zWHY7D!H=kZF)(0RyK)Q)>2`T(RwzHt}%N+G&vtS9rdMP0??&FA~cCF$!a%M*-K>+OY$K#OAOHSIKq17 zw)iVmzSzfZLBRLXabOmH|v2u@V7m$5NV(OG-6QY5GL{A zxn#J_zk8Z}*cxmWJELng&EDVA%ii2D7qb40qLSnJR+f;^kr%qjw3#6YIGU;T#cw8>4&<(u^ z@m6ThJ+&vQ=j4p!_rafte;9WogRqa!gw2cQ)45w7-v~qKh25D*T)-*gNPxDi0l^EmILpw zOjcBwT|O}qE%!}urczeAb>xPL>Mhfg$AukD_Qz%m{jY>IJw zypiJs-r2B;5?t+Z_W%rNq)Vq(c~q4l(4>{oKz4#(<;{+@B&7FTAB=c3L;^8DI$we| z23%<0HUHFZmT}6p@$6vjdrN%-!TR&Vm(VIo?em3`K|7F1Ty1RSq3LKW06KJ4*+ymj z@UXcYb+L|M(pjU-z4N)JrJ7DV)>A^dEmp$B z(lfVfcH?ojmVJ9;qiRY@$;P$hqr~g>gf|FY!1#W~GEJVz%7@(qO5nttNS&TA2O44s zoWMDWYiS8+3l6-aEQZ_abQco`evu)#8C9L6T(h1?$F4T)E3IGpg67+4v2eTuxyJlS zb|lsKjZo4!77kx=h8Lsj4xE%nBtg9w=YYnC52J&+aNt_J)D^vg|7i-N|KeMRhr_mZ zwnq|L2iEiJ3I5 zG!2y~L}I*|Dn{(Qqcq+S+=V(@q9RqC>_Eaw7j4^YNyc!34nnOQ$2Uq`(2Ik)FtJ-3 z)Td;XFDD`1(s9ftwVtOxwTlurp5CszhH9+df4%5TU}Q+WD3Mkf#t$f4y~y0`e1wac zRI2O=gy!zifo_Jscr%KQ6S@0=u4%ZL4tYxl8~lc%PT9VsN!yf`77v#4NQ0gS-~sk{ zAJHjs!4yxCs+svt)I?HD)D*bHL`_7+wuZjrP83FleFjTA(Ch&2E(?<`15=+qL9)IA z&+eZGdk#G9%R@%7CcBBWbL=lrks6J^?JydbZyGu;?__{1QkIx>u}0MIEau=DE~g<; zWHmE(T(>9WD@xTl%*I*7iEtu2bXUglOe3qC*xfa9=O6RAE#<7R+;_jZ4RW!TwuwX> zntXr@Gm4z?q#{f0AInmSL7Z7bo!8a_CRj9liJ7AYXjLZ~dAW{BCTod8AnE#TobLh{ z^T|GSvd_b=C;@E1_Mv{f zOC6nMH!f-qNqE=fb#1RUYeQZG*t`m~C<{irh8lFVV#OFld6e4Se7KL+Tv*VF?70Bv zLH8Lf{aoatgV=ia4bM6~*qncZmn!CyTNL;}<)y0VQdp?xpp828t zlcbk!;?#RHmILnU@*Pc`H&+r@wzb`F0h_kF>+$pW!`&$xXbGMj&7Dip?C&V2`>i<6mT&)nnRUV!y*H#5FeJRr%v z0v>S>l90k95Gpypnv&5AFhw)`Cy8 zw73v~bF_mv(Y+kEm4;{_X<OXtZ)!NYFfNWFPq(yJ5Co6Ox6=iO#^J+5Bz&?Ty78D;w6 zFNc!hRNMWP+qlgYAwQIC8lxb1;g?>CpNAe5T0qsoN7h*e;y`HS)5hjQERnspCM;Q> zcC{(uu#!=;m9e%gpmHDDUX1O<|2E1x&bqsl;yiwn#7kdUuUEnNWQ_3h#z!^2*ZN}L zDAR2)HCJq}0oOwW52~n)O6%ouLh;4EH`WPTIC+}0zbMrgg8e$uw{iEQNrQh(v+2CeG6Wq8*cKpcCJE5bzmD@Qe{BJi@Mzp`TZlEb?_641~X=6)W+r3moY zPVMSFkVNWPqeICQ6yBEm+_!p+vt$HoI7~KuYswpt;bOl^NG6O~h!}7_65E`p)A640 zu=6SQwP>?%OKnJN7neC?Z|u{{qq<64^xSkmNY46XZFbJ=m_#;`{=zZv0It9Bc*Xf){LcclS zbCUW>W`;^s#AzYOUir0=hJVz2S19;|iTi834aY}OB!rEw1cUnRbm+>k)z+Luu4Z4`3;XU!jAFyOS-DCa_?YNzr z*$Mnnf3U7HBzT73^xc&NTa$NCYbd6vGmQPrm_62I(%$~e)lczxow!NG=8u>}p4Yg? zgT&t3>D}|WDzz4^nrF`|I-UdgEnE2%Dq}ro!g%TnQ@A!dbbi^cw-TXF#9mA zjuf7PJybJJV~WjlD=obUYp*gv4}n6sh)ww7y?D^{#6;5<76>%RM&fKe&T)OZ zr-7IZYa_lN3^yDy1e zs#1mI9OD(B&#i1qu+%2x5~Sh?2>7nyEac3RO-Ev$!$QL!IpU|+c&`_9uv=Obi5O>mCX!M{SLJKZXnx1u+V9{0t7clnEx<(-e5fl3&?* z?z#(NDkty}V94r#!&|Qvx`ippsi_9YsKr?L`I+=pQ{eW6`GZp&5cRsHxL~N)u`>b_ zCd-DKhxr3l9BRZio3C=ubiCR0*cgFAAc=|r{&pAg&ZL3%ca~YQ@-V7urn*{afGe0w zXLPg|FEww;QsU3MRRmbTT$L0+za8L&oJ#WoS8(f3|KWiX^b^#oWapH`a7e@|OxqE1 z$^x;)0`fKLr-%sLY{o>447RG_#~Hs|YAq}B*xX1K`LD>jG`9FYXkBaGbS|!zh@V>z z%w+gp=Vp90s?}P`h?_Jki)`EhEgdx%oHseUgoc~bw= zIDmQR(O%Md9H@NdV)ORVDCC_G^NQ7}cYcUqlj{L)=gBAgN79JxG7+o441YB7AH#=t zFB2~DXH<`9oT@M1i!14OtB4dQMUdi(K&*YOU7eRPhD1|QRUQ(N`wRma?Z2E!k?bT8<1`C9@`glzT29~bT3?qyUVes{rkyhDtDO#g!3rql)z|f>?fp^;uW!wH{{4TiPua-Ri&_A01dk1hHqeo?XMjaUX z(=_d8=(Xx=QL5(n&(K-q%vHx-0O(`WK2-t&pv1pe_54U@7$c1PmX7*R>wh_fr2tXG zK&3ZG-nY34Fel-I;C*9?h6bBFJZ&1TdM~bym5QXW5Ij7&7-T357ERscmze$#MCxce zVv>crX0rH}gWGC;MEDFv>EikiG*v2_D= zcV!0c&K*!N-g#=5tCHyV{J1>!Xw_WE#i(sh-_!6n**nbUy@(R5jKKa2cGQ1hSK&GH z`5YB}q6paRJ&>W-IOF((ID$$h=Zt5@+SiM5k~d@_s>=OXm__{+6x?y!^TYP7>aQ)t ztMqOUS+A>pZIcB^=Eaw4yU%QTO>Z*eH-%3`dX&}ni?vCSU7dS$n&5!)x2o>GW+k>& zj{90)JgCc`O|Q8LT-UDhH-#!AelUqn$R**Hbb;HSifIVk6Xv%7T{44jp9MaVD+wy2 z&LDuh9P2OMQe5ngM}5TQ9x&8ztDk8etoT#8VAwtE?!W)eIa~60=QUQble`92{95X| zw1)|;G7bK-FCQ|#0WyCZyN^G^s!OU2h(Cw5*@*tr`etZ&b1l_+30nW7@b!ef;KQ81 ziM6ZPrc5GkO6~@*0fmPgA&eXrG@D2sf(C^k-3ozbYXL!|q5RTSqMaObP?L{ScPS&} z=nKP0|5q(mIt7-pHASL7V$s_6HX74~3}GrJME)5vz{N!QvTQS5^f9Semch7GKZN&$*_~nJh z(x$?`5vC9xU%*6X?$LIC_az|Zc7A!qRco~5)5HBSNI4F<{#z=7kl&?IjL{%}f=(yZ z`H8Lu6Y#tITDUGwMMU06UF2Xu*32Yn25!Z9nNDZg`y^3qq9DV!Nx}1V3mqhK5P3nY zP2adZh}Hp9$KIdhTNlgt(G`4!XNsak0t=fE88vj2*&Giqjn2X zqEMr*qi|*Zk6tHW{F2Rdw_G?gPJ-Uc16KEaFSn~hMSZVtV|MfL&<;LCpnj2Am76)g zpQHM}S86X+*DJVk_)Hi39XDt~6qPOIS;Q(-4|C(gF=H%|ZNF0)2DYX@bY9$GV8m@Q z!`AWwbiMtd!53le=d7VF!%c^n0SG7!WaIDoC1k*!KS^l?4A-`d55fd0d@2RYELVB0 z{7e<>>89?3Qk5Y#Ay(O$Stvn*PTMOEP2yuVd>BTyo|7bX+H#spgsJa@9OBE4ntqD6 z^3B)7yjZ*#uUu(!K3y7}PojbgfOyZ8CL1ZZpuPbAp2cbPvCaSbTJ1nT=C6CB`p>;3 z8AjK(3dYodI3UV19$`TXda%s8?TDX?t6VM!#eBDapWaRmtNm+v-cAQxC3u6#JS>r< zv`;DD)csaHi9)s?zaP$CBsmp(Y%$|ounD8Sl7I122>)Glk{g?#a{%Taf`^d@Y5)|v zC`J^l=eabh-&8(+FEOT{7TcGCcb7N*wB(LDxTuV12LB!{@TH_~NqocW$1(qwCsdpt z)mU_h$*{aA$$=k-egSMBhU2`HoPLlmu1Wdy36V#tGqzbetX$d1L8 z*CAf}yqKT!ujd^sV8QOaab>Yjs-W$Aoa%AWYvuCm z@Miz^k|Pp57QxBr^q$-KfZbl^VaI^m98Q!uNs3DS9Ci8d)JEY}?l!M0@|V#e)U`oWNqLCfq14h!XnV8nCay2Ve;Th! z8-warf`qAtP*8;ADN{|adn^R}xm+%UMcbXtYDNvI9OJDD2Wykg$7fOPN#t}S>W?5? z@^oL55Vv5@9lVyErAJvqav%4ZLgFki07cFrbp5z={6Y^Mse6LjII=g;tMFKXM0!Kr zq9gHa+2-ev|7&=}f(g=&{3BD)(L_{Db6_LwK0PQ|y;9`sv!1U*$Iu?SMCKPn(@N7C zhl_+67V+!x#6z{E%7iUc3{y(T=hyv&kt?pZo5cNsET&Jw#JE))9}NPO9HJV8rvUGx zB)jqS(0tkVk~rgK^F2Q)FaIY=9|ZaJZ`4nff-Ri1=~zTiv;#dHZ+F9M!gYve$L|L& z^~$D_0}Hy9t6ymnFu=%kFXUMDKu`SoOu`o6l?uKoqOt-v(vlc6`02ME2+vZl0(ksx zdM?_G(u}gD*BOB+jB{CpOhDgDYyyVwEcdL~*T%<&kCQ~Mtd80az*@Z*voVeTOroLi zX+(h^)?o*Exitl&ukUNwc&TGw)uZ-xihpsZM^2YE0`0zg70J^qM5Ao{%NXfma#-4s zWS%}WBQmMd@0RX1Zx^#5Gh(IOjH~iRL>+US8h3xZr=^bA6s!FL89>oEbkR`UQ0RqQ zEvZYe$rWAFT({AHt7Vz_%8!X%r7c>to}Ku(vA0*9{!O~+-RB)CwCbWlxX=sMP$($L zjQm(44e5lXwF1czD^GM@SZL;x*~Wd1kghtNw%eaQS>8AS2d`)mN;KCP>o5i?p;9Yt zAn;lr7CX;Vn0&Ufe{Nv?$>kj!7JszebY8>Ef|O1R5>IGe2cnv*NkF$f9P?S!A=Xg! z>dN$)3UZt<6)szCiShyzLvS(!K+w>l-yIoRqP3@z>1(4BF=EQ=98~NV&Qqg742{-& zy9OeiJMUg)pm`9pLhB7iazz*{A)dX5x27unI8q0>|hb7InB>yM~aPt-c|8&1t zfsGRA_^;|cQh>s*V*yY*Aj&_xyhZ&B4Ef71=U}0qenvkE7l?H#M|T6)0Q;*AfIEE$ zRfmIV1rH=id)svx-_lf2FS1zJw>iMGKEhIj*xEeZ;l|e|EI=L%3>c(o{g?KYBb55s z3d!Rp3{+vhsje>UwnO@ z=KO!n+u!MjDE@KicLbl~{v=?EhT*?m^)>i^|N7Lr*xPR&v2EIug17YTQvVjc`z-0J|~K(7ZC03|@c5E2e+9avy+WI(Hk zx^D;z+=QWIfg89MFfWIGQJ^SR1b|b0H|=x#1DuaJCx5>luHx_}coHD^&402F6o5h$ zDS_a0Tg~kfc98$rC|7DoVSIW~qPm9>2cgk)t9NgIY2P9|MjPE3L1L`2v=;47etxv$ zwDdcbs~ipCPev~}e<^M6Wb-qqk|!xDqrlr*NU7|41v$xnNeo$fxk9X_ifIZ0O2e=y zNu-ZuKp>F$rIsZW^HtuW9`Ii)>-`2?vI%#7H$_`HdY{3Kb!z2HYbg>)b4L*clFQ!t z`OoPef8J6RwkzLFsY-Q&f=hRghNW*TX0tk~{dT{zA1Mw{+6(ABeUNc4Fv&ps%@1@r zO%Y+xDyv(2`s&FGecgRq9 zf&E%An$@3KTsOHZXAFLMu#pgA3F6o&?@0@Ldp)22N+TbNT-CKyT>LlqGNjhb(fc_ye27~yUBynwj#G$!=Juq)5QE! z2A0qD@YXc20#2qIx)7oe4xI3M{|bMWC0_>yjZ#gAB^4sCIG@(K8!t`|;4s*~A3E$#)|{v54cg zb(G~vQzZcmA5NVnLvQCz4w5N2(Qcz_x9iU5kvL^4V+tBagmLmM2nd^tddm#=zQ z@OQgheV{cZ_?y(~E&tIv=?Cs_$B%7mFx3cvZ^QD4aNN3DyLGwT_c>v`y!8&Dq~knG zY~_wI#z3o4B;xAFQ{l@Zs<5?R5_GNQ7GU3#2ECHg%v?xPT2d>^Njr%dU z#Uv_&xccFLN)dZC)?7l6cOm=N-Tmmio2@#esK`C9j;2RFP~_HRqQkAwSG7~(){Gf` z2WI}9Tmu03a(uAtgVg|_0xQ}dNrv$l0Q%q(AYtnQ8-cE0vcCBOX(VhQ!0G*!frL{; zdD=Po<+JIdE-5=e_W{+P@OOHkekxm?+--PV_jfN~*jjz?ZoIl4^uE>&|24{5*YRRC z+5_%(y3Yn{`DhbOf+{~T{4<88l&jC7YY9tWqMs1b5TsB&yKB{$inMeo*v}8JU`X0o zET-6bLwqi`*&if_rK!uIDxk=XFJ-Vn^r(-p4^TaTlNr z!Nhb%mIXCAN*a#g9@SK~IyA)Bb>R|U;o810Jq@*6R)juXDoL?B>g1*B#!!I2C*gjF z>o@+xHNyh8)vbkm@IkxtH>uA3RrX{*;$K-WW&86|bBLNG?*BW!Aq9enR7YQ{J-m^e z5j1^p0`r&QJ)Y)B&r^eAzYxM~Vb(?sPUF_Pd}fbh(gY5BVEd{pO^q7S&KmRjP^YQZ zZ#Tm*L8P>=PNFJTmgoJMm`DaA(|e`if)l+5di7b`upr1PtS!=6s(eTk+c}1v6+3_eI57v`f10R@Bn&^=`m!?|98wWFLk|{5c5Un&33Q- zjdPh6Qd`t?;4JlntwcD61cVSgg=<*eglcLoArB1uM1o)mq0Ksw*Gdozr~(4WIO{Cs zPJkf|K`dfTlOlwLy(cd%e~XoMn%iJ-@K<9*kWo`!38rwQq03@~m9>_w-0~Hq0;Rg5 zrF-I8I`cy(lAU@#w%{Jgs0I@!QIkTdtYr-zE@6U-tB$hOQ^r!;I4=leB%DMrLtm?A z^Zi@WU*-G-COn!9nR?t9zaJuXuOoCTf|aYMP&$9qPeuJ8UAgV_yFYJy8W*Aa%LAAH z**ns|_71dpeXzqBev6oeAyT1p--L!p&6QuxDlA%#rz&6I_EMb;$8v339nSy zz}C<@P!~}h=KuDCz)-+9S3n7sRj2_HFa+S4KcERJYg+zOt$x4ZD&gOAw(TyUWm8z`bS>Md%K|%0q0L{UF(Q34IPVz&7Y>EiOkhxv86A(d?GlS?tYToZ8h+`g{nXZLk3m;~3$ zd-eMhSC8kn=Q;=j2m=SuT>+xZZb;O17=B-@iwO6AdvSU<>$HFPo8C$O%WzOE;Q2d& z0qD z%FA<)BZrAmXrxQgsx#=IL_2)<$LSFdX?O=CP(jUV?Rg%i(nhdz9KOQn?q;L!Rw4^V z!0OZe{qYmG+ug7#3zq|ya@1y%)8kv@MC-X!7XRNRla)HRr*~CPwSyH7Q-~#cWAUJytma_FvqA0syi> zP=TUSHQSFjnymke{C`3q>J%#q#bw@J4iAw1DcgF6u`_s?pjYbJWJS-HxFN})k;wHr zI?y0b@_*E9&lg-ZK%sHd!dI}dCdM8)F7kEqELkQgK5)fOl1GE?ze6f2i$zqipA>kb zMPeQq&B=3u;0@j^pM(4S%Yn($b`u`i*!0kuteLC^8 zGU5bTFp58gH>8|V^`rvr9#GQ(889qIjzGrI`%k#$v@8LI z6DKWNv{WK@zh|qSc4zjTFP2}sI8()?4m#>^KaqnV4F)hV;?mrQ&dy85_5D$6F}H-X zhPpjs;kboK2HxKb`H^vIUve$ez6S#i1fk)aa~ooy`xUtjean|}osfXGH*Ei3><99o zay8fvq9lum1!cb1d|&c!F947b`%Hkr&%WWGn<7{j(*5#Drh{I$fmAjs)HTL>Ly5^w zd0^?=Sl`j{b$=vZAn@>wtl!KhkZ3rGVD`LWlV(Fdciv$W|#x1G#q?MRwSOO`qWB}x?- zusXiVbK;?SWP&Im4M6ap84xqLfQ7a@ji-d&jstzfoY?0OcQx~0nmdW)CRx7o452W9 z>f&;Gr{A6O^Zy}u580zKXY%|2GO_MoamIp|-R>#J`ba$00o-Zu)+&{zJ}|(n|ykF zFbVIy%T_E*R?bf(>pO2oMTF>liq{4B{m92@ZxjxqFa7w}VUkJ>k;r!Fjd3YBc?BxqDKOYq5_dEI0xJbpJdD z$jSW|46Q>;5imu8*bhK$0NlW#FlI)El;-R%Q?Do#mDg+l!FbDDkMHp`l)&em^jBx` zrKET&K?wN_E*457X=6lh(_*-zw`F!Cl79v;VsDmz(3iBdR(ceMH}2-wt?K=gTA5=+k1DTWh4>}_8DuSv1EmLysc-CY88&f^Et5_?=Q9Wm_)S{V(#Ze z1b(vA?Bi5;=5WA}> zpEEC_W@2Aj8vQNu;=BhAM`;Obs@=oaWr9h(tdi#L--8JuzY%7kF!3 z*3(F_@;)}VqbB|swRc$^^bwOR^&J9L!C`bOlMjFA9fzc4t=bFTibXxp>DvfS_+Pw? zgTa_dv=HzV!jKS{w!l^y80_g*fe!}x1S%p1G;Q5riZ5BzOH>_3$vk#5p-Hu0;a<{J z_Vx~vGj6szrE1DxaOw04cF9Q&1;&0gV5?lX`PM_n}#{x9OKa}o&_#eobD0bR=v|S*{h>7;xvXS2y-R&6S zuLFjDy$LRF?2v;GDZ0(%h(ZtozNyIUta%c2QbO-R0VyKF+{C$T05>m9SOoD9Kte2m z`AWBh7cuD-;`s-HCgHER<&~?f@Y3^#hH-ab+ah-I32t9_m_5qzy1V7;elY!g5kN&N8C%Ia6zJ zvipPZGuY1*&klg?R*jV$YHsO-Z(oq;@yLBK()ltYK?t&o;c<+K)Nh2d%8KfA`+GP9 znsIPIGF<_d%A|6CVkAdd?eX*%A%qp;F*D16n~Jx*Uq%_oTYe~Tj5vB9>XJ4{V4FTI zw6$mgdm{R`R3gBuZiUO}*dn+eUKekC+806TTFxRg^|APm*zpvd3d2TT6Ibk;8svPC zL1Q(xk7=9Fk!YmsZ<3Ud8C6e~1Z^U`Z)#!d^bbQzLPK8bp13I57n2sDgY5zarhW?Z zHV6i%-UF3{t;gW-W>`d+=l_GaL#I;j?Vlk$Depf6=M6V{c6v1)`S<}yZ^3a9w}>60 zoSjP38pS=hEQH=T3XU7|Mb}(4$))v-Nb+xn<&%2Z?0#8^gYs3ErxWset<*_%9n5!- zcj8@TmP;BeDkMcf7tU}QT?m5JkH$$>r`tYP1!AkL0WGtF_c>2>%l?u@Rm67w(n?e? zJztggZV%xca8jCR zB8NVx0_^UINBuR3FCplR4Am)+FB0nJ{gT1`dTH;T9ug4qdU=$o^CbelX40i7{gJHCb9vbBRN!0KpQ`KP@sOdZ^w6~+4Xlv#7H)*qB4_M4?;9j0I**H8OZ4n(AS_qVKOV!H(l|j|P!LkDK+bJcbDdV4P>HFP48!j2%UWpp4B;+*m+<;8I<9!D|aF zu`D8i?7ZVdrlpbKVOx)2@a&mCg4j~jCy&2EP$hv%EB30VqWxrnLp>2OKy~>nz|Ts9 zfblEDR}@GzyE`dEn#^?BW2VvN&1zMa6gH6N>DdR(gC>3YuP{fOO;(7sCQ($(S&HGD z>7l5o3WV%yqJqh29tmA1xG(AZjj>=;Wg9{80f$~(9jpIWM>GBF=sTwuFJ81%CbYof z1%>=iwWj6h@S0<76(AlHSiu`FAR_uLwu-Wy66meSHisFA9r8gd!<| z3U28^FwjJF zOyzI4wGI}B^PH;f-s~}k>``WUT@jwX$j4FuAshI%b7crizjr6gFV6Zzf(uuZ^6^u* zmKBa=SZ`Z0gbtIOF(>5O@|T4)NW8m=G-V-pgFa303?T)2E>K@KXVyD;;j$x!D!%T`~^|!sa|69PB4c{WJlssPp(*~%En@XG4ohYV zTWddOkLyf7$=_az-NPIXu6Ji|DDUpNit%YP@0^L{@$7MVbvohIm4rz6_tu?JIA}eM zN zQ9=~(AELYpe0^*u# zR>j+G1AaPcz{uSVUnZ4tgkJ!gd4kGP%Es@HA*(R8BF3gRZt0KP{f)xi6*IoLIS+NZ z5lvYnex!ZnP!bVZ+U}wH;bkx${MK9T<78WlOVKHHmL*F}YO0xy9h=*w^ZT91d>lfp zdLU?nG*zN$U-Y6~-GP`@HY_NIdtUG|!p>4rRVNcD6f7H5=n|bcsY(&U)_c!pP`^t% zKRcu8^4Q?w;TND5C1i%Zp{ZVwi<$d1+}o5APglbD>rAP$Lq`D8fv+6F5zc<*wcE%Z ztUO*T$r2R2^g~ugxyBgIrfb7|VCUi(_+Y)iD=RT^e^*wno-`yRB;=;nh$Ypc*Cqew z$T=bgvp;2d**^<+KAWoD2CY2b)1k1r@4Q+b!Qe}*P#I%_Vn!3HTgwQ{QNCD80-H{WCK>kiV(3AGv085<5k zQR%5P^uc5{lJUL-VGPO$viTp90ibypcr<8X4n1gjG4nP)HLfzwD2BH9teDraPl{*>Roae8NBOIjO6VrhDQ-XBUI-orvb&qv&9p}sXHa)$1O?PiKQhH#)&)8Pv$R$ z)e$yJO-kAo9eO*!9V@x_@i%E4D_*a?SW;Pj@9n@j{m`|XcSMpBikNz7!8__@#XHKA z34Y@lZK?8ewqImC3sHrjL07%}Y0>vY3iYON_$&5&IhN_yG{$O~E9-2jGd#nF&Muf62b<<2bhEpN_2pKTtFLM2&}1c}l?#r@>gBoEZ=@v!?7-O*MH_G&8jAy(p0q%JW*mZJn*irl?fl8UaBmqyVFE z!iU|r*4Gmuh>0xs>Gw71!*D^TgX_idL+t}@rH=tJrE3xu`WPaOkVkp53sTqqiZ$U~ zCt?76MA<3{$;12AdA-5KON<%#C?OCGSpXy(2m&hr9`QQ}S`ieu@O|;S3YU057_KEH zCvD@)s4ek)sb+LbD$bX3!xfSg&F>`BohSgve-(qF{^&iO>4f?p)OUT$@0PP|U49@G ziYyw=<{eqg8qRi}TYCqOtIyT7&VhDGm-m!6cI{@lH(NWMAJaR(=&A*e8xdHiAS(~y zBeIx8#!+Ibs0%|Qiv~BR#UhW|_)id*gD&ei$k-0zVgiJ#IeEcwq?n zy}z=wbnlmNyz^T~o88nX&ZM%IAnaGR&3mB%Nb0fzvaqjE=Axd2lo#iy-4;Hv0mloJ zcN^;-Gk)^CP%Nz{?BLm%{j{|ENO;fQZGSygbBWO9m70y3LZ5IuVZXtO_89~rm1qqM zJmT3aUZnSvG`5=qiL9?KQiK8&vgWBWCWANP=j~51k$C_&T5Z)K9-L|+wuGi|? zLvlKEu7d|R+{E*xr2}H+(`x*vyxn5@Wg4GX&dklt)6>&`6Il`r_MT|g+pqk8biH*{ zRo&V?yg^!!ZfT^YOIigKr5ov%kWNYI2I=nHG)Q+#i@>J4ln&|otqu4*=e+0p279>X znvCH;*L}r(&$Snq_S&cYCxb=R>_3WF9hz-}k#0NBndriq2BrfODXz(%e=pqxDo(G5CsNPQ*$%iQD3W0SWW7C7;o8M@9 zuDGyLfrbzMT>0uIo>b3koDO59)-H38etR2%zMQg=Wb7}nnv6bFvdbJ+y+Ptxr!I^V zhl?YQPA62XO;Q~!2#b@?^i>*#Mg&H9fw+MR7U#P&pUXz+h2@PHJ1&&dnRM>V40o_Y znci2x?^bEr0;^+x2+_MV1QkZr;LWhCyb|yr_SA0v_WA5WZv&ToU=UZJN{G+x#L{h0 zd?;peps*`z=Z#9PHJ0$2;j*n`wPWM;{^3E6OK|OThT}Tg;If92;igwGXG$wM2Rz2V z?bt)-%z3Pr{`|26$}5e#+sSp~xW4&i>+Y52ct!3#%DxE1E3)F#wW=F><})y2#PaNfxPjRb%HU@m9m4E11o3F2u!|1#<97nfpwD=7OrNoptR zQ|n4w8ovzJ*!Iq~q-{+TdiN+=yFNuq3r4M)*f2iHP*5I}9sIGPR)Uqw)E!SRqmW8a zbhVUqYsnQs)7Gr)dgHJk_U7m30J2L&6Nf37YRm_x? za5jZKV&T+{UUkc_C(05>rjq(Z3e)gUu$EX}p1coH6b}j`f<|~`6&rgseI2izK&#L4v z-MtPBlzhU$duznS3c+bjpu{V4-SWTNXRo64r8+ z=?qV3^i6@wqQo(uMqaPuQSbRx_KTDr@WNAvqaf8O>PLCup#iiLOb@bF_fWtR8h1W{C~6EAz_=G#+N zojj+MTw#}xVZZOdE;=}>k`Sn4yE7C$nSrW!V$af5lhGyK|ByPbpfBsxE=VW&19!!7UYd0P8 zJBFn#O@)HPOaxRaf}7NXXxk5n)z}uA?A=e5Kqy7w^CBOVwo!*y)|dTnXkS1P9=3vw zTVmJn!-g`NJ-OAe7IkBBeV>pyizovKZ6HxuPXxf+p;8Y(E~1Ei!S@H?y@WIn*xo`F zULDA8QQ80S+lb;5fH_s&@B7$x{j(-uQs4fz~kX*cyMepzhhAP)+Hei z?iAZ{`L0e^s=o!sYF&au9{A(eF*>n+)9_hu?-T7OEq@)Fpyry=XPuYmH)%3zk+vy9IG zczq$nDRXXePsJaEBs=K8a7$)!Rp^oM{UMz7tNeBCxP{-pe*@IJAsi8~?`ct~BXNB- z-W-s(d_I$HU4H$((7%+$L5nSSeI12)HqD}ixaGFp%52{|SlXQOHJ59jLSNwCWu5wm z3b=h|DW8D^@yCS@;EMGGwX^cUM6oVuyw>fmXQ)e+AEhmC=We6t^lTQ0{0RJ;@Jkyj zTiB!yp85=4TNZjDq2%i|+iqAB z#~uTQP5cUz4}NwuIT`wDD&fQK#+2=Q5SP`>Je9UHZ+tI-*|PuKc6Vlj+fa38Q=j+@ zNl}1Af}eZQa~aXfYhO|t1qH0H6fYHdFBvO;XCZm->Tu0yCo9^gwMQ#{v^O~*Wj3&- z;pQCxql9;rlPK_Q+IxKI(IaI5Cl_2kbx?QPSe@GGdf|D@iikm*7Y?IqKgoQuj{~#n z0Q0A?qc74+_uHMD3&iHR+fOo`tMssKouhTTvU6#y zHiXy%ERh#&26T#=-JT|nA9n`|tAljQ$|B)Fd%P7s!#@RGD_zcvNM+D>HBYxMGwK>H zHivR*7`&FAkx~g%H=j-~Z`NF{@YI4q7*_75T(9eF-eWwODcmCw6llB^xctss5xlLp zL)8E*!mA{hJ0Aaq|AGE+fWe=kPPBe%HROd6dx-RR=?;kWcOIY1AgRQA3d5(`8~Qd1 z$nSRjkE_?6l3<+HNkWQ|9e z)F{`2#5mMU8+!tJ{;-Z{!Hd8UO!i9hsp&s^?8!uk&!pBO+|e`dPZv0pJD$+RRJl%H zSS2+h&2Ep#xDHNr;>7lRPpl#LfvDnzjF0;f_OnK8lw1hvQB9f;P zCV(F6dxS(Hi{~+F>F>iK#h-yL0*oubNi#178%*<9|1-BC8?(k`>Ipzlnq7HSpmKam0=Pr33JJPPk zX=!QF*gm-qtBV}QK?YKSe%5<`x~GQZ8nh99ynKTzXrV zIX+ITO$~s^+jqkR`O`q*!!P}&w~jb2Bf2Q5%BGWx3%WTmzkY#<5JNQ=_B|>4ohMso z`iioEp+W*)L`V{@9bT^B3D%AZh;xgxxEInm*$O+lqs2*8V2_Ilh&ml3++5ox46meq ziRqhiwj)d=yL!Hxs9~nj*#X%0n8(h4p9PrWC}QL{N-SXs9YZYK*OTI=__WWyzT{oW z$UpOjB=uKbS3Aj^u!l03F$CEY)@K+3C3J}wF1e@i#J*yzF0V^zs<8LHs>vt#8;-Zd|s{HP1|`?W379< ze+-CtZG@7R=Iy5l*s|AaGDd-UpY2%7qBK9HIq*8_k6s>gkTr9DLanMjhJb|}3*H&; zp7o^=OB2CNc_A&nV>i#Bml;j1saUzAfHBJWzhWYi$o9mRC>Ri(jdp-OqF^8{i2KZ*c z;^eEQ0o2ytINUAXIFvhl0e(eN0hs(ljDHAuXVA87sI3a<;bb4v0Rx+KXwwDYv%jBEYTYGEY!jO=5y`QP7qA_;c+F^TE z%+QXXNKHry3ZjjqG28j08ZW{sx^hjPjCMbF5t-&i?;>Bho54i1R)bHIcCT$gQIcGk zNg6fJca%VfOVOVY#w0nv^ET9NKT$SkTp950!$btl49$}{99_YQJkfU1T}iz-Wo;bW z04;Vaw;+`KwD{51@rfDz@Vxn%*>~CN3^W&HvL$4%$Q;juun6`arRX!~q(YCE@^Wti zW;8+BqnjgbdS+y;weIQvI{34{4vv$CA??wr@d)Li1$QM<>8@shRo!lcZMAHaOm`XG zIrS%F-iD;?HsR-%Cdrm7l4B^4vdbL%?b@m52@M3Wp1d}EK~Y|jG`lhI2K`kfeLr1oXs|4)x)s@vIVuC@K|?$Xpbw@(8}b7hK?_@!3{mPbqG8!ET}-GQt= zPS!G_Rd4UUS2aC|^NZ}NgbRUnbW-iL-;DoZu<*s#0dyWLT3t+O?7Z(1yh;{2|9>R_ ztq!0_%1_E2qV7}Pzw!@sb9XJCb1fQ>`*kTfAI5io$2fE%T|JhKqU+2N2LwwN?kaZd ztNX~1pAh9o0(^WyuQ?}5D;dJVE_4T!3=dvN>hDA{vZK@@t5tF-ivoXjd5{+^;aiER z@6ZW;E%|HH+Aqs&C-zrmNpq@pHN(~!C8iqRiNx8Cv*+4?W{y1KfTkx|bkf$b?A`0- zYS=OkpMGw^h)n~G1T@x^EaErpM0~~YT1oF4V|rXm%s^Bv-UkW!9b+Cjxh8KrvPU_e zD;?!bEm_wf(ji@c8@nLPc7*wMBg{8b(Y^d{!qLbL71T3VN&|$LrEyq(6gyFcxj&aX*z2b*R2%L_g}-OTHfW zor5h~5L#&FFU<|=G)StFe;3eP(|u7e_hE1S<%|GXY{#J!)kGxSbHjeY3D7Ug(jST- zIQce^)l4eW5_YcB;nLpCsk<{3SxX(?XDZ`Hm)q`>?I8)ry5rYX=btF^U*U#V#aX~C zeqOJ!^j+bJe7l1OqC56ek2qh`zIMFnzBRymlhiJu>Jz0%Z;gewM4ikh-L5y=dT#@O z>q8e%8vu+U{68H+^|I}szW$*eIPTIvt<@6?7$6fk`25rFA)%yC4ZZ>XIK3f=yE2}h ziY#Pr&Q7}{Z$|^XCye16>YeMOJAim9uH=gOzMfit;0>_}scwMH5S;vAx4dS9M6NE; zW<8_>Ej9YPZArnHT`>YI| zqG9lrHQRk(7o32z-zw}D>uL~;9NRRb5bv95s7?~n6S_wjWcBOTG~021wis^QCev?+ zSCNW|Ni=oM=#!t@4ZFsKfusAue0n*qTRBOUt}V#xd|5hJdd>IsUhli&3hsyOVh1eM zp`mD3jrpjrPbpFl`{VXaezrW)0p>Bx5xSH|n-`XIQhQnjsZFCzj^5gxeUs*al74i( zG8Wg1>q#x?o|E+Ef9eKfiq9}*#(Bqbz4<#SVkmy+S=YHOEoVn7A zLHC9YqSH>@p8Jz+R3B8ajNDEOU?=qX)-o6s5)qNo&3vx?;sr;yo(trpBCbM{tO>>! zb|*(2q&RN5u=&J88@D=jV{8TtpFWDxc(mxY*&?hB#)tCxPUE3q2Ls=33ydmz8{-pY zMWhBxyVMB{eR@0hX%7f}cWj4}TouTFWzZO?+Mr5o{U383cp&)wGt_&WwghL7;LvjJ z2@yfSk@dwIX*)~($Zl|e+`!NE^|PhezW-`+DBBrRZgGD35e2P8Ocm&vL}U&a%-aR2 zk{qWtIT^@wxlJa9rZqZ~PmJ%m9Y&nYLJ8}2fg=^Oi;}#`M?cIV^8~r&doE8gKqtu; zqN2cb( z-wl$?#cw9EUymjL(vjFd$C1Ifp?_8~qxt6z2Hf#cqddRBLy!?@)_|GYV2-*mVrjk6iy|R;&!T<>%epS#XteJ0-{@P6g`*&{C4|Js zv`YY)0r8e@r%cX%2i03i8Zy6&l+a=8*!x~&sBIxu`Pb99`kiLv|*$$DB6+O|4LNb&=?CI^ zaPMxi%X8WLeAx&)9KyoLuJ%e?JIyjpLs{uH_3NRSLuWKuyE%bRyx;OiG?LKB{(u7L zjM*T1@~>%LkM{l$;OT)M{N1r|{yuT^aI;4FwApNH&2=M|;qaThFPmxcbrg%cHhZi~ z4bDgAIlh)tBG9rS%A4;|>jut#k4Gn!j*A+Os%}ycSr$3l5zq34!i2(@+YtwR!~hxp zE8jj*Wk`9Q4>Skp{wy{%$}02oU7mjk_F_PS19Tm#>cHYI)j@Y=e%+62fgmSzcQ7-V zUP$bEjD#+L2P!Jh#0H7EyIs!=*T$hTrB2T;r@Viv-)vVv>E)QaceFI}XLexus954= zsJoYCz7jGS4Ns;(K){tR$<@`{PDJ49g&G*Z{;e8_ZAUytPGBRRuzX%DolyAvyQ6UX z75UTwQ3)Txjbwjbubl{-R_>f?XY%oK86L-^133@-VX{v@Z5eYGJ)EW*+drf{COulc zaNQHonA2_IOj53}IINnhr{bILI;NV%WFx*oMS)E}Q@h?Q)7)Od4k@<&0)h=O1o_Y| zXOWqteph_Z@ShJ0x}e7oT^exq?fOB$V`ef}v)LzaK5)UKy9o{uZUN8B(H-Ma7P>Du z9|}^yV`1cDTh4x1a`SIbLW&C$-LA z8+#31H&aa$lPse@V8~ys#j0@c&hgJ#YMy>{{heTj>*;hQ-sfr5(kOKNCQ@8qs*6M8 z`{;{_ex^~Dt0~~s8n;bpjh^;C;rp1(t#8hd$d;B@J684gF^_s*{TIt){u6ptth_G@ z!xCGae_Q#xo*tUv#{R3zhwkth+z;!|LhuJB$a03ZVDZI8K`75M6<%OT`7sFI_0FhQ_5>ELyPw=kRx28zG38+KBY292c?mFo|BOIM{A-5MU zFw#C3bYwxb<#al|3dP5(!KrQMi6i@@US5V_kQGbI1CgsR7^`&Rd4jF^0egwk6~GyWx&01jSm0(k>x{t7 zlT7LvQvsmr_x=s2I~Jho59%JR>NDC&Z-XTrLp<3veXr*Kw(mW_4zzuL*eUvCL&&mK z(_C{QoPI_CgCYWxPfl_l#A&y8_uJ-xKmQ)EIBRFcBj7l?ax_N@vGh>79SCRh4MfXJ zW>OQeRUQ%ez6jdy%6~}~3#_=FV50R8uHCdy*H)&4d z7PUkL2sjemcK(HcWiv13Ok`k}MEsk4EEavZTg|ORjsNDycS}zn&p-$XBvC8icrkze z)1SBdsu1(Uhdk{A5n0g6bhGBuhhCWtF~&L9{qB-+~2Qo9pLDF0(j8xl(^( z;xoKg@Ie1R1DGyhm4{YrLrSSWYXZ~-UxFl@1^)OB&C?Y6;KQV4>ZASkt#FEm7e?MILJJ zKym}JdNlZ-0=TaV5?Wn0pnt#f^M4#3SllT+;QG)gU&Gyee0^3EXM`v$=DCb4zgnZR z(6FS%%~~rvVYhxQk3Y19fw{-%nVFRjiTMpD0&4knw9-v3}qocPH`AcOg%ULj`Czin_P zOTs_-E7wXpgpw%g02u{%?q#V`Nn@oT`JkNo!y|gqiKD+Gx5NjE1BgRAZ+uUvfx`$% zT{xOwQl=95yO&?1X`J=k%>O>t?$ihVCxGF|i@=vV3YnCa%SkoN%Q@xcLXq_;O4FbdV2kP-<$ZfSXkShAc;}cf)TFva(EW$8JZyofn9@%Jk+8XFn#X3}7hk#Mz(n}1I>&xRLjtDk z&}Y{!lRw4$dO8Wf9a9(pyy4RU3>rAWKWD{^3RsQLP(`cns=zCht*#neVE;20RrVrn zPK#c3YI6L262GIgf6V&(NgE}!HvNtI`RuiT5*W>t4TaAe@2>m9h8~p_PYi9pv30aS zLRk$7$4n)^(!Dct81j^R!S~(WPM@2!1Rj06=-3-SGJZHg%PDv`LBk3EO46Qi^jKrR zKMpi`BIfEa)rR{DQOX$RfcU8l*^l26a zRkYtF&}zo?CSH#_xLUH#Z)SsLIi7F+nP0dpHE$|!JShfbU7q2Q|(Ei#3r-X zs@#I5a`+7bYPbE6$$tNqf`=&BPrV%*;5xzYXSDj~KU=QTMm-MHC$;1%-o{3L%4?Ru z>!qBM)AS4mNd8}i0Cjn2A$W%O_N-EAh;R@w{*&bID*!sGv3i%BjRkdq(eGG5%70)u zl>VAJWNA$&+YuA*r@Qsx=t!wV4t$J4jYtj?i#rr5)x<;{_Z%X(l7=DR&vs+z`Xvm( z!;zeMMGMWYXm2Ipe0t`=(f5cXLGr`HEFJgj?+6HY)?29we*!7i;zu#Ke$z6|ec(-Rrr*Xo$3 zWcWOO5jrP0h)pPdH(u|G%X%2M$bq)97WxYi@j$?Q9Y)o>B}67*!*Zp4b7{*`y9Jd} zAopw%w^;&&bL5iLPXFw+)AGoW_j|`u)6o3uoUFnpJ7WQlXe9hlYax>e^%3ZB!J^<@~^ZK8<`C=(QRxjl>NI106NyIwLs zg?zjCxEY=v-~M&Iw?0Qw6B^(OCYVqvx}R^xSsfxyYEh_B2OF@dy#o+ei@W$-K@1=t z{o-Ec?=1gsw4($-hn7RncKhNAAPm`ccXJsfK=>o?TRCW|m%f|TLEV5I_y_QPsO!6~ zPxIWYzwxNiTt@CvfWl5KMf=;zgk=d^vHXLKdXjWnt3LP)Hp#wegGk3PghE!lI@haR zHS0&wRDOB4vVr|8mW&}(@2MMDk*l&O>gtMZ=SH$3w%Q1;ExF9Ocj(wS3hye7#9eSb ze>;@^U<(a3L&P*=G#E%oRhuMaoT~kCod_O1uq*9W(4e4?hT+mW5T`D%(d3)4#o#@QI=! zuS;cub~o?^t2me<>G=-;(2s$`@Ma|7`KG?PsT4Ce_%3}E;2{X@wWQhzspah==rhYR zrJttU7LWHVLtae8n-w=fnisY-w#Miux|G65X39f}b25;vvn(h?FUp-4LlLPzc*Qy) zFQYH|(gNROr0|kW^z)~g3nZZp+U_hFdsdPpqdDZJJv4v0JySpMqUWjp)ugdXO8ulE z(xi#~{*~)MHh*G)G5!;XD7C3*y!r6U~0o+3Vo*P1$<(3Oqkl%+tzgju$e-~<704e zOEUB67=ln#7wPx;KdP2_)hnX*$I0%GTrZ{!>Zuj`ZgQpXS?%{-#zL4?t~RCgC#sO z*!wXrv80|^M>K>$iXmO6%adS4G>G2I>yL&bU&8vFYXujqJhp8Tvb>C`!sP7gc<&RO zl-+4N&K(x?q_I`!c^@Obl!|8}TC2y|c%41#-4wL;v%yogZnpBz()F|c%uCofYq10* z+x_g8n@j0L{qL$s4ZlpmHXf>KiUhx(-b9LS@NmGcVTzIo0?CA3YX z##+n{+__T+>qn=wJZZl);UP!;eN-JOb&b{qZ<`hH48y6#pDza6e6pGf7;Bg>aST3A zT`2y@nL6?@q%1gpjQ^QV=ioHdXmMgaP>^dN#KNr-aZnEiFfTs?IJ1zT25ss{$z zKEpUl3xs6azwF{{jQzPHWT{~FL|>s$(wKGzaWMOUI17Gj6T*`4);V)BA%uR)#?+Vc zuw|VhA`BEaw=Ng1vq#}%v(ua)?>01g_Gnp4|Cwj3R3yf!9>OdivWn5sb>Cj-hKf;` zbT`K%HFow`&ZjPz{RyL-72V=WLoqhyRj`q{D_|Gi%iSR7rRWBf42?%V!|CL%e$tj| zG&6nvd`*VJbBH+XCg7~oj{xof<`-MhBhV6nE>)J#&YUbP!aM{ud;`S)J_}&-uJ;J@ zYtgAMirT$$P$oy?yShHdVeiKBklnd9QQ;~5!W?cR4=4KZ-R z6l)`psR0AX(1#ZF0)|CLM)GdDKB_v-oHv*(64=I(7jrfnF1JdKyVFaMQ%yF0RcC2j zrJ}DzqZ6B)Xw3&JH7-GFn+wU^q382kBB)#h`bU#v&PyQyy$A(_f#nj#Z)M}vK3g0R z--=xr-x4xb9R&CT1weFP4ux$$??eI6g`9FYMxY$p@CL`=`H7j@xC<2I{?-H_4tF&n zA-8m26F_M&)U)F$DJkMqt+Js*e<;H5uWZ1T0=S=u(-1l(mx3i1Kcj|O3!y0sKB91`gbnUCXHYdh&jT&9@Ccy;=5j^7P1~c(0F-kl+SWkSM?1)q?4D zRqsQEm|ioo@$mGtlyoDODo1%|*0k2??c?YGrBKA@h8VBrbfIKnu3XuA{d;h5UP&Yb zghJdEGj|d8?k9EK@RxY_F9(ZG#q}U+Dfa@BthRxC@Qvf_8F*v zKTAol^wB-&^YNO_S|d?AaeAm=#U4l3tHZv5!Ry}fn5j?X(U(C46!ZziG{O}rU%Yw| zr3A6$loIBy*mI+dHA^kO)5ueiu4J9jk*;L00g7<%3*%6c0DJ+!AJ~Y2-to6N5b-0$ z>L?5_0!9G!2B=R!y`fzR=NX_FKt((Qw!Y=N0w$52A0G%9!N2BkHr_IKIk$IPNvkE< zn%Fcz2(zZ(lYT(AjkZIXMo!uNE;ZOTHtkbOiH&}&rf!I}x86^#!Ee1%Mxw2p1?3Qw zRc;x2d-GJqFE{I+wh8?VrgD~J}g>Txf0t}FHg51>^f_>=Ql8vN<}ak|rLzx6IE zD~&RiIeS+4X#ec@ae@L2{D}C=Gl}l!jM>>&I7^soU*~niB(;QGvsx~2?;)?c`E2lj zewBM&LGJJ0J5aDkme6#{_BqKghd5t8{-|N3t9^ytw1Mkzy>mQd2>*q|<4$5C2g2#QS5K?WkgRm^Zglo`bVavzmMXTFWJoWx#i zsixHgTC9vMvwA$s8DZq+&WN># zT=HZ3?06h|HLpFa&&JLuQ2m@qrr!%`AilP7 z`8oIN(j^B>go+T&k@%efAF%W!E&HPsPxyz+hW-?Psx)7$vGBOgzJ?k ziCFvM7TsJWEbrc<*{)TuwAB=MQ*jzHpLD&qrU=2qQ$yS9DjqXwS2FHRnBfNjZv?uj zNDl&f#-OXhGjbt@(@; zq2aJAGeqod*SPU<)vnJlO}eYdB-m0MO`Itl8F}o(;p{$#=s04VFi(69r3m+c63%J} zW+1(q{v+T~cp|ol08#G*ZbOzm*y}+U);jw{`M#sZ)Uia$5JPz$^^BR{(r#16tjC6_ zYY>8&UfwvzqtEgzcB_*;QyLawkpv0^91QrMIl#$ZQxi08VpNh*lL(5-so_kJ1UX!h z@}l0q&S2av9_cle2`xuoX)s&&Es+c!`h>Yw9*qM`70)=~mtOZ#CBVaBAiYeAa=D&* z?3r8UvEs<(Vp{92)EQ8&hYB@zz~5VV2_II)+7<OeUS#e10zinmj?_#N^DWL<9# z2+%_*RFPx5p=w@)@cu6H-OGCsl=aovxhXn`ZCK_Z&i|yc*l#G%+LP2S#LTT^uNgLzTlJvJ#n>R@`6{yn*1&y=4LHA%``OLkA z%2O(Q(7w>85%&<|wIluw^ffq1-4o8Kwj~5wh~~FMeQ%1s?rCqbKnTmC`Gmt9m3N*= z>Aa|1v3xXy16hTrM^Y2_RKAfp@Qn;~Nbe4K(c~d8nS9(31BT&xTd7XT5a5+5$^{AW zZ_(GU*>vN7Mp7c+*m&8!y?GQAcCsKZCfe;{>1WhFpc0z#i<7bA)Yc6&Ibc}#`n5b0 zMjjhx)(5I;j$h0|6Dck0Mx`_~J#!OuWiST-n>zvf#te4~xkvtO=wHtFo>4ag`xFly z9u#;$S)} z#ZQJ+`HR+Y812D&@#fL+>G`*$s1a$dHQIb4HZVO0VL+Fv{;QyuRAjO{!fbSw;h$1r zfTU(&YxaEO%AjRbTUjXjy|OvqP)>t=mQPlmY1h@8)-;M;Xg21y!AB_Wl^Dq^Wcf1>Pw7v|W@+kv4MH9K;k~B7*zL z4GD%EJeVlKifh>lf1ZC#4%(66t5R--?Or9;zIa3FfMeNAW?{I9S`xe^kEGWAe*pfM z+Q15ztP@dz3XL;X=iavq0W6{7eRl`#>3}4H08fwYF(b)iz)a&wWE z_dc)(!mr}Fa{-YwW;H;DS$p)Zp2Ka!%Vk=pXf1?mIoV3uCk+qUoUzPEGyB-u`Z>dz#h@8cHd3t&7M@fsv*{c1aAMOekdx@Fl*r16^ zI$~9CBY_Zi(=lKVQy%-5)ye;|S~}za=+>;QzqU{)>N{WI(S?UTu|&m76&G<9eR1@L zxJxf3Wq`#-9QTLM2hmzCw}$Wa$)nL_45qtU?i&~U+8-UZ@+J5XFkZ4Ef%{%8VLFzp z%qMU*RB_P+#&*?6-tV?rbN20RO9CUwlQtV3xpURuUbx`5=2!d>ers18 zsJ1I+m-_FiNHbU_a$;3*>9Fw|YX$i}8<*L)i{w zx35HZyuV9v2Xd~_L@N{oM0dR!fVb(t3XGlBb%y zt9j-)DzZaJbYwGVHCf!^8awv(RW;Szg1q@+qPS}ua8h|vM_c{G;yyBE-5<&sh!k+X zMq`0h6%h9%^8(Q#9Qv2_(rh!Hh|Q0P<5vCbT=m4zlYRn+<}lp%F81VA>Y9|fUQkpq z=He@XCj$=c(g`mZM|I};B7>)!n|Lgb^GdK z60B*T7n))lnG3y0M1>gn8&JBwbrN+FJ&PVaP}2RqYR5Iq7+O2~!NRV--!pBON?GJ( ztAXYWq20x6QU$3zejfiV6|uh#E}Zr+_HRQD78i9)Oafb8aB{iV59&M9bnWv22|ZiZ zbn_5qJZo_HagiglrAiHVP@x!PEqQ{WG&%pJ^TiOp681(=Xft^-HhJ9c=hE5KbYl!Q zk)PRw9}3Hjz%0fGuN>_mljgODjqQIHrL@xm*j<;m)|QggjN>E6%JmB5jl2JQGbbL8-1h8e7)&6d>b~5Sc)T zk`LRcBmWVlM~$45<-AZdrYB>Mx~-CG{w&Q|$Jv0vMO>%{@x;S-O$BC69|g8xzVzpW zJ`=lomq_Z2)~TED9R4Ro8&YgiOj(SXnmHw*m-+&8&Ml*44#p~f2QlaWHeZ-}A?Rd6 z8XrDXKn{5Va%IW(C0->r8edMFc^+O|46HAGBN{lI3~OnE)HTX!%pKG?ZNGQCmF~;r zgoVwFD1Onh2GgQ`L5Y*{^lhSOXFwp<%fb|sb@ucIHrsEPESYuBSKGFyH&+e5acDS8 z#}LqnV^EEH^GIOxbo42ow( z&%}!;3Sh;lY2ZU(+UF&j+4~8_nmoX$)S!EWxrW?d~Ch4 zB{2L#1+_G5@`fuK9T{m{$3ZnzdJdJm3{p3c=UiN0Z8;|GM{DcfU+^SZ4h}QIHY4oG z?C0SyJ>%Dp;K_ zhd!)n(nQft>iwpfGSKpCkj9%~oV- zE8w~ehbV28DQ!iPoQ1(h{{J2K9&*8(137{2*ZN4x(9wQQxsN2YqlXrYcFV;saZ4OC zFwXFqvvPUfFkp<#IdgMT)_^pfHsbHU^ygdMXG8M#!%UJV&(koJJnRnleW%12+x7Lb z<6X`#D=8NG?G_DWOd?_)lvIQu?{adY3) zExsKqW)?mQuIh{_;yseeDK>whC+0*B28k74(c^-Tb>`mA{zeiW`zz+6c%m{$Bi z)}@gC^WCV4zhR=-jGJ*=@reO%@u6B2j8avjJhf0d-3E?tg=;-B^RTH{=-W~!|1=s` zkuy{^$G{%N(G%?(2~>9@6YmGlPg57apUf+7-7=z$SdwjO?76U9pDP#*St2OdHJ{FJ zE!3WzZ$i9h#)Xmj7gTpqHDt-WNhZ{L5R+`*k9N->W@Y_$O3rzlvh=OMQpsO=V8ck6 zH!Jx?a@dnReJ;gN;ctV!&=!#E87fK}8ySVLxyH)wZ8#(15Rl9hFbNFiU8f(p)3}ir54M}x$z;)dk@a60 z5q6le%;)4DG@DwR1&#=Q$%wIvBbaHE3OjWj$H6ESA*-XSuspX+k^Fo>p2VddSOMkOy|02+n-#2(Nn9Ke_Y9^Ky(GWQHF zwj$imk)ZuXuK3^X6PPv>KpRk*ZrX!Tr);+Wh^E~vS_{*zXz)u>ob(%{zfzRyIuUW; zel#7a9!YJAey4@xMP2*J#JXJoF3 z0Yf>Wv$?1VfzEn+AxLGf6&eakW`$a(BtpeJs!QbrFGwdsg|GTgffu@7%(pd#UOAa<40>JvM%O#c8;TIhdO;~_7-FxNugwA1k@lUtBGZUYaY!}`?jq>aDE zCGU-Gxg%@63XjlLR}C#9KJ#;PriN4lo@H>t<@E;o`I5AA{d`LCt4fkL_$(SvnOQi| z!z^8`cYpo*^DfBIzO zMa_I2Q+q-fPBNw|xLND!x-SHa?Y*YiCrM1I@gdQn{QZDT1_E+zdy~9xLqSMjy-@1< zV;V^J2>rK>QxxoXvd&S_R!M*{;4s=xLNlyX3&F5$hGPK z+YBCdQUG76K6qI3?84Hx3pTvT!K0zxcCfauRz9e&!DgAkI)@${7AOsv=u=+II}=UL zhX!WkC&>ZWD1fKhBTRJJTfa&L+!ERrV}=*}udNCN%5?KAW3mAD898jb!?*qhk_AFlsb>_LP}CqM_UMzapOcU^&#@5eU*aLIlWQDc){>NF-T9&muBg4a~+Co=RGza1ZLzrWMdu(VIuX!$MRmBdu#v%|k(71cs9)pF;Su z4zyAWX`Uj`o{%ws>dz%>2K>QPqb?+V$|1$W zvYvMom4Zg{mDIAvY7A-RemK7zJqGlF5eJS>j}Hg*+6PQB9e|gWK-CaA9juo3{(mb| zHAGG{gpEFD{pNLx%dgaiv+Fqb{lYlmn$xBU8M3DXLUic4`a1p6+S^5AKg`{Yxs0y0 z+>LK`!?8-#8ZHcG1yi{xN`{9UqZZ1?myVJu_vZNO$||f*YcDRaQ$|-l+YSx3HlW`) z_Z(WC|J3<&lX9NN;?uw)u;xnTO?k@JFr&$Bb-HsJW?=c#(J_3pki~tiZm4;X-?vvM zFHqg4`+HOwzxulJ{1KyJ&*Ifm#&4Is~vAg$9@)p(Uv%4n*Q-2O|wLre)g9b&4Mns1&^MK(~j%l$<~&0OCA@8 zE^nq>?BIO+-XQW5uF-nua^kkDlsw(FwfGd|;kaqWf-X9u*A%DNzY~brQFk-0>ujuX z+?+DthOLZTNFZ|{qGPkaZneUg)x;CZs&U)*@ia!-Bf)m=#;V$-Ou&^u!KhN}dS3~X zor+#utTTY2`$vjP-=NkSn{S+lKtW9^dkK~bkxD`)jtU`g!{_ zpb3DMvh*0V9{~Kn6R7G%(Z_eKpxxhwU<`2kf9F2(_njbvPyo8oCtEX!zuanGkz)yH z<_03Zfnp379Ud~uwsGO6j+4uTy`eX@f*mSXj7tt~c5Q4i=dU9Wk`gsH>I%k<;xwd* zdLsgp;T@ex_haE{hy`hb)<`Epz+eXx@p@Oi_ySPd)#BYmR0yo`dX>X<`!}MZ79_b% z@i0*$ig56$NfYvKLQ6L)+BiG2Y$DcHq}>C6^VRLz=*3sYE7>mu$F1>gYI4>V2QMdL z5nLp&$s%)q=UVJHjef@$r5-=}e{6kaSXEKi?IDDNbci6`-O}ADB`MwA-7O&9UD7Sx zjdTb|cXxB>xCecGzwbWx`eW_IKF{N?Ip!Q=%(>TMaagSs*Z5IP=n1oKklIPeL+&Y} zB<%JJTNAou3W}c>!dRv9Tiw4-+YxruCO%51o{2go(yvtVkzyT-#J2VX{>gtm(LI_BF2hJRCRZ zc%BEDup7U7-t~E=u&}Tg=X*H1%-C`9KD`Mp?E#f`RMk4?e>k-{VP#l$+qB3?v$Ky~ z=EkDcI%U8WOWR4yESr&|hNJ5!XSviwsN@l80iP*$OVIvw(AOuVaJ5#1rKv$#9p4%4 z|4k5q>Ojoy-JXQtSjyLXsq-ag_gx(D%`=4h;otm$Sg6Wxl-|j|K~>@;$(HEB7OZY$ z8htKP^o}rh$H*bwX4DGu* zAGAKpaizD>Q`k#!$aYn5?tyq^llw(H1~{vDCh6@>k#@ET$T*aG6Ep1cw;wgou|7HO$JafXFZC&jTQro{_ zp?_vOHZq2$i~Jo>O-BF1 zK2|{)Rgx+rGt>LjV>K-+%jf0krnKa~VYO~txcPS3{4fi@-NnYo!0aPc$((-&OPA)S&-St#-M37QsOJntZ=KTB| z$EKBui|e+0^}hW0_?Ugw=LP=o1o`sDi&m$e-vm2`5_V}~xs zuv_D13@!QoW#G!iDNne0tDU%lmGdT2{}?%oBO^0hPPT@Vg`?!CDpi|5tL>eld4u?}Gz(#Ns)3YXOeAWNOF?>^uOk8@-ZOH2 zlWtvQl}UcqQbyT4$NckpcTgqx+iNq+9pjldLK`xlPj;8L%U0C)B1Mw**nip?d(22k zQL1z+DYLNO^s2rLw>ETBEH!GaK2Nxh7)O-KD10joFAb-OD9xjc06%{!_azh*^(ORz zpNdK=3Fv=nf|HEns|C~vc7*<9{)|^dP(la)`Ll?nk-j1f{UY$y2YT(>gL%z=;2|mJ zZP)Q&4$&~&P0p?$zT}GQX8E_t-X&MXn>MA=qzM#`R%76)G*gV<4%GGXm#F0&*?-(;Re2imX~1TeWjJ7eVPU*T@*Ve zY!hq4jqL2MM`3=}%qNQB*x@o;#d{NaS~yDr*>CH_q*~r36L-5=FGHgQkA9b@%ju02 z51@n}wCQtpFHzJ(<%}dr?T%IMF1yGtw?9oX$CB9kliJ%aXEaz? zSXOWQ*q?Qoi?ts=ecO0`dXScu=D!U%wYIh{h;Lp#(Pebqj9^c9DB)sZaX4P6tK@ai zdy#wI%jeH>yI9!8oYH#^egUo0>0Zq&PYks^obst&EyZYP<3~#Q*cqKHm-ngMvvZq?b^kG;V^PaB zQO@J;9ZUON9ys48G)^{x^ZdW(YxZxH(lq+^x|)HXike2?=QPIlZ*b)IDYM-Kt-Tr? z{^+mP2ZzF+?JKj#@Q0!}fZhdr;EtVOy2JXP&ZZ1yb=~{JiPATFBq3+2?2-L7^ONlD zY}|AP2zpL+@H{+aA6coWqLpl-B3TTWnH~|C$kL2dWbn*MU}_DxrO-mCuDG6>iv=lO zyO5m(1k&!wij!NS17WQd2mZ8y$#GC%XMY*Kq?vm<-tnioV&KPJ@C?TE7J2!#+<|-h zV%pMNo2MO$@4))U3`4fk^C0KGs;won59146gr{XAa*3F|%was?6LwrTBS$d>F`sDO zeyq82zN6~ye{|$OrK16Uq!PyA`*a(>HVhu;%rPI*JiSQr5$^r>*CJWK*Vvo{`yAdQ*qWRg3fUA4oE}BZ>^ubP+y_T=uzzvg+0XA< z4mgiW+fKQ6R+go>q`92RIC$eu7jQCNNS}o4|llh=!ey>V(cW=6t3gc^Mm%h#OzP`SifPHwKmx~#i)#q~>AJ^@L zUGf?o*PCURo&=i3_Z@Y=>BQm&>nfi!;xY=KucirnhFcw(j_K%ce0(l`*Hu0)XsW!} z__#YngDT#?Ony7_YjUZMKjte-+Tlv*&9{aPQ4pUxTf5IbS{Su!E!}KFM{KjKCmnKi zH9?uxNd+B>a-z6R*hKW%q>SyBFg*U0{_x@@BS#nx1(ZLHZ!akyMyXcr2TR*>mmww5 zbl;;-FL9b3i9eMOI{+bs)jG}{?2OX6Pwd;_$5?`{y+9KY$K+MKgtn=DTLZoE5OWrx z-W@2!&&s1qOOw0Le#zl-E$8NKjH7AHHimOpA8`JY>Pugfd;#Ta!tYa7jDJn|8(@#+ zvr?b(hScj5yp}A0i@@vee;hxKE+Sc5AtH|7U;_}0f>)XQ+8Hp7d2I~HG9tcG{=p^= zy2M9Pz?k!02T``CB5C*(ob9Db0vgjkc3`utOTz~P=#Ua*e;;Q?6VY4R`YaHU`5f?kLdvHG-;_h$>`$(eP#` z$r}-xnCqgK0!mpZN1hVnZBRF|gzta0F9MvqGMN#lns+;+85DM#lMQU5H>2w^EHz_l z@848wtGs)6-M2sUY+9n8X`@{4E*W(o&W(udx?2ysA0x}cTCX+r#Bum@zj)sGQ21rS zb$21-nxzs+`)QodP63HMcS1GTjJfsk&hm$|`@w3IUn(dIZ4RrC&aZ{WCX<)BDdP?L zXecH3*%3v_y}9GH(8bW_`N?gKbH~R8@h`*6!*?uoK-k9JdDZ-p1HN?=`30gNp2CI~*@nQ> zs1IkEFqK07#2$j!6KA>S4APLLvCfD=5N3#48Vw=M@XaK`)r=k-$GWk>dAVzwSt1(^;K6Qxz$q4 zNI3p2FyU=Nv{aC6pp+z;P`*%p9(s;q4qA@lWT=H;sk&PHUm*_>$sq$)*N6xhC z8B1H-8^(619+%6ysr-K10Z!y@-m&u;<0D+Cvo(p3xCE|t8p(D9NoEIiN)+HekK6T; zdSJH)K?os^Ne;pr=#>pR&jUizId@nTz)F>(1a2(pCWiv$_KcbwK%W56e&`=*Jboq< z>$w^VQ&Uiaura?d#}dyaVGkLde+h;Eh7Yiw$)!wFCy%$fs#cm_8Kx?o&{yPXIQo%6g}#_%sucZu zL%pM8$$SYyO)DoZ=-_1Sz+}8@QOY$3JW{Qdm%w@?r2204?h4F7RW}u8W4YNFy5PBydGW!rja3 zKPk6))jy59e3z@;VvqW@UH~{ygw&a)R-*E7f3O)`gqohws@5JO~Z8u%~#DZl^#2Y(LQWbxnd-xDeN z7yj?4QK?zELX}^^fCeoFh5!UO=D$h&S=Iim*$|?y5CDjJa=BjooTz*&s5_E`dA{q` zcf)4y)sK0aXhbiI0Jl`bjBj1Q)DDY=G4LxUj+DnkFt*E|5(p)U2D#!v6cm6S-D&`l z*Jfpc1gTuVf@AQVQR!WRM(%e?=}RCPaW~Q7@kMkOBq6}%X4#NJ9wKN(6irb=@O#$B zz%uHkBqQ`}e56k>=(d{h)a9W$xmwb_w*Gz2j%%J4y}4WwR&2^D1{cb@swhNR0TLNE zjlpNKf&2z|;(+yb0W^|Y@~AU&D}Oojc@ZxRSPp82Vbto@fSy<~#0v)A@;+>>(rfwM5QkXGCv4Jp5HLq>6}^brb&CSjPqO@yeM01{%E+KW_X61d=}>h$=0pRd0gKc z`_w$2#a(91O1)oYu=d^x&59ThO)$1zJ_doCUZvmt1N1H~Xez_Saxd;KkDa--v@)`? z#;cER&o|kv4L|P^q@|di0OyaLD|I@a=L+#H@JgR1q#IOJRE&-3`7W#;Bds5TAm>ImhnRw(zQ9y~rI~Am+ z_L#N#b_A$5=U{B9I<%wgLA@v;?(&Duvv6xd);Eh}Vd~C7Z;-xfUmqh-;eHQ;v#L1l zM!b|u{TTt}#9-$)Ohe05ojoKmQ67-SmdOx1@VaVxh zyA+2v;1G3roH-1`8IpvqZAWxg7mo%gN&QZVDBlQTxn4I7zkxm>k@Qb#yFrPLCXVe^ zJc_kfB0dGT#pYZpNFO`$mA`pPxJbeeH{rk zf0D{W@_+oTQlRYX^418;PAzi*2?a_|Hn(m0i^eY{Ls%JwM%5WxZ9n<9%xGk6h?{gP zp?1hnfe%=OkJx=)fe&S)b^|8dfHDW7ld0+Ak10y5zIy|kSqMtlL4OGmzdXd-zuRYb zedE(7T}F9W8l9&0?Y0-Si+72HP?><3J`E88Az#ic9`FrsgI{j8O~DtyJgeBIAi{!* zulrxZB0er~bGWVty~khS{pF%_uf(|aiN=}1PU*yBw9dToY%Z+yp)c9I?y0KdhM(u5 zzr)L_(V4uhJ!8&nJ*r^5Q24>r3FJFHOw)1SUdZ2Qdk&?cVbLE&fZT&3U}JT-UzjBu zYv|&_K7RS}Q%cj~u@sfhmAKDuEQg2dW5R3?%=hoJTsJ~F#zU*E2sG(YxXQyacfY>+jU4){HSQXz?#gZ7|NKR-=0-Dwe|c|Q=aAEI zO-FRbmWA5c$beH0MLakxzPQLW6u4;8?Nxm=n(TkkJ2)N-JV)A`YdhOmJNn{Aee-ny z$ObKJ2#w=U#O#k4gUZ+oeuJeCegg)I-bFQb0-^#nAs7u{Bv7Mrk^R9yEV#G?NlE;H zju2U%Vh)&LDT3M6E0aeFM?LY8ZETcHBZcu_lD z;XO`Lxm^jrL9d7bLUiYoM9$=E$U@HAOos-cQD!*x-v-E|Fm-W3MN=2^3<6+^n00XI zZ}OsN61%_j6xtp^LnHl6UyDwDyM+fq=mMRM#~E@q#wdrIpIGiRm1-XaTZAit(s^5N z?6De}u4XqUSC5Ho8GYZ_zdgU>ZJic*9oXp=UMxkfzy|PuBplM9&m?M%IAiP1qM9u@ zlMN>f2LPu9TYJJA3?<=p0eVJ?vx~1P0St&+LHNJ5Bj;=uk!9D-8?1bvo}R$RZl}z8 z-}y`0h1e3Ho}eoRE_fexWH>J>nbRIG8h9j$HDtXxTZqZx^?tks+d-aEw?8KLEA#SY zar;#(G&yhP9w=%1**mm(pXXNUOf2q@7PXH-I`cU*AFox%9={ttgtDMN<$XvQT#48Y z7p5LX6vL@@F0!GjjeSDas5^thT3m&@P+9d_+6yvN1(hmzJBH3uPtC2ZesqhRMgLv|YIwB1^@> z@?gI~$bvcdh1h2yDG~9<1_Y>WeP$Eh%OZU%(FQ@dOU6B?e@!^*8{yJ@fQrjJ7)dC* zWJsy-?fzZDTffOG@rx(b3s2fma=9m^CNGH7Ux#U{;9F09o^B$&*C}QS?b*PfAj0bU zI)Dh*IMb3p`U*jQ zh9shA=q8xGUf*nx^AoXR*KIB1=3dp1|_-8#ve;S zfLZ!-==|Q*i!u*r6e8TTJ!^pKk2oB_A&1yNk_JgZ5t!I(iH^McB#SxzX;lK5&sR7@ z_P{fRc91b*_C0B63{I4nX61_ZJP%cZX@VtwgxDa{z*0)$8Ju+FFT#uH078v{m`(id z8%f|&k89GotKhd7mccCu1l2QqFOQcAQbq?&Ad+eR&JRpj zrvl7N9$WnCZ7t^{8Fn9;ZbsACD|haqXbTdOy!oA(;NVa-alNJvN&4dHtq|n2p5ODG zBz(GNA%oSuDj_7Ql=ZnEoR9^g%VyO+RmcT@-eb1ixUV#17e-GsV*5~&ZppSCS~%Tp zfMt1_`UB(F{O1l^i~Z4@GI|DvEUtE2uoFv><;jfDW6&R|)$CY2wIANU8I13~w@_!1 zAVn5wU?7vZD~JNd&0Z|bX3%@>*?2CwXcQ8hV3b|cjC2m!l4U3-!!|D+LPlQ;?HrO)X$BF9YlK8_68IUgcOSYm=2|D42bj!LGiWwO7f%1dpO{P&{qV`7lZjX z5$%d%N@au%A^?Vv2(4$)t3Ui^)=OVfx;p1Wgk}D>UNj^)v?rcZEGHlN`K4`OWM zmGrS+(ACTdST~4b{i*r2xYz(mm7hcbOd@@_uGjvGW+teJx*r;Y&)XOU8plnzU17Vu zM6eS}x>AaY0XL2BdZ)67v}glm6D6qm z@pd&_=UM3Pb~E?Oq1i+5Je$=iGG=VRbrE)XYmCKo0$xSsL zEe?542SdXQZC8^dS*?VH`!lYbTx5JNqvK9dOQP5j%Wx8WQT^I9ZI3pYE$wGrP4jzd zMjcHZ9jnQvv74`Ta;Ipl7Y6Y&{y z=r85^OTxPT*jXX3^#&;RgNPaOD_GY<2wR58XtU*36G^@K5BYkfS^r~ffeXz3{|%aV zV8yaUjdyru`t)@8{I++eGzN2yI zc!Gha0VWI~X99#!0L3?am(zD*?iL80*mSwI_8aS6Lw*RvdT-is1TS=t>?lFN5L{Rh zjvtc&2E(9%$^w^hWwY;9=m`Z*Uj1YXF{jS&)^HkwPp*5W5anDoXe=QYGdV{!0L1%J zdfo2x6j2a_#4xSJP?&(vA+VbDB+9VJC@T@R$m>=j7z0d5(-buM;O5j{?XiOMPlb3l zx}9cuoHW@twO$=ek1Od6uJn2d`C}hdX5HR7ly*Sq-ffNZa?ab=m}o6=?|}{kY}Z*F zHX}-}pOAl6HaAk7J`aM{b~m{hM9bak-CizE{di@bi-z$CzgLHOH1@0GO0idLG8m>H zC=FZM95+#M%FbH5@2EUHg7nP1jl00DXsT(#GHdN7?~UHj;%|9B+#RjO@Mvu`SKC`_ zopwf2q?71>+AS@g$g&Pul)B(v+QQT;xBi<2;IN!YEf1qJ7@3)wxhUTr8XP+1e_3R; zZl}_zy!)2I%0Ba9b6f!Oy=SvD*K6|>i#I>tDd!289dkyMwLc87Od|PeW zR@LzGLT^br+VH#u1@agO>7Hgk&8JlF!Ir|joRn38QmMGT-KvI{n^)oB)Tl1h)cs3k zwW;t~d-0g^$WHXGc`cT>S;Vj;2t+d=n$N1mtM=h})JHKaDb|GIQ+h1WYYvWMO+~y$ z?kkDG_k|?`Nt9r6jPg$F>R_@u@rkcTJ|R%mTScB!;aTMSWB-F_z^md?S>10Kp;m!VsZt8 zK^WQ?5Z=JSCcIk7*#~YKVCkNs^pBZ#s1>h2be{PK29Q8@a)|hTgcJfq3o%NFQQ-qc zd|@ZK4cg@GW`aU&_dqysERobi>$DCe_Eo^l)QeaNc!FiHhS`WDt3ynDX1Tn{jemOVe;P2>+9tUudF`b!8^@+ad z%tHB0TNn_q{k)|gCb4u*bLcW_bJW%@&u#ZGJ-xK3z;J%F8R}@_C9V{h8c7}SjaBxB zx}RKjBr=Ncw4Y4=*sMs3YY@$MbE0v=49NpZ zROoGv)LR%`H5;pkEa(&9-3KiCFUV7u(G8q?l9|IGi!o%;z0Wz)>%Q0`d`#-Ss0d|L z4p`F6em}s9nwN5A0*!jz22i-2`@}qIC_AfPO2Vt7d=rMazj8HI$#u{UR-q_(=Nh$y%2>B%kv5ejws9530f2zOhf z=fbmG84eL*EbOW4_h6rVGd2v=0LX~-ne;nr^4Fqv;$b|%_5#K;vw{RZp)bU)Nr)m~ zr5z%*SVo&L_CMmo)du>X3?b?ndGhu#Guzjs_|SUGt?sf-%Yu{;sXbC}&Aj$~sF97X zG(()tXBI^6{@&ZWAU51yX69;z{h4(mK%6`(;$A<{{%(hTP=lfSV#!S1{HnoPfy>lb zgN!L*iwR)QIT)SM<+6if+Up9NMKKWPW(oM!x4d)^mRruASnAMKB)Iv- z>|kf+Ou_?_Esg4uGEA813#Dp>HNBQ5NAy=6b*51j52uc-U{L@2!iD4Od35pi$0PWu zjOzyNMhxh#jg5_wkr7*tR@-&|x@*hbBm2W0iVK2c_drO#E8iq9@ZV4a+|8XX-&7Kfew)la%ztq_T~Dfw>s zT8RGH6GcWm!Rr0MDUVFR~y9qYsLcJD1%KNEYfj^!5tBV7*tCj*wd>2|GHd% z4K8v4aMZt=yl*qWjYF`2mjrvlyO`si&!d&HBd!24g+3y*-pmvL4A2MP4-3H;Lf<#q z&Kz+w+Tkd@WA}vaQjG60zsbQL=tG1$IBCd9@G}z|dVHnkJt^RNWi#3lO&5@VQCw8d zp-lkEI7TfpqX7_lyHX_*C_ICT#B^yWnI~(Q2|;X|*AFUYRbM6=@)unEx;ivk+b=>W zFoDUkQf-0^7#X619J;?AG`0#*rI&TatKN^g z5~S{HE0S3eMQ!+cKGgA zPft%(XLQ(3`nH0izSdoLvHP%mntI0RIF!9ER&np5=cBLa(`e8%(5rN|b^$e^=btAy z9&9W)!N6u`PYx-wF1tb@|6p-N7V$HkjW@}J7Xv5}21;V$)Uq#N2;CD7_3aB8)xPu{ z3`!W=`~v0hsY-hse*F-|ljtRS1oN=c#%SqvrnWs?8PDffd)+^Ky>ML5WNc@5eto=% zj*dQCp#`>QF9zc%5)_}-bdenF+1!=Ea*uT2@USC zGZOM~UGHIUDERQQy)cSnGZrjYXtsc*^l%mfjQx17OB6WcZs6eHZCv5V9P zmsZCf#Q!$XmlN4R38nfhp_6B;x83m)jU0veCI(ckbZG0{sa>pyonMXZk_%90=3ox` z7+^;fV;0Z$0QEjdMv!Cfc4qr90RBDw$F$Ms&X=Lea<|0IUO1w?8AXRpH{nSk4b$Nv zAsjGW64IcAw^GxflwJVupsdu@P2sI1UYDHkSullCHx=%FP5Zhb5rp8j$3GYAe-WoY zF4h2+k-kxp84&jaSbl$gEeZ02Kl@TXJsD+xZ9wT%`&5Y^HMaQ@u|(lY_(`k7CK-;< zmrH7s0sW&8AX7d1?5GQY7?8;sJ?X&^!h?0Hl2V!P(uX;Ng}#z2yeT7@Q2nu{xS2_e zcda4-y>}f=qpYsunvc&}^l@43NVORv8AxXBkMaQFOKK6ZVc-M_!CJDz2P;_W zmBxex;kLyx7E!l=pDz>(mB)^V?OOk-Tc<)Zt=ol=k>t}Cj;+?p8IN z_NI0c?~^KvfZNXJ^FvM&+S%F5i>b?#1rYmKLO|N;(#tqOYTHx9OD-QLsD$7B;BoVF z4EElj9FG%I*oP7{$x)vlcbvS+caz5qJn?+3X~#1M==Q?LGcIZ3E-RM;a|SHk6F7Nyx6BH>;RPy>)gp@-Q`!z$IXHKbC>#F2J| z!LdzStM|H)fqBqt+NY}}0+XRv3iLH0s6LM_-mm_TsBW#7PZR>P9kFO4HfXR5_1Bkr zZEt|zVCnz&P1js!9xF=`m=4`5(sA?iWB{nXAk)nt4IneQnzooJeJ1>&r2trv!ImnB;4aTGaJuWJ4;Yb!RD8a9(9Qz#>vcXZ7c$WX< z47)FynuIbLg!F5xv7n&fjYTlxY~?Qd6bNUy<%OX~^Q|?q*{KA=`A9^00gpZ@pk;HK zo2KErq?z>2%gVhn6N0y&Pb9PgPyz0eH#cY?j^}b-#$c$%%ple^mMBB^c)1rB>K(fO+e5Nko;a!`mE|F?YymI417djCH!2`{ZOBeh)f8+*Y% z7N8qyvcpu};`qdg)H>Rnj%3Ws<;7;lb5l5`?3OSt#;Gc?YBO%>ciWeaPb_=_7%^BTuj=uC0t?^*t?qU8jhgklZL(d0{4jro< z_S;g4MujTg=rx>3^Xt~~7C!1eS0?yb-n`aB?A~Cc^1tOnst zE$GTrwu8F25jq*>a;X7yiY7!~~ei%I<}ObQw*mrWF3VlL-7 z@UL=Ls25w!9a>F*91CWoP34KiK-8cvjvDTsct3ATq@fs-%q+^vqwoxe;-0vEjil?} zp+z@4_k5@cf&83W!!@p#x<*y)OL8(Ff>i4-h{Tb3uiHt+WR=w`9v4rT`8%xJ&m{`E z9`?Fwk}3{CpDp5iHqYg-XjrA#c;?jHb5@fx)f?+lb5wCY${v*XLovZgC5nB5ndHu#o@RLctX2qZc>H$OqKk@nHdPkPJzr% zYtiF0WsF-Bq^uCNJ#gFKDVvd0-(-Wv1c@Qx)*)a9dmRX&SI`C-Njz0&woq5dm4YF5 z3n8HO;`{_GHR6N=0eOJWK$QPC(7(B!c3jt0Mu_DGpFV2fx|{7#tj<2X-ObIO@vgWt zAb44W-5h>7NFMA?i3 z-y)Gx0?Wk(M%ZB2$mL+$G*Dub-wh6lv>|Mr+vbl??ef=N_Q89f*paC`gia{PTg&cf z{~jn0nMW`D&~UoM>rAS-y3od0s8^#=-!-~ke!^iT-m_g1e=+}tr{nT8Sq)!4xT-7B zq>H0OoT{=sXA?!N=oVvca0}xPKugM=4!Jh|S=4)#d?pW|E%Lns)f&XFouRDQ1ET7f_ z>a`HSTV>PMf)?Dtr6A~^$Mav-Lk#XxM`R;whC>g|PoCGUfBH%hEx40z64ij3>;@(^ zh;nOq^>^18m}k~KIa+E!o8?%=Sd@?48V4nf+HhxHHDgk-2rvSKFi;4|RGQRzFA(L8XkyE{6`c%qG2$3JYp>5lQr=GGp(b5PASHBG4gV>2bsx z6aD;^lBnpR&ITbMVj%R+*We)1qT~dQkjX#5q_Sv&`V^*{B+U;H1eH`fz$)SDhX#Pz zY(XPhA(H+gFn*^b6)*MR7A{b2gpzH3nfd0w(|f$=|K|9>-${5FkIicHpZ9g>+t^8r zrhEImNFO}*C(w(>iSs!?9&cK_(G zP~0SuaQ&H|in;xA!xVh|1XQ>U2_(yk5cH0&e!cwx)N;Nm$g~Hk89_+Rd5mM1E@*Qp zYRDlj?0pbIbkyj=q2LVq*OG$DAjVB^m5kXL0cG0mmWfckImRT3Bdu7ORS^J)?-HzlrR#6T5cq2{Uj<4c!Zcpd*xB1dCb`IP zg--5PRJC$ODs63Ad$Pf-@b}WUVE4)ou;dql@yyC0>%%$DlNuIvN-3j`xDhxn$!#v} zXe~;ygw%t+-A8&op@_~wRvK=q_EU+KUt{#qjp;4f((YWjfrC3Fkm3-|!A7U$;|Y|0 zJ-XZsZO^~pRnN-jgCmzhblmP5ycG`_KOIw!EtFGF*Dkx^m7|vYLBun`^%`AY^KNZFmy@hkOUb>r0sB0Ls3QAfGe;s`)Ug}zA{u&=6d3|0nP)^84I1tO3k%L4 z4vo|eh$5rUk=fhXnb})Srh&g0+lMJS#5`>nw>)}MQE^Z)+@y0eZ&7aJwNL-ec`6=( z)8O9h#T%2+_YHzB1Qb>$B+L(A2n5}ni0PR=$QWcpRS>gb-8k)3W0{DDodp}JdJ{S}QG3Q%ZWV6|)>V$+05XmX9=5cwpVIQiA zrMjw4`{e^+w7`WY900<>zh<}O>AjYTuj0P{T)QKFY zqI%{hI^*app=O#8FXff4%RtB@C}8jaj}ir*gnE@5QJ?qeeZP`Vo{g=hIdf5gY92G5lsoptG4g;#L8?B-(p zD1`_*rrFtR6Z~xkt~{JCx5T#FUPaiX-~BF} zQ8ok5G5Pqs#IaZSyv!VPL@t8lc;9}p@j8t1ws61sSv(H=u&RMT|6Ail?$-pU4lNy- zxJTYNr^YVyy)W>YD~FwXo^Qw1KThhyj z+f6kphHVM-y%~ew3ad5hF6P>1yyCUvv3O&!0DLknaa@5KR{_X(#?-Tf!!u#3d963l z^0r%_SP8ekv%~eGl)`3`TztY=rcjzo+I%ECwF$GuQ0{wr;y{{5_m~l!e?U0XlOV2W zbKLvcko7RW@bmx+3SPcDZ+N*;tv2K1{~?R^ z0=$LC0&fjHO?PurdH|TR`mX?xDEkWlX9-%g;5o?+6b&g{@P?==mV*?jDz}%|?iDhj zn{&i=60}s(`tN9C$RroLu79EsU`nMAL!P4ho~fb$A z76@Ss|Jqlt)vj+P3?<1ka3S_JXDHJ^nmTmNAW;Ai5`W`gXx-qy zHRv?@X2to0!DrX!9z!E*TuHMazq~JD+=+UZrlEuHbeRu0?z3?q4X9UidE|Zx8#nO{ zsrl}IGxofg^!}6YN;_NTs}2>3)b9*^rI{VK`?sngcWvA)ocpOO+2D>R#gM6ycQJ1!C`HQVm9Irzk7(N)%aZ%Brve zr}##MdN!%hL<1>!d|6L!YXlnSNX)})*67a#UOk$m~V z>it_D8V^T+hG6^?_+qO2GMATt+8k^{2ypyE!u+Q?fKl;U9sVzXpd|DB;6%_}=lmgo z3kJt47)T>u!C)6sPAUkuCGc++;J+mUjF^8VgV}&~r`%%{Q`ZmPw zP>$;a%h^_^46j2@YPV`A zzYg6gQh>O8WE7itCX!9HD`nWA$s^hQCPv^4Dv$!BlA{XHdIN;91l&u5=^hqlKNpRd?G*mDutG>yFg@uC@7Pri-7*Q+=7(p9G^V*pTZL1x(in{t4 zB$xp6y3~Sw{VD(O5T}b+k4&gFkO)cwQ>KS|MC4dW;*isc}tG zPuc~1F=0D@-zuMt>v8J3Zq`dBRoo?{CgG_>RVqM{P#X_zf3{caQAlE!$0HbMT2xDU zktc#KE+uERWo40RLhZjhH^>nx<>zQJXl}dHCQ3n{)Le7l(F6*Oh~C7$x(;}%-?x1Zib__>Op=6TME0yB8CfAKBYR};y+StGJ0sa4WUr8{5Tfi5(lN5v zdmq*B|NFo1>*I6I*D=oN^jyz%-Pb)HLOCM&gc!2Yk6LOK*;#%}SQlkXhC5XyHBh{} z9_GaYvdKS9ko4!7s4xfg?JRBUQsb-Y?y2o@$hia%y4(EM(L@cvHxRZe?vyx|6-7T5cH3}LSh?e zn&*@xG~X_;0kR1AEHxd$`!0+m7=Uvx8CXPoni0by!S5u0MDWtbVtB_o5H?jTCc&#- zlel;y>4@-#+tHH}OPegRjN&c9nQhC}Y*X#@UT10F@hL=pX2frzF(CHeb{Iknb^ zXho;C{ZBkb4D?NTM_Y$0bp^3hhzGI$8H%Eom#VY{$*}qGejMb*dN1=#SIu!Vo!1-5 ztZk$}y~mVRp?Y)Mn^{@vWBB@80qp__r`tOOu+Fcqzf%7sc?{-gaIvzxm?r) z(%Jo1ydiR`X2`(z{r!qiOg=GTS@}hm{H2K$oESF#NJ~pgTf4zwnKA`NnLO`!=PHuc z+c~>-cz6gn?eFj3+}t$hrV4Mb(?a*82y_)h^Yik4{_;gS3dOWh)$3lQg_%>l)R0)e zNBGcVx1oL~39GA~Pvp={|}=NT`aSa08>Fa;-6>XPh4++BuIl){n5~u$4yR~uF-w!_R^y@1eXbC4B zI^WAqS8LE5**@sezz>(^aUc_FbWcrF+%MB zP>yI@0QZ^uC(n@cJ_Ffx9FWk5VE}R*sXV*$gR$h8i!PUt2+-$f)%%?@c+`$N)WV6o zDeR@^{MP3Q-eC~7t)~#bZ@AU;3NcnwcmP+fs#&&B8QqN)M07tEl2-7S@B^hQSn%%R z5Xs6sJbcI5E=DclaZ5XL=JGI!V5AcTW^|!if1=J+9hCrzsK%K7c9r{N1Jbji*gk|^ z2FdXQSA*Jbwmv(tCPi)$-Kv_D`^B*SBDOnEb$^$r*W@WnGiGXRpKHy;H&_`Jg{h~m zPzU!WZX+e7usH*^v`qHTqnzl9(!~FC?6oufEpTe@64=`H+{?F~`EqxDw)ZG==h6|z z80+8uv~F|MW0AYpQ#stDb@6DU_wf$G3=OGmR1#6JHT-+ zCq~h>T9q{}uCp`F^KicO=Qzx+bYIw6(j}+R^U2PpO4{w_nfPJHufD`H;l|lns$R%V zP4J8n56i4@s9GiegxF;A8J|Y-2Zbs;JUjzjDZTS1i8PlkRjL<46}V~nD0(YrU;*YL zm~*d>%jFEH7oOB{b#>)V!n8*Sr&&V7gt6TcBn=C$!@R*M1&Un(}B>y|HE(_L#cpRjzozP8DNEezEH*dyblW zS$%btwXsCg)?vwcHZQUt{=sULVV#MF7Sua2qO-PSrvti;g?$_nC};#xOlizvNQ5g`O)V$3%BQIv$}$Ml^o_WS?){U*{!~F zYZXpDYsdW&sn2Hn>)>m(5|TC&Z#S~y$z^Xww7AJ>E`z`iTt=7KGL%Hcba*ADGpi)2 z2A!48%(#5J;Ix9<@Lh%!=jMkwemo=x!-Via<>F8l-7#W>xbARp-Qhg`JihRyK8{)b zKgRikC44M1EIple_7!Sg2xG*j=^<(-k;Vl0yzf+w@f3Zpu4LcsgvcoKav)x+SmN!V zl`D8V=(Jt5tmolwQ?ca~MH1C15Bw}f{rgf(#V2S)(?NylB6@x)r+XF({`&_ zqBD2YkK*1(dQ)@@5z{(7e(_yX{DjojRaz2Jgp%Gyik^#yk-C&WaeJWUxheNHZmLM# zU>O@M9HL3%mkyK?ZAFN{=3K?sRY(dtWJIS};H~C8Je(4H?@7P)5W)vd2K!$0*+^MN zx_KEt!e<$QkvQ4he`!VbA6k(W?zB7%7SViic-d<-w1MpU^`$sRtvyQ%k6n=lkAq#? zN>5L>t?Q#d5=TU*n95ck+pW~~?;}vbLoqX(`8=^}Ev@~b-Q7Lro6|X!)V8q(u+i5+ z$|YBck|4m$DD9}Zg0szzKc%p+u&%C->wa&VNO5$v-GU-@``#XAHV)kybh5hCjhmJu z{B+~zopS~x2e>f(NJ8ZJpTS^-S5;Jy|2RAUd<;@-pE5$(VBS_uX+^r`NP!5aFf=CZa}|x5t@F&&)=YHP*p`&U z*8EtL*pqqn^{Co2;-*FSiwYx9+>;-xBV4(J&QVkF~3VcQonThpwGOV#wncH{|C}1Bj-YJ7By=iyYd3M*dr_u(dF8`vpQ;C5Uc*- zrfoeUB3i0pyDW`*;Yd#%BhL&O{o!`=BYw9$emC6yb0LraFLn0+@eTsp;E}$jz7ac- zGy$*-$TAgR9R*CpLm=riWolC6AMO-A##wsLheX&Xa0Q=^gjmowv_dUjdF|&*ld&S~ z&tLDY=smc4AK7$D6nKV?#%sM`l1cMa#zs}gV^qKOK}s?4&5Sog2e+A6_;|5St+;w} z4_OBi3R15(g)l28(;`reW=I{GGJ(ucddCW>ZKPQ&miV@4h|O)T9 ziQ0I5!U>!eiQuw@A=`&JJnOqpE#A85)%2a|(HtKgMLUeyu_tx2YSn&E{_FM2JDzB}DWj?^=4(+pn_fW9bE(D85(L;}3j8yjUl5+l_ zR&ix%X({v~txVk^PUtqQ)9Q8gT%YTPAO+UEV(z=HvJrDVz05vi9I=lAedw*{^i@u) zk8_pOSuV7Z6X&YrcL^qS7nE#@@u_p?Zo_0bz-U$YsH zDt?1IX&f;;N2D48PuYyU)+ z=eVg#>5ibq8|QK4)T!%1$;DY^gN9qH>7jfd$;|r;^tAVK*aFhCW3kvTN=SD`&8ww% zZC1Eak9D2@Uo7(`;7^vf3Xld?e!NOx09L>Cqv%kYGZLkFfMF`nn$s8>gz`YIGi$p2s}|v=^V2Tt)6GGOun`v-j}G95SuKNa)CN? zTwaWeJOlW0&zkT>B`Iln%eW)45jYVx(gw1x2)uld#0J4B;wJTv1pI_>y@a9*eGyoA zM1q%zlJVA_1f!?k(V1c49plEkSAf}K#*dcN(&{!&*j2Cq41#@d{=y~aAK+m2Z=<8> zC8`N@=Pvp{Y;A{)`)A^HPxPSSRRP|k{vPRxI{T&UrK7e(^ud6Q@PMR!!$HD8uV?k{ zkSnIEXmOEN{ovb&wYq@te#X2(Q^_bOl!J(U*}=7Ld~I!Qe4K_ePAWSyGt+hJ=cBh) zFEm-h+h;T?EpD)}4KG1H3Q5#AKCYFm2s0kkm->u|6KtSf_1-r!VxxPMyTqRIsp?9&phIYSyHx^FgT%YZXD<9&GOa&jI%gxE@ z9tv>d>M9^flC1jZ(UWrZEdKp~@K_QB>^~0`)Dp`+D*6*lzaW z(81nT8O!)*-T~(&??ppX6UkxI%xXf78-*Ko{P0$&B)-(p&_KWhxep(t%0_S+yXX}2 z2WbSIbPC5tM$|Mk&OrZr6#a(FMbUiz`m&?mf!#G-BlTGwQ~neVW!0W2WTPUjZGRh0{(y&-Ncs)q$Y(tnFd;KRd1vD1{FyC zYC6(|i|h;O8b|HBshIbxUkp}Nr`U8d@?K39lD`@gX;#(0Melj2upIv3N585)?(;$N z+w!96_i)VJ9Tl%VMSnC>A;Znaoj58xTI!4npy#T=Bm95ew;a zjeDRBA{-AKZ@+suwEOJzcfM$>eql(SwCr&JRi!_Ig%`aU@s%PwdYz)inY=%J1NTMY z$qu*HBlqOVud~Ux%m^Jp1d@muDH=&B^Y!V~#3?2$6#IK8y=VRUWb%lc{LEFI1=YHr zJISPZFC&mxKSHIGHb!pC_>gmT+?QSHs%l>wWt%XB|VlMmo!azKW6a|1zk|w+}zQMykgf7?6&-y zM_$E+TABy_arH{MO3{jTSYBJg_$@nb^))rpDB!$hhnnG~`?6oF?XL%AK;LuzpkbNX z!n;r^9;s}SRNau(@o=)x1wqZvJ2k~GQE$eRvP}@8O3^+tJ)u3*7BxQtcB+lk@=<t!#q^9O*@>vP*f^RX! z75j2Gei5(Vz3EEP)cByyg;uo4#e2BG1})UZr*M#mdyb#9f`s$jeLq#Ev%D8xS(Vv*Hg@@iyA`AEE9F;wLA>dd1Z;4mIG%_f!q12pwE}m9#DbUU5O+Rkdu=qQ zaTtZJt??4Sr<_4q-CG~P3!rsUB}yf-$J2?tW!>zYt8#LiJv-eFb~ORS8vhtny|Z*)AlTzXO$-FM1!YDXK9np>+*7_4`#|%iZvLsaCCPU!f)XXdxqEexWs8T z=HZ(m1b<4HqA7&!=H`>A)OjAuaZPP)+>c8er7W&1liuZ<&@ygZ`DI|?jY_^V+Neye zTz%}z7mY`c+*c;Wiif2K?2L@A@p%(!uv}6tFMCgByRTGFg)7kd3b8V4JT<>ytq z%Qush>TZlwXF4O61(UY-UO3BE-O9ds2cerGPx6gFnLVzR>f`4#$dV`pni%HiVwEl* zs|DWvT88=De2Tq4>5iO}x5WVCQvn5L`@h2pcsPa! zT(}-9tbYRo6S*A6ET#V|6Z01s$63pQCo}ubf_GMiNxW9-L%-pB&?nlFaIK(<#$I zsen!JvOZ<;sYDf*&YANBfjG1X^Cau9*o@ldSVV&5b)Vw;HIV8rq%Jm-JOZ}XiAI9Q3A%+*YMHJ+#NcC4fmHm}Zp04pb zkUm&6BA5s}n$cDqFu6v^pVBj%w%xzqCm<$&rZfLx+L!lXW=*+rts5@MFJaA&kANAw zw6p|s3C6}Co`yvaw_ruFbV9Zd6a@qzkagKvpHEO@vbVE)Q&pAlav_1!C@?Sq28m!) z0Wq;x>thbe(4paB>t~b3XlQ7J|(Q)fj?t={%cTZ1|pbRjitgMJ| znwGy*UVAPHVSUuMUkd}MHU1Z( ziSBu)$2=s7nKA!Jn3lKA;`>Bx8iqxnM?m}A1`hgT22*_a4-Eb<9&G;q)!%r1SmDVeHkS2ctLetC zxKo)Zzd%tZsg*m#Q>QFXiB?f}8J^j{FQ0|-6HOKJMldR_Z>DaRC?->TlF-j~k4`t? z_Y#Rll1w(ezavVE^)mJXKAUNNhEW(&pHCC75nIY@=P}dC+JJsPBh@eTg38%aMn$i< z+T5;5-Mx*a!*z&a`eE_`5g4e5fXK8!hiG=+OG%Qr?+n zu8tcqRQ<+=f78R$vth)XIUA0LA|NCLBNnoBZEbfezX-W*7T8+wQWq5!aVK?a6+61Q z38u(OWcIE1idYt2BnW_^HoD|kM3Eq6PKd!cULRV-WSxkxFa)qL4E?}kf^XQE>*v=h z?DR2u2_0GBs|i(4Uco>ZEa`RYKi<`*!H-hll2UV zONLy~TU%R&<$z77D6zHW>|KXYg%~U$y6HN{p0fch6FVsred-NsAFk_?3&XIW?QK=F zvt9}LgUrM*JLv835~Lylz>s~R3{C8QY1^ZoWS|BSf2ldlzv?W7DLf34Bsj>_%X9}G z4Fe1MY8BPhqZXAd?C%07^yb!gS^@~KJ@0^ENlIwxQrpUo*~6Ir7|wv_&RMRM))VY| z<~?@RiXCfJbSg?6DH)SS&(kbfZy~uT&+2vc_4RF-4YO*#g+V6ll%cSLko#Lx50^$& zf~9_)RgHCqF>OzK12d&3zQOdltA1~!%t+a=>x;tth4VOf6m4%D-0OZnOnNru6J7s6 zmR5-nB8-uYnaR7IJrCEyW2tF2AUd{UV$*ZCRO6FxBJ#U&1a3LL=va=AIQiZ3@||w6 zi3~~;g7e2P*?ci~4=6&B+LYjyMB<%p%$MZ5@+BCl^e6ttT&(@21`I(Qf6o5J5`gMo zC0@su-g322P-Uze(RS`+FkZ*)Ij1y)-!+0|-;MA1IG$(ONFP~s@0~|j7x;*tdrG?> z@79w_?}bGxTDf|5`P`kE-Kp!6U%5sD+a-uo6Ddk)XtUlai>2eF$3!vsOy-*U$a~+L zL6K~^$h^{CpE@HFW?#pLIUuZhjdnOysWy=3TO8=+*V>|wz_Kzqs8t_ zM{|{?+WXHcJ?eJWk4#8E&R8B!gsXVk6qaQAS{)twj+j@})?!kC8;gUW(P$$z2fzg_9zxa3a;#c8 zS81BJVo2EK7o%hpP>*`yT@+M?^{i{6#$gmX*L~@1#nkzsQI7_69hk0~QS=a#^QWW= zILev{rN}xuI+hPLtek21Xw2o`qD$SbKzc$9p~FSVvF;|^0C91l3aF^DuU~&S)NHtn z3ALyTfN|`yRA^HLt%0+&cn}ki`%C2t_FDS{j>Der>x)gt56=^80Oc(7bcGub*%0BV zFTua8vJ!W4x-}T=1;7jBV<3amSz0h?%CQc^h(b9a8h}iaChNR2jsN9TjuhGUnbks# zN*~(K@G&xS`RCR%ggJ{7B{2@|8^Mo(1*<5Fx!SUu4{r{>(ztX@HK_97)VyZ#FnD!j zY+3~>`Q_@}u55Gz3!l_oU9Ck5UjGcj3%-D#5V(Saq}`4p42wSSBl2Uk$qBr7Jtbd{ zBPUSGs#87|kJvytJI`V=*-@(fbb4bD`%Y96x#Gll!z(+{8Ua%U>jRsQ$=GM2g^P63m;QLt-gLMvG-WNiz5+dRG&(-O;NBErI^CdW z2{np{>hZAe>yC@lqhpTCloG$QqG!|2fI>u>?A;2*^Lt~F4(5@mWyxb7pt z+4KyxcPck1y z0i)wy8K3PxS7?M_WszG&N(3N>R)mXYaFEt@s zHZZDguxvmV`nO(1?QcD!=acb0&&}S$kvNO|;?#pru&?g6<>0bXZnW?8^qRA>HEfQW zf$V`^a@e9*XWDUbad|AheunfnCeNKUywrNFqM`z4CKO7t02BSgfYy)iC$Te+q(%?Ul=3J8t6(cC}k&BP^Yz+1c4mI$$q-UD|*&f3|d7 zeAS?-Ga7>H{6T)(xh^L`EtU%qjN@U=e|1IIk>NB!W^s47TJbcTNY;#7yG7T(U>Cwc z#;R$Y{81efrC>`)NGOnk55RVRK>KhO4)!pGM|8r4E)UYzJ@N zd;`ux3vmj}$2;?{UOVPAva-5E=usKe47BJ zOxbUS7T-AuUWha;cL9o}CV*omHkO8|LQf)~%)9BqtY)B9#H-M+*ra|R+CQ9I@QURk zxvD;(?vdv@LHKLA&-hJsb#+yhi4gkd&s2WXq;2o}t-`aKLkd;q!$=t1`2dru+Ee%o4Dmn81AvtFffyMKl%|0#6CEOkC{jKzuE3>_X}fG^R@( zILgm581a0jtnQ)4_nLH80NkEy&(j278>NJrm@!`BCY#>2BKkNcEx=23wD_JCb$}L1^w&`d zt|dpT!MywDBRHpLbnmO2a!THVt-PZ8tzTVMKdU1$jF}ZtABf$aKj&pTMMQgYZL$_; z)xQnma7OzM@chjMmzW+9N*GOgU(Ci}TekUH3O zni+y=!I>8F-DUQg%r$Q5&nY<&X1&zwih<_&JI2nU&3gxA>|7c&kfTL>GrTiIlDV3SXtugW`IV>?=FZoW<3Zjwl;SGxs1!p!RS zsleKD*9p#h8}0alxu(v6}=SWMJEs@4zTHXLHW=$ z-}oLV$OSto6crT}q&j-RRQUEypFf494_x1PiZrs@-?gNovH(7;to-u`fc{Lv-Au47 zz@97LT+%+O=I{qMgIjoJf8Wj0vRIR~0p6ZRc9X3 zl&xOqu-+DGdC*r0PRR`KPdk1>8o~Iar1kNMk=jQiroU<)(Zy4kQO{6&?=~e1(D18u z%v^cSdcA?ltuyO7g*TD8>Ll+=`4gh*3a)u>x*?I~#`xYLp>$`ZJ}S(QeR?!u@42@v zIJf$iJCq@Y{^r#awChQjd@T^%7g0>AXx;g`^K9KJmCunS?CSKSDj=b? z1jTZE(-SyDbc_VJc^{}}%|Z zW4F7a@h_eVSHJznb>S?)60oq%asuy21bJD{I>;yx&ofpq>E}V2XL2Yj;z`QEQZ!6S zh`?soU!#o-UO7cavc)~>c(5t%ISx>m3Ky;85Q3-@yAT_JY@M(4Rd(@JtN;yx98e+_8i-I6{Ol3 zi^dKYEoBaW$vHYWgoTAc+p1Y{ongqx*qD%@AkOR8ujN_e65uCmx2J>Y9%I}Bw)*Xi z@`?$x1RS{6$ zD0;fml9E1SE?D<*1|vG`-yLcIlxMWJeabJS<>aZwKC!e6zL%?1?Q!5jD!yGy)NIT( zIzDbVXEt0UuAm>%H2>`V&dv_RKX|$j^Ef+Gh?b4KGm4hFO1yAva=;5OJ}7S(vZ(Cs z#Z+pxwnDMN%<5-X5z0`~ho#>xYL=R$8jQRXSLk^A`BS{9+V>dhT#F5cIw^|utfTas zTPF~g{a8AqOn_o{4}^(tu&{J>cN0hE`EzB}(HnnEk9zs_iUE5feW;)ZTjHT$9|!RX zleqqxW}&|HuN`9?`#v87p>=+WGij{o#xJ(bh8tod$}39ov1H>iJtFL-?vdth=))QM zvj+;EnRW6^5(8b15_(t4F5ir+EPg zS8x8|2n~;wmBocg*lhPSWsc$*xdi775Wq+saFFC};7>taFY~MZVe0U-L zddvsVHsf%%AS}O2)YOn>f2idQdz?Q}PfrhwI|t(#ZtGmPU_8}_4?%S(OrHq!`k5pi zcBJh~Qn#a`=XZ8@U2>Hc9cn?o3PPBn51KnNN_fr%XgukP+{*j^nRE{Frmz)W5RQhWXs$WKC| z-=gx2j=jCTg+-5gaPRs!r2C&gf6meg$AlOZ-fEj%uib(_r54Mv4n_P`nr*gF(em@B z1tw>H@FC`USIE2*T4Z|?dtMVP1q}_TAajz9qJQ4;ZK@?8PrZ1!0mhrQTI1^&7@TPQ z@q-0H+)-+N^kdBOE}D?J*?+d`qB{T(^o~2 zQ{fq_+KR)K9v5kE`6fHQyf%SN!7Y^~7g>nFJ59IWgQjlhnCH9ERVihzmfLJmsKwdC zFmCDC!y>WH8RIH&jz6KYCx3mhmcMui?reCAd-6A`*2i~B;IZRd%5c1fX`dCFJM*<*FEUXvWn=vX0vhROn6BY&))Qi#^Y?FK(F{?~Iy4ZwggL>r| zkwNGOUMqZGW)2_6%dIoDOfx;*3c7UTo5y_GVJ!X32bmh@c_Xvs&<+7?_NFVZUWJ5+ zeMHc?Nlg{36PZ2nnpR}pt>eVTL!2$^*$gTypqDSjx~?)G1cT3;hQLk zcH~ya_2Wl!k4vbxapJuBz~p6U@5nxi;EGE;!IgIF7m8HguYiDNhN4dmEB&;1gfMv8 z>D$Q|Y2?+b_$`Bb8DSOc+Z;~#=t*J4F9zbw-!rkMdjBacZXi{5hom4nHZ%O^gzM@o z+YeYX=H{UMU0f3BJ76hMw>zgoNj#J<(RUpCL~ITFr5tyajf{+NeVaBnE6N?9u9ugZ zn=;g)rZ5kzCB@N^k}qhD@Gclk4X?@%ordR+3pd z0T}R5{0>wJ^zaEvpk!rbA%lqQ>g|OmpXQ^xNfQpfMN^Y^;8&RPK4u{>zd~&YRblJh z37fL1Iq8uhbJBy7E>js4=lYdI@iM%l+nu>$C*OQY@}aWVl$Mo+C+O&SW?lPL%e3-~ zHTBH;dwJ(_sgRJ;#Os%@TJ@5jUe%o>K%7d`xD_-SHE~vC0rQ^SLoR6pvP1 zM^h2J9P(a;vyu(2yQ^CWmWKV{m=S}UC%rU6h)LyJbFgmby*wEq>f@h&`u6J}qyCvl zeJt`5oBq}6gEJ*3U*EPiDSSyr@%aq-l_`?RGQJZG1Klbna{Dao5q3gBG+7JytY;sv z)AnRjLMWX;@&O9YC7HzDieGSNAA?5GVqc5irJ@pxnSG_0BGgr<HJAO#Rzybk%ROfkgI5)>Yd{uJoTgP)k;qCM<%R{E+ zt*x!V2k-)**GeTH(uo8F1c}{-4oto4P|M}v;o;)43qSACAcrC&BZB~2t9ahoB4lT! zg>V))$hrrz+vVlu4mIvJHa6DQ#O^gH(R@=>I*plH$-IXR>kY#GI;Bn_I_Vf@C zcLVJ(oKqGO5`rlXqrg0HWWs7IStcW8czd>D2cHBAk!yGnxsR$jPpCqMpTuTAD2n}o>KkR$Itph zAGsb53dYcHm@G{kWLh4XB))|A7JfIsVPAUCR9RWvFJaYr(CqAEUs{u>QM-h$&$8nY zi)pG=m%m=$dsyyb9Hp$x7?E^t=ArvS>cxqe#Q+9(j_(Nr25vslUXx8%&17;l=%{Kk@V`EM-o zqEmVc9?nnM97hoti~wk6CNV^E9C-W%4Muxm9_R_gKnxS9C!dq>#&F7o*E((W8K#^Q zjum45Rvkoatx1<;j-JsGAzE`TbQ``u?{_J{U(_$22}dwHPnd99@T_jX0KfaMM?!`A_anC-+R6mos zhZ95lEIkg#n)q`2wfCQGZKmO&$5$NgwAJZpSQE;cEsuSihV3t&}cYIOBU)SRT$bEk1zLPe3ZPGk&iA^ zI+BSEJLr!+mUjBDQI?iWKhlcc&(+3*O6)7sx&>83M(Pw4tsJ>k1VM;B+5RP90u|Kj2z zcxt6AHE-YI^*W(}{NMw9Fph@7mNyepQXXk&P!R-l$;2t$>MZqW@Ps*z-Ig8$e2!3Y zIX3pluwsZ(FFqmg2j&nJ_~+csEGaL~&VzE8yz1K8Wa!LFJv&C>pZpnDo@RL9AW#kgkb(-(B09S!sT=d)D`~wDehg z(VNc$?v!3bs3lyv5~Pk-hI0>(FQsWYsYCk3erg_N24m5;kg zRj%A>5%X|LW_=UEfOnZvuGFQa$Wa9udHttq<3KAlE8RlF*n}Qh!J&vM;ys z<;Z=hWx{Pn#Ju-WU7J6$0QK;OS}{f73ifFt57E^tPvlNM%qv?!b+h28nLJ`?T^-ng*YBkP=Pd7&&jdF=~PL+Jf#>vWl3~hr34ctoh8ug+n=S zKNT#~ei~rWe)3B}_=TI6F7n$dcKq2)EctX@`e1oRVez~bJDIm((lIVny(Kc237r_W zp4n&H6rN45*k-T}`M>CjUR z4ak82bb-G>P<0!whaYW+L#Q;<9&R~at5&FjhJ!yKgDRD6b98uMTF%eIGha6`KCS{J zRbF4;)3uFnXu(A}z6T}j0Yr22^H7>_J?1nkWKgl<)6#I+6J(%X0Tf@cRvq*_9xg#n zsoU^@G8LFp1E($nkEF;Vp#{^SrmnP9v3NK z@&5+cG0y%Cy$AE>KpU1i|8b9bkKM7~?lCYG0PENk_-iL0y9BW$w#)m4#rt!;9(!^g ztAq`Q+8c*UyEAD=PmjJ2A4)kF4L&DeC5BqzsRsZv7QcuGL_vCYPqm9SrJliO)C50zqJ7G5$qMR78laQw+ke>yKf72;2@BBF0p>kP2S#; z#v*?#iU_GQ|MYrkRS6HTujjqqd_g^jfKo1kk*^r*6~P`G*7qC*&P~L0f0Nbdn@wu| zBss14v|Qx1s)bS(q&!!lsx^+6`-#&;!c*0Ei;Q2hvdnJ3(|1zOt+Zy!x_FLlG9jIP zTXY1%Jy(5qoJXpnb{KLS+(~@hhhImWhpU-w$Jc}0p_mI0Z=5P zi2A@jj;H8d9T#!imWQ0kam&jjpGo58-T}A?t4{kv8kTBiNC>Q^5@KS`V;nD-0iYH; zR`2c#Ct?NBAz-?2OE&az>VUnh&@hpfl;jHOs@;Rb=4PKfEWFDy49|&fN6|wojin_T zw4C~*N3eAqcw7>Ny3rUZ;H@Ebw0o`+)=C}Py%@w={vg+Vs1OoKkYSFI${$o$RfT#^ zwb+=>S>7<@FPFL|9V;7~sQDdZJ+_}^$Z5?E`RLuRYKX`39X5zu0|b*ocG{(sm)sVI zPmA50J#_o{wife?vG6dKd3Za#3|{K6c0Ke#W&OqtIok(yDC%uk{e-jTNY@nCyplTR87OIB}42w5G8h zOqKnfE6IZWz1b}@e0b4`JBDR+BzNy1XK%grb$q!T;qsdB$Afu=wRcT(#~wq=Z-imu zt49R?L7zPhs71^V97kK~gzz1-+Z@J}kT_;4YKXLcr)GY;(x|)CxPNjrCA?RNr3KXU zZ)oqOXn3x;R2UuttOB$(_IXApc9$F0)4uLC=X=g*@7+S*6g>BZgw$&qmvlnH3kySP zcknXg!ua(SY_jqYHkV@KX6(L-R2{VsjO!X0n(VZ)#b5|cBm`eD_mng2MWRkYN+)y> zVTH&k&iXQu6IRR>-Fyfmt`4ThGAC$1nR^*w37kWO-1a<4n=UdMAN+#cMcard9fz^L zm}1XY*SU&Y_PMgoJHZbO52XwAd+#6ut||~e_La*Wpmhi|KM|*NYLi+mDYbcv31sOr zvK5M0CbHHnY|$x%lS0qHTj#TX%xRGu7ye!mi+_xumn0R(^i{rn%PT182BHW2FNksQ zrmk!6NF}}mcVXFKuP;*qfjKA$LVlv#HDiWzP`LJ}!Q-N6>bzycK?TRlFUxbzP&%)X zt8_P00q=5925{4S&qcj1*r=h#7;mam`_KkT_0!Ts`1#?KLrm^9@g;Z*)Lu`YK84oJ zo*r2IcKq%;vvH6uluexn@_XKaLP3%vsrw~(&fr4p-*jI4_Kaf=H~@kna$oS&V967D zB>*e(adP_3zgjfr+J)dNlM$jPc$Ti(*RK&?fl%-dVmG`!MfTeL0Vv-rC@4TF;G{$1 zH37ck!+E>S+>6RxDB3^It-LO)Sr%GY2=DTCtXsM8CnN=<-mz=GYq7@i z!oNk?L%zjxH21;su)VG|!nrh|6xa1}@ed)_UK#_rjjxQ!7|!|=SJ~5Gth?H3&6I~r zzljXK`fut=?oCPKC7e&N{q1bGQv3<5Fws>A2*YDDqf`ArIcZo6Hn9oeo#o>FjpBXW zOYXlKjI@RJV}41`AFc0sq7Qo-gc2=#rZ|;Wdx?c#&_>)A+xA|T^vvhKa+=Yna{L== zh`hRnj~6EUh^W1dB9P@C-&W7%lha?xta?hGMmrd-qbvs5%+o}o^1yhRUHq9Q_fDnV zLy6Q!%;xFg2tGKqqZq1mUUZPldxk6NM7k)G@cJRc9c9CU8d3k8w(&taH8Yv3leu@F zv=f;-KU~WjEJTP#Ruy?uIwZE3Akv+&aTrq-X(A?+yaKIq6)mwL*t)*Kotl6zcjJM) z(&Dmte^a)gae0aQqk}W3f284se*&*}znTu;DywU2lMx#hDKXF5sG*>*>+4r22m>Vt zY6-?9-yf)|s_O2(uWa9Q3sda~M>>KBj(}!j2N!r)$PT>eGX`o>Gh3x5UT~;^7k1e%TN=zba1$&lUBRai?~`V$(=Tkb zT@&=&-?omTM***vCnQh^w!4bZghOTN-a&m{Jq*l%syKDmnYObCjEM~&%D4PLT|$Bi z`q9vbKhgd~APc{K{R)S80clPrh_LUd-68cBrER`?RpG?V)Pt4d z6J1@Yx8}P-G}pHy+#mc1>xetQ5+lO?BGosf@Sf<;oSpB_@^*&m$hdSWD6T$l>?%}g z701^ROufxPnJt`?;BVW*720trxg1-tUnjWK`93Uh8x*5of9*0lAZ9a@`!GK~Z9HnYF!fnvL zp*-QfUgLQ%s?8>{(I+v_gEs$mbm&>%qg{05JKo`Z(^7Q%GAZr8?P;P^1q6zg4iVcy z9>jZehRx%iF|AyY$3pSws}K?CY5{L%q`8?lB`pyJow65VkO(rDOR~cVEKwwu>@~^~ zlQzHJc=Apd2_>4jQy(lltyt_$L(CHXeufE)DOC}1eu*$(u>7uK5p{A{lD#-yd5YGI z5t+&qzqeXMNe^?+q?t;Fp#Nxq;o2GY?dVhY`^oYA3AmQC@t-O>-XDDyCmciZ7`B#S+B+%v(n;(p71x#BlQ#vGmL|sCg?m}r>&`}sjhC*GsQQv>cmSuUgH=J}`q4Y()(3Tg zQd3OjbPGyu?-*_QB#{#OD=ptJR?H@ZI}3KzRwf=EN9~Ze=McJZ^6QLjq?oJ)4v!LXns&UjejJxU6MQ2Q|iYhkWgzEJEl`% zYs<@@?DI;=P&CjyQ>#bn#W2>EqJ)8BM0}q58!^t z*S$@620!u|0re+mj2v743k*Tj&`IeHiz{dczLxBCEQgUYl(!=0ny3y%(@ zf5jcG938f>xi3fybT4NU_RkIGABo@CvoKiqSo(A#`KP_W*-H7fZQWEEky^!SU!#g^ zWKi6&?N>tA(b}*xnwEV3Aysy*{no<^L&Jgi9@LB8)_63uSn2XOh^lX4kL0g5=lDDp zSv`9b2UQhv-sqY6r@&JgPC;IEFWN|MvJGTHYe3zUZVu$2e`9Wt*OwspN!3yP=*(eMRkrH(nYEKMyU!56!uXB`oJ- z`kv0MnNOvWFQR0ywes%~DG&7jmdiX3oO!F5TTomKDHz$DJE-E?wGU9}Ql%*y^=*6m zZJ%*LQ4y9^Pp&CM3<(L61HT}2hA|hg$jA4f1QJZ<*$*)`RUy)tf=tTLw*7rU){boG zugWo@Y+r@EC`8)Oik57PuG>nrwXn$@UYd2ThaqA4gHTdaP~K%8GGzoc2~g0I#|jdK zm6b#xXQ1lsTbRi=z9-m=gcS|GK)A>utY(}feBA41r@)#tilh?*;mDB#nM!t`)X#br>!x9_DP*tgb@!rnTr>V?@J z-h>h&AxKCgT~g95ASEp=9ZH9EN`r(nNJ)tZh=7!|l(Z-z2-2X^AYJdk(Q}`BfA@1= z|2bd4;OJg^X4b5=rjns{HRZR3k|lZ>vJMv)Z^YGNHuEYcKfes4O#&npe^&h1;LFd- zMrs(jLYNbO$dG(-6I|ukFv8hwGbmx$?WRb_^DEN5OekJp&7 zf2Wu8A?6$>f6K{#@OA8=|4upHZ$%wN9St)0c-_v$X5|`hO4^p?T=t*%?gh@*iOn?$ zl41M3Io$sC&IjHY9`d|z=$9vOi%bY!p8fLpa3Cai)WT{XsU7Ez)@yE+dp-!`xu-FH z4X%#Dja#8OYr58_-Jfs7w!|>d)-ECkm@N?uUyWtXRJ)G|i9|(eogW%#pcEgE8wExjn{#4p-Frz$Cn@|RseL^s1(b;x@H9e2kwk|{S1_aMo2`ZBeH!@9 z9LbhE*lA!*KR-{~Q*Kb2OxxuyYkSmHF-;z2#*GNx?z3q2o!6B z55vNo?Sv_^va;r`;UT>p0jV1x1w7Bf1JENuhxd?&t7AIOpnH45%MVO0uCAKw$y3{% zPfvVG%QdXnJNn*GvL!v=3k|Kd>VZEU${q*txgMw^1)Oyt?li^1BQXv8Nc?4a2RP?# zVfd3k4h{v3=LQ67(m0I&KQzmL{4iwQTO@AWtw@WKVvxF`!P^3)j9Apd9%|GcR_AVdx4Eqw9PWnLrDkq7%n=1&ZB0?cf{;^0Fp7?Lhl96U+8Rza zF5SmOntWrZ6TWHs3Ag;|9wU#2#NcHls({P)uigMbj!jlL&Q}FBeS(RPg5We9>5X>!PT6BkkHTsi-0%u1^J$Oct-l zljc;PF^8t=e|NmzGM`vq9{L+Q6SI;-$0D$RAWKC&+yAmx_x_*;%Z@7`iE78dHh<&| zTcaG=UqwQ}$DBXfgiekOCBL&hzq2U5@9uk(Zh9q2uR$CJKQxPWWD6sjNxPtRWs@cLw+!SguYhi-4{ zvEbzQ@0W2q9l@ESOLM+w0Sz1oJE0MbqlJ=(iAN4fpc_|dFsWZzJ%0%?pfqvjV=&i5 zarSz9dg>NxXbc;4m-l)>ec3ymoka#00(kuo711Sb1>`z_OVCU?JA3 zH$^^Kq+ZWaV%Ou*-f@+kJj&~Aql=PlfB%m2ZdS=j`});gL`L=&S)y2+9cpfKu;Q{% z{6$1Zr-CD0k%;GSba4V{nC0%n!fXC>b<@cz1Ok+3o{Ly{)9(F4W0$iY?ax6>r|5Y? z0ZvQ(Jj6?Us zJ1Lb(bvRcehXwGhuC3l^Qu4;rrvHMSDt#}eY43-^oE%mBwbYNPj5%HW>wEe7nz)ZX zZA!^=wwGO{sZLrsK&yLd9M|G$a$cqYNsgD7!yC@&g7c3BUxZwHhL%luPVW&kL`HG>p$|%;yN#soce&O0Xdruu(pIjnq6* zXS%dc!`rlDbTBVAcYXcN0pw34m=+r zOz;iQV=sT!ABloO_yHmBzcA^U{^*GGeMTZq@Nl4UHK(y#A3a;=+a(UU#b1{ZOyV!f zuuL?xmhoShBJ@p=yEX0jvSD{2lqi z1EBqcclr+>kntLh*6Lsix+nL^Yrvq%VM0M;DwdYGBr7OXm*U_W(W z8gRx7pCe9&F3`YzCK&ev8l|@bh=|sGN;FY8$grV8N}IvB@%#7h#lAE@mZ`(tZ+`FI zzICYj^(Lxln{Q;w!%56<=wLYO;DDtsAIFvQFl<*j#+Sv9Kc@2Rwx>qbo2+|73Ly^U z72h6jUb`hSQn8({I^Iu?qd8Y=A6ZrM{F3^~_?BLe>M=M1vdW%M?qz&!I&tKikf#|#FoA;U#1y%^`q-Zv}tJ|0wbNMi(dShQCS*-)J71ZzuKO%&R5YH^xU@Y zalk54i(`r)iGbm`ca#J~etu*wGQ>-CdaZ&3`oaJitX@K*;4 zLjWAdBCp=Ms=PT@DyR&F=<^}CTE1{~)wW~@46T7wkmC_$8a+4dgWjc8*Cf$4&bh!y z!l-l&Tc!-_Ax~n7KT4Xm1(R_knU<4dRWon&jK0reutm|N4euWO)%xrVD;4A>JWop# z@;mje)wiqEg|`*-?1T?xw8WD8w5WlXmePOde9X=(@2h8isK`)JJo0BB;+5A$UKsASB(>|?!Hht8ErM--+|n4C6ZC9TFg;Rw=J9M5 zw-sV&gW@t3YI*tFG3TcT7T9C_&lwjD2P|?m4b$J;zWp)`=N>p>}U@(7T^bi;3wGR4h?DGqMqCMpiCGTWTvM>S1K20R-uDv zH*vJJwFO?!k!))3!6@W-00#}W+0o_OX?-n5;!O*_F%EiB zNVDPAv-T=?`W0&U(E{{#dynm$pxN|ZON<}Itl_|(PVN2xVQ5`I$H&JP6&0PWbt@PX zSF!L%hR#$|8bXG`gW==AwLS^5ox!t(68ksv1<$*Th!5|UQD)`wM`}FAnKaW(^z9XD zTDttyv2t`>VUq!TAItAyeT?8r?S;Pz5F+y2*ym=w+hStw5?wojMe|Bbh~IIPJ*Zbe`mSS5DeO*_Up%@D?hhNA z;;HrI9&;_JAZ#fL|5-=!0a}yhwL9^>ZCr|<@Vf%$1E#%K8q&fIEc}OjbM|!HV%;S> zn9~)^lvgujNFfrlq|%ZS%a4mXqeq_l)1y#H^uqfim+=HoJKlnL+7%wkZ0kkm(0KOhxe7#r&?;KxM@aZep zW6NX99g08Y;RAYt{{re9R~;X;{{RY3CeCeF{mf(NI`JGaMj%TvQ6p|uV4sos55A%gPGR5o>DZgU z634&P-R5|ROn04d6Lk)QDVX3Iu3F&-ZZS7!)A~~U5_9S-fiJQS+m2i|C<{`nNDBMD zL1E#Q1PJ2G{v%4pr=h_-vH&a%=ETF6&wrnK=C==&3LyBFypuWy3_Ft9(?_Qun=AN| znx2joFuhtmm86y_=64FhJfOCL*SkoU2Fd}dEYRtxsi_tfBxDsMhm8ZhQVD$)z@7wB zF(&t@$y1|(!O-8&CB?(kwAE#jKf0n5mSHbnz66(0rS7E{34&g`to|Ul16R5}`{+90 zbH~RIvUDK_!k`rN6m@S%L(XkU@T-)vL}4g}tr`r7akK)$yDJp~5C_4WubZ)|!+(YH zY#*!<`D!}4x*!9wEE# z>ywr(j*1zO*Zww;nkYet15u7N_%ckO=GR`-Hf% z*jLfm1tt~LwGupL7F%m~cGEYmU0+xKfgdVK`N}9Y<4*qL>dLg?`zEP<=p}T-YVveQ zAImoNd5cUGZ1|N>@$k1XtLLNcjgnonwzyLqe!GHtr0w|_?xWUmQ~2;|>;-Pj&(Cru zT)#k-=0%m#`=^*exyoj>zH%Mo;(_Igd2m&6j;u~m@w!gzQ#vEo<&=x^#hX<5589xL zDO?&=9+{)fqrwP{^^`1nNFYZyzWl&qZH?@Ha)rOq;vG?{MD#F5%(_XtO0~Y4)WJ5J zm5!h{KP~Pa#RNoF^Q0%yVHlm&cSdq3(zDy%ojT>o#6EbtDZO?g@b895*Y z!SVf$B9`w-qgYz|EJK^qdPA zst_~pLu31FU7mXA^aznl#jClyce{Ia^jw`=W4s}zsvH@Gy3YMt4IN!LoAZe&#=M&r z(P{kI3d_+E3PLhW+1F{aTI?)!x73fJg^GHl-+yBX*QO<%EmAs{zCC-$j#wtRThZfG zUD7J=0%r0jMvwkJ1&96kHg&oSt0_PTh#$6NW4z&O!tNVzZy*8GJ7Cj0@D`2l0w3HJ zYM}CGXKDP`%G{=Wss|quo9^!I1>^Rn4=k}HM$GX;mqUT_tY=}P6p1ok4U_r<2WxT< z1U0Y|!iMT;=F;l=I*6n|Vp}?DU8zeTJs`ZTNE`yG3EHfJ(YcirQ8Md|M{B^sfH@t& zn6Fkg;(M}eXsD~ZC2VhELW9++S#(=e)EDku0^51+<`(wY$^d~Z5FL=Y;s+^>H18oC z@gl>}fB8MA@%Bz6vtP*M_6Qps@bzPb0;`hy^hyuA+sVRbCkPSfG2A9dy5Nl77I-+a2)71Iz@5Ye7vSV-^``gqvZId9HNm$;BY zxDc&e)%uC*65-%HTdfPTadh$UtO_Pl^K)CEO&Um3%$nT+)g|P@0cJz}c_9CIF zpj;n7XAX0Z2zlXUdVY z_NmQY>N0xX-sjr*q%?j1R4=Gw+}0*@Z!LJGp38QA`r9EUTo*JkhYsAg~~roVfdIfF|>$PL}CdiJJo*5^X}^-66tLfL@&|$ zRE=pUcO{!BpXIe%E{UTgAr#OV?_#g2)TNR+AuwxAs11c9^xE^C`}$97g|_>jd>xSC zvotByWQAZ*nb!@=t8H%d^Ca+YEi*Y?>K`sx>iaZ&BZwIjx-_b0MO-yG42OVuU**Tz z7B?@WqTHpHTTG0AlePn=-?;tGEd9vWw+ktC54V=8F~ikanjQ?WO3wr&kG&Je)v)Zo zi|m3ZiA8B~mlr5&7GGAqMq$MqZ^Mvq9~l=pa((92t9S8cl%j42&e1m=BU77BcPh0? zs|m>mu3W}erVrS#l*+XrV;FZQ;6-9&BTwo}phXmOxbf%7FB`OVpbUrT zgCk!8>2m`+_;+f{%X2D4`T1WBTQ#n`31&b58-pAd8TQlm+3|7RTKz_!BUj=OpsX{O z?lWI6aVgYrf*zkbzpcr4WE{kCMG!*@Kcb>QhqwWHCku-Xmr1Bq_zX(myF3!nnM1cvo~Q7I5xnYz()6?CkC9-V`N_gPw|%R8L1o$M8J87dybn)^-&VyE;;! zvSo;PjcnJ0=JAH<8b}*=S9C^QK$EC!#?bWbWNpP_-&9NV3zK8`#Ob00XPRH7pI4cR z?@=OIAcNFT$%9^nO7%BfAi_vhT*TS??o(H7;7}p|`or;iS02Y}!L*6)$o@k#Y0s3I z&E`#zKe?FaDoe^AV{{zx%P03Ns1?4et0P5~aEEsskIYb0ZiN9pdvUaHHjzZa3}&=* zsf>Gq+9&&oIJW2S4~*r4#{hdSk55g&$z@1QgoZ9+1@#fgs$ef zxXD8$9!(AFQR~%w*Hm8@-&@GMG&h|w_9E@+77uZo9esRHUG&Y3E)!JXLd|aJCT~W$1UWtc4RZ?X&H)PaXkc7FC%8 z3sE8>OilYw)ynss=K1r~C}!b%vNH;M+uzwZK0kI>ziE{kTn(T~>l2JdX?9E>HT0V# z-kxwCz#D|cTBRflvB#}5d|SCf+ur)0HgbY6;HKLUFQ%;<2=>O4-T1b97& z=ivw29yqAlP4Jq5r(0WFJ1m0~`Nl6lVKoP_LTkqd+q%n;vEtw`&96k(33Hm0(`T1S zXc`siZwB!@&PowTLx3Z^7~zNRGN7|3`Ierw&s0`QiqT?J)YW_qvQEh`(7>0tG)-A9 z8k7QW1G!>g{>t)LOg)#tf*cT1S+M*;#;#OQQCYbI|2vbAQ<~KyjkcO=yabJJNN=H% zg`eZm>Mp{#ItBxs5BleEVKRqXR8aS&)-B zdp@@4>ovIqlaOl&`Vc%tJpZfDm0X$m-)EH=d{777m_9q$)u;9X3%F9TqT5wtn6hiu z+tdTdnNW+Kgxp-M?-xcU4<9uDe2;cm+?H`y(ShD|ow`fS;#PF^B?W(J{a{Q~b6(15 ziN_;eTH)foQmk}1A*^8)IvKQNQM39o66nG$1f3dR8%uJpa)rp@Tbr~(3wS(l*dYHRG)nYMPZxce9LKURJT0FaWFsi zSw>nqEiR4FS!?U^gO;}vsN(3pz+&jl)#95$lp5TrtF*cZs(eI{W&l28&6mW!+*h>ZQ^B_;P*7degggW| zGsKW464m?>PZ&_AKa(l+$nicgUON1xbyhmyedyeDSj4w6q}90fux`(Z=ADUm%wtkW z{9*|T!yl1XA!B9>e0C-A=hpA*)K~vsTs3iEL3Zf_Rzg_(EQ#*b!Y~C|4Gye1{?k^m zJR93gp?rP-C6xuCB(zv9MzCc7e-}(Xxr4Zp=X3`Y zo{@1-Kmnm%sNn!C2vGm&qCTD`CbK)Eh7c+V;RYWm;?<&~qA;jo5)&Tqnv3Ey@ZN+! ztsQjqpdXoWsHv{jVo$cTu*ge*5(ZKdSVn;V1005uVX&l%mdS->#vBx*MEM0!GQtTU zKq*Lh9m({pVIK$EgXQ-SUc}J>qa_tO?7!cQKz!DAJsJ)Lt=!gUg_4jM@iC>_&f^@$jzjN~LN%m4Y7WcLZf{Ir+ zxa-Ya5OoD|s6IN)ts+HK3#pcmHJ9dYr_Ay{oKc1hNl+Mm`MKXni7G)HlB#$aq5j$D z7;V_9q0YzfBdQewsedZU(P;KHu8PJzMLl(<-;HxY$w302RH>2R1Ve}jHA$Pw5%YWW ztvrW@iHyJu9Gp2hlQ=a-CdP0Uy2(c-{EE6IpcH(%_vo=!#hwAt;j{mMP}_5DZc>_i z#i>`z=tp`(wDJF$yvmF}|I-xSDJDOsIk=ZoD*q4{J%h!9eG@ z(om>=MRv~aF0$fh{AlaA%s!-zKr6N{zBPPx8c)k>Z$5HHgi#OTw@KOx3J$2r>Y<9$ z;L2U~m!~&vKtiIXkuGq0eKec6=`^2mjOl6;kp?{droyDHnIkd*%u-cv%C64W94<1G^#EmO!`;aRxt? z{dCc1JPe>z*iC#iL%elkqs|IySgm(gTjv= zoXf7RnW<+g^aWyDu`$A)zkl3S5@pC278dSJxY95%f8> zMklgRrW<7SC{Gxqg!`Rd%re*3MUZkmQh6~q!G@=(Hk&d{lPY5S?9)x8>^!bFX&miV zdXb9~6tQcL)&+bPwkD?ZG)(5Kao-VR=}Gcj92=(8#FEn(^wj$WXKM^YVrL#hreC$C zky!a-+d_2CD_7osRIWS4skh6hKleWW3XS2P%5`4T9+}vFbw4k0)Su5MtnA`X|J1B= z&hQ*aY#OxZoFbI6%InM*gV>T1QS?KGuUA#g%oB#C*8-j#~b@BmN(&Qil&$ zCyD4qAFJS9(_$xr7O;dDA9K5+ohUQ+DBBc^4gK zOzW>X@3-wnsi)xnT4T%Lz2M%j28+B(R^e;LQ7h@2yZQd6$#>qt>77+6^LIkUOWfpi z2$>?0lI{bu+4~kUnZ>_&sW#&FYe4YZkv)moC6jE5rSkCsg-huS6UwM2U|D+e`)wVJZU^U z9cv;&LJ+0b>PP21baviuCo zy}-Npdia+EKP%x=VAs99y+N7h=_x1|2a>}EP-DPdKhX0=JWu-jVFqEl9vNpV|X&m=-G`WK?FW!2KQp<`|*gJ{j!ws8JvaHQRh`J~6ab5s9lHSj~d?m?;`r9xbu3L}5_BU%zR4SY1T zs3^PjPjZoZt~n=deXo9LzpNDcoK&uQ&GL6U#|_UHuZwLismZY&*b2p!Exk57+NF&8 zc$(I(u%Nr6QdM4COu!Z2#o@dm8a;=ginv^7kB+F43ea&2LTGcK7?JnAoo*uws0`{M zE3>(h@yh7=%2h%Nf{7Uh+1-36FOitgfvI2h*Mg|&hL)oeuBAq@%(#=>zCoXu6Szn6 zJ6ECN&b}KbhLry$8gvC_OyfIJ{?{*xl*zwEO7>5YssMWM0&aKm&Ji|pfiNHr$)S+R z;{PPRs87)N1xE+{p)GW>X-59Rno81eyX6(Xjc=n9EEZ=5&R@wr=&H5ZC~kYrPz{mX zzRidI#pjxJJ=WOGt+HussL0Z*SEwkA<&j z=4*Tx{n|}L=$+}jYBQ5|w>H??zNmbiN<0Zd{ShznEi8_k zQUXy?dNA6k2uZs7@UCSm4-tHCy>;gG)bFg*u=S|8c*y#Iti4ZlHb~+=x-j*}C%;-X zqaNw$E$hU)U`FZB<7aN*VlXb)MH;t6iC%kUU*}2F;T48~obCH?8tIuNJu$jJ)4`V5 zNgvBVme#Gs#fY&W&W<-NQEkylU}}#$73jV<%OI+PX-Ld{ z!^p(s1FEzcsXa(_{Qdjg`q88nX79NOBhyWb?5 zw0q6C-%x(_ovJQF=8vSYzBz|(K5IbP!I(ok_tU$j>}YRd1&Q7t{jE5vHWe}}E>e=Y zS$<`hw>Afp$$!HW@EW&)y^#86@H!_9|FDPje|U}akt{9f9khr4uDhTaJTF}|*{r|2 zSoGP7z4`P${Ivh=7IM&K<5ppqRq9&p8Kr(-R#;W!`az($knW=e&*;&bC|x%-;o=wNOiW_$GhV5=Ay1V%O@d^Ua^L>@ zH#k!I;Yj$Xx6S^zbac7aP3RPB(3`yuTO9E~EPh5&YB)zvg+^s!(6P0XV^`#-19g)x z$L!byo{HI+@lTZdi5mF7FTGI2nMZo2M5#}|f|A0#edPC zZQ?LSC2bb!JOplM8$nGw-5;LaNBl2!aVjkJ80`6!Cxeu9=Zh`43jy0&V6=ya?@#R| zs=-ksu>EE(VNh>8d0*kU{(FT90UAG;awKpSm6Zp2dqLa|a*%6y-1xC`{PIla1mSz2 z49Pm>3o9%KK!093X}9E5E1CTk{ORxBwe>>#DHjK-5;(dY1ky;dC>aPb3YLUF6DUUL zG%r{SZUF%SF|nq1?@*^KyX>k#KfAStB^qRZk+wQl(R*H%{{$08Fb4v6Ac zCBUEtaXq(n2}FCrItnZxI47TQ9+jkyIg(LJV|LC ze$M6#3@t;abGKNdnv63KI^p7ylT-Py)otdeNii#5->oKArTKVKk!%rZjA-3#UaqWX z$?BRp!RBH@YWkZxtJk(r35&&UKmAUWb@tP~zKq*(Gw7$3q1|`yueOspR})`M zt;gt`Og1bkprL{C82rjTtH&{Fm=+71(irag=)ocR;o z^**3uY2`f|@nK!XiY^P|J+f#;LqYyPoJc$GA;?m>ENdOi$$H6BKOXm}@oMWc#_i(| z1{RO6%mw`yx(LG%S1xK=+ABs?!m#EtBcL+=gV(s=DYWk#2NAV_@XZ%vVDcxe3-36C zKDc<*?L=-}6(K&|m`XqGu0Ctw%TYdCRUa66$*qfCkHawE|3=}hEt?}$poDv z6Nm+LQ*3+=ZOO;Pywgd_Up#QB65W5=XY8Y$ZEI~7h&Vf{m3GrEwwEoVsoL{Dr_51z zoqWx-kN5iE!(3A4Eqs64$GNm~NW5eW_ChQ@!M)gMUvxb&B$mcG$2U2aUr;?_&6Ywo zyCNmveuRkdba&0Si+q=K&TLejuAfoH3zhoZe-Tz7bAs|LF|P6&BIq$fmT9{pi|{km zpK6AZ6ML@M&|uzKGG2r!f8MDUk|#$LPx* zhD0?)i0a#V2#b&t&8mhtiCKQ$4y?<85L`#I-G6g__RG}XJ|-3NAzL|Cc03uB zGXao^^3v#V<0zgsRxL?BU!NTfx^o94pS{NW7Qxuij|G+`qOr}E^(g0 z4;?G;iax>VX=@&sav}i_T{aMhpjA!)Zf8Y)` zNt!^8lp2}!4?};!e_X7-psWG^@fT|6-Q<5R#r_d@@N%+TkcUnT^{pS8WnSMpIXmvS zbvl2byw$p>P?6R9YQlQ#R$Ym{TQN!Ss#oXlH){*_xf!I#V_vD6THGtOjktx{g6A&o@J%6X)&h; z22y9f_w^|y_tWQhQ3)z|cMUbE`;xdEW1<3qxx)WwDW(3llmqd!T`>@Baej9@nH~JL zy61_-a5*F4vtv5I@p$JGhVI$^I8pS6*@Lo*TLT$Bk9JMI_hDZ~Val)M#cI7c;|c+M za90n?NUi?&iHY=#jA7k#IsZ4f`1mqGS4T%xz7o{@20A(r2nggLSV+p|_$zg7fpY+( zqc|>Vr7l<-ttD{lkGFaK_els9cRW+O=14C#IO&_tqUN*0)iqlU<~q1C04W5( z!o;dUO4Qlf(15qkvdozf&XVu^vESLoo+V~&-D&2d?(9B(;>uP$%c*qIMg*Z?4eBGd zbpc_yUgkn%8r9G|@35rME8%rA`bf<*h?Hi&Gy}84qzI&?7A&L^Gxh?R+-I@@GsNQJ z@=U0iRB;T-1OseWiYJ><{~zT2cR&WbL*V_dG|9!v?7z_@|4{$`(ji^u>9ZU`Pe3Qfo)v8dIWAZy+r>(BwMpnH)=lLtGW=*Q!R zsF<Fm=0YyYLmvT{+@@4{G59V4@Y5n+h-PrT(yx1Jd+ zI=Jo4+EDMBDaFwsqsZw$fAxFPhMl-X=ppSsew+xp|E5UU3UhtvLMHCE2mU}W0S!YN*ZcSHI6&YY9E;S<_L-Y*0z?xznUrTlmi%<>RngIl~0D0C!74v z;57nm90>1BOpyI-ftyF0B*p4Y^4!C2YTfTY^LWskxRoWcv(CD?pLXHb{6^$dk*a6` zX%y$FvonPpSjoxB!MOi4f~*9XsfsUE7>P|&4q(5m)~!^)ef#!(MuOr>U26mwli>m% zb0XO4ndqW1&b1;8_1R^M>jNdf29hm>d$1^53CSp*qQ^F=*&qe{)q~&S07$H9}yj z|My8?q$MKZsYPjgT2~ftM`TRQ`FgwCj0guj=Gu2kEf=ki8DMDbcluDOK4 zZBi9G`wAiHVk8ThI?{y-HKs(`A<7^`xd0noGnRvBrwq#GW%=cee>%qht)TrUtc>NP zscpj0-v<2U?$2qF=VQ1RyRkp}Gu;2Np6;{Z(%KSAe6nm2@cm<-xf9Xi5n6^l)_UFi zS=5%o1P*WRjw+Y;jAp9*`*|U^fxXQjag#2bKz-`g-WHAod3S+=+fEP8a1AJsUw))X zpt87(FC&sFwl}?DAVMP+ZCko@zsGO7HjAsH=1txE=Lahc*0&DNR`wcs_V+8a%rbJO zPMTVBDhv77P6A03xY%Y|Lwk!8AoztXxu+w=suE0^aMk!cdjeIQtP^a}fD_2Y1PzwlHR0Qw zoQ`mC09cTRJmB!$je%MNS0*b(LAL?XY2YV;xHLGh{NRBI+yodoTp6o?coJieD?rNCy8j?9dm;$C;bB>Ur8|9H3x}4#>^pY?+ zsmiT7x%@m&7lJnw=_@W2lCn}GAc_NI(5kc{q}oLXCfXEz>?=9}QWQLEl{o z!uedD#koT3TwJGVNBWYsyP_8bU-FRkuHNK_+?%>83Q|bTh`5wFVl_Ea4cv}X4huqE z33Q~F*#l#dg>aK|F)2oT$r$ku#qoCt`@bL+mS4$L{)YxBPUZQRR{WO+`44$V@AG@~ zUWLAn{73DJ-xPUPen*%N&q}dj)3BR08F8YXVeZ(3v{N-ebkD^JR{5$>4H1QhgwaV$3O07 z)TY{tcpqoS`2Nm?ccU+J$xm*bor)D19DR*yT0W9Qzt8;I1j!#)Ef$%I$}tit&4Dkc zc+em5=}ImB)&X->z`P=%Pgu<9#;o7YLFt^bkn>9=3F1z<#;=ZCd`B6c<3%>$7x7^!yQ0SYGZKA0doZYXZAM!XBf9V`RD>UA z^mqMo>uE!^rN`bvy`|w|`WVl1>D&iNHYCV|9k@1gmnsZjWBYCN_rvQ3wm zl#!cot!vVGKxDzGR<{Hk2M9RgxkXXX*=5EHObGmy+m014|z_p0~64_`d)D^Ffn~@ zmdeW;MK>+0TsM>nJ&` z5!%2MSg4CEb0;Hv{i{#j)UouewlnaOFIB>v#CXLU^Q41lv=C!^{WnAyva>;S-90}U z!y3}lSQgbx>%1Dq6|ei>BSsf24x7L=YCX=kc2#@eYkF|Fwa{}qn9H=JZ~fpg#aA(} z`dy8t!*#Jy^8TS1%HNGg7##u#()vg~J-+5-;frUdE|Dp+-&hGPb!53w;`5AM$Pmr$$G)VxHVNG858v=YBg!Jsz3 zRs8#=B%|nemWbWy;{whWzPuc!&yO;{UBX??M&(}`=|_GWWF^r%Fz--cJ^G$LZ zzBj&tT3obj8bR;%~kjb~}N0FTU0(KQ601i;{>$5ZD z*TaaGt+F9ps=~P62$ut}$pz>6vF*4!001y>d3=k#c^6)k6=T9KzX(iiAXl4%SlfCG zzUIP}I#J_j3M;@V80vu3DH@iKGlQQ1<~XiYZR?BMqnTM*Q0JSLq44g(KO9`G0`s@f zWAmTMt$wFCP25`FGvzWVA8Hyt-qwrH`-M07&}cl%>o(ibl~ewHfaR zhwGO)zPCS8dE4sXeVDGK<~a+({kmB z%zXySn+Cc4hK*+?kXbg}R9SmkIQ$?3#NeU2-q4Nm}E(W>=_&)s@i zl2F`TD`BtkP~+qHxT}4Ch_Vv{@Kiem>9G|tVv0xaMkH>a=UN?XS=96sbmxfQpZILO zYt5ZVy|6vxcp{7-e>Cd$tKxR~(AetHCHuW&f~6Ai{L#FE((8#dAm z{dEcKp7;rIr`0giR*d%;79MDTBpAhlE;6|1jpBuOxk4$xxvdT|B;{=-`>ZYG2jvt zm&c%rpvl*O1rwQJtrM)oJ5ol*9n-;*HtIrRI%$_2w!1!cE2!CaWE`}Qv~u7W_2;>F z9t;ZZ(g9sk)RwUd%gPb(aY^8k2{_Tp#X;G7`4dc(pjY|w4lbC0DkO6WkP3@JR0-UW z8R#$}9M^j)OOYP>m-sGPxob4Aytd~}8xYx>z!!7XTm?nq$wO;PES< zS80cmYL?+jDVm)5>k4VDuse9PP@SHkUXl$!rj6)s9uf~V2XfvmIbcLDt94JPbAVw@6ZL)En~XB?_5=PYse?4wz( zeCadmv~D+H$7?<2wfmu+ye&<^VmP1bpA`f24F?gH%@8TkYdD_0s^n9pnN<=kh&{(1 zo7G0%A$4O!YpTJyqVi{_fpN+2g{WJ;Q`tEBLe;+epN#Vpj+OmH2|>+%ejLy6zN{#w%5^Sg-FG}(e(ix2h2{1ny`kER;s z9eG@x(-McUT6GYS7#0}Ku6}D@kC)AVKcGPO;c%cKXk#f|iSE2HbuFYTmAfud>~(K< zP>B#i`6UU;%srY6e2q#cQvb^7F2%7`{TwKZbM1El(E~5YKOjGmNS~g$#2smPSSofDXS9X}x6{`>N9zzl z5-N;@l_QUyJN3`;)8|0E;A6oIg=F^g4k>d9uF~W^!hE4y;+a`pSJy)<^!Ud!+yKs` zmrP6E!W3d>$J;m}zg6lcVGXG+FLJa}5y@%23gLxt*>h4rQ3nudW(;W~EYO_{-17Vl#L{)h?cm-g4uzhe0L2uRehD}otdI$$Q(_c`H4cM&KGr4cNAiW|X($+Y&;)W@_6zTRH3f+bl+N+k z__Cb`xU$TnsyU6Vr7>s{efT__dN62lIpPa_=MVT%&z~ z{-<=&N+A7t$_r2f)S+J?7Du`K$sdWw2yyj)fBe%la%=t|rVqJ{RRJB~d1uIfJTLLc zlytA&JDSr~`Ih(V_!LRimy1~=0z?r#^THFlYa-OwY-GGc?Pjs$oynZbl{`T(PsxK z6Zzef?j^rMftD_vdGhq{5@H|F)>`;G#zch6!%ptMLq7ghvEOo2`^|LlJt?N|6_@Y6 zSTuF^Z!^i8>DkxaJM%S0L0xJ&pcH+le)gHg?@6rN!vn+;q=w8vup3$QV!rj7MUb|5o(ZST3Kq@xZ}ixc1(wduFp%taH&+$5=%DEu zAAgQJ`?DY`Gd0y?rK}T}mgUkW?CGKB+nK7yYwPv7CovGz{2^wb;r9_5MbUuWUB)hh zyLuhgU)K6+z2BIJR9JNf$$j`nbh0d|OyBy7JKWTuA15YTC{mt9?(yu`8;&i+3ZI91 z6X8tw9UPH10r)1Z*pn5$JccBd#`P>g7g!3&@2y|=R5mrq<%yW}tehTbFt*F=HEw@N z8mv|@#a`5HdFAVXE%mcoTbrCkOH4$ZAt{EgE8UB030E!S^r;Z!B^-IA4X0ttzA?gu zggxeKvZw6Y`X+B|kzK{(+e!f0tR*`U#S9je=T~1!S(+s~-iQ1KT71>z&pTB1{vIT@*P5gGY zTh>igM_x^J;2sr!r-Ktpccr|rZ}|8jnV8nT$?Erx10n;j*VVUpx_V~!Sa;3eX{tKy?^DKS9`i^Y z>+mqnkh%~~`g`h3<}6=r(Za5I+oCi|ItPRg-_h1avGxu6+uC?a$5S-s|sHm(&C*lS39U27* z806A1obr{GmAk-Y7*Kb>(PVuvQ?MyZQ1(PV@#sshok8JgfKv?h;iwj?T|ehh zR%@`*28&vIz-&6zJ2^MUd_^7T4lJm|o<;v(%2sT<^i(%F87{XRXC^74SU7&LfUtN+ z3iTUJ|D3RJNI~&+hb!LaXds61!~K71uYU(LKOzB>oXe)dziM6(;a7;`gX^x%2J1)`9O4z-&kySuwrUa=03n;u70QF zA*w&}RAG-xNu+8vwH~xmeJ~)n6jmpF)o^yyX@gjEpGd1my2r2VCR@`!(n`OK2v+*W z$m`F|27xYxsI$XqaZF$~UoSw|3>fDE$)uN{ESi8b2;v7$qn7eqOF}R2LNAs-(P;-7 z>o?EGZXNx3BS-L<&V0L5=*G4KZ-*MxAp-;U{VbKb+W}S9@GnV1+D{O5t0Q2Z5T*q( z45bR&YHchb?D`fJ^GWbE=_9q`wc?3Q5H1Nn$f>locue=)L60$^$3)@ze(z@e{CR6n zW2riQ!|CAsd-+f>Kv=j5=0%ipf4UMwI`Dje-EYBhcehN5`jMwl#4^wu1T+~S?iwa7 zfJ$kj7PHXx(MY7=#X1<*0>l|m1XWCZ`Z^3aIo{3AS5AW-0Py)b0L1;p#RaI0Cg3ktA1&fiWX}CC;Y1_mml6Z3W~_J~lN&_dUdr`r4Y|>`m-g;H zGa{UX;SB9D&L3pChe!snH z8TVui5BNI^pe)y!;km~K>AY=k#1P?kvACIA)Va1MtoORUX!+HR>!y}3ax`TPG;Pc| zKNoteBwn$zL0Nv8v+<+FN3gY!DDO}svez{^!Qxr^9-Dsh!wGp=kDg@pK!M4DK8hO; z+mwHLm4YEw!!c`GAlSo|?z`?f+Gh3R@iu{KKg=d!#u91_>H758Z!Seu-83&(icTJ38KeIowQ zbtN7v@oEu-Jj1)EKouqwci<*Vi=w~QezqN|(TjRc9bUQwnOt!%v$;&sGdPBd%%294 zv>EoRG*)OOrbychQ+7JsCJ625Yn9z!#fvM;RUNLi(FD}C_+hpTS+hG=9+=K%m41t? z)a0#Bl!ugd5G*h8DZe(D333R0;Pj^g0#TO~ywGlj_oNVmsVF7A7I`eDcuk=*%#Mfu z4XM{*)j*%j*`w1Llu+aA$8IZj$@YRzo)~_;nN_FKCMTU)j<+*XDg_2EU6Usf#p= zGvHl!1$L`K-RED|l+{{qs8l8sSr)Y0xR#tf?vh%P*`QKuN{W{k}IW8HQy1qdXXXm8Epeb>6n}hFE_BcJZhFE z}nru-05I`RAGU4^wEu<#m;MdJQH5beMeUcPwl){MKtuCsI`VK%JWTt*e`8N!-c3mGfoe z$I9FKlbbYJNbzfjL4aJ%r z@)&eMcMUI(rd~~coFQ@)ay&8RQid$VA6%yth-7^P?wz$^t$m`j&1{s+6cPE&I!sPs zV+ym<@{|Euv`h$#lzIkgZn+hvG1R<{$n?mPv6+zXumX_rs}?n4!4o2uG?)(+BL@n< zR>?4n`qrdh%){%tiLLgQ(l|vjDKH5h_HuM2U1qrlt>e_|iy#=CQWMN6Oq!A0xqv^=wgVXfT0e zPv~ToLn~jm*T~cN)(dyMC6mTZX7=%&B*cCF&U$z$Ms6;e@{u*gLxd>G$8X{fXv33j z;Aog-b&gs8!U^p^5$bipsD{wNcM2t$8KSS{g`1#?m&j_ynKpZEcLyd0;^hQ6aXE2e5I z=ETc-?6?m$0c;=Ar))9A#ZNmL%Ivdvcx2j3lC<7GsGdt}BZGl?{(S`&3bka2p%ev@ zx1PGgr4mrt8$RNR2h@d9u;dckONV_UMW*}XekdyGv zu~|Aq=qQ+TS#oV;^J0>d+Yfh zQ@u!uqS~O}Ayg(XY1!-e(#9dGkYPGTfp(;(?b~4IGuyARllxuBd_R4h)bkg>_zGS5 z=q6LSqn?b%Qr2$G-b!=U>hX-)Z6EH5s#4Dg+^Nj1Mx!$JJzzv0Glxe>&{BNDY`F_J z_dvOa#~=Fd?%F>@;9pGLu@r(hq>TU9ctjhyvi$Lq{Z(;%=f|NhxJ_wEh6i3&$L`+O z-5Dbum|^j2pXG3TpSixPH|56~3 z6di-tfX2AUMJK^Gdu2u};+R^6vykFHqHjz0D?nPL3fn+VCbR`^;;oT88Zt!PV{lc0 z&N(FJT?HRnMyXFM@!WDYrSv`*Ts1ZvOuv+j5ft-NC|DhxYn=|N|3=MX&5ry0%y!^D;y2`q4RSbi(5pj249FMofw@iBx=Heka^5r6UGh-0}`l79S!>&XIZdr@C&;V zG(*R*JQJI`$aqbgu&|YSQ!vLbx6$E7(?-=U+|I=}gzzJy?}sNg%073GrmpGANTl1; ztDFW5xY&taeEk;r)iA7Y-sEK5NcDaFNRV3BaO*~r zD3k1Hp*EgjQZ}LfPvHDivosuKEUw-Nw5bDY4fXXzfs1;qQByZ^+u9lRwyRTLqtht} z+ust1=@E*h%BJI?e3PK*egPp*JpDMNqD`x`tQYs04w3jY(VU^!LeIVZ#3GNH^yeB( z2LttbzQ?PY(DLjro<9=#q&FBaGX}jjmLIje*^*bZC}%>Tmyy4~zq&-{@;Vz8ayxH0 z3RcQC!D5#YpmCTsL#5!SjhfOF?@QnTgkhYIys zA0CJRjk?s$=CU5ofL&jR%}me0O?$H03gu24&$5Uxk@!_!Y#|;cZ9{6{Wp!Hl=Qoyb zr@u}t?+Z}UN+ViRP#H@VP|0h_VBoxJ6>D(XqX=WTYbAm9>F8i&TQ;B-Z?K!*GV%h>S_Ji0K zHQJ{x(YVg2sU#|Al4>F4az1UmOW_!yx+#no{)oK z-Sb~+jl5soZ)+;fNjc^nE#~Lvuj!-1ttG}@i0mo&;=u+>EVfaGV6lVMP3y`y7S;~N zS9GujjKLqjx5-GwQi=qVBGbGettx(luSMIYfzC$z)2c(tg7;Iq!jyft6(>70l#GV? ztCvTyDlV)qmUh@zny`dX!#I3gRfA^8Qg)oE^geaIRdFxev@H@M&gM$X=eDXiHOg0B z5!t`kk#D8Ko%scu8kBkBN%QWg|K?ojM=d9Zq1?x~Dz@ca>&`J9*>lPTmi_C26m>e= zSqa&~YHJG->SFbVG2)*E+IjA8pKVSa2wioR8?00xRX57roMsT{)}un>StT!eLbTqI zxXdGX8?Hr4wBnPM-=QRK@lUMz2SXrN(*hX62)WP7K0uJ}8%_UIL-!{@E&QpAev=GQ zXeww}7<7NZ)AR#r@lik&cSQvl{fbipgUyf_O0csHq{gkGZ{3zz_~14Zkv|seFOAQn zigK-;4`SLMAaS#^g`hpC7CaPlXE%*gdBHnAJsyHh^&{#1r1?(&7_O5YH(%e6Db}fE ztd)F)%mkLsW2)x(V9zOg370&|K>woW?T&65xHY|eR8KQzT#DeE8Qi@!&W~bmuth?j zEzB)^c{7ByX;zzM+cUNFs^55@E2Kn%TX?!<()Oiu ze)T-l>1TY{RI8uOlaPg~+N{CJjC{)T{(yGqoi@Cu#+1CM^Ksplf!C0#$5T~JJTQ7p zbY#&Nfq+S{PcT{Xi9?%Avc>%{<%|CFmt^#P7na(7JPK^w-(koV#UM-x*%`syQZQrJ zsn+y8NYQ|@OSyX?30X-ncB=JKP~@^c!LEQ$k@cb?%j*(<3E~WI7!v-sB^`G7vlwEe zEdh^=kZs@`-X-%tZKZ{Wnx?=IhV2*j*R(?p%F#m-I)!Dfd~saD*0vAN_}Uz?olOna zn6`$p`X*NPw&xgXTCK}-Yl4LdXA{f|9=mCq*8}IE^72s=PE|EElmHRZ^>fL5wU2YO zs0y2XxPd9DDEhDiAMfVy5Wc+sOOcWN5#CAIS^FaBP;p>vAo=gJ9eA-pt1HC@JDQ1L~!_75{$cy8_O) z&NtjN4MpzHyl=Q$aMR1LnVa^wM35Y-Z1)Ff%SJ>VXQKX%C#LuDkh8^RCtgM?G&?}xXmE1VB3KE z={fe~+Q7dIb)~wwE)a^QNp}%J^sQ|I!YJ=QgV`_;S4>T%dB9_QuLs+Y;(^?XjT?fd z=!_6Tn!a;bUS#JZ+rp46^QZG|Drn=E>j7tj^?046(3sSZ5zL;J`neO3k`^t`*l7NnU6;8@M`o85vO{LK}p|9jqCXxKqtsZm%-DS3(oxjVO-@V_rcyRtgBlGl-@2 zm)4%A_@F`imW|vl@P$Sfm8k|pd}njpTO%c7&j}}OV;s2{&X*zzOE!e??OI+FL~4ga zj>;{S7_9UqHLI|)q^vIV55h6fvM~`!TbSCCI)@SK-eg7bB<#tf&SNOZJ%w7cTKJ_k zG$g^%@oSl=BYD`CT$}ZE0acSmnBAxw`_H$D%X+gJvg+h`DK^GG)u_j;n8(Dww)b}* ztGC|-L^no8(vxb6E+PoB>DKJOy$R1CN_Br|`qo+xmbI=Ob(cG|9HsVpc9va@=TBaR zIc)PA2jNkHviDinpNJ8q0piKO?n>;b{8QEcbGl>BV(xP=fR^6{%^hy+$g~#|i5Gm9 zpLRwN0iCNEU|#0~T*s|*XHG_hu17k7Zuo8ZK#V{iEWs&FfD$q4TV)))mE}jB_DiJj z!6tT3rZl@>hI~=VtEgofcbuNBh^YUdEhDi)*lhXjgO@$KdTQEN%k{P3$tgQ3LJ9ln zx9Bl*O1*Os#$YHt@@Ll^P&`{#eDKRJzJJ74ebI(ssuTL5+n{vm*Py$(!UW3>jeRNO=j~G^Qh0TS@c6ln2DC{%((}-n0jeYP7ZRF zG7gnr19MJ3v?nX;B)QMzt6?fKqV0yJs8&mA`3vl^)V8Wvr8=!a{x{Oyu=*X^LPT|n)SrCIL-zgW9ECJD&>Hl|ICGkwoMh_&D|u`kzwLKl#%o}UA?eI@fI%G% z+?VK$$5@PuvkbJZXH)Pp%yaAdxv&QNg@$F&sN`qJ_Ts&u!2^qlHX7~B8q6BTHjHOV zXfBMr6+RSNtN{hpclYrR8`eM_ocSehB#~ za63KF0ZL!6PSuh%-Vs9>RrTG#0Ai}D%`n0z}$?D;Z2K)I0!}@x>4#8ke z#G4a?z#z^?Y5b~er38JW05-0NCu_^hk{5Z679mZ^Lu1F3P`PkyV}aICUZEKAoHKT+ zF>MZAOtLlAW(?ykncs<$kx4H5NwjTRj*8ORZa1yvohocmT5lsE5|CC+|Iy(dg8eVt zOm}6+?=bPV?D%(>_ns$ySZ{4Ez74C~`mq&kHc{x6=b_^Bu&6-R%`7JAz|H{wKLQWU?g`I{u-2CuXv@4NM7g%7McHn6g9wi?vrm z-pAJH2B}HU1cIJ6cSgMaw6A<>P#@&yXn|%^g{J!~hxJj>&QdR$pa)A0rjGS%uE+w+ z3dudnM>2TrRaCorUxvQ>a`>>aRpms`1{Cd`l609vTWd-inE7lEWv z$+&bThuaB=L2TsRsBCU2rmX-qu}${@fvde%lJ`6p9`)y%S$!nczjVD01_!<&AoI0a zHJa9*?1#9lXJ$n#*MYf%+dHYW0INZ(Dw2$bNc$UeWux(5SRB|ps7eU17)`89)CNkS z!zQgrjO@@p<#^~hOg*Ph?RqhM*p4aEFF<9%&5LbJSG{h=Ms zs+wg+PJ%mbsY6}%6Xk7wH=Cg}9h#4HraZgD!Ggt*LlO=YgWP)r`hcrWp(~2xzLX2} z+m|-KHgN(Vt=t$*d%BcS{fGSs-q$pOC)O;T^>hr3AjkUufJg05MgL#W`f-n?Kn99W z(K9l?+c1BI;r=vaelyH>gQp^W)rlp!U_hNp`ddwnj2Kv21Vb0#Me`9@gH_T#3YCqN zV{+`#bfTqHlcBNwb-@@G9M zoZp}8Dwh|7gGBi{PJ$XvY_Q4E#PS2dHVRs>&O@7ul^3SA>4We%V(`fnWXjPpO43v> zbI(;qlYjMs0j#xaFyG{SocoULq3`sBXHnbQxmP3GOO0aO(k^0LTk`1jGI^EVso4~v z>Tgx5L%e(L5~pXsejICG3JG2cVIBWK!F8J=4o^iobfp^eeDVF=@m>oIH1S6R(=OC? zCyv>84MTAe@wrVgffcN|l*g~|afY{h*w^v}@i!V6xlQeuoDV~q`z~v1VtRVywG0fi z<72tvp%$P%#hBAi%^ewTj=XUHvO_?johW%AZ|dZlm|{Ie^Qh;HccomFSF0y9Dk`DC zvt`WVfPG_d$goAY4JFSWf`#SBK2ln|hnH@8xT?>KU*Ulu;+7eY8o*5XP7@QX%ay1z zo-k%%{5jzm6^@$qhFMnvw~BHw@vN<_4SMM>aKghP>MS-Ri@lHZS0-jhZX!Hg^zq%@ z_7TvR&r?dCcgmn-wyHx>V)E4K^Qme+$FUHzA23CLYl>FAkMsQ=O5456Kpzc30q9u1iY)p&?=LaR-Ls2%6?7@Mk3 z=fk4Okcwl^_w*+rA!f2irb>UwJm%!{WhEMt|75);GO8gkYOYj($=VcSE;1Hdl(Lk6#F`F!b%K457bM8=wkj1Cwixj`6__m$i+T`MTG6 zoWt%Uu+2MK0|~1c0xj5?iB;Vwu*WmP-C74wlAKEo$X(=L($IB{rp3{HA3zhU{rpt2 zRodbb+3?PDXgR~(E9;!1$Sr*D3^z<^)*komo&%-faA{l%j|me+tI|7IX@m2MZfxTk z=c4bumgb!#J=U|DJc^Wgh{)ty*_lk0H*c(sn`Z6Rju>_ebdzBD(<%8$_bAa3Jp_=v z(;9Go{rKUUX!VJZtp^sHUCZ!y;_s$88r5QD&~YpKu6E5*tQMj307EksA}%rDB>> z%z%GPB||#9#l4AzYwu#?9d+kSsq>lr{Sx;`q9?nayY6bLsyZWwo;2N^mis@J+;~QX zPcIUFnLV-Kb3r5nI&iQU?_Il4papz(m)Aw)DP!p!X1e>2FGDJd6!obSU)1-*k@HZ@ zm;jc`h&_je>a;34`s%k_<&Ui)y?$r`#>3!>gGcCMywY0eJIRM;*Sm_;)YJ&riBE@$i~r+xxlE_!M#^p>cr ztWnK!4-OqUDdLp&h*2JVg84x%6+(dUB9at>?y}&AzL+*3?u@)O#ERE%P!JH!j|xLf zoRqt?0J$jr60nX}EIF+&Wgy9o7tAQt0z(vf!)Qj<@y?6Z`Nkl}i#`K`q{eu&*2=R7 zto;?J^0^(+a*zmmoHhBv6sR)9c3E6A{+$Krs=GNZx()I^3j%gU;4e1bCk|Hmk}XbV zvpEv=cnh3ZMTFSDtpSy&AT%PoexOqUOn+7B*$2%K zS2ek&(&CAxVdr;zSe-GYgQpKO@Fl-RQh{QTb2phH1H!BeMHDxyZ%;uJbQM}l*2d?oophI_hQ zrZ~MX(12^x(R^}rxV+8`F%h*O;?d@%;Emcyt&YuvhwOOn?A9JiGRfLvR1;bXMz+vJ$&%IWUWq9Dgdl<-$f&1{J*Ch2S-Qk zDx23H9;v~5mVmg@(jo*e0s=nw6AO?vP{#rVrksLuXgn6Qt1;R65k!Iv-pdumbXODi z(~DJRAze{5}MZz(@FM(2Yy`yZpore;(6@G61VG>MY6e8A-$C_c} zVXVkA2iaXZnVwd@E5unfn-~dA@J0A4spKmF8>ONbDTAObO&cPEAYh7za3X~vwM4?Q zv@-pC^MfTO#sZsWdjhlYS@YI8I>~L*-t5HC0W4 zFB6@PgTtHPcZ0@M_v3uKr-Th3KxAho6Eo(pp0+R$o1q(JMdar^@hEj5rsHoEa?{M@lPyuv3_}`%VCtOJp(QW*VNRaJJA4cR?Q+zy*79KX< z;D4Kyot>SPwW$}R>Y$YXXbE>vd{Sk1ogGuq`O!NlmdB~w-}DvHMnIsTH3 zl{aERIf69&DbD;QQ7Kq~aXUdx{i=YjtV1`7I{ir|+2RQ@1zA50wx*T4PFYP2ub^PV z(ZUc<#6>h6XWexs?&;H<8byU0n;(~J<|Y!vK9W7zOp?Q*(#bEKa+#hCDKY#yU5r`E zEYsTbPZYh}XG!<8Fthx`dM)5yqXBanFqmvnJGNE7_~C3%Qeok7Y^*s^aKn{dHCuv= z_R%)<4SsxL9*q0DbVKp7(=nCp%%Z-6BIi9vg*1)D9WM;&#M9g!tc5XQ$uy-QC%T?0 z8Q3R51&Pe6QJFf%^=?A_534bMI zCB3KUySA+u)ICYGnNv{w{Dpex=qkK;{U1%AOMNhSF8A7u$N3_0NZ3@c{_=2*3H4XiT^WM4^t>~bG~RnxQ>~FgHu~1DPuo`a3#KbaH;;ir z9}v|9K=HD%i3-*!OMmrB)3dK%0A^!h&VBcKDzlKA@l9evg450nUG|;CY|oC%Vpb=~ zGY2^vX+oJjmDZADExQMdsJ2dKA6V-!PVJbHQeC zee+m^K+g+#KKRYd#fs{{@zsK5*8mW#)eyMNEO*;YSb7j^@7}{z_7*mlvh!ooG`qv) zz-P1BA#LXXp+kc0b~t|NrdAY0i#?wv4i{k;;e`}F=P>1P99biM0G^1XkmRIn`#Uft zPhgh5p*FH(oWzoBODFulLjd8(w98lZulnOl=gTi0*Az1vm}4=aW<3u3fP;95*hh_m zljGwDXlN1P7J;4ZD_tceY=Z2^StVs!)lx(*-&@@8L*H%g+m6;opWUR^E!(sd${SGSy}h;{ zl_Wk$LxW9Ug@Qt7AuVoRM)tJ^&(Cufey&Sx^9_mjA+OkD?b{fWLy{+??_ng@e~%q~ z8gMD8tK^NOMaZjf_j%jzgzgR+|H5xx2+~-j zR@KX&bv>4G_v8i|J%2V2+zyTHaJ^}Pd8^d5#MO33C_D-kV4(YR(iRs>;j*NE6sjcS zkpkv6feWHPEe^6sFtFCBsiDt)vkD}Go<0rE2OtVnTg2>Cw?+nn;f$ zi}RcGvIk6gWJ<`1<`Yxl4V*E^$B6jh0r32TVb9T{Rqz<}azoNNl^&ah$M&qtEM7f! zI&Fd>E+)p-){!!{TNb zM;NRmTC!))v7n{sP}giSTPh>Ry)N5|K2H@)E@w0do+gybqAYXcpoh;e)}goFsYPQi zPm{P`tpnksaJJWYW(Dmpf##lQmS`lG;A@44J$b4gKTJg}wCkPkA zB?bYu;bEw<*R@;}S_l9Eg^~VUuGaq>Cm`Ga=osirf^d@*lJ+~?ym%Y(fK4{=+dl~T z7l#0X&3}Lag3lk$;dgMl;~emRHTJoK4PWr+2U{fr8A6SYn`2tcLFPaLTQmqQ?WrxW z>yjs!aYFR2RxYSCD;`E>pp{A*Ygqamdz>uByNEgvGW9viu3C%6g5~@|y@tCzPf0uD zbhE%7KeEMbbj|+Q?b;%<%3xkcEmwt0kp(9$V|#P#(m6!G0Vq@eBJ1?@E)f9vbfnPD znS9l;Xyin0ubc1Bk2y}t8m1D%Qbre7xt+pd`OQS_I{2KL?b#J&R4c*q;Ma=#i8Y}gcV{W_q z+p&E{U^^MOQ;^{6cgm4Zrdd}%N6hqlGvf3qD$p_s2Xk7O9@4v25Bx4G$FMMcNa`0a zeRe}JZswvRlMh5QL;ahC;la?`0x8;nz9!Nfhy-yRAykBfVm)`M80_wA{8m?o?B{Zz zt^rIzv#X0%GjWh{NpIBs0u;v1_6Ehkm!`aMs=nz6fCR z?x+`z{2S291Op2oShlhPTedf)lc*J9vgnl(2naP+^r}L&4GpTHyw7B`GQPkHIUGF+ zkDod!q?rlW8Miijsd4C+%2PdYj8((z=(^YtQhHeF(j^kGXNu<%`2f15R5%U;LflCA z3~fosgt{5)_O0S$Iuph%_d~}u<1Xcd~;ld?~<=8b2%aE zpLX=}pj6?dzDGm^-~iYF67C}g6(7jOHj;iLLO)?EIGGT;^o?Y18_2~tc<#8i-vQ%) zQf$9VnLCQ@cibQc2WeP5qNgrq2XCAUX@HQm9S1fR4}9S$y?G1AVb|13*_2q zW|KxVO2296Dq&{ZA171tX1?GERi-#^`C1^$Tc8@;WWv${3{w|e2`C_+VLvR*OGtlLm$Jue6(f{g(?3I<5p_1Ts@&GU_s z&DtJqG8L7ICu5Y?pkP6sNyTm_I5=hNr?ytM!JwHy={r8Th_t?LNttu7f8;&iW|la^ zR$o`(yin@7fwDk0I#c^dtdltDb}vYAA*J^ACYgok)%0ifSA~%08?HmVK0mPvKROs) zJt^|&BoJ!dvJKxXBB`?Noav5ENSwOF$a`9~7A`{n-#DQ1AJhN~#;?Jzt0Z%kayUm| zP*YPAbKV=oGFMwyhEv{J+Sgta%;k)p_eQ_)rQq|ax|u?SpYTc|vs}gQK+O^5_zk-& zwdQW0^TXIlm~305<~_)q(+Gjh2myUT`TW_GWF&JcOC_O?r)QFusN!SdDCk-@n*mNM zlGYHzu%FRr3wQ(?@Wiy0tf?^WWlUJGyCq{C%}__iLlq|CdXW+08luo)3?0abh(w{D z*Ixqmn$mR$wS~POA;3qY4^}*7588x(zCoI6XR zapU^5p{V_e{q)zi-?AeAejBLj>rcV%_cR|bZ%spkRhTq&Y)x+E1`I=weZBh+hhNc) zg#=3HZMl_~ zyLbUAl32hsbD|@X!$$L8+vYcR(Tk4`NLJgP6Z80JyJxo(@%S+TRQ4ooD80Ko@M%f<2iZnAkB@ z&L}ZHvJEE%B4CsDTN5P;KOSNEDvBUNNn!a8!z5>_=8tau=zM$iQFjz+=u03&vZ^<2 z07jYu%^*^?3SRDNR;{*r_X_Xp+TjQ%r-uV1wQEZ$_Vx0cMq*XFPl_rgIvOhEqW@(!IqX0$g;jRC%LmQ8v@^Io-vnr3#HveI|`aN=k_s$*d>IE$9hf z877Qqfq~&iQQi5d6XwdrS1(<^jc=fyOV*M=p{Fwkl)7Ev)BTMM_2 zvqeX8M z5}1Ti0s>5SEjalus$la0PV8sW-_iu&=Pu^_C(v}>6)yMqkz|h93X#Si{#%gb2LD5b z-S=*cNE=y5es*?t+E)WzKeL<>Q*AH~xC0&{Ahmjk44j4na$uiDO>Q5X4TkX6HzRVn zxa`9D`$$nKDTqHTmPNt-f`XAa;P`>-2L*(`t?a#gy$8xf&vRI9oH%2^$fwZD7L)U&Mryg zwdi#?IBF(FP=h?%Q-OITR78WZR3khn5*ji(aS?>BB z`NkW*POtOC-F6Ob@9QQ4-GZ?QxspNX%pd2?0@gT6f6+1d4^EW2Gc(D^U~ep4ca?Kh z*ps(5Hw}OWz~aP%?VZ;6L$0i#O9Y1Sym87p7T8JV=&C`DjUSIiWSkg3tv~08mTg5D z&_VRoH-oFwAFKF5T(N!P`9jP$5LS5=U14tWOU2>wv2)|urI77ns3*R?nKgwuy+$&m`>wz)k-JTL2>WCmae2nguP-WnFGzmHVCKz7?a40P1s z8jUObh^gJCC73ilG~XC?aIxNy1tSn}lq}{_Q(R-rvpKv`N4U|=a^S&$D7dd(G{rw` zU*kQ%ck4m$O?`FP-usm0=7467vF_+CRMc~gbzh^CKKFTU8;hZ5dzq|KTI~u9H)deDN}LeBJLBf-wZOy#qJWX z-vGMH#s1dz5&wi3P}_^gB&*Xi{B3pKN0qz0i_EZMX9@)a=!O4q9qHbgc;EF#RaLdZ za+(VmC-C!Mf&LuG`m(Wh-3G`zTHQ*#%+DS4E>uNvG*(zLv^V^>QBYozEeM1ebQ0eh ze?1&K=RheZxe(snd69p6U=Yc#1dphOs8#OmeXBX|*4pgnw>D73#KLVGuIP2p8-m?q zU9-&Bp4qI=Ho7xow=~i1u6w%C8f3gDC$eB^Enu_M&`3D{Rp=ttSuJV*5P76l3}FK_@0#9mr@!bfAJl^E(?vCUs%V@v<_3n>P%&RGJ=cs1Qa zs>4@K3iMRcOL-l30npn8vZpv+Esc%a%K6D3p7vU8&B>UUEalb2=6=u$6Y)YO(-ea?P7|-2>{${m6hKQsIBp~bX&I9S=0ui3 z^jH)GMg&wNK7%D+#Mk?pVBFno9iX@)7n(?8{MW2oqItBqeG;B2EgsQZ5&6N|A-Rxd z__RF~Iw5Q_XozqNexK#Q1{aVSGAx|EL&Vb06@%oqlivHYB_vYOE4k%@v=InA#hh;V zG6`s%5KUw+kIIpyZS4jJuh?Zwn)QA|;rp!KTYNNtPk4Lem{D8E!_Hn>bmS7z@m~MX zOp$uufcLAG;MMycl-&!(TCSov_nr41;^nsp^S9%PvA8=|EW7xfpSgE$S8l|ebkFn7 zvvjSrY7l*m_x_b?L5MLX7NG9Q9a1q^2 zYw7f;67of5ycSu!#>~aVMNjX;y~8Q+8zZ@ze@czezigC1Kr$FPxVXFwLA=e--_%|g zC_JbVfe@#^C}g2B{QLn~(c_KhudURloU0 z7q99Mo*RXib;lu3EC~32KXG*34ZvX8^f0PPdtfg*w_G-PKZVfuH7hR(-Cy~1SNkVcyNk{d~ z-A%bGuX2vBUO#8s%$i!heeNoTR`f&t-&ugL8Wzd?Q3>zLy~+4w(UUp1?WR3FCLzzg z{mm5>X1N^AlwS9n%a-nD4b$st<)NQq`jUK}zi^#yHWqS^*VS¬IyF)+7I`4I=$J zLO{^(uQjS}4ozaQy!s0QfCzHd`tkO52Dj89Wo36P86aKaj$bZ%36%|D$1Jk9v(LA=# z_cr%yT2Ci*Vnao{_D9U~v%19MUty5$DZ=_=WNSHR*NnyQD!}CmBQUIF)4ub^poCwb z_}Ju*GU3#DI&++({L)7zc5d3qH(GL4=(PIqjJLO8q~wgc!g}{6{&XvY?`k=u zcfBc7SGC$!8fmi}MYNzi4(pzAZPy==LH=`6j8-x#eFZcM4Y%sHUFhH-1H{mKF2lXo zOfC*%+Um<=-@+fy=-5}~u~{?Vek^2ao(hnX+N~xdtvl_Vy6#);0v+O?Dv?u^Ws2d| zHqSzaRVz~u$Vnv9OxB_;D_59z^S@zluc+p{8tW1x*T#~8#XrZtjJZuc8!>XfX6J%O>))(|JilTt$Q`ZFJ8MhSOKn5_iwJ**Tkp|tMIdgQM)wu?g((tL@vMj30g;HB%UH_2 zQHkZjY6AUhvUtV`r+k^*EhR;jo`^t(9lxLx)G#@2hsCC7Y~4?FXp;-P}5t^tx zlxw`%*VW~-S8^L@nf6cAp=F>%0UbYle$wAFT_8Dv_5q_P#}~VNI_K%PL*Z2S-)?ce z`>*&Q{FKP=FaZ507ThCXECI&6%-2bT{m+;CuIqkB>i(v%?C+S|d!F}>!us7qye~Eg z!ETk_Qb=Zto*+zWbH9ubs-<;fxd)ko3!pLSIy z-i;^Y7nfynJWTkPI=gRAy>n+wRSgdg0!rgm^XYSKMvCGeB2f*6jS;$QQM@Bef8tNN zi(TuC-gxL+=Je@kWrNhOc(a1kJ&aoyYNo z&+9sq3qq`+j}LvHQ&GXj#lYHS<_2i{e)GlpT*@VII?adutvxr@1sIylUeA>De!xSSWK(I&SWGUkT zbl6WKKMlg+bgg%ti=>WztWw0bN;5QF7wxK#!EhT`F%<5%&%HdXZe7pncNhtxY8A< zu7P`kzg~YgvHIR^SeJ7rK*A%k`2F_a-Os(^OMF#UFwx;vbs3m#FNNJDI-B}sRiEYf z?x;tyI?b**zP8k$rdt$Xmvq@}d)Mg!gPpULY&u~-a(ZXC#PcOe3?c+I*6(8=S z(i>YDB8sYZ$j7U-1)iee14^Pk)SbPb9ZI+Q9NZS9(BS51<Jk8XZW2r4cM3&xgMFm<51Apm0x@OUhN=)%=K}-lgO5q?rr#gFfrQs!Hv>bpb zfgfYii{fjZv9*WxxJ5)HmzrTz6p?=oP9)^&2+q@Ryv_367)p5QH3HE)gyUK5@70mV z^n=qCc?j$5Z(-G}+8I@N>{)viXR8WMlj!nkRP+*O5D8*cq#b z`sf%&*iKu9H}(T>pR;;9bIU;N{ts|KaBU2KEzlpMX7Owpz_L zOI$9@_+-e*H-WGea3Rm`V@>VP>RaT~lJsvUZ!`M~nlM}#A<711=_nT+zhC`vhog~t zz}cDG;Xr}W<894G=7}++RF?H>Qb24nxp~4fg!XKa8{zcjRk@TR7)o6t|a`2fx}j!^S53Xr1GTZrCN*Jp8^Y z9*K8-ruPCifu~v96eSb1XUVXU=d+XA>U~qhGL2V2?|GERK&q$+XvAkZx8=(`=PjxT6nKj|PCxf5o1ae2vuZ$MIr`$&lZE&j z;{*QqdDFyi>kL>3MNhJj3HJFYyy!97V@oYP(MijiCNu zDXc*@@ZYMz+olEUK@0GCtj>je8KhXSx6ll^c$#_O#j$Z%ziE>zP-tWhZlKx*x$n#+ zAv9yvQY%7=z0csi>~-i0+SP5`&+_ruDJ>h8lP#IvC8|nLSUU|FN)8)owc3L(TXfQs z_TGpkU^eNdC{hrH;$t3zr(MMshWWdsr1`hb(-x7cx0t2}8xr%lWS|{cn6AVd8HW5! znvKj&XBTJ2q{$Emrl%2Z6HwAy0|nIJG!GOWN8r{VH}s2#M{f%+i@K^2{^r3X9X4#q zEc%EwVy<}Dii&lx46QvxVTl7ni24BDS8_zl_8~;Pwn+7oY0~y0OhJe|GvD><`zkFX zNQ*2;hw^2(SR72`fF{(3+K2Nj;@D^dJu0+}uJ_);8Q8~7lt>8@Yht*Z#0($9M2Q=^ zULm4EL4requi}D>;3kY{bqyp|)rUp-tm`J+L>|mt=OrZMZKip1ELIDEE-46mxb(#~ zr}3#e_P$!;dt5?pW2|QL>C{MY)^^47vrm6`(I8i1+Yj^NHmLp)ZrWxo)GibW$D@7| z^|qI?XOCdDpG&6>>*XYbq)g4n)s*yxH{piT#kEN`pG6%ZQrk+wr?^pxsqvZcQ}quS zhb6VM412M29Ue4LdQZa(Og7qoemuSWdO6Qw;a)jrsa{*AX4?T$qKV!O%e>tk zq6;Ai*IF|&ZD(Um9;ob>n|avA$pSIhfOPKrqEfO4wn$$%#(>eD2lg^pUnzA_*8Uo8 zT6Awx)A__PLmaV{ifq1<$sZo^5$o z9}%ul366Y8yZ?0to*o1B-`|}Jd4(dNPDpOBhA~G}4jQX}F@7H}mefES#u^5kVn1D= zpJT?i0)3`^93U83xbP||U`b8mN9uKZiI4^+m!fvJqe>y4q6P)D>1%f@RHw+!fFx~d zJD!%n1tyc;4KjExYA#gvrhBf9jd&Ft7F_iec!=|?ic{y{x#zCX%hE($_aurT7=Fjb zGAe4O@OjJ%Tm!k-P~TNOo|NXiU6d)Rn7V-eN!M8#?-=QMcQ(qW%YVNvrNVFGtr2TD zjE0+}-Xk3XQ?CUyfM2&?EHD7JRy=*wky1{sx>#Ivvfq~p9a}dzHcnt?)^+9`NznFC z_5$TZ!1ehZpTn$dAtO>qPJ+J|dR^1!7J_V7VVed6v#1j<77?gTarkJ4R6|>6br))! zX4BC~;KNbYMH>G0CH7>^F#N&t(N<*il=+-oNx8$vB(_p)(|TDNGL{SY@$)O%x!VGA zOM-6}_JJA5lA=T_?JSo2tA@c`Pq=}a-jYSm>0Ym$@8^GFi%nX&K8%hU}EKiY*pvbaIP?JXL;0X zxtpxMB^ekBp6yB#4&{Ns9{;e0)_d1O1ka_)sTPlM%G)ypdQLQl4aHYXNmT?q(NY0n z`#<;yZjbSNs#x#}SdiF<&}+R9e*B1}VDPBL4LRDxYF=%hih96P1yHFZgSYehcs(mQ zkzueivGQ*~zVr-5xcVsn4_<$t`I0UvKB4#b8IiQ`#`qE>zeEbxP^L^4t%ExHGaAP! z2Z)EXYHb{1NZD`KqDe0AZyslET2M@riE(*d{Wfbfh-BjqnMIlp>bzy>=TYm|AKh+5 z{Gl~xm7K@V9m~DO6mmsU^9~7qmK?})lux#8C)QU@VaA@QQSv~b*)TikN`*x9ggIcE6_2vaGyLj*Nr%)o zdM{fVl7E)~({)bS9Ed!fEs{zYo77Q;gMtdD$AH}o$trpm7E>4oi;PApg^LNJ{RZiw zLk%4ZsT^pjM4Z8W@$u7f;U}cve3uH7^bMzjn_?TQogW&Mo*8J&o0tWkMS0mpkjKuu z4Ylf`8Sppb_s_^lk;E}(%9DgesmMd}(euf}&qmLaFHasU`opiut;ASnr8EIjoVzij z8KEur2|uPLwmdW~5dn?snv_y`k-6W#uIk08wIR^rt+F4RTn*l|EH0Mk!jDOR68%XO~!!w zyCYV~fSZ#HR$aqR-7&L;ccU)N49-f|V433|yZ{thTL-kgxHQGb2 z!YABd@PR2U#ZV*;L=GsZ=>J_oRd`TIbn237*rSHaT@piq$97tX@5!jsqWJq8FGamG ze@fIaYw@{;;#HpXK}J~EVA5b@2`dt~o3|?ujCih1Tvqe+9;UQB*kX8-wL@;(zGbxh8_K=;KTdpT(ah)oC!Qb~NmsGPh*NqN4P2B|ouW37eFk zH+=^!&Y)WiD_&#jhb4J{;r_7v-RAM?RQ)bq#Nq8|uI_|x^3_~k*)O--;JQbl{iT(o zAF()fcj`6nccb#O``7m??~qMrK1JcEUxWls9;$!OXVhYNQ=*?3@(Hx2Us0uirWni( z90O2)kp_S*@kxFsxU494-kCm8+!Lc6QSm=RDdzuqM)vAA_Z^vSh-^SghN{|On~@|x zOi)DOAk|CE{8XH|*(hgdC~+&c#>oNc>QXhPon<48nTu@<;K|A#SiOwh+CyU=*GwsM zb{=GwABjcLAJNh;l<&c|l3eZA@Um>D26a`)rtW*-d_|9)33lypPvF*fP=F6CA$bV0 z?^dRhAzcqyIKjY=C|uulx44q{K?Zg!p{imZ;Sx%elGw|UeS=_bBnD8Bg!~44V3f<6%oj4o! z#S#MU^Ca`L9Cr$jD_W1B{D0JO5+d-EBF+D=I&M6xBZxa8%5IvJ!^U_MEb0A4_K!&% z!9=)qU*_aO=Zgt@i=2wXor;&HnSp3{x=Bd_=+-GI_zgBf@w2L;(ZZ08UO5jJ3u&Pa z=d>P$lUSz}`UKvOV!)KqnwRp2ZYM7vgKQ!XuBKa;mor>ijtLgs9=BO1`y#H?0L|1V z-xBLKa#)$PWQ^psC*Q|p#yGPrx}RD|OLnKhtFpVJYvtjL3q%`AyRs2Mcu1|&s@fmP z3@Rw3kq5G<5SO545dPt`b!5%I zbXGLAK%{#jhQB76ED55E3af+}1hqC@CrX&Razx4CpXM!;+kid7R zMH%yYJ&g8~!~%|J(?7kxwMEu1Ch)r}ybV`Oi+(d)kO2%w#|;bXR^&K1CN+ z?=50%7NqkMDT$NGKrt$2Nn?DS3NAx@)fgLwI+tDG`j5A&C92cTaqhQ82VZ6Rq<>-` zxY)GjmnnUja4e^|s1S|(?dIyI<^Dloy&C;*)Aa+v~gPD!m#GcMdw~Q42~kz#j^#?Jn6^Pme{CY)qEe` z5&^j+4!i&RP)XuK=)zYde2(`U%}tLQ%!VzJnq%Q3_yEW*Qw%f(tk#pDFQO_kLfbWg z(JC2xNm{up1#w#p3dgwGM&COWG=EBspw0a-om%_4zAk^)KbAJRhZjZb^0mOB6tiC= zzQl|j?JTt>t7)chkD3(?Nz`?6zE+otL~Z zHN1mM+r5#3 zr$6KEsnk&3(3ohy+9g76$|{PD##$t$u-sY4dx;sLCU^a!mUb+Bn>vrxa4MpBIUMww zVQM^MR>)PTWT-&rO^PUxcXwi?&kQ9;G0*5#_8hqJjESc#$Bpc*<*pW!gMyUNrOb3= zITgzWs?emQSqMOFvZvyA>T*-wBW2{V_oQ;#+m^oLw{ah-x%GgOex{Z4qzV(Wxe9T6!rvM)P5+&rcP@zH*MV;MUy6YNp7Qh2dX*Q)U`U zQBdD%eyruWkXV$s{!zEzdR~X|;7ZNgl)>R)5FesrlB@(viZls<2_xWyhuIsiW>qyy z9`fDWuRz%uzI-+V^SEKCxW>&fsJT;#mm+?f;iqoq%Jo)k(=9Qa^+Hcxdd7;|_{EGI zJGu91v;s|&G21-j+%{&B2@VNHc)@4>`JJYWJO%Uw>3!FB29~&Lb&whQ68zS@CZz ztC)JUiwCJ+uv8J;mSni3oZq){KaLuV?iQ`*8q<6|e>=SKEAAAsb>h+HaeL0k?n*vS z`)dI@g1`gHqx~(JK*i1VK*FJuZ7zznuGW2PZPZAfKJRf3XQ+q%Hj%1T<{wJ?qodE1 z_KY=Jhi9Cj{RJTRQ@w!fqytnC+VNt41Xc2H!SF1v|33Q+b!Ui6kik9l+NVZTcn@(H z#rYf&tMk?EEr_Kp`~=4H012Jj(=fWcCOG-Bib1~thD!T(9{tr0l%jIVa`+}@EL#eb`f6xZu_op5%Y+k-^c9pww@dv7lL0OEh@+I?p85k+ z?L2q&IdjN^@}RK1V^=f6CG_-^4$RR%SQEHm!Ao zbp2~YF1f;;JHTY4De)^q<3*u;8ccJtmzMng7|4IsFYmm_NW@M$qM*>iC>URgXfxJBF%R!LF&7Ot_bwIlTkw0As zLeDX)SJPxejY@>*geBX+hM)7`4augMk!sZ3d+pL)HRZJJ0=)0~w%!FbEY`}>HKS5x z@+N5-Zk2bC9tRDXTy=(ry8@0bi&+%AU-`x?TT7-`qOZCnp-j%`_>SvF_P)D#bTsp#R6EJ=2>K;M4v&Qlzp= zpK1mAf2{vU1k&H`E!SyU^zUAP=Kw_z`3ZQYoIJhMi%BV2VC0|1(!WKH1*i-Ht*Q8a zj;IZ~it=QBQGi1Y7}?8k_2a|Bz)Cn+#(0y_LlYW6$9LD~Tzig)Bi%6!ol>E;f-_Uu zwM;~xSn$rO$}3t`ub6CNwrLv^!Sb8MDzze?R=HMoYrkx7Qn6k8T-vf!b4PsMPVe+tL7qyaK$YkI zF1wSA$=6awHO&Hx&Ak}p{dzkKx{AP%wUwQT@kgV%`{3T`$jOKH_}x|A`2{_=$UFso1WM5szMO+4t=z zk6j_!+v!(HrjNFsoufXD#uv@$cy9=oQfYG=Dh-Qm4v31JvjZrhND13TmHngyQGWyN z|Io{w|3V$hzX*+N_F_j0pfeM@{~L{2bg>j0WBSw+XAnAK!MS@9c*(wQK0`RZQI63u zxB3Ct{Y@d%w(Hw-xjOUNN-%h&%kAZFD7vfFvmHTqw8P3y*x2sLhnan?!si4rS(H;+iaikcP zx9j=my;QrLfyr_jzBuZmOpf2?o*clDKMGE;Z7-2OIp%};L_|oq1ZUbD`01}b6Z~t> zriqXs8)IC2KCJFPZVh&fXS{Q2=~eDoxp8Ey$=Fn7587WrGpB*Tr09wShy5q#Dk&s5cE(gcpibHaDn|EN(i(Bh&3* z5b}T=7Z7<;Z+Z>hI_oj*c#@OUkwo4B3&&8|-%I!+s&3Bz{h7xlFUOU2_2suDyuV*_h;re4bnLAW*ulIL!`WN>yv9B z4{1`(ysx{07mkkBO4D0`E?_=K2?xBVeUtKoVEeQlr?Z`>LW?}tGzHt)KgiZsri2y3 zi0yt3R{{o=XF<*<`>|E$u2g+VwG-GFHkh~IaQP7h$u#CTV>{3VZi>2Oz4+XAOB@0j zQ49k4^G8bHCqRZZ_9N6g(|?;Tw5J^7`B3UhDFBj`5%&C9FV7{*(EF z3q+-pvpr;X`MF@iOdzwnYB0@xWAAuiCwWx^5pB1L{w8H@hB0B7M0twWflbOO6e;J^ zeONIn6{W64eP43a&yX#5qwr>jrbB!0dwz6oEyP#;katBTXBdb%cu2-Z9ng^QvrOw> z%JNc9WM}zC8p1ZVG^j?&2zf`gxEFf${9zA364Ud^AdXIhSIg`C?nucA>X(65P4`&z zuC8$DcBf2GP*7ckfqyk|`X3l^DB*{;T)I%0Ak-Y*bc4E06?N^pTPO>-b)AVlT{QT; zKAxJRymV8RsluFY{pIm!<+A5EJ+9k&5NvZlI8nBbt>J3V&Ql%|NPhb^(WbJ#N6SCb zzIIp*A$CBCm**wpmSpE~6vN#SpJ{KpnysvHs_zj5B)AM>l;fa5bgWrJ|1JI|zF94~ zCvRMkc3?JYqe(oSF$hDzR()3Dm(;y^2W`(w5rSCFhs()FkXvs-qt9hf+xTk8qiLhJ z+ngf7qyP5LjF%q#_YDF~1~>qEphTmAW`2aBzz_I)Qo%k_!b0TFgt>2?%og(>$@{+} z>lr`4e?xUtE>l)XCRGFX=xL?k4mEBb6`x{bjs_i>2&KUsx|VZ-X$7R2sgR*!BHiPN zuxgRAv%VsRk7xSGs%<7(Ov>bi_zF*4h)Kt~R))!Vz8||AOjxy~JI~o+pvrMSJr`w6 zbt&QESeKluI-re=ZK2tB^)^2(DBK~y36`uYKf7r#TIgcmb%=Y}hJ#-};!M>jQmQO`O#zcPVh{owfB|EvwcgEN1!)R1Qoq5f z3le4eNEB2R>heEY_`pjaKQ<5sv;>ZDkgo<{R^M&PBRQFbMZF?;Rr=(;5Xmg!GDL`b z>V{bzu$ji6VAdo?FKcmr`2g6jgAjztDhh<5E#s^&e1GCp1epq#Pm#=ZSEM6|M zHlEICz!F!0(+hx^pvw6I*DT+KFH`D_4TgEvFEr)kRpxzx$p;yhT&zUy>@HTE7PvXX z&-^mTmwcckU23ww6EwSUtl%StzH@LTW7->Z%|fBN z;41rQteMxsdla&5e!7R#a!H_b;t=&%;^KAG*E*w6%9|wPX?qsD;IgwU_W^-ivSI3j z5h!}&p+vxE&gbq(kwOk=>+f4{8maR*vmJfUClWQyAvzwMo=6a3Fvr-?u$|fcP8cFn zLhzZY{u^b9P;mfr3I5J2{_xZ@n*Qb$ibDS|7U1Q7lNP{OlK`WsZ={)wQ%NLbTl^&bSM&;_!tr_2B}mJ*Z!wc($!rm zN{k5&M}w*6Ysy^>q&Hod60VQk!p#KuH6A9;j3JbvT~P|Ht~dxaS9qtdF}vC zrX3cc5{8eMd$>&9^K0BHD1v9I2g8~lpmY}o8%At4Un2P0wQGem)-vj@yhO0;hl`3T zw=Vp_?aP6`sl-5W!`X|7h`8z$%Ucd~84?GH{|~fUxai}f2SV!}mb-qf?)N@^SfANH z7jA`(C}zf%CiTP^mm7J?VxNr`0Isl*mFtCDo5s}$<^~O_)?+@K+thBJG%k-3QJ>L4 z{Pfk6cFVnjoU>TdOJ3g11fHfuUrd-?xBv`H7@e6l!*7%)qK#Gky#ib_n_`SAO7I#< zlV6i~8{H*hT(s0r6q*hzdd@0xq&dD@O^4SpgH#4uZjM%F)Yh*Q!_v-^s>vxsDd$NMVCp_+?>;j)Fh z^~HJ%V^>~vZ24JTZM@qd$kxgHy!XiS^D`Z82*uW!7S7N{om)G@^QY^w``-|ME8M@( z^M|Jh!Cy%Tvc`Uv6okkGRP49*{n0oe1N(z1=HP!VCjqI%Q!pmS=AMaPX55huaFhPL zM3nBI)$GhA4c)JB5d1Y#NvH4QVBr zC-=Su`NWrs_k3T0(_Xb;<%M21z8E^Wg3*juqbOHe3$60BqtUkUieD%8hfgzf98z+% z|1`!nd@;(V+>MoI?)VC3v*{EjI9Q#6Foh%tb2zkukBqAOPizf}$nYUW^-Bz0IhXC;aC>}~1ZuSyfVsw;nBq^~f~7jrQ) z)|y&Q1~jZWrWC2W88aNq5-V(mlHszUA_m-KkoS4dJeg#Q)7R~aq)`sFq;%^u)!>#Z zvAX)6RfG$l8`$Qd?lkviZZDG)Ij;Q|H*=@bxi=t7IL;|--lBr~L9ryWv{cnQspQPYFY1Mp^+&0MF7uKL1 zHqs%8#F>;eg4H0byg67lG6Mp|Pt|YL5&>CpxG#V+t6X#kCNi{KA$Oec2jdKnxGF`a zbhwi|0^`Itl(7)RRa|{-3St#{3A{XatkTm^6B zxrLk+LrfSn(1h}LZ5xv5Pq47ajWN(?+@0YSn3J`g`e;tBI7@@=783S`sLmRQs?wfH zx;kNEDvT;C8<3_N=VZhE1Ho0z$X35(L%?YOJ>)VOT$iAlDPdEaAQ)tU*n5g9wd^&m z0GMJE_v*!ac+1?@&7A=EUVN_)Q=YsPhPK%PIw>}?sG02@OJL zS^zfqMEt}E|AD}>J^mbGf@}-^cSZSGM*akozn5Qr=av~K6H-q6r!SOgRX6@wb>&uN3yBV4AbS0kVrKxmvgxFq$o zGciY~D0QwiAbPkuof=H2Q6UGQrKn({A}T%b{hdVgph?-wiD6bXsUD_bo@tTb%b3kA$`k1vpB&GysA=ml-g&kDMP<;`xza63BiTta zKCzexYnR{i6;Hft#WHtrP)PU~Tj|%8i&RG|E#t!1Jq_BhT7*ZFuVMss!!U6<9sVu^ z{->nZp~L8JD_zrW6{v7zz2C7JlAoXZDYvzllt|QJ@k8vRk@+23#lOtVG*Pre^cSt& z%*z&juA2|L{sd}Gw>0Wm;4qt5FnU1Y3B#Zd?6(n4_-%k;Ou88WJ9aekjc+${8uNp}5~rzUL^rX&tj^o;Qn~Pt$M$BTszTS~HN*|>b6SMFd1ZmePHcwM zR17LoX5Ga!d2nnJBvZ-?4cPdmj%>Wzac{J{1u0e_d?y1+Cn5N(8tBvXO9T^+kiBFZ z7H)tg68n+27sF#UE|Dbu#W+Q$kJ{~%iZYjs6%aUy#T6dD`(ci+HevJ}Um5useF`zs z^tmHxJ(nSS|_rs>*-E3m5 z)$;Z*jv8@ap@xkWZ=RTO{<-fDz!SI;)B%azx)Ro@)K2Xt6w{(L*QrRe+6v{7v`zFgmtonl*BS<9II_zc^fx8CY>M?re|>2EC4Zb5GY$OUI;Y(jZ(TQqwtr zIfB%JR91|mNrEy}f;v+ztSW?rS)d4)vXfJk-!%9xRmQb~h0hUM+(^r|Az}WsNo~B! zI$tv3$o}c3hCYWf{h~O<$2zR6h*^xTM)%Q9$OhKbkq$%6r77JhjEp%$nltYU^Dn&? zQB@+qP)c#F`vGg7+~O~`-7Nz+0YiCK>t>4!&P1VJFnPVd*m8N?n@8Zfv_`>y+_knw zylJ)YOSjCW)*5eXpH4=;Y~FD^a%>D=&#{`DQ|WM$zNV&GHeb zrc8)!|ENgDfS{VJhlU0!GX;4J7ZU|~WBF!5oeAyZc=WA6ljHUoPcYgw-u?&97bLc? zT#p3v==^%Y!oPEq|K$vF zA;33?GCgkv`E4d?Z%;C0{bg{(Z$T}6kz!w&cEcSWqWoo)u?oh|FIy5GuU_d4y2?@I zpi~@GAOVS)UP|jV>#6b7c`Z|hMZOS^$&*sdA{D*bqI40??L$GY9%_*KR=sh+vhDLjF(CEE0bYv-$-w9?4{^JJb{`%^pmnU+52 zx%kAroYrn`lz`2|QL+?6Lf+nh(tdt`l?n`PjXw9Oxhz73C~SXRzN*Jz$K&T~MXhW+ z;C_wE&)azlJVg#Jm!`GS1Pt?3rtRUiu`OrjP+hFCxT3QG@o~?xuuo|gp=JFW7XE*u z7T{T^urQFVmDye4Paq4vucIp-dI2|ZdvL8F@%kQz!)At?k(1G` zd+s4#?%aF3u2sW&-|>C8RIX>QJraGT6tBy*04@W+gYvHKT~^>r0%mw#n_Mo>57#S$ zxD1&a3rZVeE8`PJzq}sc zfF1_3$;;a#+gsqF@>+?JBFb%Q}NCFQ5xZ}7MkX?p~VfQ|{SryCD-t@oKlrL&x@N(YYB zT5>Bh(Z4sXH7fi~Z!JWKSH`AxA0}-L*&S7?<^*grxkp73j$4I^tsmOr2p%}p8S_S8 zZBO(Y#wt=c*Bw4oi67!7&nRG7S*OfY96H(TnjPNVJ$l&WRM6QYB@KKz#O>DMIg$?! zlNRSrzgF7ae6YNpprS{d%0V~Xa4m?BhYL7`3()&n36nTUY+KHCc73xI?R;2_9=tjg zB8PCqhg#M{(d0)Gz%bsQFBs_H?lw%ti1Ea$2$3f0GK!KyH9!OATjIq12g80>O@ ztEO&tIM2h(`0o1QuyyYT4MhxTq@nol&5MWRf5oE=o`uJ8YZU0g0SvI8-c7hW5wt6) zR7y|3%SMlXi^Qk{jiK2mm;3FrZ;0!1rgK)HWn!{d!+eTbfdH$|39LB5uX26q$_y?Y zocgPi-JT+j1-rS_^*sX&G4!r4t)j?w`%&2!G>5v}u61nKj;{!dSr8kT!>+J}Utq#) zrpQXS)_%X#Gkn6vC^N>O-GW9Qh2LR@D_WYWeZZ0WELD$mu`n9DUpteUA9?sGhFnS< zJ1Y+kH%q(6f2hJhr&8@nOPUff!T>FKVv^zKH@6Bk=EFhp4cH_M6o4q6YK;HH@c$47 z%zxD(_m3d|L&nC^8=b4g!v%{}<~(_uovamNP)xKH;#>Me0}Wh15sG#45m|cD&zD4Q zibTGj*JM3hKL#w3as;+@2arM;5?ar^P%XFYuQgKtDS>Tf!n*&3%Q(GxN~iVm!&?bv zW<7`fJMi06a5{Xg3JCcNLc^oNydzNo_H;q%)!T313dV$dm$p9{x)mq)GOuJSz)~O$ zv{WP6%=-tu_*9FqYM4X; zvh$};+&kzsy#Ma{8mg9{R}}n5#;WbBYxcCAAcig5F0$Ae7BC1z z#BZpv)cMe^X`i9Wt+nf5n3K9h5M<%rY&ajL@!IME{p-+L@8_nAbrQ@c zdtXiQRZbCAOp!G;_d{sr2X5IhRM|YrufW&Om#ghH!g8+=HAel=!v$eA7$NBNgkax( zgQok?4pR-hVfv!~eJdaK$@W2YX#0SMUw+RC5onIw8Mft`iLkrLvml=YFW{XhH{Pvq3lW!~(VLXy)!0S9O6P5)J0ZPP7 zk~5(cW;JoTz-*z6h|yl=b}C=tZ=>(!mMzV~#-Rx1q;OKgI9E%RznkD{zwqtAvnXGO zl7sbf#N7&__Hv-K|%0JJQ ztNHvW__S9t1+6AQDl>P*h>*!`iS~CdfLhfdO?u0@MLGy~s^~hyPfGU&#pdvw{$V5U zV8k5*>6_xpk?^UfrPt!l(k1_=Lt-#+7(quEQQnl!ERo>0j$4B91lc*(v{&E+-|@F$ zza7b3w0R;4LBX^n=%iF*UU>v5JmHEX0R31zkXmT}i zS6H0HR|_WuCL^i>8kf4=;ge?y`*dI$`pzpy7~2u4Jzl@aX@QWSw*`R;uz0XkXY3W0 zJ_tIE1g$4v)(v1&oy-u?!Ld+yNMjXdZ#Yt;M4@0{ctQU3un0$=Wv`%)I}ni!i9N;1 zWAi6xtEwUf7#?SuFIzl}vOoTAxi9b&^>_EyZXL`J(GCqwT6FL)Qe?DDJu>q0nieP_ zT}@wYYBaQWvr1j?TQ3(pN@|EJ??)R!bDsm@aEI5;`b$4xGD46DN%6pynRBcV`VN5n_8BNoUZW@ z?&p?c@RW4we!emlCFVWk)m4D?DDrTIgn}|f`3MF@_)&s4#otk_l7jNU4C7b^=ED(1 z^ej}MX(jB&01RzfgtZ>JHDVqv zd*UeoRevv&X@p&Lxpe%Clt@M)(5v-+BkM@bJRcW*Ob8r6NlOd%=1_*=w@70}uHsU? z^2o?Ea%w78ly^w+Uhc5oH%yL3!fFV39yfLxRDz$|%@87&zSlnVk96WTRcypXgQu8BwcTDSh_eh#bsbq;V*;dqM;|Y?&E!!tLNwesKFh zp@(Y{Bcb_A;8Rf#(wL9Y1S%v~wAc^AWkh#MC<(C-W|+XA5H3m4q#`PM)>_R(4W*{p zGtgU+C`cA~&xa`Zv4Yuz1yiSM0AYCpo|EpRe3de{^1D0kWyDG~9Sh-6%&S2c{aRR5 z*Po@e5>0}BZK2)wObM?Mk~=-&_c-Hzq_9aPkTiI4w+ zkeD>pA#D>{NU&0gI!A#DsX&Q(b#)bJ??l?k*tC@yRy~Ew^-X1xyWyaDLSt3+HD?$n zhl^_~G;tfaFgYbreH{%+09b4w+@}HR^;_wAuprA1$Pbe>NhDKIZDz+DFG_mHlSJzG zWUA=!&66gKh3M?21*VCA5!@eAy!JQT&$rl(CU7z%G#HFPoh6_|FY_(jxJ$7mv@ z{#1qO1ysPtB})jzk6@_Bwr>#LAksV>4%t+!EaO7OES*bO1$3}nvk%h25c5hyww1I& zw=v3LcT3K<>FB{wuH63AkSIMgf9oewLXW(!>}O}wmoQzLM9?4TbN!RDKI=6C%h);Q zkljLe0Il+XJ5{x>0R|A!|> z%${JKISxSnNq%QhQc+XwLxulgz`sh{U3&BO{Tqxy!chs)EmucGfjU^c*^HcM`1de? ziUqx$U7;}q6b~C4Z<3VzC%VmIL|IvnbX2B@?avSJ@)zGkz`*HKg+Nqq~1lZ#3%hsu3WCkkJLQ8ROFFQE%eW>G5ZwD{d1itGmGHj;s{G=;L&X z7DVt++uVUv5g1pU+~ShD7n{t_be%^^4<&C`+)s5nOt~XgRN`bh#s@!?DOkyrsO3-3 zwdJ}u-!GT#{rF;)i50k@1qt$Totz2N^-N-Vu_!d+aW&WIy(1r0n1oKP!Uqy1mZE$8 zMI@Mn5|KD1h(gE}q7hr=x){2rFTwkqYOT2hN|ntIF@q`RIhUr+XKxED4Y z!`e)zC-td@$+o5p?4>l8Go1)(mw~>0JtYYaCO`2|VGF_#ZFfhM%KFs-O9Gd5f4ezr z1xuJL3x+6EgN^!{3b{8@S>SGY?%}3v@zWn7Z}^AE!G^g;PQgAyExGA5&ZniM4AQ@s z0{@gr3FAj19*JoP40F1@y;Usuf@7;cgC-W;V(sJPtYYDHcXeD5yts3%lSz7%mzVC| z^~Xul_?v+7Ck^>&sTU!*y@z>So}=YmJ>k&3@{4JgVC#Sm>RgJtHIqHn0&4TRhdTw) z$Fkz$yHrT00r_=|#`@h!^#_KkT>)>Goev{dX~Nu-aR>N~C(1>zJT8x&^vBa=IZHIU zv}7F!?WcCfWyO}QkIu9tguiK@6d7UjXbTLgBd>#ZScnk11*w3Ek~j9Hev6;rQHmDq z#ArME+N&kcZ!am(>=dxnj_#d8x+>Cicz7CTFS|*IgG(4f>3xos8X7m9TnH?6X4o7i z-&y^q&HRw zSChd!5yTw;y!?2FV~#?F@HhZmms)JdfD!kh#2@`ZYS+sj28ScAd<8Kfkaf zeJ6Ynx~6=@`(@D^TH+2xj(C_59Iu5Sv;A9MEw}`%T0;w8fR9W;9=8fkrY-`Xs zKm6yrlLVXVAADxI#qt6B7kf%M3T6<5a>Nz1a9KLL<)jgM-zOSw4&!tec`g@@mHnsRyPB?6crNql3OW_Z=@wNG2_%UY8&K@{W7|s zZ45&An`tit|8F9;3O^I%7mZNPx8t10>XuOoL}<1Un3-d)=XX_1t76GxU>S~N)@qs} zCUeauJVWbT7LBC8m=?1krKu7tlm*N4G8xJQkWHF{eS0T?_L_yP;sGbxEd<~1?>Mu2#rz6RQqukB10)dLefm)d;o>n+2Nd2K8$X;bCG`uh4LfJr^9 z*dR;i=~8XYTFX~{gvmn-tq%{D^mY1^(D(NkK#!{hi$EmG?9W)yy+5^wPgUsH;Xa?O z6-dasY`PaYfwL!U9#WqJlie6>OE!G>y#-l8j(ffdJI%g1heHF zH*4!Gz?^Y?TrpyYoH z7UyN;4+?Pcd(Hmn4#WyBK9nEo{EeuU>S#n2qJ+Od#2NLKEBPgH6Pi^!0#Vc($)Yay zD5#9d3eldafg*-_+T?)(Jf7KZ{RNj>!vt-1HOwz)_a|3EIu5eC%eT~7$&SZ&G23!B zIyjL&W(Rc#yZ3!J2Dvs0=8_QJTg~SvfsWMI^_L6mb`M3sGSl@B3#4I#Z@m_0`Hh%l zPqH*Y6qmt1@dCJW0IQV`AD8haLnd4H=>vOO<@1dLnDb1)VtwF#vRF?J45$WyN>LFN zs1O0~{x1jiBxAD}IVo}>xq#OSe+SEaJ4pCugGnj)ynHlJoq4)Pr1Jy0Z9i#G*iLE9 zHpsJuH0^v!B}iPl;c`wh*nOfKr}4#2Qwy=8B&j#7MyG1R4gQt=;9@ys7u8E4M7&;b zh?jQA;D`gCz+lP)x|mnskimeny><#6u33l8E)iHO|40qk8mbf#QJ_(+50AH}2%^zZ zG1a=)mWYk(h{r-`UgOnD$)V3hm@!a zSCLX=Y89ETi(ZHLSX6}1gMMbBSpN>q+ME+X;QKPN3G{1~mzS^6*x%kpigx7YV`hdB z6s?}3Q7zR{Q#ZO-yXU|!LM2z=b`>d~9AR!$`Ai@8Sa$~hOd-CM!gx=ECm>4~nD zcGI#+s2Wmij%G(28Wvnq{b7b{g+r+9s6~H zu+Y)c(zX&IQ1Ni;GF%$7WL#z~gI|god@6E(&DMznn-!MjHOoHRjTZWY0L1HQc^I-R zeQU)=ZGwDI!gpCaEi(9$-lnbOwvFS`bvPM+OM}C-?pJC->+(iHm*$-w{m!;{^M=l^ zvq*&5ZEtf(tNh=>G5ZedgNSjyh&k{A{{^@go>Zi$v-bbv>n*^l+_tdMMM$>@NSA;D zf^@e?2?z+d=n(0a?nX+wK~z9Qy1PL@T3WihyY5^V=bZok_wMHrKR(!Q_TFQRH^!KA zu=NLYG2HU7+rZC$*md`x{s4~DcAi<$a^aQ^Lt^z@RExwUU^NBC-YB@AtzkW%P;QGv&8!pjt3${7`hyjUzf zW~nh>0v9{?Mn=N_R-0E}{@qAg4_2#SiVy{WeP^n+^8CUZk}o?}@!5-q_MN*YvmZ;%mLbl0{Ns{hADUW^ZTqRp4Xt^B0i( z?>~H2r3UBT-JCnkr)wWXRFKYa)!OBavKQhIyYG!m%dGY=@df{yc8_&GXd6w-&O5p& zal70r#vT{cJGV=tk6K$8eHKvE*21lzE3%~}SiDzsCS6xlZQ`*(_AEL!vaeQLGZ$No zwA02S;N)n67#6l%iUA;OO<^<#7P~-Iz{rmXiK+NKCGg?(hv%Q=U~ka`@0t9I(Elpi z|EhV~e}wZNJBEy(Jm;!P!E-*|lV;*5__><<#)E>J)$Hk18QRhi6tCN=+a1J?;-xML z&ai+_nf|_#g0v1rLbTZwD~)ZdMjG2W}|`SHW;`XF6~cBB+)B7iRA+;F`ydc9sy zPxFpC1%#`X+ul8JX_BDVY?YlnxzmT^^U)I*a=6b*Ig}{7q|Rw-4ESA33l!)5-Pu__ zGZ%FQy?xw!GfyQ_?n0JqH&zE^>d5)%Au;=fw8_tPr8Du2w{%?Ax*|LdF(=EzjJJO8 zT^oyl`&Wcx%Tyn}4wcRx8aCxj@2i;HlB1)crXBtE3Ve(p7lh`hfYvl!^s5>N3%Y1t zkIU2V--DD)&CNGwn|#Zl%*j2EnV96{#UH<6D)(DFZ!InvY6Qa*MA_5)ZDXDFupGF`N0k{6>t`Cf_kz>7V?#{B(Cf zXIr_7Gsz;h;jmhVXszz_y5U@sdO|M3l$K-0sh^q2i{~i>2ge=<2i|ALS_~L^y3+3~ z>+-iu9bHARrZwJ^`vuyeSTjzj9SMDdg1NI}zvq}=bX7Rv!dI6^4x58a!`DZ=(E3H~ zKd<7G#opJ7yZTvCu<>|Y{WR79u*$O?WK&HW@}CFH7a!!$F^-aFu} zg7ZN2TW{X#F>9rgAHM{oQzjl{}&p#DNz995a55%qr#m!79Q ztT=NNCa1Hr6Sy)lT`LEWj|_uQ zwMVh6816GGQFC*19Tc8!N9)5fIosRYs=2R2$180Xk~qx>2na^-rDzd0}FiifUPM>{byKBioG9>S_kOEX%;%!scH-60%$a^U#coDD2Z#;o= zVlIRm%5W@?RBle&&k7`4_cjYXv z#Nyd~gOd{UvAsihZ|CG!wTW(hg3jLJugxQt-d_#}8Alq(Wyj$xVo%Foa1P8$`1CqH zPF|eUvA@WEGxA|Y?C>$2>@=b4YG9EV{#1p51z!f8tj8w;2TdPgpMo5Dgd$ z=T%EIb!XZ&qd5JgGv8oIG~?K9&s*>_ed;`TWBM>scG%Ce9!xx418qBGZX8~mu5xjNvUK3!`#OK$0XXx4UOldtsf zDA3bs%A(?G<6`=R-lAu7HK;N_-yY=!h6i>M4X`?vmB-z=Svru$)pTB}cC6cYs-`0t zC-X4R{g27`
  • *%ixbehB%0whQ&%b_#scD(pE6Bu|rTgP0NT8n=UWihyspW+*<-L zpMg>iTEe@#)}@Qy$mC$zv$^>X=%g{nM+W$Q(=sq~z>zeJ6a+!$X{L8r%g5Xrsg^YG ze7xb+sbAipDLjyhTv+q7E{|Pz1nTmCNg83s&Es8A70bWieAxMlY{x_tWqjA5Pn z4$tcLt-qSt)l}8wk*qDsey(q`5?+s*s#gv_D);t*xQf>`B`);#(Le{5r~@4&hHxNn z_b73_{lt)zkO!#Xn~eELZP;H}EO%3Q&KD^>t;$8B*hN-7!M2)mSqss*h^so_68%%i z;TwYk?SRSWwMwLtH}iPQ(}qWrle~BCh4$b@BMU(qzE>+A_`eze{CG%_9AqAOKUgv4 zq`QHm++uk5(_ORe%B$QG&zqx`AyF>R8Lf`#>mf4*zg76JQACwW+ZS1{IF=3qT~rB( z8L~yO?`GsyIJ|i*rt(x=?@7qA$2W3IGJB^Ft{2UM$cwe1!QV15qj96-O4DwI;|G{t zgfZtp6{LyZQWB%gn@c5t?=xT~u;L8j84wrXfWkCqz=Zm1c#98Wrk{TIfm~rB{Q}0S z|MY=??b%>DagSc|{N|9p!D;p-wl?31x2tSK90@XUlUld$J*M{A_?41f;M6+<*Cl>g;!|1ZdqyB4`6zpINm%F_|;%ZMnI?` zD5#aGR6Ouy)O3jAw6TohY8BbCc29DJG;N#EbI~bgjD>4H@l#k(i@jaT z{b;Q3>Q^SeWB&8Zm=U2r+`IDc4W+KvzwG)1fwSY_-~a@nQVs^JQK*^+jg`rSNW4&C zz~4V})6tpf;hquT=jZ3-%q)9M5aN2WO-4$}(GI3B!6Md^!^6X)qkADwS2WoYzm0By z#eXjA$DS3sh&+nlgYXC8kc$&z%i8DkkKeguJ`auSMsoZ7Q}8zrk4(m+`0z~iZdC|D z7R8U1lAdGZGVKwl6dd9h9v9)7X#YLGs79yNh<<_KMM=b0LqeqI8~2@rB& z->Dy5A4Oi!fAWQTg|g9nGTF-7;!#(nl$Y775^^df3+m){$j8t)O}u!ntWTeY=(8xU zPc(!~3WzUN`D>`|zfJdCW1K#2fU?xX1NQ`0;hzO!!3B*w?4+{uo6!Z@;n+HZ%7&%@ zPYG*VLOzN^<}qLo^RH+M`65wLay>TsuQJ}M=^V(ST6p{3?6>g`rk`)-A(v|l@z{Jw z+}L?U{Lqrr{vvA}>*A{IFuzUr;)Bj0UG${=ZX`YONUg{0!F72e?$I z0AG*fvVeWI=brnY=K3u^`Dk4IGgKN8tI-}kaNEgjbol17LrvIa%e_rjE8p_d$z?aP z!{M^F!&M-~MA0_p5&ulJYu{JXVMi<=B1K>#66IfM2YvJRke~;x4{7DW`vS79dh-v3 zZ|b$Vaq9~lT=$lfJr9KXRfz6X=v`RXqG{zz$P>@$4%!gvjSeQgTA-O zpd&o}JV)oWXQuX^wNtnNw!8Z|XTd`wHgZZQI?&@mfp^o{7_rDvrT3+5d?hu1MoFL1 zlE8qnxoDU-RSqG>G>}6SF;hS!TPv+!jKYOPN0%LKxZbQr2tP(9t)nXL?PHhP^FY1R; zNrd3>7%)bzuP(sC!)DfBWoByBksvRjW|{b%vX844r~BLnZ`txn`Ym29 zvF#pTa<()S*E7B{W+8VJimUyi%|CZ(Ssk2jn03!cg9;J7 zH(4sX4?8LIvm3u$P~VHvZWyDO>a z`s^yV{jt0Mg->9gfPePEY@s37YK_HmS3u8f;z-zitjNotKQb&XGNCiqkJ<-L?F4Mi-$vGxsbQ z))m}a`Fy8Zjs#bsv>+fN{Jy5MM z9UI9d8R*Rh49Q!|aVz+C1SMuVhd2bPCg<5g;=0mzvv!`GWqG-qt;1`>_=uk#on=xd z2$ACI;>5WQVaNIE#&xx8yKHG+!*NIZW!`zO_dkQBm$E37$G5c#C{?_9e7tPj?Dvqt zF3**K44rCMinKiXkE^~XzYdVqv=bHRqG?IO+UMt~>jR65iiEEhBCb2re~~@K>hoX8 zXwcdD^=ftNNDzBQ76&m$1#L#7Zrie<&Smkt@~CD>Q8s--BClR3-0X!=FhzKZAC|#K z%0hJX9?HUY2?)@xM=r*B2p?kN<-TrBK7*5!A92{$Jn41RE_Qhfc74Q;r2U11wtDfu zHvpe4TnKsD^F1$aXqY(=z%3fVg5g0xKmg=NPtTGqubD*|^rZ|Lzr$uTI?FGxRvPTR zahn0qQ&(39`BnzhMZA_n;?4zV#+HqnAV_{d@WU5FK@R04zBm|DbpFPv6eawd&`ejvpD7V7N=7}v9Z4CW$R`hYL zV-^NU@*<{W$uc+>A|_D+QV1R@MFbPLy{oX`I;QF<=M%O$lH{(vU+G7c@tExt=U0p} z3$E%Yvfi=|MR&v?`oS=wGe8CT&3N`SX}`->59*9t_jtMtvfk;nI@#ItxSF_kGjS7a zCVO6yz-8L2#v+Ma5-+7=D((Elul zyI*j@BB(GCn|5dpl{WlOcz=FCJs1^NXea^wWd4EqKCU9cZ`uwF7ZA7sk3Rnf0a*RN zWkpoLRD_Xzn8E(xme|7_oJclM|1n>#UPQvA>IOgV*ROXJIV_{)Yqy55J>P9J>#Ucg z2~>ZI9I98aeE8Z_^hn|QxNe28TKgm`f^^~)RO9hY0Wt-{9gF`h`LIII2P^rl_d(gO zU#O0CCp;pZEa|tVc5;x=%v5T^E(Qz6!NMYno6SD*993}v!o*N;cjDWV<3~!nzJHlJ zZ%VX=Wljo@UO2h?ew;=cw2JNIxT4`p&E!dK;XqJUwnn>z)Apm-51N)`P`Y<1DSkui zNBsv0J#*Sm zu%T8XPqj*Oy3*!T5Rt*RGHNzX&ZF@@kMdztxbG_mfZ1$qZ9M>coPHT|5DoEwsF zC>G=@6pP;0xujAJPs}iRt6xt!zE1FkrbYqjiyZWc9`XLfMk)CC~@!$VZ$(b^^s8S8PTpNJ(uYn@?2Pt2%O5EOtDI z;Bnw_WIdVeJZ;{A$;g$rC{2IqQM+5^Wa^}8M+L5UEtXcHW zY5Yz6LC^!c{5Hfv(0gO$JpUXz5YR=dDXWG-1yO2zM&SE=L+Bz={8#BL7a@Cr;KY=} z<4>0ew+I!Z#NuWupbxzlQm5X1f??t{Qze2)^!;*89R{|K7v&>O99hK0IZS zACLcSId8o$@p!JmqNTs%M2<8M+3C9We7NAcKk#}}oT9n_in;gAnf(0X=+9y;T%KfIZ-SjIickfSrr?T-`R zv=Z*l@9(3c=QH#jOWCug_i#-byl_>c()l*b_JX8wx$u?08qNwLGJ=j5=~89-7}1?q zGF5F!P6s)y?;Nc4s3w$;xL;GlL50fh;$ocQA`USZ^zp(;Kt!Ld?v2%A#P<)##&5uT zL(#`M5Wi<-xHH`q4P4PPbF{Dg@r+SB@}s~!>GVLoYMHFxsc704OK39huV_s#h#vsi zzr;LnHY_wN-}&WUk{V&j#?I;0r^K^-Zr90%>p(|r>mE&eS~-=#A9oNg*E(~2gYP{X zsSfdKAmJa7=QTgZr#;`yRX=& znSRGFvtDOVsow*dLA**mMATi(`@9jtDyE|J$L4`3ELwN#Pg;TES`H){p*F&TkY@=MIXgB4-Ic@ zckATy1eUzo04+&^MOwGOSy~rz!HArgWA}n=`V!{@MJuc2Oct#=a9cPmhz$ov|CM69 z?7zcXZV3qqV16qtAz^iG?Mb_z-f9XXK}eoz?znk?o^fbmYASPlcbH@gk+^Ml9P_w& zoS~JKRh6c8ndvZ4nDg`Vz$={Ca;VZICnc4miyoOU=Sn75FWNd!cYdmHvKT3jobFSo{vvlPWJ5;B}&hF7>)(rtg2n5G`PJEU!wd$+>!LkgBMCW+ft!45CEc7>5{ zW%+q$>w`h=qIr^;%X1%EZq3n#%=amLW8x&Q0KEtTG0R5HtS2oi>GuGTjJVSO&<;?s z!Iz=UlG^xLOv-Vg0?%&gHE3A=B_eN8{<`I$DfE|K-*z|8y6l->J}M=ENHmVh%?D_l zTe@}^99?w?mq$>fnk2{UoMhKde-=`)BGbgk(lF9+9671=R+*2da4{Y#GQi$iy_nxE z-xfM4?;zKBnR7lb^2bOV0=6QspMD2)HVy>vZ2wjHHOEx$%L)ZjVO8wiDU{25yL^2$ zfP8og+sqI6``^KB8j57XN1Lp$@|>KUwrRSydd;-&}xW4hIaKy(RMfVD|N5isT{=_daeF%S&Ks$b5}b zfqrX?Go+;o?a0EcO!S_cOKkjwo%E6hNQ2GvY$?WYz--%Ak?k=lWQPC41 z0j5|nj4U~bLqbBps^ds0+W2l%D#>ThHjd8c!DIpHbc3ho<9K!q1F#YjtOcChT0S@f zu4k|W9Ua~B@^XT+i%Yd41EM1e6^1Nrv3RO1D3l7_?x$ua0pd4NI!-xyQ2+G?&-i-JA359qV z0Ss9GdEK%b7!PgvKW%#+pEV98Jf$@8lE&K7R zo;$%OK^55fM?T}%66^UDGp;w$EqCv3C`aphL0Cmjn~2=qduby06@*9S$$0lX9}f#} zn8dc9=)ZrpjUUxy&el)icuu6bX3nJY7#hGk;reamz0unUN5?kj`pJP#wG`PEn!x60 zJ7l{8d!cyGx@hAEzTEHu+4zyPQHau?gJ?zZ9#Tucmx%fhL>oyfMg5c(HA)Is+J`nu z;vHo$c*Q_1eftVLMx`kl%2G>H%0}&io}2)lAoxX&iXHc?nPx6>DRTGwdgSjfkfTO0 zMff3i%W@=9Rrp)wAi9j#<-QSe*@{ou=e=u@Y0!DJ~>6~y($&u0;&s8VOq@hoAgW^`ueG|i8jEhJ94nwb&3Q20?Qa3J6XcrFaF zMu($>cv`VtM9MNEvR->$qd4J7ZBOy0?E$eM5`Kh69KMoV&3bL+GzNqY@T#uXU` zX43Tt($9XFrJuIO$54wbAnOvX?hy6~M56?v>ek+o@FRmBtO)B^lyNw)mW;?rK%jZ# z{gcbpVh^WGj}nS{4u0-hf7H}QL)sD%`8?Fp5svBK((8*IE_B$>^Pza0NF>|I^ z^jmq~N$-O_*H?Vgd~B8%tE40|`gU^5p<=R(N%rBA^YnPh8!+OMm6cUUgO3WS4e zRe~B91Btntn1Vt_OKWOu4A8A$2{E&&jU)3(kF%wCVDO)>=N9mVA2cFhYu39t+u5-v z%7s5CyYv-4^<7DGwOsbjo^Y7q_cUs^OMX*-ny6V;TV76z=Fj3iJ;3ld&Q-1zg7A!y zb?)Ep=e{0H8hRq(tIkLhFOlb; z6=II}qaOnaV|K~MnKlQ)s+(Z#>PO+lUd`t`+8)c&W6dALuhJ_&U1HU3OA>5EV{>d! z&~Oe8ax*npR5HRhNjws=S-cMPFzmZ-@lUKf^$2RMclUM_VkCF}YJpLIIoW-r|1_83 z8k(bbq$=Oku_rv|X@^)aW)8UHgvN#C7vSFGlOr#jnpb;sSZ z+1h(pWM~duQZd@qIlBOPeEEp;ekw%qL%)Q0v;d2(&B$Ij`_4 zuf-k&Qh;Rc|0^*N7h8J!4&2u4qzx&{L^NGg-H#NoeE`4G)hHtRnh{>`L zBtTT+ZHqB+`_~ndhnya|bA@}q>~icUsP$_f{=jK2Vrs_fu+bc4CRl0@$SyfX|lbFq{DllTXUzn=;5 zE({L(RxUCM{{q5@ah}z$%7HBh*SfS7=kNuF%+e8LZ1Pej*)6Bby$;M427I*q4Wp8A zYj7Jf*XZcz#*qsx-rA-y2l1A}#Y7nxuIZVIlm}Pj1}i|M=%OjkzCR24ejt#k!k5a0 zvCu}SV^10wB%j7dhJo16ecWoWBg9&=b3VVxEqs$sLZ~DA!Epc!uC`*T7xB=vqq5@V zOn(-9+(KkeHHqqDcJgm8Wha8}GPd)Mh8w>O@(V8~$)+BtN$R=F*56mhU;;s2SU*at zV)>RZz!7E}VHek%^mU?{E}3@(Vp}exQHIs=nN@K^sGx z8The0SocKEea_DH-hNpchSs_0FwDf}opo&(1Yg172J=14%$&o_cN&dqVp5Hm`~lbU z{mZ7Yp4oKeS4w>JI~gD=?r0P#GJ)S@e}lz4DLeoNN{9d%z#{+)C5b2)SWtsR`JY#} zxwD4)v>bp9UevdLNdUm&4}#QM>pmoAygSDwzU6#lB}W*gd@_BsE}LCn|H_q;Om-sf zwc;2XHXRLFj&Ql66Kyh23Py)TH*Gc4ibBq>LX)?=p1k}AcAC>mV#zkVCw(Ot)NaV| zB4bZ0{UJDd$a4gLpB->5sUV165S;R>#pz25%~v#DMct6;JFRwAqc_71#MdptDKAZt zyf(O)yCDhRAyQ@#42H|+L`ZD+_clv{t;Zllo_0{XA_g6|B0Zw^y@lRWr(YbHkgf7d z>>IuMfms*#2YA7imh?oWLB=!nIr=sw>Wc;)SoVD9Ggmcl6fQ6Ps#kK`4a6M;_BRfX zb8_TZ8UAK~W2?_CIta~Zh)aYoe9Oz@4Ii4BnX#;h?)<#KQ>R@pU~JEq+SDWp3DCp9 z#%8yx(kypm$V@m}?2JxMP6pWmy#GBXHxrZ2@-5Zedts8y-Caf{Me0A^PF<4$yR%RD z=JM)fW{0PDdD(~oKPf3`U%=}1>(}mrY+PK+h~ib3V?XN@w8q9R8*lcK=^KvQj#OLN z+nUqee^5qvlN9YnN{Wvrtx*#4PjjjhONr>91(1tvs8BYSjnt*KzqOc}GB?KY;*%=D z4S2+jL#1s=f&eFIo_m&7^tcCS4QG#hNMnOoSvv3j0u&wvxo|ua<tr#HcqAE_2+A4RSJFOI4=1&GA+l( zPps!zvJfe1b|ULvT%g~~M_AZNMm^-wOCpHLxVLaY*^m47bkyUxyJ3HTUW{5&LSyS~ zk8O?zCn0e#(s__Et&qii{VE|1<7w+}x{vuBHVFg2-pmhwd7)T%4`hit10FHJj@yh; zH!i=2-X<260Rs(bA8G&^l)<;T@DEb{lCM7~gA1cqh)-#QKeN%^xp(J5BpU~6#BazL z@CDhT-#MD+ggld%UyZ!N_-x_GuW)-KB<(Txj*O(O=p^MKM}fnyi@~B80}~^7KfTWg z4&ONllBTL-*!L7gWIA=b`CfdZkP5&Hr`)83_-XlRpg?dPa6m@3BDvV9R$-`QCY zrZR3uRQ3AO1Q!+%N=kIReV4y2lSPdpvpe+8Ro4gl=); z;Ou%^{SSt?nthG|LOf`2%|3USn3S~Cf}c1Hz8}hNmp$|_z8lOzxVTKPhN?U&D=TaJ z(P?N4=8E0iG-ayF%3cx~ z)hDT>1@B~OnjLSrdTuuG4y|R3iWj|+6G7mqfe;?93K>D**%5ebf+Io=N__0`2N>`k zI6j&&W+e%6(v{(P7UdDEqDzjMqXcZ61v+QU4*j)U4f)M+N?p`z z$a>>71BVBchG`y`(OGLQ*Zy4cDugJL6eZ6JtOz4 z4YxHVxW-*;wA02kLDfh1T+Y{wYoD8p%YBxc{q^;AFgP)4>DaL6+FP_h*!OBUz2SU(X8gh&>h}+In*O1V-S)34 z)!dgkD(xK|{HftFQHd6l1Y!`@=j?dF30e2i{2y!A@_?a`$ML>Rx&@;eT3WG6lGKs( z>2APM27FAvh#`{{=oEEz9=B6g_IR1h>uZnEw-FS=9&^oisQmPZ$}I@d{52n|6^w$* zOmb8Pp#}N*<&#^&HwVJlNWK8!vk3-^PNbE%1xKzoAX6D^=@Aak*a0q@j zo-~R&t|uO>4cHb1B%{n|a!hmOBUC}JzYlih*!;>6m}#)#oC(T{c(XSalcv+AjuqHp zv(HzpHHL+CWX5`osi#2)r#i;8Z%lARhfay#sMT`WMLi`vxYlit?tfm!ZZ{g27SYy7 zRl;Jy`21!3MDKN7#AU<_*V8uP%b}owQ5xC9W1>kpM*VhzNkYlg7C#FPqDkd#{OaPV z&6iA0TH~oG67S{)?rn6pFHd<7rm!*r>@h}Z1Gxgrpnh}4+vFj5=NIrdkpLJ0S@Ygd z>K2LqTj;~Y&0i$?Z39UCL!w(}AV+Qu`VQXx*qo`*Z)X{|cV(|{=Z1R}+0)$Yi_L=M zYXQnG!EseSG908A3LEL(k-6cb*`Hz%`08I}RJw)z7^Ul=JP1QzQ*l_{8_uO3L;o&LE^?dx~ z7V|^?qOpY6{?>PS<$Yesjw5|9hCgL_f^m2f@+M8%uLY^mNm(qTA6T*_eORt(tyo6X zJ{B6u$s4Ki#~G0Ve`f(YikUzeP;}GN+tAu^iGTenKo38pO_#N@sA$evn-=ethDLH) z8kWBpn7h!>(1^G^{It?wyGs~4JVRE$@12`|ae7!oO%3^@>M8ipVWI{Ie5;;;PtRhN z04b}|v@|ei;pnmF%ZsUYIr@sz%!)xJkv+60P%vfL0F--=5j!asNdWlgtxX7=I z(n+qLQJ^8h$M-fIug42dI$j&f%CM@9j}>TP8Y@=$5|iK#{(vB07@3D4pGr=CN1Z}^ zsX>Hd(gRtbLt+n7v|4B?{YiX=XeQYw{t2O{KeW&{4Y{2e0|zeDVh)lZirAz3w9@zf z>ej`8oqNkYi2D=GSMBvwzgl(MX9Ytv?8fCe{rELKP1sIo9yB7n57PYvuQ&glk{uGT z(TqE$YC#?AWs)(~!qrWyT3g#(gfq?6^V!-YE^r71#jxcvjCY~w$^CGKIm*n8qfVBq zxy}sHNBr`v=5bG3(Xk`8#)Y38s^}DZ>bu{pTrXG=2fY4LlieJ#Xz)pJNsEw0p|isW zYhtdpAEk8g{D}J_1B3W2<`@&8-C~ZPK2SZAXktZ*IN(G7AA*MhWKcgyGJSwntPg$* zp#Pu|44_~F=+-ItAJPYV^&P`JlX_Hyc;-2~ht-o^A9CaTj+>JcN#u>xFhVs2ZKlf# z2Yj#Gx2S6uL=xLnZRLo30jW|C+< zNGd1GRmo2 zT-s9bZ-z#1R$C%24I5Be{+MEc-T&~X@kfAO>ExCrX{z3urdh$LBwYOUv*`}-9c@S*DJUxrP&EkPrkI8W8g!Xi&8r&a$6WXjUf(z3UF z3!0Y|1CB;^cX#J+Jj#?$FF zbqs&8Sed1=QSI(cy$<`Xl)RLZVLm-51gM+4W>RZ1*9umz9ZNTxMdEBH%iuoSRl4a8w8R$bdaai z?4Pw%ikmSGCR1#EUM?rLMvTJc;FoIsGBhWH0Ou`pmy9sHG5$@DqkOIxgeV+=b*i$r zBTI2?J`9b`CIy=Hr70XU87E|RGKn+pL(>PWRZF(U6O4+{IJ7H`?Cbpkp|kIBSL?-s zTu59gvDPJmN+}Z;iqx#t=@HLrf>~~^v+*wd=6+(YOU=%Y`n^#63o~e9C3#Z6`5FOn zxqb#EKFA$Pj^DZS&YxOC6yy}hBalLEAd{GA@Bd%?Gnmu-*N6TKK=@caNC+f|?PN%m z7wsdL3ZoPWJ4Z-qVKFn@!LHBhoow~=^PQQ97|^JLFW3jhUEY)rcoYh6n+lR*mBxfi zu|N72wc!lyAeAMuFPcbu=U*(!ZhRkC?~ze73NUy5CU0FcTwn{(z?9F7cVS53mbK2J zplg0T^G(E?6>Z9Mx4L=^YbGv}SKg8flC*5|)h{6#iozmkqqL^n$($`XMPrnd5F*5A zd$z+@#`Nq$E~mQ&?(THB3q92*NA77E`oi%=79^g`R1$R2YxaBq6eJMAp~yV&S3v``S>_Z|+YE zMclCIPYyAIBxutwg673_FP)v88M2uqWhp(1?v$X81jp`!CD;<>Kz48?uh}OBZC9r$&P_Pn_^=Q5i-K05&CIlER@jWZN0cj_;gx&ezrM@NTl z0RI{VF{x*HI9E+MM#4+<8E~? zCXqkKcAJ8B=`BIjn$9S6^08|40SO>pl&#f3@!Z+^$ zItYA+C__0XEU$h$akL!Zc}$fFUrw6#zwzh4$lPE2IiG)%Ow#eGD&86yHAa&M-90B~ zI95!})M;RLWcqq39B&xs#M#7|rDc{YimAm~~#q?QC!%r&Dnn!4Hk7SO=OhkQbnu>U!x*?)!|*eU(|FuKy|uNDM=?wJ7zG*UWFX5{CrJPt z>-0AR!Yodcni-pY(Mw1W@PWZu2c0V0C4ev>LNAWDHXLf&^atK*8Odi4i3ORK@$vJM z1WTNspQHIVFE0;w2=h=1z3qGBv8ewY?J~NG#lvl;hMDcJ0&3C!n@2rLGKpE^Gcy!n zk|&$vcBi{@uv9Y2P+Ya=3()fu%K&<&yO=F8G{)A#!UC`qeDJ_H;ze{i=I6Tw|EVBNhb86O@V1~V>_pNc>R z0mfNe9M!i162uA2|8CgxO<8hBN`b}5)^Fd&CQ^8u>h&Fff0x6<(v50BL^G9g)R}}1 zey{_?O77uG?zu}Z4`f=2$|J$c-4^5>&x?$O9ZG7*l*3i7=cVg5Nr75*52QPc?zk;> zglDL98%?@r_A$3e5l$%*pmD^HIcP{B2m_SmPkoHv;`$)3kyB$k#% zCM%@-)imr<@?1JO{vDAFjj=C^yWS=>CH~??dZojeX@PtnU#E&$2@6c0GyE* zFOFAfsEjf{d=+gFkw_WbGu=sJVF*$SR=>AEwsPqUeSXNZMpQ~_BFc6wu_B)nfzXWu zr&DdH)^ZEG{WdX0xSsu>@d#04H{oe#;A%hBLVGPaF;x^FIlIU9lb7oI+dVos@Qga{ zPwnI08?_7t#Ka*A_|U=(IFvgX(ZJkJ3TBQ{q_m#amhUPad^Pb_CbKS$fpL~(?wH_@ar5=?h5R-Xa zK~0w9k4Jk|zN~>M^-`@f|FZpv2*YZqnWPlajjqdwO&3ZOHVg#E%#T!hkGZFqM?=sU z32m!o?)x#8jWijyQvQ+v-0e>~LEuFy!(h4ycPcq-4?3s39-rpAOPHR+Eu`cm5$w;! zt(AEp?YVe7*XUhL;Uhn01Kbjge6TIG#u5rSz!E0EG0;be%+LeLeZqi`-!`e!1xI25x+p zYm4-Tn~h=7AC6r^861E7HxG5D)8CJEufRlYn|@>>xFKm=oyjOE3rF9{DIqb~*xC6E z^kp&>8KOIJBK3%7PTRS+>rS*Ez7`{sAH* zL_*zau<3p4^Pihkq_dJFa}XkK={raXxTqrRL5&!!1i2hTeHUy=_rtIfP#r0K%eo7T z%xHbnS{0Fg=tBI)?~xMc@-B2wnHf}yzj>gM(t}9`6|V4N=1Na}fgz%6gi|g)#l@2U zNjSj5AI&nxNdb#RDn(~-YXd;yzx0kyTuV#qwcT6_2MTggBR_=HqkMaMIVrr z-jkyzE4d%8o1`jGllrdc=LVF4W9mW+jUUW@$U1q^N;T3*`S`7wC|AEn#D*sS=4mj` z+IZ|%=>em<+P;wCmPxuciD%H2JH$6Qn376&3WA^$1T^U4dqzMDEK#ON9eKo%0HIp+<$kb zRK|&qs-8NnJBF$r@G}K9NWUT;?LCrX?73uyiz6TO#86J%5Z24#qTZzbB?)HBrpkSXt<}Sf6JC6dxw#~%2Hahrd+)K>FEL2@%zBXbi1Tai6WRs$l6C!O3uzD5 zLK^lWt$B!^7*x%=!_8fd313n4rk!_fjtXUWy`GasfcmbJjfA@SaQbpOaPpz>2O$nv z+t{`UOcW4Neoz#plNowwP!}WzFGu|28>(aF$mdQ5F)SY}OX?KOC%|PkA*RZ#`9R^vj+$x9Q8s81AY9gm_Z2WYq<-uvhaU_d{-BH?BHM zbI~3>eW>rl2Z-fQL_|hg%F`qYLTc>z(lf;n4rDdW4#XW_cz7L4VGE=$fR2b4rV35um%9mACkuu171=8wcDhr?`xNEpK+`l{Ys(4q<=upo^nw|Qz0QBhO~nDKM4c*lSO`7h|XKJN$&2m!Pu#1 zKdl<(jCR;>O0@($ST)S6RrwOEzI0EuPfHl3z0I3ef06pKW6e0Jh^d~d#utM*#5_pEVK=kho$`>rbFkAdcS@gI2c7NG>anCMQ+3UF>!Zb(H2 z*ug)+_zM>aRv>8K;OK*)uyJ#69RVO#70^6zNag70$f1TTqT^&|X2)3@G&)mKG&M91 z1X%EbNrgR95*5;gz*jS4*6h!L3IRWIq||4nhnXt5!_{D52AZcTKwbduPiD~(vR}o) z9WTe61>ZJo`c_xBk>fe_Ak?vD3fxjt3yxkvj<+VWVxQy00FT{OP zvW*xz@Fnw&&}m6Qn)_M1EX&V{VU-dR)c0^klz0+#{zqsNtda{Z%`cMRkVLvO)sGD8 zl~JoKTp#{K&zwLeugS-s!+OS696X7_PxNC<5|I$GaK-7$k%h@~3un7OS293N5~qQH zy=v0mpyllxig_+qWN1tAz_wnpi8p7Q8V`XOgUH}gNJ&aC4XH#87918IFp+#V^pXcp zyIu*L1ig4yC`^24Zyno@G?deOc-hV$ID7M@c~CWKmaR9gh?8hnK7pK$v*VQX;IzneEH-)(alkR^F@K%@}~ZR!@XKFA>xLNn9;-oh>O#r(L(&Bg%2+gAw>B&)lJ07WlY9-7f*f&)`4G2# zZ|+{uexfwuN0tgLR7Ou53k@K0{8|=C29H2RV)aeeh{$H}lptr8&4Sa~Jam-CEN4&i z%mvADtePh&O}qQG#%Y|)-SEb8!u-UY6jj2}wG8R}V+M+*unjkJG=H`edTZTx#P>W5 zyiYJ1>HH8Vz2I0&13G?wVY^G71hhB;b?`jKM z!^7?pI&o}~t#5qDrbH#DM8(@hiK2vypoIHBu%|YSN>CP_Tr>*S4mH1%@#?qVR(=m8 z3Ka}sKym;d4tUkKhy$SMj|{?jXYuE|i>xpD-gO1V*EWUjgbiqS-Yicj2(u3GaEZ_u z6p<7VnhvxI8bm^s1CXMGpG2Q7ujEf1ohH2I9WhMnA9}LV)v{Ku7aufzrj~n!RxrxX zoP!sxm~=OM6?Sjcd$^U2=UY;VBCh`--{{La@J;1S!zyIM|q&pE(+!+xfqs;70k%%ZOd+(9G z$u6U^cf&|!W$zWTMfTo%g>0U4tG@s5?|FXDb3JaC>;6=#>+(MDbI$9$Uay1i&80_3 z5fWXIRKdAF#>Nq|VMtNNDtq6q*`g&U=fjk}g$`M5{sE>_OW;iu?!}820kvvtYpbcL z2?{!&`V(q=q2wZFrkttOvb9w^zHJx5=$50}`Yum$t3#Ge&+X*2F@x6_f9Ew-vc!M8 znbFG(sl93p2C7P)o}NG`+jdEs8z`i}@e}CCvv|q?MPE|KTqXtdAI*_WBbG&{ag`+C z%ziB_EI63?_H9GMn=xe z7$8FK(Zsho@FhZ?3X%vk2IRV`%G1fISpFu2mLp%{1(Ms4@?gRP;&tKU-KoTfMsBd* zRK~e0&%)KiLla4ePGA7MAMR~JWMg-lb0vEo@5#_@PQGLTJnfeAp?n`f+7>>z=r9L8`ISW&#;Jy^x!8MqcNG{G&*^IU3G8fg0Ibl638Lyf{b)bMvJ&dbbB3 zng!)M3?${VTM*8d1f#Q=Cu%rR)@3e6VlfBFcdIoK*g4M>+i{jrvI|9KLn1i?$c8&El-~I zw6j6uYI)GvK>VB{0(tWKnX~OpyEw;cN4@(@c_(}hvzS$$amk}(PA;BV*@K!|Ux>x; zQ@m_z=T>|7eMZr5B6nVwcfZixn|0cpUPD#ow*S7S$53m>=dOM~HOJ3wq?;k_QnUy$ z8I|M&CIRla`~AJv{Wf>F1)eN#WpPL7#S!WZrv0GIKR+hsOCj;M=Rb`XrLQ}`Nc_hR z!nhgNLfbrpT?#aLQWQGQ^^VPA&-qQsrg*B>YcEiB35OsMwmRu(7{QK z)ID2Gp4&uysH}^E!d)x74|FWhGeF0Z+@S@gPSENDk_4Q4HM4F`d~zP^+I8m!tP0&9ox(E6MZ8zRi>=gI=D?ay|| ze4M$&Cy2bDRLJMn5ki(7GIfzmd6P`JPmd$_{&Z~XWwKh9_Ji&IR> z^CS2=pF=eyV&Y6`KK{)fSbxf}^HTq7n216)Ir9cL+eiu@opk=>5U9k&(Lr%aV#E6r z6i}<3P`a*Tr0hA51sol?CV9HM4(*JLuKr$}%$cV`g6ju3GU43dNV!rk{q6M!V>;=S zo40)|<6p`AGmlO9qg%sj(qJE~)D%M5}M&zV$-F>!uVaM{=P<4+qyJl*4fPdf?iLOxg z7mMyHr@`})4B}E%-sWo3lK#x|_}@O<5i%3Zt-T!ffZ>}*ErmmET~IcD_`MA4u%5l$ z$VehC%=Nn*_GB8n7D@lO0LsEb%IYh)d3zE)7t+El8@QU?J#SxG^8Y%mMuqEZhu4mz zs>Pr#e~#oP)D-oNM`lyidau{U_PcuKt1_rnN-a1WXkCrTtC{abvPdg^zI7T=n&*f6cT6=Soo90Iy6l zJGx^|w)@LtMi`G+SgcrQL}+iwRrm_4{iJkR2G+QC}Fh#)2jk?h$OS2-bNgwnD=0la+y-$k@3xVpR z(Kj+U_)8!xaJ781{j+lR!-wEB0R~wGKoj8Sk8d-Cdai8b_GKJEn{n$hG8l#mp@5^O zrw6HmONC~t!d~?`A?w-J*l>Ee_SV+oEEwOG0ECyHpI=(K|BXoQ+tdaXQb}1EI7Pj2 zY!1+Ky(D3Qst~?H`c6$vMc0wV);cyex!nsezU|n=t&2%aOiW1lqVzfA@eAA0n9Dyc z!Z;($;t&{Wj6Ep3ox!$57XxOFS{}XOn3Ie!my<1y-G|cQo#oePDKnG4?3<*zdrgc< ziZk837#eM&%}BTLbpe)F#8$G;`-_5bMUXDLS8SH zSKmdRKO=qhQd(D{*JT-odoa3(#pD?Ng9f?N&f=( zYivcQtAt&P>$xp;p_RWD0zzz`e9(Sv*7Rxec(7iqcJ);m%gT!N{PL4eZAoA`{Kh6M z_|qD9vP!Sy+~`n-@Q^OBJaOBH>+#g*GGSY{ z+VPZvRp0j%I4?KL^)89{Dici5)iMQI6HQ!^C=T+f#!uew`uSr=xX^y>98vtMsruIq zrpY@AW|6saX4e6UbGhox#U8YSZ-)8uDY>}{B}!lFhOFhyOh4jPmEmh)6BN}b@IUcY zfDz+BVWM=ZKu5Sjdq)QhDno6Lx3fJ3iC>O*9IVX1lI+fyZCifN^#RHw-so89!lA9W z%Naxe(vv=&N*i-0S*Cje(>Q6Ym~fqZ*pU|wY3%S z0q_;|14s7x`5zw=AI^al*LcDjB_zdMW~SFt!=5KcM;@L=MvXQJr;!py!EYF62zr3Fd7wx%F3g&dHD@9`fZTQ#eRH3~sd}_P`NkbYE-I+MCjL6UN zOo=fxvRc#;sJ(eCe&wS}z30A3xs1uD-Pp!YFSn_#b1KG7gse|A64VtDoWV1ErDuZB zM3M~_yuI^Q6pNB`>yDQT$pDrmt6t57WA-giXTt2RQCSNCj(DC*?D5vS?n~q^R7EDz z3?=#Lu9f0-l+!xyOvDujA%?zb(G0)ckWIvRJKB2w@vgC*mO{#9Ctfcp>*KhvK7iw%YNOKH#l#K!E_l{!W9s&Ak4 zI`v<5$$YZA&@S@O+*Ewrz~OlRr-TXJwGP^ViAcd_o_N`^%SMi4;Vz2`MuSf-w30Q< z6ywNB@I;MKHu7+r{(X*xn&-RreK!X93t zFV{oq#mc1hEe#ZEWIP68Bv3V-mNJW!7$f0+WyKv@`3Rp=3CcAYkiT0*A(D zB?7#>u^n?9v8~%neH4uY0|Pc1jz&iG*TQVu)6>%dX0uT31x;I|0uvKc2&&t)(xt4Uqa$<|c$pBE%C&q=i4Y5fW=n!P z_v=^oz6U=KMsn?hEC;BJGwC_bMk-00WkguS_+Qwrwf)qCEd`;mAo-d8vxl0AKlfcx z6XP=zbayEa3Ox5FQzco1H&TkUl320TKULEs)Wl7UYa~RHsBYvVbILnbzdl}Ya^6h+ zar_V?`>V6Vey@00=aF8x@%F3xHTkSa`IRmeQOy3~UP-!KZvCuxh<>_j!s+;7Q)2>c z#I|pso*4IoWZ@k!bgxGx=(4rJlOmRdJs=yT*WF)qEWqZJZ=GC!WT^6SW%21fy9|-R zjc!LR4iti7a& z9l9h(tCFpE8>3#d93(o(hBOT9Cn*Q2_Wj0o<`+_$Ji6FX{0gVT%3(Bl96P;Wn4KeLrR?j*cxDxq0n5o0!Bd49<)TWB=gu%0~6=Vmo1lysu-e^ zM=TiHp7xuj4r}_Bg4ZLqZf8YYPTrBg{m{O6oOZU8nI1_m>o@5I41m-wZuoE&$&Y@dB<1Pp&19d~v& zrl1#c2Z#-LY2atB;W%P2(EEU;QXh4XEB=mbo(l7s`E3`pqZee6>1i;1gr2Q#qLURj z^(U~qi^|JE4hO}UU`IT(Si{4Y#jM*ch75yY#>8RN4*zcz=E8~!h{M&@tfkTcb0ukB zZf+7`>&2f8)Qp#L_OdMra}#?#Q2wM+rMbF{W~|qwCSK;u?BE~upF619l+!eoBUx_$ z&{O{@St)Lv*x2}Nea*(#G0nrdZsCNT?6PLE&whNkHnYKJy*M%E&pEZ%vU+{rO~YWh ztgNKN|GtpOaYF+O)9k3pFE&7nmAC2DihaL|dPV--op!TSVDR~m`~E<^PT3@3iw!t$ zjVGRy;@3%Uc~dtISpjR>LL`$K8?R{>2pZIz6f_>My6;cYS?c0;eh-nK7su>G;o2-& zw6gwSKj6zkM+DBFh^W3?j0F!e-b`&*io0Z>a)P|^@7({tR$Gv0{^S}qLRP{!D7&81 zGH1x1KW#u*52lZo8qJEYlqjWztciHvtwkVNx@FF;@mKUE=blqy7fqjRs)%xY*4qF3 z@O28uy4|3ikY}O5YiXIV7~Vd+TWXmX4RJ!d1Qt5$=zncrT*)sF*0a60;$7^{S5Y*T z&P-!OCZ@-=;AT+f;mCF;8Rns~4T3C+NCv*RR?yE#A8$#&mVulx$iR`$_5kFi;c}; zZh1dbjN-X=vW(aIQ4I=k0l1xkWdH10*Uk}4Rl*u?we0hkY#HS45aBgpZLCU+U@%~e)C~qmIKB_;Oc1(M`FwaQ**WLqR%IfXx}fsmd6frqC(WqYR@ds(QG zq1w@SD&Dk>=c4&UJd#~RyQcQ@vKGZi`M&0PUKckxwn5_Zk-90lA%y6Mr;b6^;_Sj( z;^wGzF}r8S)?Q4Xb(t=Eg$e@n9TxuH?J(b=(W} zPqg2z7W>p+;#>cy`okT+$3npMQSyF-95F}i@?Kd4GYsR zjwU=`b1n(6cCY2f)Qvb0T;_hD~^+6{vtx#?4Yh9DZXGq;sp!- zw^0I*`Fe8tDbir;n^z7#CpLt&Ux}|oMwFV-3SMS^{Anh@HbbSED>}a7-K)?Vo)0lK zu;{8{C)nU68`DzE|EZJ+H1A=F5G`3B)HXY(ULO52)#KT-TKhrXx&Do9aIM&Af{5V* z|ESj^cc#lYEvXP<=Ti$T`mYDIW(e5S?p)AYhAX(NtSn*Er9y~}Ew{M%rtiE%8Gf6b zR;k@W)feJp8B6$o3h(dV@)XuErMqyW{IIdpc z#I4Rwj59=Z-s_B9%NW>YEjP+r8^?b3hhWZ6#rtpbcx6%ye=DB#zjVnc$){I^jzH85 z{W*bs#{2E%w=ju)r$F^Qf_19Wg)1`Xh}noOsWq0cN{ zS`Ff&wHJoEkC{put3`d}ERMPf9dyV4buv#IWW?z;{jWiW9vRA;zsK6^RSYr)*|s6# zu12xf)RS!MiJyIsbSx;mxSNIPuENufHLPK4o+%>LDfLXF3qv!@o%ti@eP&iX7?*a% z=qP9?IDYSc8D18Mj-_llC)v6(TJ2&|cG4O2_`Q$CCCYe;lF^MgQ72BK7Tz@ap5*K& z!U7y!7w@)nS+&tu6>6Nk%Q)jr%)XIemgyK^YeE8e?kP@mdP{TWT7I?Oo50ruKkWyrg!9WEL>JA@eHC@j=d76IW@hTSz;BDqov(DM>snZD zvG*EF``+|)N(310?^hC=&9Ir1n{BmOEAn-PbL!|08-K!sR zdzY)V5z*yjBqepesb-^hcb$UA=?b=C?PUTS9IJ#kDYWOP)=QT&8#i9?T+Hu#f%q;z zOuWnGYxUuEq6I-9r=`@Dvd+L8f?d{Aqlf3Rh|?Df8F177zpqdztN*tvwA!x!Sa@UH z>h|N4p^k6kQ&z9YJuyw9KG9Yp!5>=MD{yinW;1Q&?Ksh zkF46A(Ra8*>}pK&vDBeP)&jp`!NH7^ZU@J(*Wvpr$&%?1smeB~;ih6?W&{p12l7i| zR~*wx7& zI%jt`r}18!Q{o|!V(6Rx(H-|j+%LzANz$k+g9WDqV(DB-<%%%k*8G>T`P*YMld)Ii z$f)HRU)5@>Gg{xX7beHyjkON6&Kj(6li!6A%rO`;J5$E1W8eWlMy4p9q9-uchE1l}b=}Pt%lkgIh2+>CCio5<;2kYaEj69!F0 zYpaY9VV@c(iXJmYK1}zaQc+cf{l-wY!XOw|oEoRDvv38@Gx$g|q^<&H0f!UT9hzHM z05u3^!T#5whc_SMlI{Nb<;Ral=raf3e%0hlxpl1Dk3Kb%p3Nb)zU4w+rClL;c^qjm zQ{(cpLT)6tz1I_w`n9-(rpAZo?ut)&U8eOb$rISm_FN55rHRBpo}E+JyQZuSrQ!qY zvuV}P7D21jc17xMIrzWcWp6FHe-C-C?}(Y;CKVA`BeTVDvZ+@_pPl@)C{?|+nakgs ztYX+EI%9dDZyU`&AnSbmQ@G+VRcrrUtSDkgU$`7KHfWu_y&soj{90W|)#c<@xWQHY zpDMKi*S`c6ZN0s)Wyk`mAO|D1r|3cMlFyocl3Q~{2G+u8=l+dlpy?cWeY1_ zuF+7zvSdy+b$F2V<~L@T!yw*uv8+0J%rt$DPn-xNXFO)XPjva6mArn7#47GhcYI%^ zKqa{%&6;8Cr|3tk2C9P7s#zq*H$H?-fV{=u!C2stRmhLicmn>tPI|%W8FUz@-i)O zfx!vD64I&6ErUZtuoDf=3K*T4ntsyE<`3;QEw~iqOE3u>(LS}cwYA2n4WRI#9eCVl zV~uokQC`4cXqkcP@7J%dbIwp3CZ8Ol0lC&zT*8v9p`~q56`}kSA2x0ZWEQL)giZn8 z1}cdahv?{NO6Tdog_`>F|bKVtwMaswX16|SXs+uVD5q!aPfG?RU}E_s|S%qC@XHmmx|X`e2GK8EOy1&$$88}0v+NulcNUrR65lrgK_sl8Kq zL2#p>l_TO3#?aFyd-wNZds~BqiZta#eFLZxijyWirczd|?CdM|@VOa353E|uIaWG7 zt;J7JiTU3AWpK``(a*JSbATuw7`|H#wSN z{#&7Jdqd2GYP#Mq`{PSx7yiT*@$l4ReT?L%pV@0G^kRd2#U&692ghnCp;TdQm!dUx2iwEZP~Yaei)~46 zyS4Feg~AUJ10!p`*m`~{geg0vkqV|izvGBZ@t@6Xv<|=6_EYeiq8IuA!g&CksGWb! z4WwK8nT0=0{qN77JNC=BN!8+ieUtiMn$`Z7X6?JxtSl|LNJDD0U$xA@DVr-FTa&v6 zY955JHLOpCF*oQ%Zl(fCY(A8w^toR55yQ+urNXDNHQV-%WZ^M1ru7pXVnFE92rATg z&<{f+15%sr?(X1RV5UrOI``S1mXe7vG3x?Wy1KenRxGcj4i7s{4jUToy_5ggx72p8 z&H<>yDG{U>1K``UmO!Th!WLsraCkjFK0X*bIcD+PYl$)dlQWpXTLIW>X_?i%02lea z4?05*bm2eL;?qn}4ZXcer}lpv-pWX$#^JvTkOqVv^xOK0u-w`JuM zW5@Z|UA~UN{tZK-q6{|=Pc+<1@(YwmOAMl!SmChUK+hN80{rg>ldS59*?(iWzcU34 zM$~mJyQ{H-R_*zo?d?A zpY>%1;iNI-3gmolF-HN5G3&gFC^~{ zBm)wuW>&76S}?Yzl=dw5R*kFk)NfM<*ASgX>JKr4st?*p19<9dDbiV+15IrC*86^k z$3C=uTS$M4u9!aF{=?>N`V0j!W-c67Hx_;W5!+(X0K>&=lMLnID82NDiE2O7Yup%5rjE$ zQsXzal4+i3*1GNM^Bo^?qd#@5>Y#A!puFbt|G^_~oL+i=!O1Hz|7)$6`-Dl!jF+5> zKr@6BIaa?#hwEKk`}AF|y8-#R#TG}5{%jx_?$o<($lBS{V2T9#hFN{;3rGBRY_JxQ za&W$-XqB9wpzX-r5_|FN5yesRIpo91l(QF3&eT|)Rcfy#+tD-XuMcZii4SOdY*uBZ z&sRZp!#>BOxJbTZ#XN4RFRbA9&X zV>?{jmh_zJti%4#yy*`1=^!>pVibA(8*D3LjFe9A<^er7_!eB%(?Oy6DUCyQ78rfJ&BoTdqASt0j28v{Jh@< z5)e1Q5VyJc#ZoEYF96yY8O_yE9$Qnt2Gl1wcfz{gvIt{(a}OHIjEsz9j2kncUFV(a z5ZG+p-Q5LpEV%we0Ke}619;6rLd5p*UMdCWUz-GTE=a3zWT$v^P@$or07woNjx5+A zK)Q~eWEHIj8rpj@J`FY+&gre;Ho1rE8$n1;Dd3afC{S=vk~qYqsb(TJZT0lPw6YGD zi5Q&+X`$2ni`=1WGpy4>4Pdx^oNP773*K&%XuEnHw-3+#4bri>|$i*L7!fkXubvcq3%6fJAMnif_-d zoKSR$jXZ}Pf09B(0!YKB)55tCM|X!k&PiJAQG+KM6kMSVIRC(5v;PbhE!E80o!6?Z zd7yzpYw>yJ5bAw`&cA5&%z>2#GZKA$TH=?$>grCHV_{}K-FsMAR74cyYZBL&4Ff)i zX&T(Rhw0%`wB(K8!wi`RCL)kqq70mq(hDj#+xekfKbe+0o(AqGY)1J$^DO$d20(5D z=Djuvc6?x4g8_TAz$;_NrDDjcN-$j7rkj=;5u9sTWEN+L@)tv|4f?)wbg07-`bT``@6Y>xJe;Mg zf!|RyUQS=^$yf62tG-;xB(Cj3#1ycBnO)Vpmbv}r!u@i(E@>i6)*j2?lGx}{lIUNG zg{;XXJmq6C%cH;2gWAPhJas)s*@GYWD;H1IN>~R9ttlC?YTkB`?Yvud{G%&XL>in6}dRpOVMRXb+bTV5gB1fa4=$b zqhzR3!99YXi|w$Z!)?NG?c{N74&h(al=wdki;+NMV5>5KJXXDLTVSmy0t0Q)7q}^a9%M?zd|OaJVC9j;7-wNlk>vbxDpX7-vUDW99;8` zRmw)c&*q_zL&2{p;Y#KG_hox8!*@zUL%44m3;Lhl{3BdhnTrvN7ArT58VXBJK6iLd z6s;bzJ;ePtG>!89Gd+FHO^rO$UScr>j5HmTT2v2MY^SFa1xehF#>{a91&;@;2LN~5 zQzbXUj5aI0uUylr@}Q&zIO9$)pT+(VKgR zaB+ig0f87`mYR73uw1q=zKw29AiPN>3asAT$0#obz|OFtmHl%Fm8jGRoH|xVFE%bA zp{#b^{=J)ELh;jU&QZ?s-nJOsg@X3WehM)K}5BleodF<6!HOqB;Ww4E- zAl@$QRWs2bb9m84k^A*bZINC|qi&|$L*XYIU13UckIVDBe7OT(b4g7W5HeVngnz0^ zE$~$ebh|)dQ6L_@gXeSK=Rw^o>}Yi#s7P<02K#>onE#_-`13%GL-U}K^W-+bopBtGA4X!e} zqaoOy8E&saXr9vBRM@Q~R=|q^o$I4)fvVy2G<8kT8DzpaByh2GPlnlik ztkeRjSm+c`2*J0gvhw0vwMM z4ZZ}@84hKM9dlRp3N6aAnD9ACLm=C*;^Nhu(If<`r#4rolHDQyXV6rxe?1AC9g<|8wd5*8|oQ<(DxbrAXO$vH}jG>tg$tA22rhCl9WVqNci3G9rIQ@m*M zd%(AgN<`cn^%g1Np%6E2*upB({dBk!feLtmuR3b6J_MGmYcHe->v8ZZ`Dp2_%2&q~7Y*M`3Wl#$zI~(nfgRO$r6~JCcBhcc z%cm7B~ z=F?SLo?G0rlw5)T&T$CGzjMsTV4;~Y>M&#hm<)os1yrYENa{0h3s$#Xf^*^6-uu9Y z7CSV6^Bu4*;6l7a4iGhT%wmC-Mf`$-c+l0J0SP+P(=fTFJRCma_1!ao51l70glGgsf2aKr)YJbDO%kxpgi@ajg129UgJH zt^LuysdP=)pf$UEce|}HL2tw|TllqHdn8>e)6+WBE7{_;>q5M?X_KjxndI3{CaLGg zFlmnJ!aL|?@JX?Z3Eql&VT*V*;9(h`sd3rG3_EFBBRp@3=p5HiyRr7mX^fp5BP5z( zSih(^rwL)}*7C$D_6mvaM~r?w%qk*|noPTSf1R7ygSJNLPKQ#UHf1HC*?7#VzjJ6D zO%&(hIUe**xV-#HVw3EB9P)sx+dqC>WguL|Bi(bNZhGUNQIZivbvE-S6Wb7@8gI8! zr07A{^1<<^ksfvIEPsXM25 zzpQ`ce?ivCB4wR4javtaMeH%&lk}zSc#HXBzsJeX)NDG}JI`xnC3vXRx}rXr^HoJ1 z&&%^}p51tRE%D%477y_+nlR2CA7{O0hF&?ksm~p3Yx92B6*rGpqKt234=>6lk>Q>@ zZanFyOk5FMinbo=lWDm@{Ri#s((aL$d^SA<0BuBdzs{8tyW|EDexPr$>U;TswfCD4DvKz|L= zw7mv;=7L~92Y6+Y$NmDGLVo@W)jLOKeOcfG;!q|Fy?==cb7)A2N#+0s!wfi0`4RYu zz58Ljyu1v+Iwq{Dp`Sg}xjKoIDl9?Hq#UknZo z22DCRv0`D<*GKMp^jvMT_WwOExZN`s{zda~fvy-+8&5?$<08{Y;imUO%pliSD(VruQc&$!Ut3ww=sSOW z9wiwP$7}4@Qo5%BtL*lh%I4zQ5G#n<7Tmakx>g znaX<0>jh;DF8@QAu30QQXj_=Eet*&%&EHGI`=pJ@BJR`m$ea73&9)U@Vg66_Rvv!t zxrTktV=FpoUnBj8W$hz#PX1E9Wg^ro?heahSX^?1HyVxwLrqX;QD7 zd}o_xRZw%eh{t}J?2SLUc$bukl-e8r6!h=>{UcJO&zSFvcfI2L^W2Dj9!w>!oG+)Uu|}PE)?dVBL+D&r;lXC1_7qs#4b_fc=?xV=IxD;? zI?jh7f^@r3$M;!yCB%)j`D)EepJiRXhLO53p#)N4))RSF$DCR7bY(g|*D9W{WRylM zW3c>hE01*UYqJhxx8gHPxhoIT$!V!|XCg_V)b}b7xaWLYAIWfeXl3m8T~F9Dz!oVJNu3r+7OW&;MM0E}jEqR9va_>K9(ceiPKY?c zo#DLVVkekL+U886{Ahfq0;Q#QGd<=u8aLQ^pEoMD?X(Kz-)R-ju{So0DPmriy-IpK|I2)1}O@+W7uh_6pc3LzlS{=EaJT`Y%Z}+0l^GizOcXM(Y#>>ur5FD|`m{;>> z9NCh&WnsJhv0{j$dx4zFTAVi;JEwcGY&r!~j*mM2SsszW8|p4Ylg~3qt|;zB3ccV$ z^|kTlYOuai3_#2EH<^rbwD;grhzj6TK;58^cNx@6++`*4=wpbs|u za>R8(TD-1h(?-)bQ7P{#-+hOJ8WM4Ol+maC^k|bl!~JuVZ`~IUef{T5qmTA9>Wz~0 zpEJI9565-wz@x&xW4C1Nc>3MYHJ&aqD+>1H-R~HAz9N4x z=x;5ef3r|A?{EL47Lv~ny7}w-Q|DUoNLVxv2m2};T7igyQoJ2q#|r!;@aqNp18hv{ z!I2T@3$KXD$jDrNc^5sBZJXPKAsN6Mq69Ey1#c=~45nU&jh>*6CA@;;2Nnt7VPaZv z&27B~u;~?t9av8UiU`22;Dd{cE|r{&Oi}u*Xmu;Z)`|m}NYN0io9i94*Q%H7;Z1q4BTXqExZl0Lmm z55Av>)kj^6h(a1aPRuhOXS-Vo&a{o@aL6mp;8KZ=@$x(|oK-VYG25w)SbP1m*Hn+0 zpQLZ`s@%h{sNjOwYK_YNtC~zaDWY-r>v|wgyg9@DPb0^K?yT}@7NBa&((R&ZOPMgG zOTEtoNg<2w^lC@PM}8Oj^8XVLy!Rk5-k>jkc-E65eS>~}l@Aev4lOBC23hHSj|4K@ zYlo%>b7P)6*@shAE-U<{_>+5B<0|FI#>wy9jS451t*$;!lk72jye`2yoS_w4&dIMV zust0cJIjNoa8y@jLf9ufH-l9qXSu`wUF+7TXLYgUKjU;X?0(x-ARl4J23Xx{OLBK9 zzhtnlmqmGJaj#}eJfo*f-@w_*q9(Dlvy3<_tN?$`qID!2&-Fvg2a>fen-?7+I~&aH z9wt_0U!_|bKX4yW)*pV=dQ#Fk9n^ z3zclYIE#cSqHBK=Lncdu8ZWyDb(7PFsVuLGt+}YbL3rI^w5)WyaYnFxv`$Xb<&&^# z>VA!@!;F=GtP96U`yoxbLdlT*QsNfpue5fPKwIOp+KsjfR%5Q}oI-cL?cgx3)s7KP zU{#o%M0K6>X%@B{CPW5Bi%C>*9W82A{@SzF#j3U<;W|!#nbELiS)vXG@#y&a?=S;l z(CFYG&hzo!r&a~MFP0WZmi4#6*sTFA`UGPgkbFb`3~nMBkCR*$Gr-^Bl;q%F_m1Gb z3iIr<63Zem+4(xK3}c?(5JG~2;P&cA0An5~1iKf^t*p`&7|bjfBl&D5u?T_YU88Ni zHU9(t=4Dv12UZIsmXeRQI>qttKH?<52(xY=H~@4AN$=-R@Bm_rZUHvDot+(sXB9Fy zN%6*Z(AIO(NH917U>fBQ|4^)qp}9G8cvC*<_F-hzXunF;g8bwgWCJr{@dHgxd%>xMT>28nPGe!Hk1oDGQ&ln8Zl%&FlyK+S{M~GU9Qolrm z8f;M)ly?8RFF>^BY-ll>Aqf#B3b{$)Pi}&u>oOEw4tGu~F9qv6;f4@%S!Yb>(Ai7F z;{M$f8c11^=#+IG9e#fk78@-jD9B3+q^CvMY3=o(OX^>MrX21SQwZ%%M=~cK?kmj( z9Ut40rH{RwBgAFZY_4*4@vu96{r$z>Ce@wNA~qxG498l$)%N$SJPb_ z-F~VUHVQU6<$hdEP8g{PpIaQ+dt9(~H@W=tHxgGGgQ-hT8|;(JFy`4LDa2HHnNFS> zson1=2(9a1Sw;{PN4%*LBJr3u%}%*W;1pGD>x+0>^v#C*o!vM|QEPPl}&ep0vK*36p3mf$INSJ!|Ec*T}ms1Q6n=_|qV8%_tjN2p^C7tgO0rbK{o3T_?X2|!hYHVZ&= zH=(MMl7VuaXV0FQnli?>F{Yw@8QIx&gM;2nNiQ5!7W@W}EEoy4eu)5AZq&s9;3Dn0 zB?ShvWi65Fr9?EKsC5m|EOv=}(BnbYD=#r*5i`yNvkO@8?w5G2mv7BKlhr5>q0kw);Zc+*oDl)S;C zl1I8@W99TLyJj)_S8hD>7`}Q-|9<~HmS+@rAmyVdlZQtbNs_EsK4-C}4z!882k?2!PHYudwKrt*;P$7} z8dbG3o3&!fc4x93uIgR?w9r1QRK=(IaKw49nf|Q&tF_T9ZQJ`CJ~B3;c8vW?JT(f( zkJ~HSGI=7K7T&9u3@?w_>$+Av;7yLn9lj=`e>fsF#;3F!OLUcr1|cNSI_2t|b@mlD z3hCxEH(+1yZaX0vwSS|n_~E!~j!sOb_`_M9n(q$d^{kinh_S?3u^CW7-%mm$+o~$N z1@;Q%vx0f*qXxOD@9NnV4B~j3?<#gujo+MKaZ>)Ct%UplT zzu5X^>3hoUJ1(gK-+JoaN4)E+VmWR;F~JWNW3_D0`EBFIJ>q_5?3)+DZs$B=#b{KS z=a3Cq`;vOX&1trPviPv1lvE_J%E{g#t75CSOXv@&RH~fZ_pd-UUOSlA^B6s7T3$9s z`R}=1LvVmw&-_-;tVCRF_rey;E?^w>oNC=&i@_d}4oEOEmHY^RfVXob==xhmP7XGp zP$2=!C>_Zn&;`5L2VwX| zJj5Nk>PAUPW=dIDhGGut`sYG4A2(y+BDFvKkaeb|ppX9*^QbK~<~r7(PrtEZYg)DT zy7Be4UH>+pHHH>ZkL{M#@8s?7u^V`a9s=@(ROB<1^BTq>H9^-SqofrDa4)CWARy_` zokb%713eHzr+pQaiawm-y2|hc`%jRelN9NnDsiAE%1(ljx-Er*ofeN5UHL)S{E46Y zkfT!2z0_&^WK3I?$X7X8f0?$cTwkXZaxyH`pYtT`n96z8dWJ;|ndI5S5$3rdtjsT| z{5;v*=|f?aQ%mgUr>uNL1r`-Nm6BM69uwu!u9zHE-m+M${x$7Tt9e#fxA%0<1_2OX6U(ZNKfcrCHmi|xN&5zcm zyIm)%f_5a=hQfA6$&5M{I}Yie^xOSjQLM9l(`YF|rk4w7S>Bv_mPY9OY6*^I)ZCbP>+rzsy7W50{|h3FTmC2Zw9-F(XI< zF#|RU>MhmYU(<__62B1HDy3L#0dM@B~W$lhCa z=1oXQ_R7lM*&%xqviDx!=dF6b-=FXI_s8#?jvU?Pbli{E<8fV&>v3J7dcr#EGMsB} z%CYu2d0MPlKiEgg=mNewWjWA1JT2H>zqkn6ITlA}Ulc&}ZK~>PST964&m|7`I-KF? zkj`3e&)eQ!_E&07O~PY)g$9k3OgYeTj{z>iS!6^nSm(l~&2k+YI(o(%;|56|7=vO- zs{5v?)%D3A!nLAIwMhOt#YaX_bQ4S5IY%qoKJT(rXfGx^RYL?Fy-~9-b4q(+a_hV$ zF1DeZ3zgK5Fw-|o0#jKd$Kb7D&K!#@!wqiwQ$V1K{vjsJqHYQZOnGgE@G62&d4FD( z6bs5nBIyP+0T3l00Y^`Ns5Z9UOs+H*YlL3|T7m`rSH0`R5AF*k*y7bE-@a2CK82c&Zh|w^6E_+K+=8|1$!CZ)Ib&B9{->&rMtJx2lc-+E#9&^QG_>%D=tMRCo zPnb%IziWEc7T@|BI}x`jc34Q+GeyNqHq^G~J6njiAf5l|@`nT4aPSWuf=BLWdum%S z-5$3S9}Mlv^|$BCgVY*p3EYc~k`3W)$drh^9)pM^6N(+ZNpnPzL#%x`ubpv{DkiZpUorHp@`E-v z*1gR;N3ACegB}+P4K0(Rp&|YAWnN2dsg3<7_Q24&HD; z{r~@V9~ystn>lZ&0q7YKhK4=m=A(+K!jB*BraZqpUnBXp5zBWD9FzlfWPu7ZKq(L) zjsR>pnx90S?y<+L=H&KqP>X(vIt6YJIJDZY1p^)s0~?f#y)N%d6Qd5)zX3mxSY=>| zitg)J10+-OS%crceJe5S@CTIo{9u+mNSV~u(V-+I9iN!URblR-2%HCX1AtSVu9)Wq z&|fUf)VYCmJ5cUr4=H!ipa*}R-PWsjSY5SW!KD-g!(SB@S|28aJ3WUb#q$DPsHQ~xSkniIV~5&uZmm683Ula9jk#jw$2i;E0pkPtB_s9oZ`_@!oVLUi8d@CoIJH`=^eK+mrhSTdc6%>N$oJ^HJc=v0i)nt!3 ztKWFLE4ceaH@!uw$(iX+O*z+5$zXeAc;>c)cf{qFl}I%?`;m1yt3I8q)wqx#E0-|l z+oZ;>dEMGMU(T<5VnydT7e0cS+{rab=O)WL0bFRM6Y(u%b0DUcu&k8&Ir?7(V-d)JDl`QY|^L2v}7__ZR zgf5;&YBnc1U-4L8QerEA{_&EMB;*IAP?8aAkOcMfR-+&^OyBzl zcfs=^keadu zv?>4}X(cDe%mdtnc*99;UEKc?Jo7T$>r=>B=m&AC%N?m zH!PVEIdPYQ*2JW>`J^>k%*^tM)+PiSeJwj%?3yl=u_1TIGSt#z@OX#Pzqkh%f?y+t z(y<`e^wP&#--mo*+FRuPXaUo*?={tK_Xq<5=0D$j{}J1jkm#!wbTIf^3_5tP$EZOX?$ z_Epwfrid)xZ1KN51n5w|c?c%30s75Dw86PQc!zr2^t-qKe!6+t=IcjrICaB71aV@$ zc4FM@c-9)7rq^9->$u&}&z7(wyrE8njqbgBiP5xJnd12q_V$6YjGfa`X-B3b?_h#- z^TukAW-Q{#rLz~ls+6Apwge7#Zuo-6wp2$RW zC7H;=X<#cdt(UyOW_sf*o=9e~I=z6)xG_>25Pef18V{N+1i zboXQ^?=nnNSZ{~;IU=D1nL3&-@}TL`t^Xd*{!JLc#B9f?X{i({Xc<#lwiG|<HYUoS{xgLv`G>>n)nC5%7H(F$Sy;2Rc6=@Y1&5fPZf~QlP_LKLmh=@X@M+ ztEXrEv=zuS0%obewP@bv9(?3d?s6A>;6FA!jnkqeS6xwITu^t?^KrWx;3K~#a5w~< zTa#cwN$5udyo!OD14}|TaN-8PCO0S6s?FQ{m}tRJIAF>R0#rVfa5%5+A9l&=D?NC! zne0@)x`BNs4i9Onc#@R4AVFy6;q$ggkw9wiMklEAV{Gr;`v3%yg9Mf8v(DMAwbZif zFCtDtV2vd1chH13TRZlvqxj^LOhy$n_;Q0&oGY?wc>io7&+;d1IgAE}2>QNk9TGN> zz?dR}G?cHHu*y=AT`p+)b@iUAR2B@D$@Q#4zn zq*Fd$A!ZZVAAikb&3b&^;^4Mc;ZpK$z&Vw7{~UM!lH5HfoS1QOuwZ=DytUl4&UnqO zIR>`YGx#%UtZL&EBct9MCu@5hc7!;E5@*)Y`GFo)GXhxfo}73q>Egp?7Mc8)nN*hf zS{5H|2rqfT$mrd;t&q(wa%?#2O6~4YlX)_#EAp25{n*{9O2*6RCC|rPsdtgBih0gO z+1!ICxEl4XBv?p3ZAVciel}W@)11LL z&}lGxH_URuUMy@|dGI25%)Z2_A(al%KShk%k3_4umIMlI|NMCu&&z~6zJ>|t#G z3bn_<06<2dLrFi2?KLJQCJy-wRB6D?tA-L;qGnogx){ub?xNHkw!l}iToc^Y0G&fZ zw^@PP=CVXlb#!n3FfjE3yIQ!Ep-6{n+7~v=SR#GZbvZGnX0QrMJ$RNV2 zi!X~bXI*L**?tXZh~5zRk0o*b>lOLdV=>RGiE{mX2dA?|?<4LV-D+Lm0&XKD@!WwR&+Jo<$7B%|cGsapR0ZOvZ47sc^RT6*m3IuAdlxe2QnFzyTHx}^ox6M zzfN1RCFBjiR_wmz?nl-cvHcE~)o994W42Wi6dnC;$%NBbptyK#~lUa*j2U!2l{$bBy{EC(x zHFqCOB77%`5zr-gvDj_NgazqyT3+EKU)_nG)6@-9QDB>1l}QfYq8WK<92}yI{xTn` zX)J?oSUpT0U&;ir`XS8DnY|RfpW}BqJj@?)cYQ!E>$!jf_h*ymY-xH$j^>!k|F(^r z8j11^qrELF(GIVX+y8=|e`>_+ZMn+M?ZF8+>H(btw2#00*qd4bYg>4Ox#6^d;Gs%T zcHYLUmb^+{KDkh4T)|ae?_{D|?C@HV@)TJYM2h;?-JN@jLa2*4G_^JP056TE>V;D- zB^s$%xo7#U`v(_$Uk37|U-4~uB)xj!geVcQSo4zTQ1~qmY7DK-eRmn?$|4E$8DFF+ z(>;o|524lsCv0KXfG7Sc+Nin}^{I@u*R7og5x_@Qc z&fSr#QBM>9gr(Lb=)A{|n<8UI>{iqmI)GKe5%Ds({IQV`$z+gMy>H8tiyuV*as~)q zy~frfF(`V}-oz5oXZwLC~8^HdHzpr(^+WdMcv^OMt?l1@eU zXlLi+J74XV-YPRkEP|O11VjSQ#qsxaN)2#j1QDWLxVxsRo_n^w(q#m5*Y z$Fj=W!?}7P;7nSeT63{N{bGobZvJ>JnXdXE>VAFB2x)uCodis?ey3NkgdPIC9QzfB zkF{a#ARxG`c4kik`!5q_siIS?j4)x|ndoK4*Pf$&7FJ?J*iM<{h_iax&$o`=jw?_? zo`@D!dZBar?jn3?Gs0!*7)@p^o3K#|#q=PUnipmgOd0M<41U48bR1Yh_wa5S+bhJD z_vHE3?S3Va->}UsIbsmO_C^TtqubTM1$p)!I4OJ>+i3(2h-y~)uGtz+(x#hYJ?vO_ z96cB+TI27>+%RdsYvp$ffsa^V)ZzdwEo>T8qKKAnB2uSk(I@R9vrL_38(ZkbG(nmv} zfK4hX9(GQiq(j>68*E?FSX}4_Z4pg<3W2^9hkzMZ#J_PLqc&Iv|G4*)D5w+Cb{xcF zsZR@p7%$rlcI+IDhD-Oj>fV+vpb1jLEJ1mfgGc3TNRJJ|Q2{!<*Y z)c8Ffr+IH7=_Io@)@l~V7?6&qJ z2f&V-2Rrbu_J@Mh5n%FS2!=Iqh)Vcq+`jPjyImZE9 zn6hI7v-q}9V#*GEWAlPoWpm3gQgZSkO^^=;6r*xk%{}0>8633mfl>vLVFf(i@C-=z zS9a$m!#hV9xnXDZ@`~Huw_oS*aK_l)`gAc85fV3Jbttp9x@%B1yjEnzr$yOi zqTH+V%>CrPIgXF@%PE>2zn8W5CB4Txmwtv^GA^Kn_r5{3b%L@OPS&L_26x(Rl@~pi z&)b`NK2yBTg;fhRUV%3f*9-f4KAYyG;w0ZfE;~%|S_fhz#BbJ?nMZ*z>}s~F3fuF% zHkg#l)1P*STg3ybGPWD<9I|4Ln5g-!1d+c}J-kdOd+_SMJ=;=yd}VT7tn1mJ4PYq% zN4~(%MjWcS9(Q3`dD-gr!|giJ7nQ5zZpAy+ThF`jwG8Cp-Q(|2^_McEK_P|L44jhw z?<{sxNMW>b3|X(RpVAftc<0@~d9X0$f}?&=IN$?7{cCiUu|xGN{_O2?OmbP;S(&_| zr*!*GYHSN`aTIQ9Vbop=GS}xh4TQzc&kXiTOx6nQWwu0*Y}CDm500iDWh~4DR}?gM z;?N*>Ozg^H3*!d;IwhgzXS3~o`jmx<5;D9+MiX0<&mJec5%mNwUinmOvl!2Zm|=&4 zcE?FSq1B@-Co&&fE(rxf3)va|alX8ET(BKNDP7_tff>M%k3i2 zZXgVeEe_Sr&CvdG?XBa%Xv5VZIEhwZ$cW`^KdA?re>6X^9#P0qDIF=y&j+n$+T(ay z(;NVA!4x2VhHo?-K)gK&+HRRwLPz)jlCo;1UF!ut8$1*(huM;>D6 zhy~?~{5Klw6cIO7Igs?dU6O4o+&!?QO99`5PUfox`2i!S!-)dk+u5(|uOFr-$&C*`V4JIFA{I(n}lUcik6TKR%pM72t3L+=g^ugzaAfM9hjpNO*QVTLE6HIJp}W(_?clzU)}y;;JjU;Uh+ z=CuBVcarz`0$bD?&Op@oq~>{iW&PnoTPU4Y+TpoJxx0@q5hxOM1Noj-)zZ5a^e}gM zix5@~hCi_V|JVElSTYpl`!~Hs7{x5>l^P(FZx)|iOn?>JSkubx)^nfpasQ@I!XHuP zSRhT0b{uetla`gYMNv!)BS@`;`oirNYd4yVpTQB@Gu!*lAk_GGv^boYYiRjZIAcs$rD>8LHA% z^UMlb*g+Pe<~mS>0e~!@z~++5Cn^dS^^_ga%7LdF+Vz@cp#}Y-y3Q>F)pTfy@4?dD zt{N-}ySn5EAB`63VENLdD1ucakWUvJ0=H@?GBC2^rw|1}Js^^Ya@$#^X1dRavpw+# z&WL7KY&keUSI&9(5U^sJ1>jDhx{$@6gq$3ZVb2Ib;c6BTAvYZzIpz(+6*6F(^0w_G zS;JlNi*hR%n{HS+X~jB<3}pc-v*FyBXRLuStv~0~s*Im(+XP8>DhooqRR}TPK^Nu~ zIYzDUeMmdbRr1W3*RTHe=N9*|n#jYc60_)z!iadu>h6sgwnYiNdh2dueIA?3oYmZ#bGAcaG&I=kYgsQdK;MKi-4%odZ(vtCan=FbnWBBm4&>Ei@ z!di0IxHEnXGzW&#*i!J7$7TO_CjhAY{~f77d-zKhe;bp1CEFAlJtFD-TR+~rB+MPzuSSm4U|;)D}{o4|X^43WlAdkXvG%{0*$o()JF z_d0BIC|Dj8P2ej=X*Q#>rs~OkQmrePD3S- z=^oXWr?q(`EO#Xvj+Oa~dGK8Yi8WJ3g10`S7dG01InW#Sp1E%@rej>s73~ms1`x!P$Z$KI2H4Tlso~*WP(0IG{8QnL^#xKyTb}2sDJ*zGO-5p$;nECZx#vlL@Sf8 z8*wQmMOCmXsfm?O+iav{dU0Kyh=72AkkI+T&{JxDo5nXfe^9qO^$3=0`Sum^Vy5>m3xa5%d$# zSb)1b2oC~xj(dA{CF(sZ`ygSbaCBXtgi6riGjN?hzXVLKV@+LI+0YFGd)-0xUdGIE z=FsO_^!RjoY5MrMAh$BUaIM_+Mdkg@cLl@mSbdw2DlimjNXeh#Vsp_)y@wfb`b3ci z!Fn1Wb20|~gg!+?YO#@o(4k?+6OU_7y}SFS(lu{uEw?bYaH+saZ`)(retVxhr|v^m zd7|Ip=%qWD>DSLa1ykacslX}sn`w|?!nD-a7hyRW^6;YyGgwu$KDjv>w%`?_ie&BP zd@@vF*T)BaUVSN>r}QX{g%=pTIRUGh(|37;#=0g0#R#h zf{RM6O+*i>yup*6R?Sj|kyeHL5S|hSV_$}mcRU;f<_1slA9HFXse{iLsKIO&g$H=D zZ$URanFqZ1MB$qn>YI`76wZ^m|NBK{4yL;vcW*CXD$DC6Vt!&+tBcUp*qtcwSxiiF z>DPW$I=6|6Z~ZcgXa(1ExpB~)=s|co&kSyZf;d*oH?!RHZ*G#G)X^kLU*Uve2GZ`m z%y^Le$UL198}+58afus}GP{(iRnQ&s6OSP|^Eh6I>EOp3=tF^Iiz!fNltm(BD+x%L z8oImMy&W&b@rKf^C8_o&w0uWBS1sck)hr2W^V|b(pwvE+`jL1C1YRo>7xj2z3`49I zPnvdjcCV3%s_Y;`e8t7S(zm$CO$lvB&4g{m+_A1Vh@Y8C!fXtc7?eHusp`)lTh6$C z^t!?!ayV{<87Y3)^IH7ww+e(uwk5RZyu)XcB$A(vj$xEkd$Wc=b+QTGImV~)*=`63 z0Q*NakO<;&ex%dj=>Zmif6Y+{{Qs;XE9v|{tL6a>i^?{x?R1!=2D6f_l@)FyaMbc>02XrHuV^1ak>QqxG2Khe z>{H|8)!@no7*{m;p_Pw-K%Q`EDLE#8c5L8b1Ly=@V0#RXH3Ri~`uafR4=yTFmI^0~ z0vi?V9*0&zice`N*o8&|Cv6b71&?_I8a9IxVBFaP2yGGf%;8O7QT&7{?(yAb)uOqV z=9Ox4nsF8s;?UQ|M3Pm^!VO=a%XYl{KGQk%ux~C-e$gZi30XIC_mTlZG;+S}GCzB* z`KF26|7GKy!So{}5u1*2e>!i6DaE$@`t{KXDN0nGr?2E3P56AYY&Rr$b@V3rIfBZJ zJDZ)929FkN5SuCD_NI+SSIzAyzD_xH6jCcL;}14oJhbwtbhFG`JwqUErq}3eg$YS5ke5le7ih0(hILsYA@5J?@N&t#bxL>}*(EU)rPV;v$fFcOdkc1aQPwVee0L1}{ z1pakUBxdm6VTkdVgJ@uB`L`r)mM;fzKywC`FXEy=7(nx49h4KXXlV>GNOX%AJd`)3DPy!b7y6Wq9d-dQ;^t+k`#V@!(#uC zud>M*$4ASsR&p){-#LRQ#EX0VqAM@~kEH13W$%Nl3-FY(?!O*~+0<}Hys6CY+VF5b z+Ld`7+84rQx)g1`I3{mn2o1CEu>FZBdVEWG@6pA0(9Snvj<<&WZxl8fzmv3aRP1h~ z@E_q1ioCDKIxjM?Bd-W*g{ECHT`W9U%vv0)#O4buU{bI$tPJb3Js_d>xFtotNhpo) z1Hq~dLzy7*qz!RGxwSc7#u(FyEKzJdEBZHnL_qR)hx#@-pjlHW1U4j*9blGgILLYc zdXpOS?a7Lo>8;k*RvO?Vj<>;>z;d;uGgYzD>v zVCJBjmsQS-Z757N^yJdBLFrykZ!f~<;n!DBZXn33vhjy^z*&xov2pvNZMstNeHN-n zELw|6U{0L6f`jU(nm4@a0O$h1WjU5epr!{}yH&pyUJQ7>OzkyX7 z4;3U@f2tCnrQ*zLJVK|(aG$5d+#=pWertq3{(A*e83tOTqT9DQn4ROBJdJH^A_lut z6$LIl?KD~^OhzlA!_=CMhlZJaT9=2qv%L5QaHo~w*DuUB(c?$c1{6cVdwv8N^axM` zT;S8c4I%^v+5@8eKVNT6N__mfl)H_GLw+RlKW}{Bf2x7T13t`&0)Fhj{bXA>?qrZ! zM3ip@Vp@q7NZXZlKRVX#oMS}O&h%B*ya)A?~+~kv0 zFD!%&1sb4I6AiOec|8UbSG+^J)ApR-7B@&&ygtAcBm9oE?L7j%cQ*F2=6pYE;q=5suh5K?IdhUDQ&lNGvfUTKpohL}~v8p7m$x*roM!JC~sVlHg0BeJP z0UXl2()eTs9{S+qW#JQ$C4+AVoRr7*YbDcZ{Mnyy#mVW^yORR9E^TdXVW4*g>PeD7 zaQg}L`f!)qR1vp@-74kW0n_&`yFCh{qYc&c#tVIR_DXqPrs`8EU7yOv`@WZD&Z`^q z>f;Fy{|ZNDx4Bg5p*WRbTctROZrHrs_d){?DfeyUdNc(zJiGBuMhl2-hxWKtGODKE zuB96zHtl^*{BeIX*o^vJi=jimCQ}QIWd){`dc(twp|W}z=eTOv{%|LYGIK2kQ+OkL ztC3hL`(?WNOuqckgjgJx|2>n1Bv>Y`(%5Gnr1-OuU@GEdVaWyeSKKC5U70ed`=cYRJ{RbQg{5z6;Yp=b&(1 zbd8#Q4S8Ivs`m>^w1ODQ>B-m{z?Qg6guEZURHoHI<&EH%$v)PHDaU)E|8cU{mW9+m zP{Rx{3Rd!Jvg?@fQpY$Gseuta>^n}T)No?}6zRFDq}OEFlQ->#MGU2GZ)yUa9zwzz z=zY}8qE9TwufT<{k$1~Zvfjl{zw7Byuk$ued=9lQZTH5xyy|Q3i`K4)>s&gl@)=+6 zVl7{v$P+>lCEpO3+w(h7Ea@oBHnz3!yHe@7Kw9V{v>OBHOjmYhtY4ZSu2P*b2_L)) zTToAyGC*%~-eLJ=WIIXvUhM6#%hVgP_DKEK6E3{^0P9-fEWs@=#136waw*2pIHX^y z(NQN?1d_l<4;X-Ij0_GAg2XAdgumXp1^*OA1Qew9z!L+(G*!6X2OjAB&O0AQTtP4h zx-Ymh2El@bMMeF+y_5oW{xBRSwC%LW?W3u6Ay~xZh7&j(139CIu3#dHSOny;D)a3Y zc5nv+Y%u(x%3bhG5MWc`=B8zS`Q!Oh5H=5d#(`@b=srW-V82+cJ!3y)!~ezd9N;4f z=muzGY5l-TKM7clfnCTAjsO5kf#G?9>dJn=)YQOH^^n5u?c|sg{X$CZ?QNi@?0Y6k zO2?GA%gGe(0}kaK8T1p%FnY1k#{*nf@79v~G+?(2F>IhwJ73v1P>r@E8crH1EXB}= z8%X16&z6|hh!kgWX!Ql=pBFX^Z#-Qh7|%p%yraqQa=2!X)-1jtRN;7})|Ce@jfRy@ z|D~D?^+KhtF^LBwq+fgMljZsA2Kdw7A{2j1WL|cv@fgKp%juay6H9pye3QkI7aN06+ZG zAl~u#z(K}8VB=lVeO3*4OZlJS30@EX4o^Q5d7Sb;PC%41qScC=R+fRlG;(qRe|%|s~3mZhI1lydTsNE5}3`L@=Mnz7pMkq~8SS$<9z$#Ysf#C*DT=c!b z)Q+KCgkDnQC`nlv#ur&HJB_{NLRQDUB^bU`cd|R%($;c=F>HP!Dg>xdr#~$44WWE56d{MR zNx{Zy;7D1`>&Repa_1}Qg_u}K8iA?##Tv8cHsq=upX`zFsV89)02=#wzg~U+p7;)4 zAnyg=0I%Njdg{P=XJP3-6H_wH-yw>!gIs2RUoDlc=4|(2@*WA9t04vy$vW3)OBX~SEl_4Z8~U+D$cNN%U(>nn~; zE6nayB4D@IuLQyTEzvn_I`lv9=bTtMC34B17KyagM>c38Zb#jU)Y^92-WW|Yjwpkg z3sKVYe;<3^Co6R#aZf$@QFAQ_?UD#SFaO07aNzyl zaxnnK@ZWN2O=@h_e8(UID&$jC=YO#`T%!W8_hK3BX)E8*je?~+Xmok0ORv%3k zHp)^GE5|@`B#0gT==%UYwokIZH}qE(y9E*Ipl10u$)ur6sC2N3s?(Y?>EZ~$Z3yV- z-UvRGcXlv+z>1wH)Rvav*o{n*Mx_bMOVnwDv7-LVZ8JJb^ja%uDWidok1}?h--Ec~)6VD>at42D1Lcwq_gnVc5velw zqABJso=xpi7_g~}2j1IWkf&~Bk0@ZuL~$f#tdH;#3@Kt=@WC=A)Mo}jy_E8Y{AaUT zEs$sHxT%>p+_hu}9_#-P!ggxp?p0t|{K^KItf;K0z;1!U&-Nkg*cnRqgm)T|fU~Eo z>lr}9lEI!0*G3+BJ#*|m`G+H+>tN^sC-{c4qtpOvfGtOPJurg=?n?0VP3AZV0QP5A zA}NZ%1souK0FJf6R;(>?9BvXS(oY`Q0km5PFDH4q+)@){>4p2bp4bDkY>>27VR`2@ zZ*uAiaImTR;#gE(*;lWAppwfY$RAPUDm3XQ-7IsTt~UHdf=YRm+?eX11a!@)hswGB zF>uL<<%*N>vf9CFpr_ekAPL)M-2ai2zRIKhEQ}WW4J{>>l+Jeenn-1A#HNF^=Qob! z`t|GuN7~iILD{x^TT}PV*PMphhwg9YiqBi^&TzY@X9&~ZK~P(!UM7ZSxi9$So&%I! z>5S>UL%0xc6PF^#2W4s9bZ2(7%r5&nt#EgtEQ{M)rKgL5l0|H~hr*hhEK>CBbL`-o zX(TjU&?}brT_C_t#Ci67rV^Z!j=q7xzU|07u)$D*B7C4B{NN3dM8K3pK=4N-#LDtl zzT>Slr^E@Ls=fnO>h3?&)$c|k|34LT1H|P==y_mCiSX6}0QVn^Eyb*~YFa2THZ@_D zZ+#CkoMXV73~qO(Nwu$(#VR-!4ZKI+alWTD6-N?k5Zz7guHtB&JliF{+Hs2XdKiWc zv&VkErWAwY^wM1Gmt)`_70x?`^WDZ?nqS`h*yRRh-P~wqxYlE~iNZPBqwMzS6C4|b zUusCFRQbq<%np*ilOb-$f;)WoB6>spe6evQtolG`6;stkKAZdZgx9R5SD|YJcPS#C zCX`cS7h2}d-*Yk$^ZpHB-QEvj1fzE~X;{_?NK*p_(9O9h-8IBrUOq(Sd<(RRN6F=%lUjwfF zY?etBQy$eJ^P!6QJXPEA#M%ZKX;szLFa?H=McX^kzzhD*X2e?jZ?Onzu7kV!`$VkW z6J;h(MbrA1?0Po7ZUJ&AZx~pCRaj!tf+e{PKj3&F;A8}N;7J|?t`w;iM%qQH2DQus zoA$-5SN0X$0vu+Oyxw5@4JwXb5sC~laUVP&cm{TbS;`>0FiY7?m@0c{)vA&u3mLF5 z!LsI09)digXjzcPk`)UNd7EcR*2yb7D+S+X)d6#L12{9|Eqxl~;X|vbgO+JcI~I{+ z;oPQ4k&PGbNaSX<14mL7nn(!K)ZsW%rUhuJT}F&0%2;Yei@g}=?vW&6PCcH#n)*h) zDoGZNXZPFX{19TxI#qhsaO)E9X4|>M&~rs1)lIHhRRnI2iw*BBBseajQp*W7#WE>7 zk`y`OD)PLRKcBE1oKV-T-v7BPR{p+r1e0V@D9ry=`@3}MQK*Dg`)54b`jP$_KA-6= z)4XvOlf_hO#P?75$=lp8SAC()#~$6KXP5Psli=|LZmoqJH*&I5$- z!bmMzwsh=!=qSjbeR%t#gI03WO+c~03r8~jPeb`VUzHjCCZ+zAO-Q-Xe;Umn;EoS3 zlITAT<*~$B6sC#*soRE{*wY~YSO%{6!l~l>i1wmsUFy{a7HgP=bLDISXWKkGX>LE( z6;bMPE)lMkb~T#9Dh<`~v8Q*#@(rVIeO9XZ6m9#8D_vXv=|S0Ics@%a6NBYc>|QN~ zR9ZhjWRSuFR??#D)fVrIO#+*CJaT-tF(~Fos|>{CavPV_kCD~ zhO_=X&VK1p?~p9VjP0%+oXjk%O5>)4EXNqkDY1pQZttU9Ewye1*-@YSrP$9p)7Q(e ziaPAcC|tE~q7?MV{@UayA$qwBK@_z$m;sU?WtY~|**%E+i_OFGp=0EH#(B*0t zfCvJRw*^nBeezHel+3Nj4q#o|FuUy_2y{|~>xBgc7_>k=_(}t~iS8P8>dauu=oXE$ z+1lz8vRGn~<~r~UQ(^~yR=>~2$_l)t!O{_&H70&C(@+(r0)cYj(u=1nX?)mpM4=e8 z#>U2W)!Ja2Mu-WnMS!4Q4knjn6Eh-+-6B%WuD=Byxu9UqOV#(9*5;eC4n6yNjvbhZ zy;dhehZ`M&{EXOsp_P|ZzdyEkM{E8>S#c>Ql{#~=ukjEq^)+@ozyC#hV1q^hAKw4UMOa)d^HqHd#gA7dNbvIJ1d>-hLo{;scsR$0DN~|otzn) zqL{6k2ZF)SBzAhZ`oTa7P&=UOo};};oWSS(Pba~=10e*>1S)<{Tmt+;_V!isHb{>} zj|GDmg&b%g-`~NhtG}=vG?u@#F2?UR0!Ju+8c!y}^XFk03Qd-moo(zy$um_0iAndl zwd%Ba$JZla2DzPowE#&^j{UATBi#=PW?RWALIRfPm+y`B2`9o+f z2GmIcV*_tV3i(its}2^OB|lz3Hq58s{leZl^I?T-&m!@b2+u3*O2Z@F&BBS@LUtU^ zM*d-uo)J`DzRKgCj9FB3cQ4s?-=dqI5)T#~wSiF1cvk26?JJz?(dp~6gd$NZ>i5x5 zb|#Gi2+0T;1I+Pmhnz&K*M-8#^)y4nh)zQWU|^E9zV2+C#Vku=t}kkq;r(`B`j%G9j}k2KFo~-bk|Y#OH<+DM!XIhsr&hJ)j~TDurJy@FS;Mh zZBsR$Q`W9$#)3=0FP3g^-W-BskU`DAabGy-e>)3ccY!ey(_MHg7%+7>->gJ>Y23oj z$!Aso&NaYp5dMP((p?ZJW>@`QF6%;(j-u*&n2FjdfxYc39Odq*wR7UpUbiCM3v?CsJeB%v?G;W17a_bn&%3Wcl=3X!9AZS+*e&7Zxpv zDNb#|rlU-o#cNyU$%|<{d42*Y;>%i|_G7;{{cb`}ug)BjCOr7&)p?_7zmtbc6}>xnCa!xvzv%i-;!Va|8rK{wulxfM=~D%{pG~tq0{yEyYG1PSh3#2S-g$jj z8##zq$a<~04)n~@8M_zz{XqP)IbGufTsfj;6F<2uw1#w0d%4@$?Nv-#0d~;g+K-JH zbdp;T&_*!P!Td#YQz;04ss_M$bQE~u(0D6(V+LRbkcC2&d|~Qvp7&pve2cpw4IzWAu=baW94-@mnvpWBpsc6YXEuZ$lno zQ44s@rES&NO?McRlWlt&6F~!uv7ZxsusGqU=#U=lk5K<)#ExlAIOh=3VrwNl!Lu2t zpk8uIvJlHe!ljk^@4&5Mmh8 zbE?0YGt-VybK+Y`UW|+G?L6@w>?>i^i{tan9e5W#oq6OZd+{3ea#@r=Cw^s>lzQs} z0;^d@G^j`nS5)cm!{8V`a1TbE@ zxSWE+#bYzn52NH;gE+9T@#iSp7iXrc?RM?m#${kBlYHxvg93MLY*HnueP$4Y$>D^?K;-9|w_w#Pt+KL93@rF_+OAvW(Kq zQ>)k_x2N7L+}g&wLWer@w69}KVJ;SM%)Hef!xMGh3cdE!d$#htL}^{qgs_q+Aq+;} z!EA9jEj^18^<*q3v3!W?wKRj35K#aV`HuOfD(|y+RD7akhCL6p;fWSW!4bT#WkK#d zJ(1@GD+yv$4>rH8DyDN|)=HZ|Pd<|NV=8OQPA;lc4dy8%D3<$`8wvA>z4*Lr_OXx(O* zUP~3!!U@H+0e~Hgim#^)e|RAszewSa!)3;+P{b`8B!^J&oyH!S#t^w;#K)B~U zl!ZG}x4)S4^wRL<*tM6JA3da{aDcQs0qzR{9Q%GkwtCD-tyva#;$r`2lu8kpuf%x&U(&*8HOd?X5S8il`8iHTXe|85Qc zWr!6yVL;&plv+SzrB8xMiy45(1r7^=UaN(D?^O8KW2OM8+3e?_X8NvWyNE^YDjNxg z9-CjbpC_-Es+Vfy+LYOzJr0~(H#ZL=BIbgHDd*nYQo&%Pv=2qo^mKG^TB3q0Dk{L3 z)-d}No?|K$CwE%!1q_t$oXw$$Rek;H3a)`csH6e|7f6C{nSaS%<$38^GflP0ZLO{0 zp`@szQR7+9ec>bhY1m?#_*o;CGx>rBF98;{2#VC{!c0W!#1z0 z*q-)Z6UYU3q&#d!V5bOw-bv!!m9Kj?^@?5h>D-(Ms_TYk?Ku-FGO#<_X^MNa?Qj$WH#x4;L4Y_P|&Zn zGEUdf#P>!!mD&vWI*oiEN zNo~|7(bwyV+50B_#-*@q;HZ}#M1={c5i8=*N3}Iz>rE0EAc^p2YO92U8~EogLXyGY z?QRTswWN`xUkxOV46wyD#uF|7tu z1$UIicI#h{;!VGg!`dtZ-`D!i9b=FP40iF0yHzU8uupJjB8~V(ewYIAJOXScNjvb3 zE!TV@hhU?lCMQ4^?n`4@uBmB0#C^OyYhAwq8^%o_x4QOOcU~61>a?)QrJP(L3j6Xa zrFT+{ViWg3tOeCo|6- zrTa54pFiFD7PB7+?XA~RXv?If2vy)@v*zZsb<0iUMSh@Q)IHvMcqKpVyAA^yPaRD#zEF{4OL1}~QhX6I2B}qW1zy%IGeF~U* z-0ue5AP_4|TP1Wa=@vPy?qM-nr4=la(WBD@8bQUe&AjO|kqn?x{{Np;0er^0=~MsL zjE5qL0w>$Pd;e1;#{XH_#0YD=8R~}kH&)UUa6oE=&XBgRe_CJ7STEviXgk^JGfLe{ zNDw^_Xt;(^pACCW2fXBWc9SMaY$DO@Gd{|9D8gI{wqP$~RSJxfmaF#QLJhRsaiy~+ zL=EIFl^%Pwe-BU1XevJ4K*}6ls>)YzhkQa2kFsN`_m{z8*39auGXDlb*tSoj-pfw) zox^OhCf}mFNQh8p0z|~wyYHQ8dW|htzJ*MVD4#vWef#wIScUm^mI`>Bj*v+P-=Ks2 z)7^Hwjuq*Y88^T@a+&lA?`3@zI!e8ecpqLPmLTldg25?&D8}oCO#3VQ-2q6=P z;3_~CR@-*QC!Q~VNyOp2zU;sSaHF7rb-T3E#x#9$(^zKQ4-F5l?EPd0%1hot?zAKxef4{(AlS*5vdwpsSVTZgeuh_GoPlEGIgR zIN=w<2Bbm5pOnmSkadMRNLl%KlYic?3?aBSvohnRv!ZeNRB@>!j^Pq zM(@z>YZahe55MRp57%zS9OLIt*=aba3CRd;8qRZuHRhq;RMU*NEf%~DmG4|+eIQVz zlnqQ;tPoJuubXD>AKrS3@qB# z+T*GTE(1*oBsha5yp5oKB=|I_9Q5M&Mv|Q9QDpyRsV8_46Z{cFyuSqAprqg29H_Z} zhdnv0C9MDHM(`z%FT*Ef%A^-HYKq?KJ97)=f}_kZPL_O3bOXnZ#_3E{_>Y zPBR*qAu^CKN`&@FX#V~rvE$0NL&vAdRA_2DdrRA^~%kGvu#CC z=i6X+L$k1Ik+Yy855$Gb5vNaaXG(-7X2!y6VAEH*zt-_iNOeCqW2xAR``_3~8=5ybwMRb5e9d#4Ext z#>GBZSS)uI?=>z_uLZjjkRu5)nPN*PH$}ms1w^@}y?;M7Gm{D;l~tI**p$#cKV1%- zD;2YWKZYX4gRP>rDyNa|v%?fSR*V%*w2JWvu^g=e1Hn(@q^@gSs&4EKG65=rr2UK(El>z*>gz)pf>RaIRgyrG z@E7La#aw z66x;l?gphpK)RI9p`=qO5e1QE=BT_3 zqz;hxy~gEO5RVD?oPcNK&q`l}mTU&-4g%NvUEn>>&dO3K8UZ!|zzi28B_#HPkZOd< z77sYZ%;YLQKXU)yP4lFmB9I_K6v9RwLVzs&kdPwS6hn;N)Ak(_7J__uCu6?Xx=;#mw8DD|F4tCsh;3Nd6?h5K<4uebpKKyGWas zMP*a{L#0~s7}dNZ-iC`l!!iuSoTN&S((d~TxJ|NU(93IE zjc}%USy)KPKB53`iLEVg#siXI@b`^d*MVMx83o){2?JRU})`XxJkSYP)>uSWJCVSZb?wfdfad4+?>`t2T@14a$c^2eP zJn839k+^IvXQ3}0gcF6zp+?b?R9&naG($(g@O0G~#2KlVvDGf~g8c%rHiJ;eP`ma4 zSu#oaS(w;_TS{{Bm+>Uo)vd8Iz<2{eHTw4iogUjF$0jO?!`@T(S?)LUlUp7uJ+iHRKv41Z+>;n)5u(WSK45f3GQx4TI2Gw~wd9O@RjoAqY;dB{&^ZX;$gjM%O@ z0v7CZ?&tepw2kda)oX*=imtZVsxzA~s*hO1g2;pNFR@)pl!A)^{@F|4=|9T^fCW6g@FDo{0VI@PVrosG2u-l_Id89|L-T(d8Wu*{*W`OqW0jsuM~MR_R-fNmqC5g| z9QU8|h$!KxslAY)R7l2s@A5_*Oi>;0c9S}M-9fDCML)Kfz}B2lV3eHa)Ah#WR8|f6 zZY^<)dXu};7W<>uLOHa#>SYq*5P&R#q+ANr($Y0&zWFmS@e;~`Z*7%MY=c_L*7h$+ zE=j%YMdZ@omywc^CQySwMmZdb-I-Tz`P&xjuk5FAb6P)aZ|&G$MMSUlT2Sw`L^m)> zX{^Zqq#K7NCD$s|E;ZX;e0|IOG6Hd3SA$w5X(`m2E`c(tl-l#P%GT~lVbK9Qq6h?a zg0dB}&xRLDp&PY)g34c|9#uI`Gco#AUMEQ+m_9Oh_cFTr^WZ!3D&x8)wT822rV0wx zH(+HVHNB%o%av9ckT7+a>Tp7YoP|K~@vz}!RJo?&M@aSRrDx`e;-hJtdcvAzjOK~y z%MW_eO?uy2HC8k8t(}Xr<2T?X=k|=@A6qxf2_4VZg-gRHVE==qX z*U02``gV4s%iPe~${4u>>QA`m#Md6fW}4S4A0Y8!OaDB0#YL7r+&?h*sGmK;;A{}z{(6A{LSsPEe*EWcd(}aR6As940(mIn+s?!kU$9393g7lCLK>~; zBaeg+dd_Z!6Y)xgy!TJ@JJDyH^Dx(wXWqPOR;c*Y_ep_`?(9{J1Qn}9`_%W-$79wU z!`LtZTG~#&z(8sQGH7wckI3e_p`%*SYb`ZWyCS=?6 z%J}#wa)Yie+VfoL$h_-qZEe7<0wRBZzwYhs>S=0jY;L~9ivqt6Zkl$uPBLy>-$6)C zb91TH^!Yh2=JWsGCJF>Q2gm_XgF*W68Bk)nxnag9N7v+0wH>{1XkLBzRK6m}rS$;| z0lu=1pEL9&XRHGEX}(z(h`9$PBT&#qh<|g_Q^GOR0s$Y;?exNu?Pj{jU3VQdH3_9) zir;QGV8{>tJ^iMC&iu5JBZ{>v){ZAH8{Y6njlGyUz4|h`A}f?_{S#VO;jXi)eql-* z=SuxkT%0!0WiE{~CF;@ul#J zKYIjr(Lav}F+}lLLoW7%xt#iOsz$b-_{l78HwS$}Gj%r0v_dCin)Q$Vw{b24Q4S&K z`yxVrw~<#M`afSiGU3S^%OAIXt9CknvVS`wpA!;hrYyLlk7KjeWXyE8GVSRtOQ_ zwPQXQ?&Y$W5Q{B%>tZ!hyE~T2|F|`O{-Rv6QBWd;#7yJK7ZIixWuvN#K8-^0Cg07- znJ&bbvH3(Gi_PKtc&Pjl5seAFUr)Yup$lgUdnse*tCyK+jdym6RH*ZNA8*L9v~hBC z_Y!RH?kW^0gEij(ePoff1i$DzD@pqbRUPUMwn`5P30ZY+%FCll>_-h|<>E3U=v`R& z1iy-|213lBAOsMao06hZ@{t17poT@Y?6L5eS0Y^`prL`$>X>yzu4X03JD&&(4IRwn zyLS->W*N7){#~rR>*u12nMlB&ImwLh-^*tr0pss=MCXdMfhM8U+|r^j0_c%|W;)Ek z7$lQ2A+GjpI(9nCDY?PXFK89Dw0yfcIig{3aGQm>H}_HUFLNNE;ojzrrHcevJ2=SC zlVmH(%Ta^x{meBP3rp$OXKKoCuFhNr!@|NqJZ6*bxEnx6?HwH*0Y-YbadhD-)k@?# zR~oW*3Ui~{Au)(Gg}r1d{hqM>pp?-&S|_&Xhq8l|uYKNhy{%q6pQVRGsLQkV z7*vAIesMPmtOttrGCqA9HU@oXnDv-Y%GTg2q`qy;xo~jzR6g$%7EZgK=x9Bjq+Kq= zV}-s{{`QujuU>Yb^v7kum;bl`^}2fTrZTou`lD}~mE-G|WeZ<%JP=+Zj(xJAGYkKU z3)i|XJ>QL@J#*dJ>Tk|2`mWq$#nC&Wq;Qt@=Vem;jQ0Qs=gXu;^-ny038~+vYplJ? z3dVqeg4OhQT%MS{CRV>GC*b`B2mRV#HEotOb?I0s{3_Y(c! zD4Bagsx8+tRyVJmTUv@Nz%(hEO%%fxmP}nzR78s!3`{bBOLOn!%F2p${)JJb8hw%} zJ7H80uvs!90A_o3b=ttI6%1*Cv7eLE@R5K_f;)Wf7oUNy?hYK@CoDusL_h!>l$dbP zQ17ccI-KU@cmI@ipNaFfFME3>f%r{;45i9uf_cJ?#h|?vL_d-Dn^8Zq!L{&u>=1MC z1G|Vy*yBr^lKa#6DgB#%j;XkIeyk{j)U-6<0|M%_=xR+ykVng@5G76txn`K&Jp~>H z%V@o++s)Bz12w=tdTOru2LK~WRFwQx+xO=N=-UyefRBb7w)&%2&B1 zhU?Db;?Dv!Vt#$k@m(kixVFiOT2D`S79qAmK@PUcLI~I@Uf}vcK)?Sg$hR{jm8ekj zjQsf8Kp)lxbE-8y>A0I7%5Ov0-{FtfzwU1g`15tBXCFBHyIqfj-L13VcKu#5dMea) zX1$Nt%7ldsX)Tc{9OBEUll^(3UH@X>k4Q@^g#~3+mTKm68H^V}O+m%sGHaYKw8UB0 zxOB&651X;1HCFz78k?e|;k!(z>CqyJeelgjJob5t-~bW0qUM?evdb5 zAgD%MsT*CKJ#8fu8}sj0L3{81;lJC*gi`^js=b{V72JQp6m*f41I{4pId$%fjSxZK z(|zu;v7vxUw>#-(>j@Ga7v1gZlo_fPy3!Qc0@qjIECu%#P(rvg0f!n61#FGYX0jMb zguiK?R((!b2il&8jPS%493k2FEKVtZMSnrM|Ot>m#$D@ ze>aPM9Jp;XoLb2ipL&*U>a~;L`ohc*OdhG=%GgW~n%9k`MW?3MR4FmZeH`j0TyHYv zw6+}iqV~D`)BYusnVTrBTznZjX3B%1(=qFiS?**#X1p7U?=L7r={=|^Q<575av0co z4O`^ny=rC)GnFben51eSr2B0aeEs_M_G>mU+acc}EVQiQnD37WfcwnzJFkRWrGt0* zmB-!;@OD>J9Ku!<0GG_d!UFJu2LaVDWWb0DP#uAnDCmpQ_)gQ|CZX^Cz$?GBtflqkjNVmp3ht} zL}|l3Og-V6q93DCT?fyB^ZQ7RjcBIJLyS&|fA$G_lRPrQJG*y0qJOu^w>nf771iNr zt(5hiJ$upnwb!I;t^u|KkoF5+?bL!EpoUQiXJULD?R_v^WT+8H>jNu(gwssxmT7Si zuopq%(rLw1n|T9P@F(jN2wcXJ?% zZouIvtir-9sIQq*qWXYE4Y##qLej&zM-m@iVHjP7?F=w5?(2+{ozQXk)VQc{M0ma) zsROJ%Q}#!OHa2nz)CwcwO2GC1L_jgwObO@e^78P)w@qK8Fp@MSwTnM>fZoa>uU$Es z8>O5oGB@_A3exoy+hq`jeaM)Jf^fk|~|XHuR@84^kgC+Yh~I3o3?@=mJbaB7Uq6};iTSkp{Wi#bJz6^i9wfHn z`+b$1$w!PCpAYiw&3&=uPN^HUUnm_V!jXXh*vvEF-TIHy!#q(8V0#>?Wo2n8&Fia)@$T<}Upn9o z1lvKrsHM5Nu&@w_0XjQ7_3W0{)bthq0B2=|kr`k1b;S^(MSJ zu_BfH{gq$3mOd>y{)L@+X~<=xKEmwdo>IZ^OI1~|@5uzZHB-sB zJ60hLMx3m1XXEZg^g%fE*mS8!^6KZcxrOe0atv|fH|N&&*i`BdlyV?eVV(lRox+w% zS7K7K@!7W%M{rZnKkMvZO*=okJM9;~*v(LR!)&CQUcc&@yu2C7`5_A5ree%lMPudG zw$;if6e|9%`l^nF)Mai$1Q8kI?)3Lk+#s@(7>ApLMt6nvW9svEmVt!ji-_>Ot01Vf zJWf5mdznv2$eC=Dtlm>BNw0%zL-p%Dd55>U7&5Yt@=Epw!Gs-zB_13&$s`b%09(84?^NFQ1LRDE^(nIP^RW5A(iM`&N1tHffog33L|!?H5A>Pdtb^DL=kn@>O5J? zd}cJ3Vl4YHqy&S*xy%wT8H-*s^?)-q7BKq;TOs=X zXz>-g1BOj;ad8c>T@V=ykYV#$8S(T&i997pg}R*5M^kpKW4)3&@cMT6<6u^3es>6I z#;SrxSLX5>rndrCp&==M+jU#29g#^%iq=RIlvo=K=#r-(A_nLI3QjUq zVwWG(Z}&W@GiqXjEoT;)NYa>NJ+gyYl@v67a1sc}Qx`+?D2`i?g1G}I9 zeW1M^+Y5gc%|j*q`cCi$CE!5h%&))J;x-*iy`cHGdt}GiFA!L!5i4xCVD%WCAcloY zv~#GJ_4aoD<~26*we1shf^$vMI0)t3T&1nwmdaFI!Hl>X6c$T``g)-;vTzGC@j*~! zK7m*8I`yKuY6!{`#1r0MjczNOs#IcsB)ikqeu&LkCfbg4H81#9c`xKhA1xD)P(mq| z8iQS0qyO0tZkUTq7<37)sJrIN$vXC4fB^_}o(0NIdS^fu1O^>*ZTxsq5_!Y=FWS{Rz8}2t3_6;9 z92422i>_fMmc?V%T#(I(Gbn2}hJ8Iy1~2rr`Qt<;RNG9?+UBEu)+!<58R1_f<>Koq!MYx)o68QyD8Z2=k+Sdj=|1QdH#oatT}& zx?c~x-`O~|MssEO=CRdnMwZW}MMGFsr{0QBSUk?CyS1HpyIOaiSU;{mQl%ij+4vBp zILyP}3#7#)ALr*v=l)KM9)*Fm6cKliu0uhOSaOd%hfRq!lw(WXXv55Hbi6h1tb z;u)x6mM8lRP9uF6PfuQ~2;FAalDs?<7nj8FY_GMnpr9a4#`~zx^tBO1VLy=I1e{3! zxu}6H7Pu#PL z>5NPKAX0nAadcym2!?&Vk0*wB@CU19uA(6BEeRi8mu2hk^E>Wt066Ln{j>Y&h~+ut}LpIYr#yRVn&&`^dt=0=KnS-U9YA$ya}D zeVil2jY?|NY`Acgtefi@!=dmJv#DJJjOdf{nMw`ikFfGDBr+6g@s!P2TsUG$%?X9e z7dmbO?gC;-M9GPfTlK`eP<*a0bFt!0M!4I_pTq0w`G2Q$Ar3%s2$d;*omGcGa~*)Z8xfqM+Lu(5p}TV_r8>Bz>63i%sj<#AIYZ ztOtPacxf>00Fk*;Szx{N+Pn~u}wg^{f_NcZ$&qe(^0J)!i0E7vd`oG7@hroB<`$Oc{ zN7dxy!z13-yh+p8F?cv%k6Fk9yuS+a1VlQe1ub*6c$Z0`3m<(7f@_^CBXu~As02)l zNQ%D@fgHW=Ske{mD+%vx`Zx&9L`E^vdHH4_;NvvNGF7C(zK3@>iEcVkg!Tb4Yn{$5B*Z*$*yOS2;3&&H>JjlD0Zu4WU&L#P7j z#8Xoxr2rNG>*&oNYohl&5^S!eiiSB^@nkb57M7^oV!9t7x0Ny;%HDi!mEQ_3RftB4@+V(@}I&Gfh%xHvRv2qvIpK4Fl6khRY*p}LHk6Apj+ntrn3lYpiU<>MD(fcAegwkuj!Yr+r%gy zwX`sn{HaQ1>saQ*P0D7?G*t8cBzbmhn`eUIV}E8kInneHG0ULco}Mmfg%V!mymGVl z_n$kv0ZKlAcIZvq6a06;#rghqPu!#u} zoHG;?9qk(J`cptKgp^b13ip;l%Dae)yd+?Ih$DM-5gsJoe3Fgs)`)IPV8MN{NtAJ_ zDS@2AOZ^P<19-%XA^!W2Xy!Zkosh7koY2(!GgLZ*q1#L3Q7^=?_1TepL#rIA@4<7V zfa%V8--8kIyG?`a!z#PC-?Re}9wC=s8iptmwa|J#a)?U&ZJ?7QLsJzpBUc;qN|jt*Z>VIJllI4=G!tm#ZuI<)N817DTJaUF*?$Hi}xlc~$Rp+-;8f!F_-F7x`;EwGccen?6-sdu!i)uL<& zOo!a`CThw(1%Pyk&;$$x!2mr%+!%mzDFeTThTwB;urt3dRv`7Sj(+IT=QcnhJ+L7$$WiViAo*{ zbgHp2olYU;JiQi)o*Bszx?Mi=+labbi3-ABfYb9a_c-W#45^H6wA<_(pvrh9Dnf@h z-TX_x5AsZ6HBvcA2LkLAJd7wlKh8VQF%RkN!zEdG;_#Utd-ubsG%}&)Nzga!G6dA~ z!{b{6@(hBH2N41Ow;Do%{?a|rE`v0mgY{QFLM)wKI+TNw>jvpEb5T5onS7#p#-WT1 z$cKXHfjf^MTOZIegh^#a7bz?1MSVC;8Fulw4B>horLGXKXAe-(;C(+5hsgU=Ug!Ca z2xCHdRFbeuQJu1hn5%n1ORhM8@PW8);cEzR10f(G`DtDYhEb@&+7;vW4PYbC4jh6p zTyt|XsQuaiQ4Vk~=D}GDF3}5Lp{zF`wg=#)(iVl6 zL9kK*VsBtD4~UCE2lk{3q`wgp5+b~1#KVs02CU=#eaAZOT{xWfe*n<$|6!tCe=*U3 z)5+?txEXbwsZ2C_(sY`ELk^3am(=n&+n!QEimCDbju3$aUu2+#j072 zR6!#tOxzIOaaI)}Zd_A_E`M~hBZ1rJV8UccgN|M>j@KKW1Cij;CiOwJb zxM20wo7eL?yBDvZ3oH3PyPfU>8OpE|9}c#G1CzonZ|j+E^D*;iDJ(|3m^!)b+)qz! zT2}W~rvLC6V3=yn-R*@8vgwR)>P^TM0DdAdDJfHuEI6nE&Zb`}moRF{31Bl&zk)Qs ze*_Kf2Qd!$$|btYU?55tX#moc!~K`@Qg!n zc>8=tS>Um_Cn2B%==U6~p}uQ)-6%vUV{Tp^*CQ4Arlw1j5v(-Jto-AF6|Z8}~W$f*F=wy|+?WJHA#4-hMu^_oX*xdC|3!_Lmm z!I3y<%3N0;T@^L+*$vNv$p!QTXpz00Id1peJaDgWa$@-*NZt{bTVjK4*Ir zsGtMjB+>&Na;-%iUF4=K(Z8GwVN>dV0naw<0r%YlRfbf-dC>0KK7w#602WDc;%qUQ z@G?tM0_h53}) z^rbG}kx?_76V_%z`Nvb#Ol9yMz)rT3Ga`wc#LS`_NGj)QBA)`19*dz}A60H_s=ak& zVYtG8+KZQ%!`k&N2Th7`pkl|z`@631q0D~|a7VFwY+wI}Wfo?Is@;^!cG7E&8Y)aH z{yEbtQ-M&PB>NqG(U9<^(9)imrWotKX(}B(0~CTl+zWo{$C4*PmA|e7EsVYER+051 z8Fcil+RQE@w|vx}ioinG8)paRox}Wp)?_6X={K+MQGxCWjIDt0HyGh#Mfjez%#*e* z0qYG795Yu}0OQ}&`kCdF8=LwRCh6X-_w%V-*WT>cq2w1OIL>mYm zr4j^G`8dH-a7Xt@9$2&=awrO1c0cYoMm!>zd&ERFb8_{PiE4p`f(*mrEMNwK7dnZ#7Y%u?9WSa{>+ z1OhP!S*U68yWnV+XoJiBb^q=6qwmAQIz$XT`DYQlId#rkl)lCECMt8z=N^S^n4 zFJRx;PFoth?uFMx^~Rk^%PLXNavQUwCspyC9mzW|YYavbZ^XPu@%0tQo-(zsx4f`1 zAa|HD)4Vz(*VogF=`sFm+yhjzVBD*q2;RHcJrM0|W3vs4y93YGmKGT2FCZ5O{APes z0{1I0O9Zu^b={?#6-Ra?sSTqk%cZc>`R`zUz~mzN}cKp0r9Y3uFn?dz+XZ1x{u|Mq|MqAsGCUX?m89qdbc*gRD_v4(h_k{3)t z(E9l-uYbwy?#PVAc~}<$!enuZf|??MQV=R-WgTgdbbNPEEH7rbv<7vrJj+5^fwy>~ zn}qdLHdGd2*{+X+%ZxXNnP;cKSP!>kv??!@2JJO{E?;)#%Y>3%%I03)99Z#_)QE5> zq>4nClnbj+s6)xF9_BV6%scbKE&9*AP;3e&DnCX&ru#qeJUFX$LzaoUt3!Ca*bXD+ zJr6kUQ#aAXxmCHo=_Ne3Y7y&GHJvQVwuWy@LI{qXL*%6Fh6 z%7zeO;w#@{#85jt(}7e*zYyf0kmoXR^6UKN@gbg$-mi{b;_==dX80W~+k59F9g{v0 zf#?CZ4arz8(u2%}=K1GKBiv-HA5uC4g|GV+&z~Gcp(3_cT9bO-sicUmzCD?5Gj|??iDnyY5Ph6+g&}Cebc_}ca zT~xq?d}EM~ORzR|$x6w|FclLc&#Zl)_ibatvUaK!u&B+nfTSf)?+nypq{99J8NUGH z11V7jVS$)R73vH)XyC+c0h-tBY|zk0yXfe(716D@P=$HG)3USG)!a-?O^u9#*tkJ5 z6ep*+c!BcEtT$4Wn3TrRAnO@ek%HV@tz=pn8jyRt&Kt`(@V`=<`oB^;w7*cFQOCxf zBaa}mc*c9X0t8!OOH>0$69ai_6x$NIqNvoL%UMh=L!geLX0^4IjPE%qclDLX@b5g-G>|Ia^_<F5wN*_)%j!o>hJ4uFJUlNnU{TLtQ{l;ox>8tFygTQR zvhS$t=;#=>1m4`U?mfWx6_n8D=jVW`#E1tJ`~V4a(K`biE+Ifh0c9TUq>W~RGr;ajQ-_3feCouODVL2Cj@%6QL>&tbj(R^`5h z*F8B`(Ict{4}-g@d)71a-*H|qYTgPd{CUI^?b3@BYA5kZ?UDpCNI3Us5Q$?iJ2r>3 z3doxR?+zCgSp$(WLy$-)f_p?Ei=+!A4#$gIo03wHP>c61PCWss=f71p`;A;Br>(WD z%tClwu3H);ab(iewh~8+; zn9BTUwQ#oy+9$)v$kB=`rn0R*;(l{43DCEhQh;p_^`=;mZ4CiR8&s9qp=7MnDdf{= zl}iNX^F@g)u7*0A51o9Ef2-B(#5R7GHSRjiSFfP;v})7LuNCsVvNbQx?<>cTx;sAZd2esVa|`9Q@LcD$nD@Tq5l&dq!>YfTV==f* z$sv0#0uiAIgivDWOG1#vT}O2mNO<--5)~1{?IVYCzfT{ZFYH4428wCETxDz)mvKs1 ze3><4KY6TIG*{c?Ajz0vOs%bU_JyK;AR4uD$rE>x9yka`@r1Esr_3tAN|%0L~vC?HYa_BeRj>l8ocnRm?d>h#SppL9(9jU5ML^C)zp1L4o}S+B_BJsA0YLJK-eeJx zk=5I^3|pGkYR#VkpEgBBbWFjMQI)e!fHU%BzztWgT!ORj@pOF# zE0+?5BN;0Vs(9e;MKire8T)eU>iLLGQaB~fwz~$+T-8cAlvDc+d+viEES|c+gBWWS z4Qe&KkU*x7L>I2EiUCq3Ml6*YPbH2C^P6#pKh`gs8A~!7ao=uvP_;+}znAzs_5Zg8 zoRsu@5ah^&xOl?rzHr+!;7G+?S(x|g6OUbkG3}=@N58r`2jX3-Z1OK8!i5Yy9@qBHh6hWW$u{f81M}SJA{{lHHi4$s@m@ zRX$VKAV}R}`P!hVg$z{Ig;s#d z4IT8q85DBAs}x-PqUL6e6Ii>QOZOmQ=`mIp15rI)WTs2teu$Z+9!ZU?5W?Lhx+Fwk zxVJn^3q3;}hXdVE$81Bx;ci>IV*B^^5p9wfZoo0NX0@n1e_cs|faXN4@uK3nxa^V? zo+251XckCqXr&yiEMq(0K`FFwG9c4G$!y&;gEgvDXcKT}pS#WbYhMtdvMfXHdp|#* z19K!ZTlbrIba`~scGU)-J)6ca$){J7NnX*6B@Ls~fBlM>;XRs3Eqrk@-gx~2_yWJ@nrTFmc`fDT1;5PnMBQLfoj2Ynf=%-2q|jm=x9p#p`Jw2 z7mE!Fqbq@T+o&WHPR|fUJi#!-VXdnt8SZFkNnL1lxE z<4U}I-F=3OX_o6W=+(Dpt&2JG`c)y|V8U1+_(a+6nPIc2Y=`fVga*eAa!9CqZ@&QI)9@|2)nug%X7k)`#3}Ri2v9!tDC{Jo7OIq3 zkoIBqpx#AYzqMB@*!&(EdM$q&+4zV4LHCn6pT z#-@VHTVlAPAKtst^jZ*80L_sd=r4INp;V4LuPJ_+JI(=ikIM@fc=UfoLv*WDpGGuTGgUcL$pC6C-dx z9hxLO2{x0*o{tIYapRMeDa8bxo{G>EqKQMv^G&o>lPDuc_og$Cpv!6*lFAc*ntKTz zWKQtop)`=pAMJYg{lQ^FWzAG%m3(j7eIgLw-y}Zj+;*Z(n-ShiRoeO8wKaB?J-3XQ zOXg$f$51lux0v!Y^>6DP=F^lWDohEdPw0LYb;429t~AxksuC$aw#dCI;8AX) zj~&%RE#tiaMBQF1fYJIu)Dr+Fz#R=l^l%6Y+OeR-a1@E#*x4)(gm9caYE3+RfrC~e zzH~5jx7vc0@!@M}6tS))O9TCn+(Iij;T_+Mq4@qTGBjP!U-=KGgwlZ`lx5pg4!^v5 z$U8HS`xbt`9Q{(95yK6Ua&EV1=X|b5;1OOf%*Ajlgq-qas&|w?k0u9GrW8CK_JuFc+iRQv629aZuySm@hZDeVex0rfHa}mq&Fui%bQDMCGnD$Em zQhkP68T4DMF{tlPRR}iin`pfv$uC2K$LQLj5x6dEyFE%NOnUaVs@dZWr#tf=R|NsT z^}^8m<_c(6S_0UsffVCS(F>Vokg)|8r@{#E!UU#^K<5Xn;eq%A6nRa+4-Hs_A08fd zcfb2PmrU#jT{vJnB+@Ecr<=o0$I3MNdV8s5wDtAL2na;}U5~;(l>buP=UC$>RXNYz z?$+QV2M`!s2tOm62XHv^lN4h7a%YPh#g3I{;!y=lUrV2SJh;J&$9-ns0;OR{GRGIM zU&g>L40T3Mjn%M9TlH=k-yyL7B%3>=FmSS*zH=$cRuF|a1$E%l@2XO6UPBS>40#`; z&WyP`)XleE2$u6~vQ>kEPyPoqP$VejM&hV-7dUfdgcm0mPR}Vv$-NO{O1fS(1Ctnc zs=vz=oU8vX)JnWBu)&M<(|#Md3dGAeMlG=PxFlHp4xMYuTi832;Kay!P(oFuYN)zK+$6&32 z^-fv4qh{(6^~&m+XdOQa?C2wchu7Pg*2YPmMvrDqMv(k5@3o#)Xyt$2Mee_rX0g|H zHrKf~s!qmGCR8`DKBy0W~;_ddRg6Oj=i3@HJzr-borvJp_>y zn4j1%pnMd|6LUvah-$d!9$G{Ch+m_23iG=^SU%S%>Qf`8_z;}yR7|8x zI=LcaRGb{s^X|Lk+q>Zk!VE8k9-^JX_OupX3m^1a`8`))X#2Yh!SNY}5pkcwJF;gO zeNRa!S|7efUxb;+kE(>BgaJGrq$>b|4FGopRp})1nwu7q*FB2_J{fk_W-ogC6x0xk zC;ptdn=|;n+aaZ-S`Cu`jT>GRuw}Kkj|~Uni_+4*IP$ykhITGiRxo!2awJCpEt&Mi zdSzQ^0rO)WJ-snEP}a|b=wAp32zlCN$w>s9j{%(e-+?Mh@!v$f#YvOp*~^HV_#Hlz zqtbv?sfXz9Lo6j!@AnFD_bwuO#*Y{Dy+jVz>K9PXZz(@!oHP%|GE6%+ue_`V9 zv2e=tdJUd(iUmRFdZj8X@BK=4yK9qCxq5m9G%;2xv+q`No@bGT1?e8+AOqjMhloZz zpm9Vr!l&GM-57!N={-|WQC_;1Ra!PVb*?NMt_~ef{tr&XkTUn_N8#2BY{I+%*^s{i0N8tQmXT?!8CbE{n26*X$oF(79VGv}q0I~&c0Rt4+ zvn_s?dgFI6v?n_XA2w_PT!H-Mc<5?$DZ_4On&$0HO}d(bPnmTbPC|O~W(=w3v~6@W zwcmW-)9&Zq8+_MT?s@J_l>wjbAPg}bQc1W9V`eY5c$2N%7+YG}&#R0WL_7J=_wmB} z9FGIf8S#tE&^vMQ1ID{citbKWNbZha;KN53kiu{sW3})(*uCp{(LBZc4_~gs_Y#K1 zAbkd;nb;y7lZ2nC&-C-feWafpLv!;#KNQ^;-#hf-w!j;c?TsPI6&!uT|47P=`^@&f z<3trCfk>e*()_IwV4yIAzuQMkz=@>Bk?^{^n(wHuKm8-ea^JcEDfr%@=V(KQy@vc) zZnGqV$7Nbn&m?t}=knm}SN zpi=_mTJT~86d%_ht0%hp^=HF$8Zgi|v9-4T!THO(O^BU6_+P;UImUm7Zo3?1_0!rq z;|8+!ty8C8aDr-QiEgg$=R#azf)dCi^ByFbM?tF0g%Zwwex;1f{^%Xr_Nnz8>hkLe zN|MMF#Bl`4a^f{~KPx8$gum0~rWdX(5m7Bc*1u}LEa=ZQYJ#pC*b$_q5+Nh3<2Yvj zsjDa)<}80lBU|%lXPQmnG}w>=dx*wYEm=T>WX|Glna2@3$Pwv&wSuJz7VQ0MrPz^# zv__>AT$PQq!KNjbf|^Pe+t4yxLS;lI;!c% z58nxuVccZ_5e;l^Diq(RS0sf}^h-tJQC$_uw_4)sy z>n)(FK)bNfLntNPQpW=bA}yT<1f;uDK|s2Z?k;Hr1f-=wIs_y|Qo1`uO1kfhj^BUp zUH1+ymuFlvt~ImS@7~XT;s}1)HsWP8etab>>(KPkqS3lKb6=aQl*y6FSE)Pcs^h&{ zSy^f6KwqDuyl8A|pCr@)>tnJVzFJd+&((Dc$9sqO$7<}}_vT#pxmr0;ANE9_CU(8M zH{BTd((vSJp;~TPpcSkVw6VDxLZ_)E4&(%J`xy(*6)5$m3b^{4;dyluH-?aMXCYaJRG!hMu`BRL9-n!Nz zQ2P9t5g?-2D6MvYTGP$dRx1v6GQ@a#jjY~74Ufn7MOcrbsGo%n1L8)lrGVpDW5dS0 zV0eab7kcW8`J|!K&bYSLZ#VG-q^}~F^_yH4TMehKc?+A7G>6{ja5Ol5L`n1WFLo#Q<174tP!Qgn)2QDu}W62Dw7o? z;&3}1b+z!E(A)^-U~JtuF$uBpQtR`jZvW4>&P?_ zZed?-6e?!jijPZ6sq|Xur5MvljQH2%t7C0lZiT|-Q83;6bo;HN#SDW=zXnaN-uPPyJ6GSn;^9)_$KyD@zxAN6#-Lx^d7*wuTkB&X>nk?82K{1j!>2>lYd(5 zgxwKNja?HK;?fvB-bz-Jn$5}a>FM!tnptu6BHj-m%Xs|wF{SsFotUt4;$euAR54T8YSVM4VdE5^Caj{E0@I@GJb>u@d7tA*%0PWI<^Wq3H2n z|8W5rJ~+S%tC>dZ&q$x!Sv78HiO1M+lQb|0BvQ@9jUc~09==+B zqfI&VgEgg;r6+6gqRI96$mNOPWOCV)L~`5OiVsAF8}b=-hv_RoV-?0I{&-iP_cj71 zQ&c_hlBqsi?C9GD(E5yUo&V)#TN5KW9g0(9^G5qd<0j+ ziTuXe95u0~n^R&CUUa*%*|*p1auL6CaVGRCqATb(Rpf!NmeA4hjS8{{yqgYvN8z@% z#l>>@(XUIGkAK*y&1ssw56oX-5sq`O7BH`9<5ul5+*)57GK}d_0;qFq;RYA=^dSrEwSgdbnft7Y(PQ+klLTOVXy!_(J6ozfWYN3Y~d6D z=fG?e1YXmJO!CT2x_S^WNS<%fjikb_o}7QHLhW{%ioc zaQsjZ%b?2e??i_Z8S>v)u&3Pe=~mbAmVcLAi>b^!SG0EKdXs-aXIsFA#b&8Q!+HXv zB0l$fR;!;6MueClMK3}OW9ZYdnw`3c3W=FTnoZn5B(GLI;1jbM3w4xz5ffmao!t{l zuh{C^TlMTfk{K6BQA(zr^%k)G8eZ8{_cd3g%SbrMCF_+uSi=jWscNWs)#&~VFG9`E zu+2d0D<^WBH5g!#+nB{B1A)XM#1;eA)Yl@As{TyPNRBA*HRES>E4y;=Z!zR}H=#l0 zGO2S#9NS^OW6hS^o9t3zRPPlX!9daLq{~97hSBqFwtqpfo_*1U3uY!$xYwdSKVi@M&NmaZL6_6FF&7ZA}a z+ojn~2SJ#6*OIpOG)Ld*X@gfi`CjWQMDx+uLRS1Qc57v%?)x%| zNTO4D{r2A&J#?j};$+e|twT*MJU6ddN)9Eo^2zu2YFQ&=SyLDOm7i-JhtFdTo$UaW z+Q^m1i15uN2mlPqBsL#4J&Z{ga#)xBq7SYR3c}Y%GxH~0y`S%+pisw17L9=gz8M@3 z?i@Nm&jers(0zFV`)lefC~8W-Nr7rC4LEJc0I4IuS>@${sNLGdrB1m394w?_l?z6P zhe54R`1pTC8U25XQY`)j>`6w&f$ssZM*^s#oNO_< z>{?=N2pc7`ORp`2T&7x1tU+#sjfpO|DD=}qHDko(6xBUcCV%$OH?j$&)ZK>`6uoxW zuT|L?xp7~KEy5oW7F9Jo)rqu}B@~k)B7uyYTs&j*WgEm!tkF(>FD<4wGiT}8Elmo< zi&pK&yzu_gF9(4wf;>*MH(l9)q6S7%=r7R#y}JV(?L)SoB0iX8>Aiej0{kIfrdO7?aXSS&|p zeWbTE>&F@L3~Pv0`PEfpQc`I5-l0}L*0u3go5qP$mc~YGZW<&1_V@}uZTS$F_Elr^ zx0ihSx^bkhGG|G?b#08NCcpogeywb`zM<`Go7K1%?Qrjd4Oc{rvNj%lat{l(ApFNK zB`d4cEE=4eK;GPua2HN6XweOipqx;h{Z49WDlfMMZWsJf4ggcG-lmZP@~DXJ z6#$U}#=~7~^KWKt96BD5N(Td;ztQnXMS7-`2 ztVjGY0YC&^p&+0N7evxO)hGoa7AXJD!|%oZl-Rq4|4@zG_Rs)}Hm7$Yc%9~bx4D$S31GrcSEB~GEMOWF+L1zL^` zY0WD>rgn2uV5jBpV+vNM-&b%bImy6_*FBC+kqx-v-(p+Ee4S)9CRXE1OVws}O4sg7 zZfUC$l2JU(7`^r>`n>5P0vlfPmy(1DU{3(RALkYEpS20hq2>6v)*=DhSDl^jKRtT_ zL)UK*8j%%zGkyg|T}0uBWNdE`Y+B7PFut!p`bz&ZMNF(B#E_2?GEl#B9=_)Gh+?mo zrnFd1O$mfauDNyF`y29&v!yx8;>Y!&A#WSb%&`Z4(B0N_zZeEfo_5KJ>GGmxSq;XM zFY!@oGl{M58A2nJ>VGihI{E&PDAD6NG?;jHDlbP7@iX<}r%Wt;v6{}W&B4u7Ix;S~ zJtlElWddV6yMz6ucA28!`?i>;$fyWX%n+EE>L+w-+IJ3X@&@GhP`;WpNv&twnjDym zyePO0&PJi~IOqcjZ2N*E{Y#s8p0C&UHosAOkHUZXQ)vKqs|J^=$<^$)M2SRtzmh~C z2*@6=P<$?Qc1Mh|cPN7;YOLiI2E0SHiTus>9{qZ9N(_lZjcLrpe$H9dRDt(XTzlSK zG;g@(RSyxVca3*Tu;244MQiH~u|?W&x%X#Rk|P%+2ma#_p3+AibjX`q>ubbO6#OTv zaSG{tPCo%adUqPcYzK_sqq3C`I*CrdCfPDNz{aPXx_f^NkYr%I?ZK_l^+&sr>T*p4YRWORD2U!sq&(rc*J$Z9*m*QKgOw=9AY+8x9Z;!yYvf4P$#fMqeAd6UHTZ$&0J?$D%w14L zm%vWd zR}(Am@I-n!vlyB5rSa!yssNcH;hJQ-&z_)9g&j-Xa0rP`I>0DKY z>Y5rZK0Xjmn)TyNt}-blrNqBIp8ek*Zxd#g(%#;F>?WAhn>(^)Qfby;veZ34z%f60{zsvByAKPcd2XMJ)-^3}7z3wCWzz+!F>JwM`*)zEuDFk+F-TDVEEXSR)sMCd3IWd`-(=h=I9dW&f{q0q^g2AFyTZA;tLH9|S&`%rNR8+0DXkSX^&z*%^1v=`t+%-%gIpmv}BKqs>F2#OB}p&>Jf6Wt9<>bZXt_5ObrAGYgfdyf|+4o7G`N3Ged3Ci`_S0H z7Oik>ir1U)m^vilgRuqE)*6pn9loQ1xkMC=lwm2=n=sUuRqq`=TgGcR6WG~yJklsG zr!t;skdZB1Z3n!u8J%fhz%&`3Ja4Hw1(Q)Gc6Rd+Zrs*-C%99ud=EUw)Unh}|M1}_ z7ek%=K0!qpqJrT8mo@Hf2=1*vzC!cl&$_#-i~hbKAeDogR_}zo67|P9P^go zxlcEj?x&u|9X;NQ04IeL>?kj+y~Pw(Kt}Y+p1k=I9(*%$qk`=WZ*4xkA%aB0A+Kg^ z4B?V~0{95uvsNh2Hk=46ZWRSJ#_xqOIin}4xHRU8D(NCK0%nFifY zPAME!bn08ZZ?F;-+TPyn^E0U2c9zs_m>*UM|9mP7rWsSpZgJa+c{jXBYkCu9)Ga0g zIBf>!-!%Yaj72H%M!%b+Xkr`W%@Bp(6Dcn*|7ezS$1&oGssy?q?^~~~$cF1VcsSN(2u0HRUrarP9) z(_rZT1Va;p*rZxZ6aRiP=X||ZlJ~7Hd83ExnWyk#Q}igUlBM&GuI`B1l=GKJxBTeQ zdtDFp8t1Czx^)Vw3{zBP9bOrdXQ3{1|Lvsz8$r{+w=}L>2r2{tdb%ogP_XssSuFnU zl;MJOr`pU3%1D7RPAkZ$=`nK0e30C8hK|sN zu%x9+epmT{LI;wC=moFE=Owhcy;5=jXnGwTJkvZw|^73CDJ{S4NGD)p&ZnnO&CSpvG z21y&>kMb9dV77kXSbY4+K(pc?aZ84%eyCh;;owSD)%XFTkrxifjC$@I1yfECx|9SM z_g2mUl-Trf*xW7MKz1w8Q5HAQ=dg4wiXb+OhJ*iv@!=E}OPgtg11D!xeRp-9^gBeyzvxQD^BY(-T}(bNT?B^X_I3Ku>@o{R027LLfMxD2JXy zP<@WiSqQwYg%<;FO=Vn7w7eNLTjcPxhFe-_=!Q1HOA6~8M0HVyvKe# zU2w2=T=Mbc%C;O=M!eN^;sCizRjatFFEoPLBuk+hkLPspYs3+V5EEM-7C{U49LJmn`4AT}7Oa^#z{uBDX%s}IoU zVfwXxW(1bmI6pwV6tK7ck2>O|8S>ww?N$jqhrndOl?t+PIt}fdot^s)$WR6D>$8%~ zOQ)%;Mol=%VIl6`_ce2ijM{3D?=3(2#ARSj5ZeGlOQ-7K;3YM-5_c4AQIvcPL*Lk( zwr($1(^903@#mg#wv*X>bJHe4y{H>2)_d#$4xZVCG}=+MV;sx4orhPE61BqFr>2I9 z+k;Ly#l?V{b+)}-7y2J?2}(`}jO73T{!?`UlwfOg>9!TR#6I`FM!Usz=el`obS~C< zZl4<{fIwar{A?k-Hdh;O!j8KczM$o;|!3&~QIXe^E?J(IMFr#X2)_o)(M*RI1 z0mvCRg;?~~bvK6|F^#uLWooi-$PF4EPYH&$9{P7`=f{te1@-$wan*tkrDl#Hb)`BF zQ!V?2xOd8Cl#N|06GG^l8|#~`BlAK+9DI0??%mCdO?`Hc0D< zU|=xfYCT}6nd5aoS)yK{%AVdcq&w6S1Qx#@!mX*|G!ODl)p%cnk|Kdaz_9`9gX%qU z9|1YOj2s1F(cXAD>G6%S3G>F;K!>&9m>!Q@*E^eQ%Q>gz1TSRYof)#4?RynLD;w0J z?PgU4$yxEt;#l6BTmlCufZ*lE6M_n^J+?=-K7StHyUvHoZ5u@fs7+Z?)Q?+E=PxsW z56c?^XFIzJRfZ>Fc*r7*M1Z()c|di0VB@*10}?{)?LqMJb^~x?0Mt4_CIRvRFgJqX zP^Dn>+c#7rMpVQJCv0FnUtSIj7$&T1_Zk4c@6@}-Ze;1j&LL4KPwDo}&gIIUODG2hKS^SFL)~jFARWiqxJq~5)zZ^5UiOUa zGOfa3*x-DwcK0nHi#Ab%4EQcwOkjp^6Q1j)x^zO zHv*1rV_3QaSI~)2!|M+C{)N8g(b+tt>?zc4tfwdCD$>Z{Cu0TGm*34y-SqSgOUbxO zOfwWeqAX&yK%_(m5*7dBQi0VOD;!80Cpot*4gwSca2;;k8ZhGhtFrAoCLL7p3wKN~ zRnEwkd_G_UIsl(05D^G`oxXnk>LIkpGeGfn_5e6N0BIWVu6)D6CoBwT9>DwCb3x&8 z9Ej|2+2CL3AvqK%o3aEQ?vI`FM9a-r3^*dsa=(oA-F4T=l>{ z{qUiEi!JUgjo1qlG0gUP^C}};&RmPU6*dVG$OHx~j9?_bByno+i>Cwsd{q{Nj3WjED?L@u%^myYtLYVF4OFj~Kt)z+(V+iA1y=qR{uIWr0f z(4Nj-M6AK%+&Wc8BFuJM@?f@;UzLME;-<6@xwjyXgB+9;S!DD4RO#1ip{E$UBg6+L zXox#xYI%e78a)*Amz##%_xCeolgB5uWURT6&d3M#+%{r77mj#;!vvyUH|;psE;c=i zn1ME7t@HakyxaGGt3gggCaK3NKiw-GlSla2y*VktvD;ySsqrI?NtaQB`YBPyJp?FD zD=)k*bcIh8J2TiH|34lZSKA+~@DALDyWCUapm4cKc&f46uw4qgioiq$NIVkRG19pJ zl^NbT8Xk__y95;`g3~uR2;f2B>kSChmRtZH1i~i}m|R|02a>xiXLk4YOe27|8W;#x zy5E76Az)>y2bl1{-1*-gn@Rm|kL?GSnH?MN#tqlcj38+qu#X~%hX*7uZ3MsKAq^Dm zlrn}@*G&DKCTC^pM%gNS07b0>7U#*DstL+@?IhdNzzQ^-%66d0>RD0zX*N$>a;KSdv&{6^C;;6&FsE7D!o76GK|L|&=If)x z!An5<00v&ne~}h&1cgGxKn)$?03yoYsSJ!~ptvA=&ewz92m35u>*qFJA6MQ_iE(^B z@GV&uUgSrW%phY$;qvTvc3`Sc={Su-0=8fvOJ&Ii``rF*m<7E<`biIWzw#o=Peq}n z3j}z?H%9^AiUZ~00}qzEuFaIs@F|2yz?6rF`BMmBM|A_#6{Ha`_Oe3;4}rGK(9Ozg zS3n&L1gV!w zN~Py>ZSUqN`aBUzr6PDxcmOM+E){&xPBubn3lN z>O}xd%c2)L=)mtcIRtj2j^w5e4u?RuEPQ}395c89L_UIp{9uaT-``(eHe^oX2bc*^ zY1MrG%q}E!1MbSRz^N#LZSW90g5cqUN-2AL-vV=2fJ6UhI(^hG`ERm6^$7uLd>|Dk zC-<0{nXif0iND!6eBI#k0nOom83EyJ2GFb+kKsel?!y^9x&n(rMpl^cV&aNg%ABQc z91Q|=V+x64=qOn)SJtaqHiMJBLmb z@yKd@H6WokK@LI?ZM9zeCr7MZgfs1i((ICAb8-FcO8@Tx>kk$JO6zZBA%5le7V$Ln zj>l#kt2HE$F;(+;K~Vnf>g8*%Zxq(_m0BJ;ONu zg}MpZkj*JS7V_FGEqq1%%Q*1UFqrzBn&J!ZJD8hOOt3ve^x?pWSTU}VF(t-!tVxgP zGz=7d6xZ{>ZOkcFUe7X7`f~gDX~OrrX}xUu5&kz)gvRKWbkeIYKRe4DC>Q0H1kU2h zt`?HMUuNavBZok6Z<2D}cHKwdxs9W`tWdy(2aIrWATB*bG@Z8iwSZ?unwQyOGR+}}b zRxyG5=V`0+1@9ZO4+LlP))ZU*<1ao8{;#*U3v&z2WBRme3DOKZHH@xb-;V{=q0!(V zKBnP)mN`h{z?W<}7bnG+lLS&WmykvCH)J=Ca`NML;cf6%MrTbUGBOsI7$&XoYW0F~ z4K*9@)4A(Z9a^%4=vE(E`+>6?FGvVUCNB|Hv0qs$4p zGVIm;r6PZ_()h>=1bU83!3`-Yz`R=hHtc=l>WH+#y(K$_!e8Dp!Q0EMd0?A zVy>p^70bGYj%Q%iZls71npkv%NsSM@;J$QI2euRcwM|&yGLXcAkr=?I8qc51U6d2v zM?aXWZ^p7h#DNFcU=*4R;EAHOqY4*SWu+=thL9j2<_l^fazAwGSMbCk1NOa!$dUrv ze(+a=8$?!?#|OW27}KwQp5M%L-|xN}vQpQ19*0z7-aRXnI*>beK5X=3<+gi{iuZKY z+s)$y1G9`4Dp{zi%1}#mVpSG}D&bgtpd$=z#7DX@9z^*ByTQxhCH z>UFVv3Jby0$~|lAZ#AP+YYp5tK|<&E*X;c!4nU;`syrnx@D<300p8yP;v#>8ZaZ!j z3V_cqKr&)nj3wRDYn`^o!JpB5<8`__YdROG6UBoH)AjZuDXn(%Jda-qEZrvltUfR- zwORPyzzQ?L{=5oTB4#^yOoHEt)b9Z`uzOPO`uw0?b-S+A=#o8&oly^8j5cGyG^>;> z{OJF?Atg5i}4) zs38sbLWXyM^fg>+h~M7|ibjSXxt;yu)<4}=NV^$rNzjQ}a>pOuDI=31lwKypapSU| zfigcDm-5l1LqNlULJ<)0wo&VTY!*)!k2_rcez?Z{<)Aj9_wB6fDL69I@eoY2fkblE-YmTlC-hGB6$3GQ<&#+D0$$XE^|>{o^m$cf7OCW z!yE%4`Z6|HEHH`QSSKn`VJ*Ga#8jCS?ShM-sIaAOXS$TwrMuGYebr6nvgk|wA}YRj z4G{b8v=lT{?!VaNM(pcnf%4u_4+Wb0%ek?3!OOjNCM`8pM@ws})@A|tT>-5huqOkf zf3}%6Nl>*mP_0+V{_jI~Q`jiY1n-rh4VP(UHL5QJ#42(gGiB?H<{G(@sPvIEs8 zolzIVdHWb!x2K9_I?^5>=$Sgon8me314GS2cS!a?)5*zD4HH;tyO-=pj=)* z%g&x>QkbTl|2g-H<>act<)+tqa~b{15RwRvkC^N-3@y4&4E7iSaq*t%`TQ6P|0`?_ zMS3h_=egK9IW!-a7_q+Z(qpU|C08#Wq55$HHz;i3t9_8p2n-qkuL*pEobJxK1J8Wf z$M`{yxWJL$4P@%Q=1T)s8iVPAfGYx`r?gAvT~;CiW^iW?1|Zo$oH{H@w@q*Fp9L+O z$L2Y#{lE=^Y~iHlc7)ZwF5Ry+E$upJn=3a$b?kHT^5mq&e>J71ApT!xsvfegeMSZW zcLMx^@vp^%HSTo-lADFGGRaTn8b=PbYg8o7tmrtLs;56U>VJINr|rgTF;&`9H_p6P zTx{$jGFhefTxM-JC}LH5WS&nEvKXjTJzrW2ToTCWUrRi#Z~mY*km4EWI6dUYYVPP3 zl!tCuvJ-z;5U6d+_HA~KyHwulFfmDFnLj!tW)hCacK7wSA0gmCaH;?6Mrc0B@V_5t zSv;RqTXgSQY31_;cg{87`q&{5-(J-AzU2hAE05gj!H3sG5JY65bM9N?Zg(NuIA0P3 zLkiy(UN17AFLCb>CX=iV(+!|QYSGyHpE>eLT||s!dL+q;4lNR5K2IF#^fIYU)NEcG z&D9iBVi*TJMaA=r_KA;&puv}6q3@AVLB$9x=v-a>E99<&3ep{1o)k2-*o7UVjECn-NK zPgM=LZQ0q`feo*r6h%a_Y@&DVa~6Fa*274LL4m`hl5uh_7yTD%Ozq#6`BF2yujbvo zGsjX;XdrTx^9ND4O*RXI|5Z*=>c75Z0VY*}+p9wWzkV|8@ZF>dH;Ho(yu6$BCzolkh0F8L4$DK4h5|oEpT0`EAt?_U!G1ugonQ(-o-0UzN z->Fw!-J$bd>N~?{cSRIC35Q9*B$i>|mjI=QLhe3+estHM{(Y330IP0gT+7W~^TAuH zC)EZ9y+Q#`rTml;GuI16(1nW$(j2=iFSK)6q1i(==|~4KG@Nakaj7Or#11|~3IsG# z=?%;7rfPn-ocWQY%bNU+zL=5E&(f&k2QZJYsB6@NqSME#=_{np^YC9#-IlAD3YYYojj`3^# zCb`dfe6RPeA-?#OhR7jK$XIfMC#%`Fvng&7pw?SSpY!4bxbVjRNOUlW?fR;1F5_Ca zdVFAoLv{`xt#E%`~cr3gVI%l)rpMUw*IX0U( zbJ^7<7a|qiaUay+N7>m2p+F@B_!)O|{FEiIwVJ8f0dk>)1j3n`-nHLAMVv(scyj<6 zef=64P7(x!#B25-Q4GS;w7*)aS8JX^6!hwgK1+gh7+`AixETqZS&1cO+359NX>2qsV=v# z!FZpVNjmg(+-K!Vy={DhivDk!`+t(#9m2 zoPdpSb(sGPgA-tQt?><6eAtdR%E8bfc zwJn###KPBm7Lznt`N+(aRu#>&7+55s&oF-t@yI>OwT>4q%{- zg*bK4ipicy3Lh*c&INzZmlxKPYH{lIlFwthG;qJc?Vz!9Ml}DJ<31UHd^Mf3#>lC@ zFq9wJytN@Xc<6cSgyO7j#T|#0^I%_3N=#6aI7x}THeAExBaIqvv(Zsg*|ZiWE)HUh z7^)Z^F0PcA4{}Zina!4jv23{$SPb6?|UOuhu64u-{1azSh=NdP&tP zG@_EaBB%(6V0!?43K^~|2HIA<;9+2bOb@TFn-ef$$k0uI^W3N0i=8MFkhGhjsO>+4%x&Dr3b-Vujm zVJ6J%947a@EHX}#CKOk)^_)EUxzz3*DEEDh0w3R|>)4c}zNe>geVwvh#>AAW*>))= zG?f4UqmJy|+#04V3k$XB2|(aRi|AmVPL}n`#iz3S>O{o6B6YLBYWThs7nIh_HH%89 ziP4&>r8*lhtMzH-l{R?QX2G@nv4tzsTpZ5w^@a%(VnK9{id+$bDHJ>1`5$BBtRW`0qsYW6{iZvH%_HXz;o=1LZ%&$bxN3Lma2iu4%6eCi&KDB^M= zg!a<=KteR&?7uGtYl@8#+i!oie7KFnhCt!P*cnYdkU zM{f#4mDS9trGk=}7tKa-!(RQhHx6A3J(^F<1G{^HemTf+G$~0mH1K^B2cd-^cJpuS z>bQ1XV^Y*~uq0Cyd?+Z%T*W2SI1*$*q+%%qJ3lfOm z-Sz;EZU+Xbjdb?`)(GyVB}~Ki&CSiqL7_V%GKq|pv`=Tjirsm6Wy1P&|J$h*> z@X$8U;SZIov2wRyQ2Y80yqY%dt1;NYnc3*vg8ga>{l<^_F*(pNnzj+U0} zADGZV5k3+ey#DpYsO9Wwc*gB%I0UwyK3_WKaKm{ zT3)}!h=$B_R>2qdlI|}E)*Wr-BH+06XCSbn9+QUcoHg&SjzoSGo=B2QQckPh6)W`a z(@*F>gd&J3FQfY*`o*&$-k}@1qL9Jbfms93jwFOq_`clQ^V-#umlOxEP#O9l=X=jD ze+%yYctJH+Z80%B`@vWX^e09Fbim67;-NbuDlndVEF_UZT+(a7RS&rD0_#TBqtt#a zUD(99yfo=z1KRVwZ!zzT@RcoRPKd5PJ$NvySs)8!MZrk`YQs(&P=5RjaCz>UQJFf! z9}qy2rj(-FjzbRU7x6_`4*{#rgMBQCy--gVrLbs;){mUYltP$B>sv~Hl*;$qHp%e@ z`I0%En9LpV=wWC7s!S7Q3DA_jzu!pA@->veZDX%WFyXc!O@R?@&s8+*5=e2Qg6SxI zZz9Rg^^qM*z&|?h642 zj7$HD=g$iF=asvw7axe^-9GoXFSR*r00K2|!_+v#&RCWn*WGD<3eV(JWH#r@Den1< zlaLM@nbuvM!L#oGUPcK|B`z$X@v`F2~^l5M~O`aXwR*~qo*5XFWXU{vt z{|E-60+?uVs;I13+mRjb7*9T7+nAfmAhs+PQC2l^`PEfu-_FKQE!Ug!DXJJmjqLBV zOC?M8$}`Per)W=PT<#HMHd{o(&=?P-n*I8k;U0gcf@g@zZbeSJbXy$ zoS3Lkc&aXEJf|}re)1kIp;>zCa^Kp;NO2p%WDK|qtp>+wJ)E_tM)!*blKXsFtF3uqa*v4?%%}`h7G3!N&wzB-ivGN4-~qfVD=5To z^3MZzd-iU8b-cLZd71_ZS`#C>veGmE%rDExF_}046v-wH3ON_m*0s57!;vpAbal0U zK7@t9$O7_{RA7v5C5EniMemCFd}A_{RdhTr{S3Sj2%>RIyY?8hByRn7PXha21qm8YVTqO-i0lj@wgnTfZ!M;nRsNkxt#hl}msMWuHzQ)G%ElUGy= zwF~cUQU}rbuGBQo{f;`SQZ#H?!|0FliEovwSD)FIe)Aei+sxfiGxdJUu4$&+W?HDa zQ(wZ=*H2kmQX;y}4+oJ3;Azm@_<(p9+ze~-Tj}EpNr^hYk7uTywR?kB!C*tg^FgM! zL+jjZw)Rr~ZVECeRm&#GA|*ihGY0^a;(*Tz@ZdBtF)=rnzVoT>?&<DRdf zUHDFNs{_GP{;H#W9B67lIuVlljwG8LVN!2if3ZE@JjNN;x#O_ft~;in^0OBG&DtNpWiyw8!gShU1(@aKPq3FUf1sR%PooHLF{l5 zB+(R=-+UivG}&06**O8}EI{(CH*p7*YiMXJ+}@nBFfzW+a|KO~f3K->V!MA}0Ox$<)Jv}1&bH9b0^8q4BFNtB&<8%0S1SNTD9Lt@Ky?5 zj=5dyR`A@R3R>3jmFnFG!7^K{u}}1HMP-jR+9mZhtuP6nJyF4+-f|IP zvj~jQHFMn7qci%6_w7AEwvIPcFgTq)Mu*XiYkv{#iidw$d64v3pCnzUR3mNt2I;cD zwz;$Zmg-NL;ef~R4_bAHcK+{e{DUr_-a+X9)<9H0(B>`ilUYj#kGYBkVr za+QMGD2J7co@f{^)!@5OWAWT<)ZbC0dhxt2CC0vI-vNp=Crez*c}<_2FKH5C)$nTB zJ_Q|b;fZ{5K$RV84&;tkQ@(>+eThD73RmTmaqVJ4o8TvcJ8n$7r$y*MyHIW`%YV+4N-X9 zf3Ia>&cD}E8(;KI%Hv#J9UTz;2k^ney=lIydScs>6189kr0~fcv&PPdC%MQ_wWW)% zCo!Kh86rzZ9IidS)0^}`BZ$n??8hHIF}}J3HvIz~OIC`jEmc&SSP?%l^qKbQPJenk zXFonn@MG82Ol5m8ABHxFeQ0KsYxZ11kR{p&T6;ts)b?g;&&z!^ttFpa7|fSR7rrCBlq{`zxTgEaNb@mYVqP2!(_!8rc`8|>-+ZSndM!x5a`D4( zJJ;*iFS}M)A7Mu6eo}i@s5sMI#j5!#(~qbWo>`z|s(Ol)|6|F^d@HLf(a2OT9Hx2^ zwPf$*L*JG#d9(dx@9cLU)y<2yx%_h#mL=`J^-5d3z4U7r182%gWP!$ z##2oOXP+8BEPK!+`+bz}dBN`o06V?=fk-CY<2)(^+&;OD4lu3sG~0b9VZnvGa7NC8}zj(7*%SH zvS;qF^VOSVlM2lbpC$$keg*6fkRF05AFK+KdRUA9-2 z@N!73S0ciGuZ-EIsG_PeLY!J%k@gG+f!TZ&m)~}h{Ud!{*vkRi8;>Jm@8iC`o3iL3 zfk!#Pm?9SUCIjUjP*=WPP$<7piKb+3r*}}8;J+v4Vw^=E{h)0+hkmf`i=QEvC^Qz; z7ZsIO6p9Fg#?~z*-a7NOru$afFIs}J!ujMEv){68R%EEV^|c3k%IsfC)pQu`zox@TZ>x5y1_mz$`@YuwymKD+Kn(SzX*R_F95iN6XiX#vqn)P9Q^`+H_fJtPk-B9Ox?KT z?sRoHjSq-e0@(u>fI1ky!_s{62HK7@5jD=H^wor>A*zfa3_oBjajquKaJu}<&}g-G zcLfJ+D*MH6GjZI=QV?gs&B+;SUocPl#1t(crcX=a2{phU-n#k54-PV7CVXD;ryayb zdqBV*6aQ4sy*M@!##=j`LPCG`s!G+O);--4X7R~?P12f-eg48|!1ELr@|Uder`Txz z+@AkFoB*l+)A^uWcW^4Qh|gWa6N!e3Kv8E0J-R}&3V;RZ*22w#C~@Fb$j51CcXcmx zcvrc-N!aUgX_ew$w|B5WT&dZW|2-PxOYxT`>6c(A2fEJkJ*Q$Ip0fXCG|WGPZ$ z>TKL~$LhLG#PpBchb@;|t5g*mM$Ps^70!lxvMMblFX7CT$;XzKH+y_-os1pc?a22F zt~a*yr*Xsbe6ATydyAL3X>Kl~x_Z{ff8=?$2Tn)H3d4_^Izu$K(pO&Jxp27Kcl2>^ z+qI=(U^FR+Sy9el-=80G!u*P0Bjxd!+uONTjw>^1Wlu%Z*Pn9=09t{uHI; z2q#AZjUN&G;><;ga1_jPUNcP8Nlt~%G#YQ!a~uh4^m+O4&z(C#rP?yC@rkMqmAgBu zkm-Q|t<8I-bOK))a8Ywyf@mPUieWG(hBfr5v3wC`ksH2#+>&^{&V=*V>{a5pHD(~Wc#oQ&cDSUr}KW%=eJd@u- zFrL@$;W?IBFkpO23(e2HlZ0c}u5YuCmVpPafc?RJSph@B=&wdCfgkDTugXT4J0!?7 zQ#8uth^w^@>V7FzwW=5&Nb}2m@#Woj&FaN7IKGk0jRP*nc592rn&Q@CVvdae-|+U& zAEMy@_P;y_DIK0S3J)sId;YZHA?tr04owGN8(K~G*lKL4dE_)9o%W?~Ra}zL?%{kJ z<>9rTln-MR^Gc|YP3ES_lUu+1F7zg{E4IAtm=DgJ?ERvs%xXvq^n$^78N?%EM z#d+BFphe=U;VZL?IdLNP51w=~J%csU30XT97>b3>m)FpXD~%wh!#h`RPU$hF!?ZJR z>s7ifc~j0wxNXsy^z3U6gp2|y9nE*(L%c~}MIzFItIJpV&-YBfxWV4zIz5x1g}xb% zxCBeG3G$N-rs09W3lJ1&20#?9DKNzruRqXBy3^P8=4hD}X{M>(Nk_w0Kv|jK zqQlbAE+}vrg=_>)9~gN2214-K{{%;p36RNP1 zo3!-qU4LLlE}p)pjagy;V$=Cgee+W`!ky~?P;=+4Ubbne$7DVa6BjHCp1)%Fc{-~- z!bTv5_r@(J_fnPl;DQifNa`8v8Fpvo9ADMIW_hzBcYp7&o~5CZPUXiJ9`j z;%&>S>8jzdgA1-qr<2=%0fo~s4uuDJ^j}uZ8+Fp;a&e%~$$MTW4Pf4`-VbII**S82 zFUiNkQpJZ`tB~2sR(K{Sc|PQn}7m zAgRH*kf*w{!~OBqWc_xENoibwSxr={*q240nqDnh?OhCsgVJ)xtfgMppvOv|t;wza zBr*akxoiGcr$+jk=Lff1tV4Fp-X^3@@d+N>M!aggg}j(AeP3Lr+Im?7ixkyMHjnp% z=>72u3)37Er_XgzS#Sl^o0dpKFSm%uD8K?7s1FVba`MQ4BmJfEbdAK89%C7o>6!Qv zBfk~qiCb^_QCKoS7x4vISb=E!<9xXc-Wy0wGZu)4u$H8xBuDybaMeyzHG!-LC^yws z^(=ef*&ul5Z;Wnf?p>R6Ir>Is<25;xFSET=7+P^+cp!d%s z`j33;FT?hi?EmKxH9$&xBhO)L<3eqPkBNjMq@@&=@9O#~RJqb3BiPZnFZcffJ;#jq_PN=!;j@uk_)eWd`ws$LuWH zERU^ZM9a6A`rJ9+?8uRnXoc5K5}&@5$|3<|Kxg!lCCA_3i}ihbH%cw3=W%`8Im3ZmW zV3yGFBUh)wPRCk;ozAucJYm!VcZY?-3+NJ|S-?Y6%(ToI*nV=-d-`R1I{ zr->hGWDh8B^~qrBNZ9P;!gcDVRQ)pXOf$dQC!-KeKi=zR$MABTW1rH*+=+GeU?&Mw z>f|G`&witm=_o$BEM&=Qn1#7I&8whr39-Hay4r%aI!A80Qg&k{OK0+@7nv{!R_yQNgAfN zlPC20$^7=W{7`}RBYoAMZgqu@R!(o=9!I@+{zcl)lkn1zm_9r6!`Aw5VNrXB*W~99 zBZ6NI-w)14-EQN3?W(6}a=BiY$TONwYYqL_OiiQP=JFcdbCwd{cfl`ih`c{iD?fKB z?><@U?yuX9L(cT0{@3a?8K#&iux2pf)pYI0xZ||k5i3e)QAJm#NcWPBX=U+s%D(yW z!7lzQ544>Z);;LYp1pZEt`a80h2O)b`jNs%(zbJ=Me@wIi0zu^N0Y}qY%T78s;DJa z??_o5#=00utUBW4?e`DfbJHr8E(u-kR86NsdZo;glh3mmQou`z_sl8ty6snot#5O8 zTph{RoYogY4}^NjV&ofv8)>|i@rI__dNn>wd0A43kMBW-n$mlrh_)%{SddW-{z8Jn z!WWRzd42J5aroY2;NO;+sidq7i_5QHKbU|74D;16h!mR+kc_Iq`HO1WxS{CJeae$I z9}VJe9iZac2lkhb^#CVCs@fzlzY-B~#w0i%-PaqnbRFey|HXfmP~2QKFKKbpbk>gP zAHdN1AHZO_wtH~ut-0z}qn)C8-F+1c49gRA!2A^UNbw$-MyaklOm8|O=;HTtTz zf{izrJ6pE7hTF#RLlc+N6z;~6Mc+*sW}{x$Y8Os>DXqX?uGC2oSN(aQIy3VOS+{0Y zVOoq$bgLSBjHcP3PntQ!9n30Uw30#o2m{yiVN|w2c}{LtMlkaNeb(pKGeW@7;jjHL zaKor{5!5$nx)i=K>j!0c!Qo(ri{#hID#^aXZ@1H?z5c5lPqys;y<`B=?(}tqlJrFO zd7WU2QexJCcgJHmcn#l2_Ycub2Z}Yte(wlfK0NtOg?MmI!_Ag6p7_9FOhlCr>6;ec zu3Pf1HQZd-GSlhXl6uj|)7P0iwuNunx)(wxE27OP& z>m+Q^cb4@dEBi&Vw*em;Db*JSBck4BRf*_!tcRe{zJUp4cce~4iYQ&yRdOX*ll!78 zEGu^ho+k}|H3VHgE&N7LuMKI5Wwz;=nUHBQ=TKqgg280=n5LjMiYchX!;T!LGpbzJ{5hb{fl(fS;OYa`8biYGo zuwl2TQq{m?i|voEa$kGNh*%i6g)BLFjF8k9IVe9sdhQnW$_u+x4+hsu$=D6oszte8 z8g)1zq_r^{DBZW5UQfb3ExS`0EYzSh>A%Dsth)YUS?Gl*`EZmxJjna{SUWp|+x?6J}H=JBNZ)Y!3^uhYAF?&%Zt%n9>M4Ty&@HBm3%&l8YY>`?@dEu&O0-0Vh)siGjM;W*-ty&QeuQ-}6 zkJcU0R_n=br4Ju4iEaKk%$*+BwB_TY)?JU^Un-+UVi^pFFww)v26`aWN{$>>zTSxa z!iw_K1hv7ZPajJb6lA2|kns*DAJroDO*dV4*>AZhttz7+r4V?PUQd*v6>l`jid&K| z;=&CI2A(&d$43C`TX5KKg9*Jp8T&kO0CofrU#3yL7NuobW(YA9K*55G%7D3pvoo!y z;bRsSmcOY^m%#cLC^*Om=tvN~WAK&@KdsT|^@nj0V*#EWcaj)%VWDBvst?}H&UKN} z_tS?S3w1Bw8E)$^&2&yXb`1BGKP;K+t=`tG$||~Be5tKCnCmG$;VZ8%NODwo?6lW8 zeclx*yzp=uY+`+0R^_wzDxcI=T-Rl-xb#@nY`&V3~PK*QR(f{f?6!EXaTEjh8}fZM6LIa3c050Qk# z(?qMUoNbe}!b2L*8*@!Pq`WbX}o%a#Xkjv68F_32R zik{qP_EE4-S0Tc6y*ewC8z6;xVs<@B!QL^j_9+LZORG#lqmhSM+2bH=$^H1)M6Yb( zM<>>)CZLe)L`xz~+Gv0JhopUENZ@Luypf{tpL66-=uUAo0}KL4(VudI%90l9S?6mu zva&ojyyToQ=NW%ctGmg!?2o8k<(h2{eM+6MSNyrixo`H<)d>n&S3cR> z+U6ci9jl3+r`cT{UEh{yoA8iZXVyKVh+K-wJx=9J=dNDSXjdmF@%(_#Osej*=DUqu zy8T;E@~D0r+gku%1ZhEGhd0P3w$oRtq<~Yi?#6UDmU>*xW705xGu3aok?gR)wan)` znGZhp8_(Vk`Ti`lc>@mOE&?v&)!poPuMh!Nq^{?$Ea~ZD@a#7)y}k1WG?R|Q_K;V@ zOURO-G;LFMas%uRoC|JN&s=kJGvr`cVBBjYBjh8(5OxxV&W03zZGb8?XvdYVzj*e2C(+M zdz@Tckif{127&`~3}iQIn$?Uh8>bu1RV5y`CG%5MS@Ge16(CTgK4V9R}g`Uri&V;GUI;*YO8}A8sweF+Wd_N#$8?Ob!qyYAw z`94?9ix#IRj=wxOyt_nd$ zo5EayMfuvh23Iw>1vxPe2GV-`^a1{^>W+n?3mUJBJ|zU7Y2A#@_&oES!puEsdeB*b zY%A>3yQ2e-nU}{TYLYAa#sV;q0t6bw^E~Af1^#*ejal&E=_h@H3!PTln*ky1jrd!f ztkw+Y$Ulm^JT~N=l-%OWdGTTshbchIjJCeLCZy5tYT3&V?EGv+MZ;Vv1BIH%^7^iT znyg28TTSOB(DOIi?bt^d=CHz#)Mat-Hti>Z%STD%)@hOKr5$1ld`@D$iHZi&3tsr7nYD{pG6w!c&; z=BS>X($l8LsgW0GJVYxoMHdvTYc2G0<2>!7A|avmJ6s>IaDRH9l|^~V`Qsr`D8#wN z9LN3r2Dw7)EZ*I%qXFeQ>y?BBwYB1>bf2h6@epKqx;VEOm&IMV#peTj#5;_*>F46+ zwwlh>*?S9oP^{fazHamUqoVSNiH1#RbUoo1q;XWS z;Bh0P!Ua}qKKZoB7HdtX3uOHc=LK)dnk_ydX)&ogX_?%8bYbWI)^4sA4?QuCe3~jO zM}Uhg(riBs(gjarqXKqjV8yQyrh-40X;FheNnTD)ltLOPX#kUPN65eXjyEXh?e9F9 zh`wTL7JtT&I#2uh&CJTO47pIv&Ar^3tBj$kx+R?Rb3Iw$iJaSG`pG2MYB9T~0^7)( zH$}$lqKBoe;hKe`b3sqhfZUY#^=sz|cY2oUi#|B&so|)aJc{rXoVii5_OR`%LXkS! z#ydJzLDrc*;i{mj&PB9JlP2EW>_|MU3+^1p#q>zPb3R}KLd6MmdGas`-SMVX`Z%G)VY(=MFtAM>M#6B{2T3# zz3waGjw3gA&1xi$vucc|9B!3p?w-j*yt>kzC06%D$Fb>+F8W6g$8gH$(aDfKA55CI z#x-WCZ`7ap=k@iHMaj|3`W_!C7fdJwi7J_u?d=PfA^buj6WfWxn4q7Fw=f2S%X&?ltb%yc4jV`;B9N|ODCz+v6= zcWPN=iK=6Ncd*p}%6A4Of){Sghaex|ITRUWn+dPR^+>4Q(r}O31U(CeJf%`yVzTwMcZ476JL(*U=SY^ zrSNmlONG?1KQMLO%+iB1s|v^rUrbOPM^&7w6s&@MOQ<_hziBG;gaW-P1RUo#f)pJLySXgq$Qh7# zZiTD7N?pv8%y4kHe6;ORw%2l;pI>k(l;}gfas9@Axsspwt)vX^YR}F|u5J#AFx)4# zlUXNKi<%%=h+Naxlah77ufWRd%r?L9WyQ47B>QXwpQc^WfG3TUF#aniLkSO(*IgGk zavt4M-VV==St}d%d>WK?SHrP&z2+_&7msMNz6%qnZ@lQkf3>JAG0|km;H;Qq?C7?b zyTy8qtNl#U$Sph4M~5DX^oLg*-x{-oZ+2fES+fcx#+JRkkuqvrgdKa};@xAp?75km zBIwb-_keCRmSrzL%2v|#Hbh-lb)fAN?Qr5oETu!SO09XEPsRC~>}KedZ(%qYM(hhZTl z@}G`sCHC($pi2!TsiR|wY6iWCow13@_vv*-Ma7q5iN^exKYy=e8#PqN-D1SK`sVElzQA4Ki0kPLnmhq38(E( zNviZTqlPAeaBmZ09O9xUZR>+>xdm$^^Er<2WN+rr8?C(SWvd<=4{}~OZEhdu)Jt{Y zqXr3*MQH}ur`$M2ixOU=={EMfbv+uHhPbEdtEH-XIMmt#pL`rN<)=5ZcWJRZyB&Mi ziPG;%;tH0E8gyXN1LwTOheiZ>iv1Niep*dIK^ZH?cL~`Ska3r^Z=+Kg=-N5DuDdQy zG*>sEq$(x&7jG?VtktO3^3b;*WXY{l6Hg9Sy|ee=w;Fq?*&=0Fp?ef##!l%Ku5(O@L+BnDdP(8+h7%1TT7 zdwQaj(xK&zuR1}nHBb>R*Pi95w?X=bUAcM|91X#M08zL$WnyAtgr3ieG&lDT!A^lH z$llSBgox-8If&At+or%QCDCnb0K6pMWT=^%7+RQ^TuwmIuo$f)RM_xUg;{7gqPfo94a1EIMckg(Lm+%}s5hp7l`0LUWmlkU8%Ci+qld)1@q`VnEt1a@l57-{` zcjp~$?JXa-hevA{{l1}?Mzi8A~ciF(4F^fE)fD0#SnHb?3`j4TBUeA zt5>tj7=QB(f;@muoye1`^(GNY?T4@?TE(e~jg~L4VvgjPz;%fvZuw|>=YVOV_R30` zq%3CQ<_u}&Hq&_Cv82k2g_}ZqDbqpL@L6Xfmz@3?)0{s%qpJ-<+oNCBhvMJ5F}3Ch zG4CjGF7HXKX8pQ>^>05@EmaFmSzGwk-39W2-;cu;WwbD8_?MO1q_z zU$rGVCK}?oU#|Uz?=8ficXTL~X-nArmKUOjBYo$Iz$>9ll0~IX#G^zXr6+n!ES{45 zLIlL86j60SeZm}S#s%O_m9g{`F*#3O|68AJo8>5Yv3E0+-7-}(*wP>=UF6!e@XqP^ z%{_?FXqn9DF%6M>3cg`Ird*tyup;8&;$jeU3Ww5Tprthxh*!w46X9ZpJyk%Hfo@)j z3R`e!s5%E_i#6!lcw@z0uCe9@$)zG%r`BL_0nb73^lY8_I=Z~Pv~)DsR}IC=8yg%D zdEislQ}pW_i}n8cJl)-?#hU!LxOsAWkJ}iB5q~0nPN!t) zX85NLH;$USUnB2C;ds&>PoRC594UY&R2}i@1S$%Z3N;BUJ?Rf2Cy3q~iJ_2J@v^{w zo&16Mb26S(l4Pg3!^-XDJ05ET+WHj)UC|a~*@d*9#;t_ZbMDuuaUkz04_ji%%YGp9 zKxuFhU3Pvu{%+}4C{-A3Mqe*Mnoiz@l?#T}aiyWHIEJ)d?rD)GG>Vv3jkd@O))H9g z=DQ9RtE~q5o(M&YA~Dq!bbA&b&?d;pAH1LlzgB;)=5h`Rclp2;EJ#9oV?R=6wOH8=Ii)X-fY zZ(qI4(jlGgs_rP{{%5S)l@j04$ z%Te(%j?Rn+IOe%G)0AUNn_h`CQ>Ar!{l-S>G$5N#g4yw|M ze8dSGSOeq7H_zgD$z~LW(y<#(7zOk*)4H%3{v9U&3mWwWsm{UVxKlN{Uj-fnoZQ^7 z7`XEGyK|NM?%Gsr>;+6QR~wM2Y6Sy!^wYc3Nz3!|pmI!6fdO>iRif={rEZ=+4PdAj z^jBiq0Ng>uam{E_yAiZqI20CRB=OYD`Ln+Jy2(I@ehFy*xw+SJsZhcYyq8>V`Rv*6 z(>?2Kklw)r#41bPxG}Z9YlPFXzUoy%J1y%#^^=k@>HBTJR?Js!1 z>0rD1O|32|Ji8V0i@km;_+ppEE{n`y^(%B*70U?AUU7b->yg~{B6Id7nn^A@udC1- zOWoC|cBOa>EGbJj3!m7RxG&X7dZnMmV?!8uj2+9+UHWp&x0yAHgR&bdKyqj>xi2Rj zZ^XDyRv`oC={seXT9W@rV`FzYS1{h#K~!y%!RpTH zq(a8uyI(QdkUusfZu=uq?Yh?VcN@C~sk$^pnKc{9x|lU(gN(_rWZ~mM!Xm!}i={VI2T@_9{C9hwPxCa5Rtq>UF;Zb9ONm2P+Q!{G)9^BHTP+z`&h08ry zEik$7=(ku$ssi&Y3R6T@&q+!x*xOsg$?3auYGPDq=zh4j2e|My?3-gG9Lof0h?gRZ zS)?VeJpZ)clGS5+jb>U4HW=WmmF+MJpn$!lkY8y zds4;4?BRbqD+il5{sJ`LU3`&wzlgB#UI8Xw>(lJ|OIOSv`L_AHw6R7nA7m@A*xEO|x8b))?V$|) z^g$=Iw@d2VUOm%=<)b@=_fd@{Puc965FdOPJ%2iX<0Q$Lle2%p`|R3~j_Ex|-%9@A zYbv=V&WENCIaRSxl$PS;`84GI5++VrvbbIFZg}P1Od>kS+HJOSr;<7to9=`(_Q@HP zl+Z%Cn+T-Z>TxDw;ufTOtV}^jpX?-o)76#4<>W--{V61r_U} zJ)B$b+PUawAIC1msXeu_c?G5zV9+U%WaZ#c+-3ZXH`cj|F;G@MQPN}NTChCpFJpc= zxe}4+Q4Gl;wdir=%!EpZj6%R-KajR8cadF%*hW!XxgSd~A z{hC^um{9bu!Cv^?<~`K&PTbwy zU%a^X_WQki_Yk0k37uqp`+azLSf2Ik*RQI1ec=2Dq%!Owz-9#c?$D_n;GLzVKVnt; z(FK7<+$D+SH6<>Uyj;huiR8#^l)ACC4#@wM?1qPUN?h-<(=R@vxE-+?K9sZ z2@I`h=;lNeo=)yDhqMdml;ByMp$1u6 zpbRMLh4P09Lc)3i{PotHt3oHW%k2Vx1883v+}L95IEgekqT=BbaXzlvKDvA0w(f+@ zdJD<(AaA)?vquW$6;Fo0X%MDhh%1Ah_o2Q}=}Y@3vsX>E7Ql*ruxb9(rMJ z4g~PdN4wKuOp zN6jx_6nac=z=>K=6L`{(E{~R2CBf{ho)vrV59l2b@bAVEWka7{QBeVw zapiUyB_)n7E|}@{oa}5)9v*7^GoXV|N{9KRueTR*;yV~RnVp+U>qi#UL`CiB!kTAi z_IyT~jfE;m91IO16-+lzkBj2$*|W_?M#N`);2-FdiPB$1b(F#sqy@1;AP&IK+1c24 z?|@2v#CaCm%Pxa|rF#3JhKF+IjnggGNk=}VuTEODH%u3@bXX3_A<%&t%y9yVyu+Ut6fa*I^^ismfn`MJj_ZdwIWD(79%M#pkV6=g~l)UA3juuK0*S&P2xIm`J`> zE8V90G*$rjZjNe}(rwDNU(5I9tO~ErtY&J4?7j>*OO~Z=T=b#!X`_!@kviYZ=J-SV zrpOfjqbqScRGOF`?8RsjA!--p))8Y7We>OOlB#TdVZ?6~pwkVR%GQ1p%o+}z?5RJ} z6Z&{-QEgJAI2}=^JmUEBIW_|}thA7*l_&(3TE=~Be%X|pdj}UEu(x#WD4h-xJL9o} z1chT56c!eW6@iarKq47leLKosy*d0K=BsT#iw?$3pay&}%gYDR=%*M5k%a2SVhq?m zT2?FyAe14NIDTZ~6GUN!wP3-wPBgRtA_|5Gf7OPFB_b@noLqDt4@H!WIw{Cq#B34y**ZcjYmxYtZgAjA*^M6 zXEID#NeTWX!TT#LG*ovpBuBuBw7e~Ey8ERHXV(qw8XpzmXqB9+0r=ov19m!g#ec~YfiL;Jbs z2{)b{t=-c&i`lhLeOz}pK;4}Yg(?jV4|vP4C{DZP_d3MXk!Y4e zrc@jzn9qCWJndAc_}_~z*69N6Wui{aGjhg1EibguVWR53SKsL*sh(wsPug>gx%Czw zk?|skj1XCgiLy*S2eyA>Jn(>HflE9JabYLnZhVa^EU7#ZoJ9(xSZ6GlFAq@T<*DO4 z5fxuOqlM9wMfKm5#_|@p$c8)vrhyFDq~R{O%G?y{bPnfT#O#-px0#Obv}Iz6cZzRo zb40-soxeRXF)TY85Tu2oUn1~zj&CQ| zZT<=bC7ED@bzIpHJ-pd%r5AckXnp<(+%a&7H;VeP7zbYtnE$|OPcn5 zMSK>sr(7L)_^2R%P~eA7tu%(9Wi^Kevn?6E>+f`-4bSM{rfwb@L)k`k)v(3xi9kc~ zZ9c};(P=&RPeX2F8yL-$YMw02zBO4NY)lPUBTX6hSM(Ms4l$$abjis#f65`eiSJ)I z&T=2Wf-na=y3zv@DQSNM9&xBNlCMbU(f>3o0W93~ z_3NhBr`BI0q78x9r1kTP|1HEdB+q`n#Iut+q)E=U>}6%}B!Al!(HMnpfq`|E%A;mR z-};5-45en7*LRnf zHUt}0R$dMi*Ner$BBO$rJ1c;ZCRUxm{nu^Ju3$i0M@L6flY=UVnn%~1pVo%q`;%)z zVq%qGRxZy9ei__4<@{n|oXn6921g`UWPh_T?S6yF^X>QF(~`%#7|V+GYr)Tx+_nH^ zVlbE{gRbJm7A6ld#xM{<+>PP3u(Eo)u(-%@;R4VO>`@AOPHW#wB-a8ob)po`oWLaM za3pL?K|skWbvih*VnN+OSNsp&$2Wg~lD>6IMVibU=j7}0p$uj4u%I=pepugP^gVfx*}|i%-nfAouwE86k}etrhE^W@(dY^~b=$ zJw3XKF^1c1;adcgh|O;oKnCjS>M|)m_x8&5X#gt$(QRmWDXA0ZRip|%arg3e-~6VR7hv@-Wn~$Wb4yFm#Y$o2 z4(MMB^cjN+g{~wQUUz(=>DT zT&tnvpqG|B;_PT|cl*Pa1l9EtCfZvc2h8EL(*g2n!1(%;3H$<9iY0=k0NPD8rkwPOxKt=xj1XiGdG0-AU4%NJY4Mk<( zk-t8fAWxoh00o{W@3Suy;YBG=($_d$q`1H2^Qh5TBO^yk9&2dn)trOX<@rShYx>II z3rlAFrn(-59}lOTxxf1ro9;L?3M`m62K24)mg`4$hF)lP*lo4V|AI~L`k<}evaB~- zkbLz~=2iMF7p~j;;?2gq(cfdPHfbyG>FE$K$)CB-Jw+&98md;>R9MU~yk~XWqxSgE zC2Uz-FGf33hINlUc7#>MT#Md8_vq2LWp8gQQqqw*_ir&5Y1KUa*aF6itYtk+b`MAx zs9Xt;>7s8w+xU3Gs%6|mYK>ICvEje$%f<`cjq*YHyazZ<~PeHg-!*15FQPL z-%Akm85n#}&3G?j51OXqOPZL{2z@7OGeW}m^^CDU42M8E)PksEjA~U+`9hD!x9|rb z+JWvaDM^sQKMR_@ATU=5S2=L(U zEkOzJdVjGF8^z@-S72I&`{Cv4eap0NcwcwEv4jy46I0>)f;=ic(b?3-hIeF8g0VG> zWP_8jnuiAOQE@`s6d1;M!6XVxEGg7V3W?jyOjqiv6P$Dkbs5*ro49T~{blOSdfEdE z$xv7yPS6M-=~KGM7`E$3yl^#q*3a_Z@ZmE6XuvH{f)|sa_}HNW@h^HJutk2-4tfdw zq@9q8`DIr2<8@v|-hPV*Yo?6Z@iJ~KPuWXN8tNMYSV$z1$V0!|0j z8&on#I4~_J8m(iP_Dh!%PJr5H=`%^9ixB`4*xHN=XuKnoxcZHML43R4-eG934H7 z(90g+oG>gdPPBdhNq=XBmOmc81w50O{OrN4ErP?tE334>Z3xPSuq`9+F)FZr`iJ8o z`u^|o(lM-a+GTWqWcvqSXQM$rBwNBF@^F6}Q#{<$V-GjuVC{MOesv&epc* zt>aL^mqPIES40oB8@bQMxWl>&{(*q*Ke-2RSpvi3Baq#9AwXF#1!$T4L}IU7PYeWn zAaSu5(3iK!VOt4A&T9(wfxo+Q-i%Ju0qdpH_Jl-d z^X1V7QyY$6oxMYy*|Zy?v6w2+tu09qNthyHNjz8U@zW=yth&?%SW0 z(TAXsJDEav|GtnA>kEk>XtXWHq6DI>VPgq5x>6_viWCo?ZBC#YJ35Goh!R8{bJeqk zty>u2Z|84^*I6O0e*6V<1m0Pn@fS3p&z4ByiD@GuA`%DpZjC(M&0W`Gi|O@UxVgM{ z`EJ^qUJ+8f9oK4D!wU<~)>r~X2_lloRiJE?l$4+YHZ?WDFAjLDtEz^L`LVsgfMH|T z71|tC5X{Oz;vT`hOPVTsf)bOGY&1cU)6askf+FGl*^F0$rRU3a1m;@{oUNxC7q~SXK%Tzmyu3T={&{yi>`v8LSYpb9g#kRx0{>6f@xkYnDr?Hg(h^B| zvP=Kp7aGZv;^%<+w@aD@Kz$P1RmF9-yW2Y)1^%wB9#7g`O;jJ7Yw1|X+Clq%d%|ht zG;z^`Rf}7I<#xzmO#W@ORwl!dDT3kG3Kf%b6l=fAMGReFU~A$o@_Ucp^@)NELasPw zUsYkv(m#(BO>pp}kbILs?-|)5{revk`GZ%R5npI8AczQ@xr(;Gl;)U5ZG9Mz$fCEmx zA3fgHO#8|}oW7E2USYjBnErw#EjTa`_g~RR>wo$t<#%+t^0F=nIU(&507PMLeEi8h zr{n2rva=KT9oX?a;skhcLYQdge2Nr-B|q2^K`UG;n@*Hv?lLWci%)sK27LtB5Zl@o z)YM2)1??Ul-Sj8+Z5UV2GQ<>{#69nX5-9-q0Nq#71!_Gp3%72;aa{9vkejiy`E%E}6c30!P1@atPUsZF?3GLC%h%OieNGTCZF z&oXmknVz6qvp9dJi0X^FaY$38t;eC=+;B~4MTN_sAF&|v?y5WT%6;;=Qq$|gp1)-O zUca7v8aDJza?~jY{-!h(=EpBM49Ig1QYRXZWB}fkB)eIS%eUe>}5&MuDz!>+x#jDwBYe z_7$h^Xvr{v36Z*Z4+hdgGSB42g--05z+v27a`^xRHeNuKDOO%Am6wkxWeTZ$r7YQN z1QI1H_2DK0h$E2RUu2`N)VMriZ8}qZH|EIT`Lx&;I2P0}39VE$85kMQe4Cq_({UW0 zT6J1+`~+or!H>G+M|XDvfO62P)wOAtZ*-y4Jp?G`nzG8BH{WXHxzpxlKhjQ!-yaG* zFX^RGRCzGd+InG#ElNa~*GBSG_hD0Y{~rX?<*tN;BgrE8;xdCMJ?(8Vj? zITyY@e)5jtD@ntG1P&n~meJXFFBYC%A^2hGXE?2|PcDOf2UQnpO|SR$*`4U@)U+ja zy}7LNip=sQ=i{1DhqiO)C6(T>HdYv|xl2I#;^5$Xf424~-b$c3I4lg>E{JNO`73AUncK$|~h+V97eSn-leT?IW1M@(CSxJz#_ z?QX#0K=sftLus5Qn>oqU1Fow`S-TwVyTV3$&M6nG2zq$7a- za8#6<4A!Mc75E_KiNN|24o9C@+ z9#@3gTihy<-0tg(re)b(z8=yI%92mN+`omm(X3oL2q&c^@f}q-wAoRnmaL4c z^nLcl^EqmqzX&reO;SQ=J+tSnC=#-*l3!~iPd?5MoizPvdRY~PWoN(0Ly?P=#u+{L z@w(jyrDtn1nA99UPOeJ7_<%^cXw=#<-iw|);=6gUDH7yz~N zE!GJ6&m7;)`f`bgiNRRTTwvc%uoB|R2>SB$n99fZHs`@K$#LXm`tm+J8Ibl2F?o-) zwSP>5;(GnB-U>DW@F(Td;VC=ZsIT{)6bchtlP5*GbtMaGTAk^b=*}>8n|xw-KC{T^ zCx$FZcVzBfi-tf+YT}*dr#*6Jg@U&m*4FGS3b!De59Z#SCfweGuCX5lGH5c<{Ct~T z`{jNAoa2pjO%88l00S$Sq)K_ip;mY!P^0I_{ZRUNZ~TBf6-7Xs2UY;i;22(!E3jq2 z2aaSz2X(?EC1oR2=!eJUtOTp>6AF$u0X(M)#He z@kHFcxCFhu$*_vFGEhJ^6y9rLyz<%VY}{=eYQ|v2stgDyw{95E-Ehb`XH1He$g!{# zZPQR4Y$O`A{Dg(6zuL9=Ubf@e*`TS#(w2M71qkxv$0;u^B_-9C`11QHH3l*X?H#%& z*R4g3wRt>x>^jmN&5%J$_UrJ;gy7Nd23u0xiR{ZR(aMLVWYe+SGDO`{8LW{ih{l-X z3&|+UpR2emo-&lAqzEjbG1>CHbWJLZ=N>&GUDXIL_rB#_%;aW%=1zR&BO? zN|&^ouh7d6wgSVLmm%#5)_QkYySv&~qo7odHZW6)^O zLcciN+k^l}Vc`MG5?HXGf`Uns zq9xWJSspoUIqrL`Tv@mxkrp2hJI+R8kW(!HX>jrhUicU>4mm%oG|s63lawdx=^>Q@ zN6M==h)5M|2;4wPJ^JhmO_);+g^kxE!wH`?%J^oUmU9s)0TGIdT#B~%aAJ_)N}qBO z_sk22&K!~ILQ7)alfps>gWp2s;lQYma}dlf2H)N>f!9FqH4K?GtEAXuoA4 z7^Hjqm(c4PA_i)yfyEzxtTLf z-T3(YdK=`&t``)9b(_*T`KBlC6)_!lozI=05S3-EZM!fz-c#tfthKf5f$=3ss_i4q z50lvAgVMAtn`&`(wp^&M7P{^w=?nOpAy0UX28>sCMCVD{e}35e7e_upssaEtmAzCE6T zXa3%qEg@-pBDMTxx+_H(@s)#M<4%Ht4t`HCdY=NR3Cv`8sfq44(YS&|ClLKRzi#Wg z8&?5Xb#?7`pRg37jaIq*io3(SY`C}A8PYD?UXE?o%#fClmNqIF0BTt%r3|;Ba6$ zNl}X=VY4?lp&&2;s+Qvo4%q9$sQx4#poo)rlsfWQc$5`nL4+-ec-&f8l-ycG5VsgD zBJ!6Z=&%r6cuYogl7-rwHQAi?ntgYYmA>tjSiXbX`qFao>Eb|Qw`BReCh}pQlS6;$ z@8}Gfw0mVYQDG51s)FHNvPZ3%UR!k!J0rYQvt~i>pwCb1Y%!-{ZC0Ccr4=2NezU52 z`>ozR$-c7tj-+>^oOK6SY>Gy`fAp+PH_R1N(MPL09efT=EU7Ib0iRv;l^S*Z=z?$D zM!5xU=`Es6dt?nq?eeGyV?u1LMQyFJ>Fz_B$xS&_#8w@V*8a#5))(Jh%`8F!0xm2( z5we^1I&1bPvBgP=Jr$^0NB~fTF}`B?ninzccyLDZXg8TpCEcL5cA5J5qFD9#%!0{Q zEOWrVl2?e0`%+oE|JNnQqsCQ6Hi|Fb8QR|!bkJ0KGs}Rh3==446QL3%y)ybTrT+ zFx}tZUen>mKznFaezQogJ52(vQPja^fQSf;0xByj;ar96W?5|g-o%PVUjN`I=xe98 z;Of-ty1H>_5OA?BPi+|w@li(tEMM~2133#+4j_oVy=%0%wj033C1&Div&F8aT4;dO zu56TM@hbg0JyVi<_86Mj-B$H_^5IW9~X_yL%)^X_P2S5+Jl2l#=}7DhBJ=iQAnxLC{c*8K$2#WcRKNp&tSpg z%0hrf7B13725P;M=Yt40&%)MysfEXO9M$Bn$&J$9~|CSBolVY5Yrtn*Q+O)#>o6=V6@bX9_H)5||~7_)S)R(r{B2e+gCmsxB)RM6YJ? zGjM*7ygPb}Wb%>vrhdf7Uo{ixg5=2PSy|l&4wo!U*r>wAgYsf}^r!Q^)K57j75C{% zs_V}&4Zlmts=|iA=l++<1J@DyH| zKjaQ8VS6@wi6+3}_eW;$uUjqg`%aT<9~TTyQGW;_YK7X#H{;W-n)B#Izl0e@EAlXvrCNK3VCTU2za5NKiv6PXm zpdCo1@wDa92*Oiip zZh7w#1&ls+iTe6M&)wm+aKfr-CE>+8BGfY5ahki;D-WlBI1$^oH#nGA+! zEGHphQ#^R2&XvW1I!g(&0z67BEl9~(*npi0b)FF-={hU~9$^EDMm{DIh*m>E1~&-H zrLkb>%W}46pi`1;qoF$&tGMS~tNpZHr=FHi|Aqq3>~a8?2TOfiSghNNnrmmZjm_@u z?6wCe*ay<5S*!Cblt(L1H3g#A*vk@b4E2Y<6y$KLyO8%~E`(@rlh~mj^?vpoVF-^x zkJAK~1Ix!OCC81#c!D&8+KTI`jTM{Q>-r@bMfQ$1FNBjj+O$Uugc#R++tK7hy58!V zb3Dem=h||;Lo@nxYt%jS>qOTaGvATuJKSSvYFXbp-|%g|=oVz@vaJ~$R0-2j!Ee6C zQx{)pP_s9k=R#oyynS@4BY2U}Qt!tjJCFN~WH&OgG^s1FO z(@IOhO68dBo7XOz!0ORVu?Nif~-q96QQ;_i!rs zPaIEe82!CQUZ1?(5HMuy>36uE=_r~Co-$z5he5+Opu<#yALLwP0|Odb+I$^uhDIoTKxKpS4Zbg0*^R$bl4KR_W^BAh_8{As%wrzwK^14id_iO5((l47;h zvy25j`j1L7Bb%6Rss-ELaCXe%q0O%swzEvkZgdL+o8#vKzHh7?JuZ^lso>=c0w6se z0-^2n5a^6JToBVB;}SsDu-pan5Qt~RlV?5RAxERKbcm>4%JV@OLz3nLDE(Oxk4+~C z{Ssiv6>@7-SscnHi<(Z0SNRz~&0<=A2(JZwa(hO%k+xB!ttq+r z<(gkoXKc5}?zT5E$wG7|^HFQV%1FPbZyh?qjyJomLk~yc%cy*zE`1n=O|OV5_uOh? zM$e5J#cp^5N%=fuu2i4bY>FC@%`>Z+5T9pu5)bIOP^5B4oDi3c=>k0qr;?N_9$vo<60fGMORvVimf~*G*cu z%*j2g*IN2_k5ZYzB0$@!@n4m&ogjH}gSM`DanT}A<6wEI>WK326NnLm+1a=BxI5YG zZG%633V-`{Y;AtMt_8%2sY@R22>bDZc6!optD8|~_uV#kdwAVi^wA5nG3dHnx2YMW zHiLYYcV=K{8UN>Kn(lSDyO@P8sw^!PfR%-Y27iFZ=Q6w$mA!p@Vwq&Xo1EY1 z%@^@cU*A2{y+{#GV{yD0JKh)|7YGuUo3^@1mbuzk&t4TT&{_Q2slyC9rvW1eyN`MW z10y5%KzV~WU;+uw%*6D`svH6E!KY-ci)0{4>+28w{_U2pqt2NC;zZbbEGbz*_HbZB z0vgPH;3;S=Kr+#ha1IemsONI`T1q}z7Ql=oeN*#%(ML>I#KN>Ts6Oy=#a?foeCV

    7C~wUai4XQX)agH`P3%BGeBR*w1(Th84! z!{Sf_I*LP$=Kcd#0^l{UftrIc3o>ZNq6h?n154}VF+~SixnudXRuk!HPtop^@}>Y{!v@- zrI>xek}A7DWyY!Y;D`t$c+HE@Jm$K%kb${ma`W1B*HC{^^@7UMIL?ujhgR7Ypd%@3 zDWzTx=MDp^FqZr|c|unn3m}D-U6tXs$Jz0pI5>M-IX=W#x@1~`NbY6u^1J&bV```Q zg4L-P&sKk#Y=$&gcutnRZ}nNJ_q=ycBBA564dza!jPudK(dbq}XJ_91XZbdlcu^L0 zSFPUDXtvNze_7#7p#5YSx_0zX=hadA%Kp1{roA(ud%SL&x_u#BMQXWz>x@I=LEfs% zn%AMdA&gDrY&WB(ClgQE~`4Gj&D z4k6qC1b_yI|MB{cuc~T01Q$30Ta|Bk%cNWdngIl>BO?-mf*`bp4IJ2d1aV@nb~wzB z?KVFo@j%)hu)$PS4XsO~VCjGZELpGQYQqLEFSVhO5!^C|OQ*m?H@MAd%VwVFu@(Vc zgp{Nt$c16O=MVsjdM-s|>)_B3oR|Rh`uxT&jK=R+S%J5K;j;YY*QX6{F?HqH@bSC? z)hYRqTMh-#a&LH)o*UWbP9J`-s+W6QSasj4CDo9pnl#FJK6=n_*MENwR-GW= zH3%RRQ@zy2gQN>l{7NebKm`B{1Xmyrf}lS%h+rj&KF-24bPwBtQVUz7n*~D!*oX^H z7Tz_)PiFhgFfHN6m=N`5BR`MB+F?YkW$Wp0!@JBqoNHZ2qaWM~~>3LN;Ug+t}vV=5;d$66`WPI~IyCgEBp3 zov1vwq>LWn--#K0{!bJ~7)LPTK0~4yuP4S1i;(M?79M3!;_Ss# z>Z#v7|DmWvkCZ~VGa(*x z8}L?ou1uaP+CL_ z0$LfJoMfV>w-uoS?GlU*0s9*8ZvOraXj?t^*Wp&yFRl4$k)P%+4-iHR$L1 z0683oE!HwN0mV41<3b4MKfnfvj8M#355AqH1VF5e#4o~YAn+I+CLi*L-GIiAmm|<1 zOrGzvHlOk{(r61}g?5^D8bHWBrSW!W8K-jDZIrLE5M$#HR^Ys%o4S}`A>E!MeO2c0 z@pbwfnP4@MX`jBr(T}vkLO%sY$G9qHOT6ba)KKzh_wg?tzc+KI@hqH_WaX}N8NJmH zANDTzmgl07O(}xb&}P5BdwrW+oZpT`l#D(sY*gMJ9)L%pW^~@~MCk6k0Z4Gml(u?N zRTm&p3ltscza9_r@aW*hm)L{^9=&IM*w+-xgB&vzsc?Z?9=;?Xc5`em=9bUyyPt_t zA7xz2he#PDU9QY*f)=M1bXdRy0E7h54Co-4VpqnhO3+2vEXEdLM>cR3_o1rl3Y^`V z`H<8N3Ry$`3mEimR6}M&`#KIz6_CZB*4D&o9dM^$7VR@lAK(X{k?FIX4aA>bfvuN> zMOsWunbN~a*M%avryWrs-hqZr>!_~NNW@^?FgJIX9QIR62RRciw>v}XysVOa-J%PQRDd^&eE zVC(^W8U(Et7w9K-xHn)mK{dPAs(h#Av?hpvUfNU}F)=Y^JbCgYGqY+Cv>mh-AWDPy z784bHk(U?CDCIHNclHs`*Y#lh1Uw-itCf{gpI0}TX`dc(1bXwlKbswi&~VKWHKar8 z7{&(X^8-(V)6Xl>z4I{b9C*e~%Qs+XJhyF?+e>=iyVHYXQTC3{-E7J0-iM#}Z&XR| z$8J|&80OJO-G_b-0v8f3*>SicEgh`uLagG-k3S2%4~gjkg(3!$>PvY%NVVL$&tQ;; zO%CtDe6Oqr#Z4B3uSIl{3oru~Fd6f-2wp(YuNwp13Aft0MFEuu&xv`*l9vMQZI$OB z=}y;jeh<5K6Yq;E+tR2?&#!UI!E2sLLmwE8DH8QegFT#EyJIT`OTOYun%okt{yKB3 z3gbR%{PQPGGs$s3htf^)Urv~F^VGUk6!t znXJ6F8_ppaG~HnZZMx1$#R83NywHGv@FhtF5Uz0eqaP zJYGxCJ*A;9txJ3b5st>9bPu_oX+igfOS#xsk6B3%*zY>(SFa#WyB)wP^Ym%8v>`9` z)cy}KP@{r20Y(D8vU0-0>u}2fwCAA2LDmK7qBl1-zBbx4z|_KbZ)Ro;>UZwzaceuQ zs8&D=c`JFV*XWrVY`wONUG6!%Z-A}h`q)_Kps1hR$bkFH+C3-zp|{o*IR8lG|FbV9 z0_?US!9M0UCcJNIW(MdNLJ3w5j>Tx2nX)pHl21DJC!Q@6M%Uys;9a4jwZp|A{=9-!~0Bt!ucu)&PNc!VPS0mj4K{bFYK0tu+n$_#kp z)zV;+I9z4{;^lLi86XRHH{Jrf()yhrseV%daEJ=T83C}D1E5z1L`aM@G^n1TA+eqz z`qaf+hx?7|46gRKdD5fob>}y%;w~!(v(T(`6VYripguPBndcffGnQX3R`t76WU$o1 zS-4IAy=LX9cJ3(iU22<3xhj{#a%PFm;keqokEVP{`v#{w*WRdL$weDw31MI!80zJSUst zI5FS^v5es?t!Qp~T6vpHYv4`H8iO}!!u57ZohDK4m<6new2G+##&?s?-}_TR)ZA+DaAegVHrR!)S)*g`OdF-H72 z^2XB&WO;^5c`J*>BkHh<_DcW`@iB(TP;1F8vsts(M$iMUsraGam=DwT>d37El>+b9 zi_{n|WqKOU&jMYck8il$Z@Y3RbqIxHFsqoI%AU4TzGX4Yb(qJZrMYWESq zSr|btY=CLQ$ViGB2V~1k|J^x&5nw-KEdmMglqjzT;`((r0Itzjj z*3M`>Rkqi9ue{p|sS5*GuFL7v*v6aU+e^OYGxD3n9j^ff&P(WkJ6M{4TuZ8&JfxL8!24nrRvf zcyJ;n)d~9|h)d1+Ev+1xE+G|ZrLZZt}Wm`0R?{8futbh7HTlGUCX1&<6-uCwG z?}LVpu+|Kp0yTAOtE8~d&fXrDQNz@-w6q3bIxyrO%mRbmTVS+B9SPl8+R7dPM96)x z0Z0pwQ8X2-6WeIWSyMW{L*gUDUGws_wdJ9XY@J?%B?&lj4Oe9w8YUg!CYlsE?vnJ9(h-F z_QjwDzlV__k9)4g75b$3xG{?F)CfICu$`tZHpR=`rL_81vThG&g{vqU!hzw zLs4#?%F+*GhCVQFf5U8kOdnERuIXG_NVp)&y|93E@dV2#f;be?69JnDO_8F)BEn7` zr#WhyEP#~qR1j$pUr>vwkw?(aa|9yY63lzyL+~H8{9eC_qgffDD`I7|_-R^DLg~rQ zAAO&Vv((NIokfMOsOufGW_)^$!E-I~t{8glQ?jH&j&RBqBg2UgFSO~xixaEZzyC1R z_f!>Xn6PfQh*y^G!@DZ88Q#^h@aQcy?F}kl8TWiuA!CJXDv{9#8y2hVtI}_nqOvK% zNIv7geupOK(Nq2kneE(fV&mLAH!M|{oIN!-xfAJilIm6#ys4$UkoAp+5~kWnm{DoT zGld@iRVK zRl561UO$LZZow_N0l-_}*0I$CA1pX9^RJu1d~{CRs$cPgwgQ}v z0s6rv9-N7VH7+Q9V7m(4HvxFO?R<*_J6BTJT${6Vjjdoz+)mo2-d zel7Qc-+89kt*x!8y@su^M*psi0P^D%8sLrYA1h?I^AY+e>%qUQW)0B=su<{C5I|_k z3W*I!{(K~>K@|m(AKGvLhq~j~CCi&s9et&D^Fy76zb@ zsz6lBRu?-ytOV(2fEd;MNegf0QfBb+Gv4vHUI9w!|KQURx{hSHSAi(}xTuB0neA)L zDYE)DRjb!rqb1T7LbwS$7Wq~Jx*L7xv&S6R2V*1!>(1}3UaUsH(b~y>R-|WBmyVy-53>N`F$@+&0Qf4cIEh^X# zuoFeZst_NOlasJJHZroazupbjLNIdzF}I|o`Y%X~ROCbMu-$|4@bi;N=tz?b@P~Pl zi;D|Ps=U2-A&y}YF`*+4ZYwUVtaMwIgHwS9X9DC>y#f#e2nw>Y&AEBo*#SmWS9XAt zk1&LVKNMWBouHkuv9SSzA!yYgfA07mg3JpRRXx0Zz6WTlee+VpfYoQuwq2LvY4K1( zT)kiU!yoi=FFYnz9-1E~^sTz-A=Um0^QF?xz2Nri29!X2i<|Jrw^ARHYMK~ieTUJt zzy+Ln{21VpmYZph|ISH!5&1Y=0QdW_o+D`K@hV@eZ2l?SjB-usux&D-JBc5(p z5Q%V}x|zQ-fd2mB8(K0&y0S#BbiR^DBYT)sFSWCC)L}P0IDM|gqbMat_2=%%&p+<1 zy0|!%NNMrP4)h8>puhhNluV0#FDld2+C+n&^?LXrpzgROkuRiz!fL={J^%rzs5!^& z2NHn+FYe-=i*6|<&6ABS`dnf32&0JzUyjL5o!W9PF3_Q2(?AFUT$7XVpJDI6kT}Zc z+i#^F;>#P}u#$hRVN0y>_t@wX$3^lk>}jW`%isFJvL{$>`K2NEV^Cg08wt`_(3yg% z4isJ2>haT>($28j2eAe42pp>7{!f9r|0}Il!r{_qhV(s`KhJi`)fd^>;G^aYTm5cs zZVnEgXmGwjD8Ui3n?^~=OFk?R+0fAs!hkF1_UQ|^tgHx54G#uN$OMad@ zk^}f0@U7y1TrdPZ#sWah2?ywx1_lNIoyE4px)!w2x*K3%6|ZIq`jnKb4a@E&Jd}jc z-9X#o;el+XX3PQ#1W$n?M!KJx6;jzM9y()^qX`}iIPy9}5g50wRAW9)i$nG5q-)g& z>^?sI2W`<;hY0ufmgAZ?{2g8W{P-R%85gNZNjNS3&cw{FejGA3j2oACdtPNC!PJGR@TeQ*42EK2`|6Jmzpfj{*f2nQ{UH z33DMbD8UzFvIKLWAC7agW}qqgl7c1KCf-&t22I8Nrq}i(q)`#he$$d|u2+S=ZL?QN zi*ET$6h@z#DTvnNr;6Omctw4Ms-%LrNjafF!CZbIuGnHU=yPG>^5Mwo?zB;kmrUJvan?X$ltx5U!P5y}y^U#evlC9@sCH^&(e{zytpXT*CL}lUaE%~?;dgvl_ z5$yAWUlRyY&&R8QUb>{X7|ucjb4ENxjn z5)(uEXmC`G1DpYppd;{-Zops$rr_9)225>Wi4|TPo}OC(?cf|Yxc`yi0#?i)S^y8~ z2AA*Z@T+kD0D}fGD(k7QO(W_UGc$PjT6Jc6Aq-29wxj${GB zxCr>mMW`8WEhxcRf3<$NNL@Z|cCo3B1tv&tL>Tfgd6H^?0b(?(X58eCBWccQ-Y)O&j(7`` z4SZbkzFW&J68>?@Z$Zj`Z4_f$HL*5XJ)-$#p~tHBN8Y-Eg`jn1c8nMKwCd-`9_InT ze&(03kruZwLU&F2Zz}xLZ6wL=2FK_`e~v1m&A(3fI40m(!^J5F$^!$=NkO;%@Kf{z zQ9;h8MmNwMZq)|A8rq7U9BLYfjhxWe4cf@LBmcQD*aFVh!y~=K-dUos6zIwtn zoP=eKfmy@Jj~ea1vSM*k{`+qhYCw$KYyBG}rC`MuBeg6JW(#o0*vH4mun2rAbHY$R z=jIgtRp_JB{C~97A%};^B0ik?0nZySNCn{@Jb)0vpp9?dWJP*TSU>=ssH`m5UO|rv zzI{eRP%;^rnc?>`gY{(97(~5ZL92NgxTS?FL#71I8=yj0*Hvi47Z>d|LKDtuzUaSe zaW!8@sLiO>!yXE_gF~?aF91&16@XC{Oo;9&k>P^;wRSp2>ORXG|ASqaYCM4c_Ze;ceSaOL{bd~ao@oG$j0q}k>GNgE8XiF zi$}A5Q!7$?{;xje`<2XFt?-Ooi%7JLd~JDU`qDH>C{Fw8rNA|Nm#=S|o^*u7M_#31 z6?=<%OXDOUApProDz72sU2TrDuSa}5bv>8%@?Vv&bZ*INK3ytPO>Rpux}3av;D1ZX zXA@pWjP&$kZLn+1O+)Me+dH|TuzChpjj9?z#@*W59?Lwm;6CK;IR55s*M!56bJ~y5 zy|>-IDzQo0%<`Lg0BQ5 z`M0L9XW#^(yJ{rP5Ys-*CWKi3rl_i@fXW)otoIK55!1~J{QMNXFc^Z>m=7O59FI9= zB_zQ5`i~KYg@w|2-6B2E1_C#JA~+}vHftK;`YH5vr$Q71_S*w|;nF=^w1@o$Fh{H$ zWge4}P7By+20m+`>sdmhxF8J>=gbTYV8@xPo=Y$0ARYsfS5ToeP5}mnzbNqhFrL-R z?ga}XxW0T2Q~_L+^P;wfJ`X`PP~&1VivN(wZ=>LJ`07sPPTkI@6LsY{*aY1K1 zzgLTQhDi@SfrZnz@p-bh%ws(0juO`6`a{LGc!kz%(U@dikJqkSno7Sg2WNgTiltrE zuq-EP{l=Xk%*jna9BcUjqU6zJf^g~bvWh`LVzama>Bhzn%J6?lNcJ_)}-d>vkSrF!#2=QRE9 z9r)Y#w99EE&S_*kK5Sa>>F8B1AC9nM^Yn1!!*n7KVL4?fIWH2RUub!jkXk8g-ApK^57ZG_TNWpCm+5;_EbD-W2P6Emoub1 zKcUC0MU-3C>%8j^;fijqPQA$~d{CFLL#V@XptgQFfkTakU^n!qNsovilb3B^SJj@Bp(at{= z`F*#|2R6Flv&9_7d(hxAXlvg%<;jo-j$DKxfXHD=4}HDxoll^@erNr+3!`-C$$Oyv9}%S1hO!P7)H zui(JH8E3mGs2>DrWF1@M@bGZL_Xn6?VZ=anYjl>_PF(gAU`jntzTAxymio zECbCAtAaA!3m&yV>_FHhba3Uub`1z2$Rb;xe&h_i%8B!TI*j{29XpXYUe|P#cnk@I{Gv{UAG&Y&%y2qPMx|`FW#G6 zTPvHr2hul+a3I*NMd-qnp`t_eXK2TIhN&Ec6>$H?Of?RN@i%24g9FDiA)!7SjCQw- z|NfIO&>=zDUnpq=U;*S)-<(^P7Rz%R45<6X8BA{7idANVr7jR`hzcKlWj-_$p#wQ8 zs%8Sb3~Yo_049sMRx<>ilHEo%f#eRXxWR(~99`i{fi4ODhxF&qJY1=BUivmtNoaB8 zQ0DjR17-;AAwBLx`TXGqT7rr0JeAK_!1jf9|IGlQYBSIYXmj63HG7_xm&Yc6IxG;5 zlv)Th)V2La{C`>iVse562tgzVHj{Ch{Yik$rlDSBL{=1`0xcB6PcF;nTt3f+mwWj< z7#pBT%$&p=_fCigNkw%4WSMm)?`pu)dq&5_-;Hc3hH=!w`o?weTzsoBV22Tp&Rp zq;*2JK-lJvlc!NcVG(m3fA{c#xCcl8HbVdoKmZQ?R!lK(?YPZFLz*o1O1=ME-?xwX z`qK{MNYaANTyFbIFl-l@msuA9pAFt*=H}QCkb9=|Y|Sz>HSpQ+^uHb{9Q1~6 zrGE}A(5uFlV9pK$5skd^Dp+U{)6ds28X^f%1oA}&Zv4S*q42PjW2(SNfW~(=-SbKH z&;pndFfcK}5-V_ypsx5m*ZOMsY}+KD3e zdwv_b?ashI!0u{ZKbT7XVV4{oOC}r|!Hp8=Qs7zPZSg|G@4hQgg9p9*4LsFfR8!}9azbn4`H`yvtv?j`dk+@>?QSlXgktQW(X&1G7_Z;z`=EsK`BdbfXlo?3*)tJ=-z zNxjXD%)+pZ)ii@s^5cVbF>L!dW$!i)Qx@*8T*@JLs@IrWAhGMd!Rj15gZ~vbE83uQ zP{^=MkC(`>EIB141kxR~%Y%wIa+e1p&o0r1QCqX(&;+gu-dEE+fp?S=s0MffvfW9J zW|RVM3zF%O744>N8pwmQRkIg-?=6`?)!jPj_91&sqrUHCYq0aVURS9L?s6BYQegK1 zsv*eHd(gKU{ejemnM=#`8hDxzhA_0RNuNTI3$D-1aQvyTJHB!T_Ab|hyfslNn+Vzf?7ufg~3_$w?CK8l{F!VdGo3Dc%)C9f(KJ^)4;CkUw z%@ElN&J$o=y0r&)bka4z>NYG)+XhG>itzEed$0usHZHIf!bJ%y;4?MF>uG{k5L9{v z@W;xt2nY%a3Jb%2_>-IGfpmbp&K=M7xDzHodIBR}lo})~y7QiDwUUos>1!m?PY%nG zO1|>eNq^s#);1Y;`sT!3H0QgO{i&n*(Yf5kJpbsy&H8BFd-yPQh1|f#zJc=L#KzvW2xRU)Xu679e3uY9G$hiJA5gW;DY}!w)an;XXQ#UBQ zoZEXu+!=ZKpo)%2#pN=APM2_67(U_$P@+KLfmf;P75b7YGhu z!>$B$62RL`Oc=9ye^1hfLIto2>@Gk?&Y58L!$}-!DKr^a@Ow;39)GmD1Qi%OOxn!L zV6qI>B`aGg5_HiZI8%*f0=_7J!a>e|-wT*+AD`L*8{-Dw>RxL*2M3T!0IoZQkCXcu znjEOQ&OmoVf&B90BQS&CzIB?WwU zz`sp^rVg|ZAa(FNI@kiE3bTNf`J~9Vrg32}O44a{PI)djoQ_txcs;Mb(UpPlUT}VV z&)VBfYi@1FtiL|GO` za1#JsClYuBv_(0WCO;SA{W^E9uAnXR4 z9bom~Ys<ac`4BL8EY z(#p!VE)>E@0+9g;(7*9k!NBw0pP+FA!%g;mKcRlt(so(0Ss_wIjs2{5R8yXjWTC;ug&+B)@{c^c6dWDr`I!vs|^JFDmmes_ShkyD8 ztzifM?aa_=C6l}sKTTUveufimLC$biw0+P5FdHwD$1EMQ-3QHTJCk2k4?1+-(jV-DSu3p3R*e-eXk5K&T?ENUfCio@YinQ$ z1=oSIGa3RY2apDB`?qP`@&7{nx48PlZH8~(z5&rOy0nS7&ZV#T-f?wZhdCNxvNf;$ zlB3-c_>w{?VC7j4D>i+7eK6|-Ng-6+Y9kX96Viw8pjUykhO`cZfnhMCd0kOKNq`H^ z-Lv0-} zSvPaQSDog9w#eaWIbm%;#J`%kgh2^DZvzz zCl*U;T$H-BylDMGYk@cVR1#gf8}A!e?Ukz;dkH0ed~%YT;hBfklLuq<(RpM%9FXah zaG}Bi`U(0IenA4tELYjcP9ez+LbJ>iMlSfm!-_O^0Ou0*lnDXG0jGz=V6K~1xH-T& zI)bvZoijHtmRjDtd4(;9s#=A%=-X)LhFC#J^vusfZAzyu|NNBjC#)0Z*>>gO0cv>c zt)h352=KT0IUez6Fyy%m%sU841g)4GPpgDJ9Xn+=#SWLE+x~DTyT+BteC1GPpM>zq z<>7^17OswniUTrF<$ah73q)WAbzB&k0@tED3Y!I+4VwjZGMEyfE)_DcaGQ_&2FQCH zPR$1UineQaj!MK1yK(FT4%;qFIb@7Z9X$?KAn7KbbDi~HnE7e>`=>_@(AoYAIogmB zAOkLMc!QOO6T^unxW^6KSjW~Z-C&)>lM6>WF3s%ktb@)03Mx?9Kzl$z^YvwD0`iVKNvI7*)*$i=3mf$QyUq(% z^GF(oxwbMJ+6J{=Tpu{YvKKOG;g7A-i-HR+sz-E7}?o8h^=YggZha= zf)82;q*XoUkl{Tb@BRkf8Vmdu*j+qZ34y2#tpm__Y;2d*6SQ*@74I~h*2B7{etIJW zU+-qDP+g;%Esp?X}*x1)B;A3v4nnrwT#k`d9WtZ-&~0l~M0cRu)BEYGz9# zsdzKhx^=RGj-`3)dK(ExsI4C;E*G0zm7Ic|u${1b@c-ny_O52=9Bw`dNy>f?xlTom z2ofH!B|+qUijr0*phxH?P(YE%a&8*}7fH}UhAsF26-ov)2{3knlrI9BGj@`^?REq9 z+Kzb5w(h9NJ@!<&<-=E2wzlFpvCAx(u7pCTB)Yuzxpl@ZT5WbYli{|UAM8Hai9+Z4 zs3T|g9_T({dQ!X)5w=jH41V&^>+K#Ke*4Due_X5OprT^XaAlMTKN!8>PzA>fpnni&$Vf|*hKWOVFG#F! znV9H-_~9}tN&PlBiM$Oy0dzL(oQBwa|-+bdG>;$U!k(e2Nqd?G0UTnsGY+o@>pR!Id+#6=2=O;zt5j_j9e%#@Rt zm)AblP+izC=cM)~6SuWs=iKcJY26t`r7V`703%V@c7RJHA$RA?kGdw%_J!m0X$+9v zj>GN`q(kr=u>RD??_GxIBeoJqfINthcZFe;GTBI?Qvieq&1&w&^VjBSty&eC5^le~ znvolH*36~C(RkMz(h%H9w+~22lwKD`Bo=!*zIpfbk}%sxG~rt(EEK-+soz9D?L!pQ(hS^ zCk1?4yxHyyodCFAmKlh&b$$ATw!LJD_w@2IhXyci7pbfpt7scflPxI%0gejT>?saQFhgI$S{nG!QE4b zJ9!P;(Vh){!lmxMF0bPf)w4%)M2g=J@xk~>APGy^YWV9EVo zH^>SLi;0x?jQeUESNBW84FII{V(}UrM{`+OZRoFekkJ|XJr=YWmcXNse-E>cqc&h|7FNbSoAVa;zB~c*>A(l9K$)=OniF6_ za~t>c#d_mp>aOqDyMX-k_c3S#iu6*`(sE|uP=)p@lM-Rq@)3^b@$uwHxU7EuO!R>f z@`wEd!99whz1n>Nc0(>S?!#p27q~hiB0tc|EP24misa;E;8p-aN~UWFrTk%+K`ryv zRDe1Xyg}7C9wFxjyMR9)giR_)Y#?E@!N8DNR#Fla)W8b^fm>oyFM09efI}5b{=Y*fu#TDKjn9;&Y4rl-;qS)S|M*nIo;EfMW^+-q#{28M>G5jI>qUqnm{ zcEu^fl^fQg9gV78zDrdtgT>U3o@dwnyz`u2x0A8{3%FyjcZ~TE>bMk2Z^++~u3%1> z8q#s7K@y}qPm&v{63qp$&%8kSy^yr#%`3@fDbRHYMMOOhyq=g|i@9-X*rUl^drgg- zPAB5|PpA6%i;-bDls*S4H+W95Z677_Gl;ZX?PakXf|{{9_v!X_QPPFnWud|_w(eWNxg|!8|VQnh4K>#ak1O} zP0M!tz5Z`J7SqzwU|0po2u`f3all1tua(Jq@JgI|<7@#-dVu@DDhpy1EROr9SdsI3LeKO( zUlYIG#N<`dpr~g_)EnEC!;$9Fe9v7p4<2{nB+tND{h{gZ=uW-o(YqAklF0`BH%u#x z86p>MZxodr)~=UZtSo!%CYv0E+@fcqJsY2(Epa!?@LXB*Xs=#%h}Kz83~&PV-UH~= ztDKG#H5(w|l?5TlfX%`3%Hc9_P#}0TjMw^dCt&$8eJxMBrtB*!Pauf@#2yF<5FB_s zJhLJQPC=?Ouq_0rOF7TN)Oao_M9F|qr0{HK3rkUwo@E80 zL|ZTM=`Q8Cm=LP3Ii<`A$t1XG3a1Cx=g*-OaS0B`?yptD)cj2Gw-qmwp(iY1ZY*}q zC&#wz9G@kM^D`XtEET_NyFfm$C|F)fWd(WgQWSg6C5dJzynqAW6I3(-3UpTXj!;Ii z#Zg<|N3o&4T42Wsgt1^#gs~*I=ijpabl_VsAu%a^5}!VLdSY!Y+-+?cB=1#?2TSWW zQg(iR`8ahXrF}7O(2}T3J-^gW_B+PGxNiLY~RBV|5sq-irP@aCT8mBVCrb*oZQ^KjD;E)U8JO^ zAAHbnfMc8{0S6o4l#Kx|A3%20k@qsr5a5FEYj!X6*Yh5=z+|&MQqKhnMJT1t>8oOq z9t>}x{90OC-n|RzWw?wEB2rR(99w&F23hEBVURq#4za5|14i30rK{TS257;mH^CEzpR|1SD=oyprxnWB-CO^AHujQTroyCQ*dj9t;HFbvC{AaWI$T>$h$ z2p1^8zwzj_wrOb1u!BT~Pead3hK&W}a#NUQ2T|j2SN(2Lz>&{dcYWoPNO-ZOW{pJ2S@GGfzTp*s#?P-J}R{LkE1F!cak~La(h6+LyPyFVRX1cl{ z;=tRC|1lirg-8Va4t*sUmL$zW`+)9-g*&+J@~7K#6}a|%rg_)pShuDEjkz)#{1w??lOL{C zKoN)jCA&AQeH!k+xKF5LlgGAC1solKWDK?j!5`xBE&rYFh67OAmdSa_i1}V%e$@6s zN+q>ko1Kxwfl>F|bXKkBk(GF%dUOAXSHWy9n;>4xjgh5|^x*79FCz>;sJ|16L|TY20Vhp}D*0I2;3`;jABDnv%0-KG8j z(w=3C^otF`H=-ZVs=Rgp_~POq=pvT663_%Y|J!_hZSQlY&TSF3MV;dAh8;VMbq z=`*tQhTiuCXkhCR_K4q_!ZsXqbAY2@U-P?*I$Ss}OcVlfuRYuS|I^^d|I^@gafZY6 zshxCKfd@?hXx(nrdMts52xuzca1R`?0QZKaswv2UkQ~0wMj@ev0%0_0rK-k2V0bxK z8-z1cD|yJIs}ycUNl2u0&!$K`?gU{ptiXqB`ZlBCq6{dpKuHB!KsaUPQLDoZCMJ*) ze-qu>zAt@-^dW3|9NX)Fo~z4J=$M$1ffK?L4l64w?dF2EOJa>X*M{6-6`AzDf^CO; zFgIwrHnvm@}utjpOlZ zQ1V={f;ETdwkQAPfSrx1ht1-1qIWdY zr(|Rej0}b+CqK=u?}dB|(cJH|+ejFruM!n=Oj^K$k_R_|by=3LY>oeB3EBe%PYyM;EOW>hizyF8CR8z*1 zMu{1Om^7r4tP_$@3L&zWeapTtlPyaUB1;h>OObtx!6YOk$xcYJW#9j2y7zv6|LeZG z_tj>Y^Ld_g-rIT5P{)8MeEWIC;l$@;SQk@wmXf^SE@9Z1b} zsZv`vhZX171vt34qN1W$I+~hb2nHq;wD|EYG_SfXVG8}9mWt*7a6sjg#c$rsf4Vpa zXbfaXpJ#grMv`JGt0E^KSO*cQLzS)t+IT?pX20g$hB3JnCTxK7sME0>+_<2y0)y{> zEzG=tx1i{cQ$W>HuJ_4-gQ*;b=*ofoo@r1?_02%$!kvQi;1m%Rb)5d1H?-9@MEBXU zxN~Z0pwhK(rex9`9-)&k;(Yp>@8<<7K9~?{H(u9nEM>`5gG=<+mu%t-!kIH&wxx3* zo&vzpTx_;LUF?Ujo|NE#@AQMWrsTHpAmwgh{($}O-+zodp4K#Sz|$bsT)6)=T_><` zZ(z53RFqX7m$a989!R)>naR`o=&{`vvrNhUw6ozzHs5&D>1)Of+cPCECJyLsuPlEX z-d-I5k>Oyq=lSGMl3s98c}OJJK1nUp%eT(88~QG-J9Uu$@0CnF4&ipb3z&_33^#Qi zp$;WfIQpaltL0uzX3+K-^DzN91E=Dt+!Jh~00$~Ycd&j?lj>Z&SCxfAU2MCP$GfI| zOs?fOX^iQXL#gn#a0*U#e*4L>kBux3EVJ%82tRhuW%aXkKA(_;7mHuy7^y_^3Fhs75-ts6owVN)nS367WMX3p}E? zU^*qw8q&3Otux_tad3f@uFvCd1v3TGWnZ@5bRK`_8R#=UYb||JHoYr~4&t`CVtHk9 zQ-x)oV$>7@^R+A`;swrDL~3!rI^S2sV{!R)%^|b)s;0VzWIONa@pywn4~QTHxKkkG zv1D#*D~v{>)vNEMCMH^*dj=kM49YTZG{rVlI5-?NQi*I#Y=7Ny)6==TT3wM%f}$$)2>jjy zLQ!0*chmHSBIskLW952AzfVfr*?FIlk>YDSI67$bjP1|qC(0)f)X0|Xn^`dQHo{5o zCXVIKe$(qafAH6`>#sbup#$O*;?xPVQ=c%k&KUnG0BYa@awN^Jq`c%h@i2ec8%&US%0!Cy!^>dZ582yK4`q> z^4>3JUgBBKfY21KX}+i{q;S6U4+5fL#^bR?F3Zn5l@-c{Eafhol24L-e`5OEArlvOq?F*Y@$cB1>fm0y&liA`2?*!6= zCM;%ezMJp8V_jJK=lp}ZJJ~miTMsPXc8$N){XF?f79TlM%Z-oCu{6?hT|@rp_>9Zq zZzX}BPh;ZZBLoy!4_?@8lqhPAxEq3eKf850@>I>sV$P#S9XT$`M@B`#H~}}QzCL84 zs^n?G(ZvlpM^G}KKcoKxZ+6B08>6?i&oqH-7`8%R=4LW!g=v+80#`8jotjN=SV=+R zZb6UTV3j){*r2V(vw_$jCKlN7E6+;}X|ka>$eY44KS#$xt=AVKi;9b5Rroxs2b-Hi z$HYNvT0RK|7Wp4QS8LwfrSFyVWybYAQCna3Wjb_6)mEAO1N z#AB6v+}ZuJW4Fr}ZmMBTiR=88!L|g^vuB+FjXAVe)7!VK(sMH6Jf(f`cj))G3Fe+w z;_P{@8#L*RLV0eIE;sCcFh?`E)>c1yU&it!`Hdz^@do55Z1cyl0Y=Wlv#h#%uR`6c`3NZ)vm^wlOmI(iS{=g}OL0J~N|K8G%6K8f45>}ga&^}1@vf;DTKA3Sw>P}^R_B<`saHRDH+%Cxh#>2GpK4h;P2R*EN*}Zr zq>EkJ`ZMA#6hO%v^pg`fe$!iRg7(FI+e5?C<9puy)2zfqpBzU^VZnfO-+{KoS6^$z={JULkNU$gtyxhwk`kKXn=Rp&1b8mCX z-n##{jn~Zh+;P=Ir5{~WzLXyA;-jfy@M2`9^WBd_GLewnbhrRC4+$%e<_~2uF8#jrH8`A+ot7Q>mXV!H z6d{T~<`*!0^}GGTYd!mst!q1dEN9+)I9Qb}GjC1SB84-1l^^EiM zadsF*Ugl_C3j!vbGG=}5Dw2r~2WzTot|8yztu{E?7yY0XspZ&di1=HeUrr;CI5GiT z$l#WO{U%A)s>^8j?Uz}8GTZNRUp@WBEiK&|w9A{vcz za$w)Df;tkHlS3aUM}$ry(*hDtsQW0O+JexW$B#oC1rlVnH#MClIT?d5sdj-S?~JCV zY8Tk83-MM)MskmNkw#Dmd@;~Nc!4|;i3`AjdOxeng5tm_hxP1{6=1}g?3|$vM z6Ls^x0???^1%qCC2NGwBY3lD!vgv!w>;0#hADk$pM`P91qi=qwq)+u~Y+ENLetXQz zFYG-&ye7^Z`eEbe%M02DF{&J8tn=-+w_~3Q;)2;rQ>6M#E*CetVI9|Rp~#<8D?L~9 zZTeu7YcG7NyH6A3@{U`7?|i#3ZLog2rc(O5m932Rz>uZQVaf?8Mwtg_5|Rl2gOm%w z64BHm#c-pd=PnHebNW+1glQs!^=Q2j?BN)c4oZP7{Zlh+iheGEYs9E|>x|KzRZ=P# z`0@qgFaF_AqsPtnEL{tkH6OUqp94eUz3&r#6$fTt$Zd3|%tWcO>n5p(>ZHGYVZT@; zz2;k=`~IU`JEvz!AlAqYDsu$ULK8%TT>o2Y8`&zL<;QTMBJF2^e479B^f=1+JIP%xV*e~#sxrG?6fAhbz0?yn2``>Rz}OgZ?o!jwI6d+-d}oCFS847z<)k0?2` z=tcB`b98av!oCHlPsHY<1zd|jB1cm6sDp6go42*AYf*eQERyj6r`hhggT*Tj%#Tww zrsI93v=Ns(e`uh!Pd*o(|DB$FG^&=_=@)ahlyq;`5i525bBdYob^i>v>bNyaY*%&K zD)^mA-ER~`BTa*NGZOxGC)HfVaB{F3bf_)kpHd;#GYQOm3)(%->a3gFJLY2bm?($? z?bZ3OM4SJwL`n95c*nOu=srls8jM9E$3O@)v=62URXgDD`uW!Xo5=t2`_P!Y+Qd1L{c96=V zkyRk>ubHC~MQv?nqU_-!Erk$(4RRz1QvsLC_B@$Us{Nv*B=rcTlM{!oT1Ur0ADo|R zS@)+pGe8A=O^6QJH5DiG|1+nGlZVQ!{&VA4Y zX~Ea}dSZHqwzf9)HQc@pp+NAY=*pU1aB&yZx;sj|Ug0*oy0a{EK=uts*w&cuQafrN zmufp>@a4($qUf$maH$gl)ZRy9qu?m@kY4is$utZfKbd}dd|t&pWO|4TWC}F&3v46v zc#0+=!x}{Jf#PhHq_u{7B1ctQ2X-DAJyo$*XVGRiiEL~*?{87+ANR2}3?Yxe)h6A^v+&gKCx{R`abz`t2@Em$W(GR<*x*WJJ?c zV*{6b$|Oq^I!bbqrJcVa_-VA06dKinQ%6|_UNQ0A<-cnKx8Ek+*1^{sc)@_d&nQ7- zt$Tjh-`*Qz#|~WiD)c4obU2?`Z}y4BV>8>8jV+>R4KHG+EqmPhfDTHD%iB;G5`3J&1MyHju=;InNh zECxRJ461Cwt=}ODl2%Bcf!b+q-iMH7rOI!?*QqB=S@Z&gR^L^U^FGI|f*$u2SS$=H z%S||7Y09;0Hhp()--b8Y1VfJ#OHe_Pkut6x9uO1_j#n_G7VP{g011+TI_uEtnFLgm zwk9;75Hm&v?2X^LfhY<9GOrmcgGKM%pO2}sE6QF+ z@^>b`FstOG7^bdKmQ#ceB-hc=8YbQqK73fG^^()jSsg7}-xj(HNo>n%deDJV6q4Gh z{U_Y=dy#vf`-G47MX7cQ>T8-K?{Or5hOBm?ZgEk%XP4RmS*4I^D9U5G*Hh+_=?*WH zeFggVMo!h%#;UaM?o7!__pO53j~B?nt}@BVNxI_$B}P-nPFL?+>D{sIyUUZCT()x6 zGqsv!<-4UsIt>az$PjnRyfK?2?mHv&U9t&5%5Se zkc{)`6SRM@;`jf%-q-(kb}|xw0%|n2um*0aW>ZIat3d$d>noGm4xUaTvVC#eXBU=O ziyb{kALu204LP;!QD>P_8t$@a?pn4@SCnpHby$Bd+@ND2KpsoXqA1k{qV2TM! z6DY(3J@_}o98#HcsB@M-8jKBh3Q7wLMP+1Cl`{hB3`_f}!8-w~TAlR)?M=)CmjXBn z!9NN)<`#)1rKPKFc0P+>bc8gCamQXlI9LnkR&gWN`DR5olPZy;trj{0Gks_QsZs^VdfIUX0($hiTUj=CsyCsK~32u0Fr&H+Lx<7l>_o zR7ZGkLg#_|0OM+rJ%tHJ8!$`T?2PY}bQ3jTWYtjMN;~#u7Wd3SOdLy_nzJkpZ z8W{Pq{K36CkN!yl{8ZWCF)L%()0uK6{Jws>-z3)9?bL)${=Ew+Gk<7O$7#qkL3>aP z=oKAKEAZaSk~q)7Jh~xGvukHKU;i3kwLQEoQ@rJG*&UOR z;o!?!vlaAi`^f&Xj=}|2rOigIyUUhon?Dzu*pDQrkze~%e-6x1zi=?d#l=Uxq;fb5 zTYs!pGDcbT!T>KXdjvBPbi0tA=!b^wVnB#5dmFGedP&c1)}#r*&FU{JtJ$p~_&|jI zpYi-lJma3f^H7=(P7b+O4$Ms@HV}*my4vz`_uU=j z$QP54n!4KpzE|pLLlozXf+!*I8m4y)yQdgEy^;M=;3MF%u$&lzu1>Xll+2p;AYj10 zTI)0g8upa@X)f<2Dm78i;|WWx&V%R&oIze*C;+mhW13;A*94Pu)Istq4Z&XPI5b!c zZ|e7e7Cx)%Egnon!Q>IJtWjAjMo1+Ev1dWgu_y{SjbfU?%@%LqUVL4^Fx-0x%->WR zmX~?Nehq?1{AHit$i|XBwYQJ;XfY1$@TR6Xi@#fms&QOPPyI1{n*8mWMyQM(d+2k~ zrxG04YX_WDCd-1ubYvg2cQW|lWTMsTf-{1o`)L_gE{LBjT0|i2-zRs20x%q(vk?d%9As4yx7Q7Jr2!s z*>!KM#j&UO0uGwwDsv#PIn5a>*dtxqa8SmN>0FPK>RZ4=n@RLLqHv1)epTY_u9tpC z!z~IU^=fNZe?DB)s_dt4SoKQvtK~wDC`G2Gr1X$)8BA0l{FIjzt0ff3^=ADSa+cvt zI-{qK(gG2G)v7pI-EPno)Ijck$ zxcBB(i+W+w!I;FEWp$lwDMaFsFQ_L{C8P(?u`1B~SAfj_6`;BZYB3KWe?W$S=0+n` z;6N!ahf1uhe5S-3P&W+s6>PyFp}}I1td^xGd@RVQ56pzKE|o8?13hJtn3*F;L=vB> z@CDWxV$mUr>5*fs`}b;Uf(pG@w-E!joMuxZ50evXXt^`Rgh=_{dUb_ z^4z?nuf6^A=?#!0z=|G8Nioz|#QDKTycS|dACQd@vI49Xu5+BE`B%P6-#dRzjb(*C zo1Ty1@jh3+x+ajf7H1_#+P}=XKtm*8AEt*UguY_Z>?Y)*)K~`8rU!Ou5WA-JpA=%> zVZ2WI2I^OS`56^lGGy)??A0KLZ!h{~y)jT)%r5!#N)RC+_R}LX^g|K1PcBlCbBP`7HVfdguH{=h~AQE2v+Jm4O*1_AWcoLk6_!i}StAI(po(2vc z^S2GlbIJ)X(a#p)oro>>v*=A9t3K6|L$D)Af^y&ljn|Zy9?-HZ*RHN)Z;O6&}ch5A2!hwj0H^xq{Ei>fg75L z{O8bnb@~MTKkec+?U?v1V0|FqzL5=^We=^j{;hNd@o@SP;iqIh84bWQuBmvFpQ zX&>0FBsrm;{$Bf_^~mZ1rZZZJ1aB3hNt+dRm2(~nW)FgxiLnLoXKgUa_)y^@CL&Pl zdcttHn2SL)gy5CVtW+P+Tx!P^+js)t4PG9!!ot#$M$aH z0|xGT#rTMU}4K%N_+)fA+T&!UJ`u z;8|uf0YHjKfiU>up0%x9!j-k3os*jWv^SSAijHe`u3>FWIPm$UEfozD5mOP)+npbr zj2{{PZYN#Jn4MBlqCxy{Yk9T2$GEabV(;+oH^HMq`+BF;D0LAj& zsu~!whY#!NajD=niOBk=e8mhbsuMcl&I!I+*2>(Bes&i)=bODmTSYJk!nxy7=x{W` zP_j6gELwa zv|la#J_m0lKSn>s9hrK^dE&Wr--Y(e{-zl%ZFs#A@s;h>p&sY$cw1Y#)Z-f8)17#q z@BMKjk4Y=zlfC1$itTPI1LwJ2Tg4zGL&yaVg>#+H3QE0Buv~k91nBv121$8-Wl4#P zy}e=IIo!)T1+Egw5HP0$X)up?Pcnz9WZeuG`3DV8tI5UuGfFQ%Jctv!cySXzMUQG9 z;A|G$es9+BUIA1ZLTaLw8r+02D2VeMA2(A_#{@Caz0ecB#>W!A0K+&I{SA~NlVG@! zif=g?20fub*nsUV^(StUgH)KwQNQ#~0i=qaI(_<{C_7O}>}X!kH0*f3IJEu=Y>JSM zCz|lvNdo!;P_Dx>1VB0@E*e3G*pQ8lpog5ePZKGpnFF zCmpEC@D4GoBbpf57#NxnCP{o`vT)~Z`J??k668;*llNBj6h&Ab6-<2aZ zbJHG8@A!uA8M<3Ed;htNSQ{8o(otHuRw8caHS;|WoKL)M`Q&}gX!~>_wegcpWrI@; zn&amO%a}swB=87nx$uy8YrmfDmbZiySGqdugSd+Nj+B8}X37bHfbYHd#fv;7@yI056yJQ1aKYd_pEM1s||IqzV42EVWtCP$J*LAv9=L=_>2!>sMbN#kqMAM1{+*9 zHY$uTa0Z$68WO}4R3OsbOecTZ*4i4b+Ll6jbx7rkP&AR`1Vu2pFc-!Sf&DmBagG{L z?~)!x$?Ukn%nkW_ZEaxRx?O4uPX1ss9cpdboTCmC0C0n6418r0$(D&L5T82-l4h8M zVWF72`#Km5E8G_+zJ6sRzS4TFU+V)B%y5bc^{cq0=?qE|v7-v<9bVGAjYkY}^YY;C zR#2bqFF%7pfu%#7Lzs0xaJF~vW@-pB5rF~y$xv`7(eXAT=be~ah#bm(Q#FY z857saCM4+GzI_Q9p_mRz2>1mhUWk~1D~dZBP%nUGAaCJW8|b;= z@QNJci`hp4`OK1slxi2D3GTPP8Q=|JQSQ%U1-??rYQ7s&S*NS!X)i8=LBFh~CSO1q zWIq~$DDoTpMHp6F#(`P~fHF1pJn9mf)L~ACqeE!ChJaA$H6h|nJx^;N4oucCrowhb z=1`C$!3(b5oUJUxL+j-w4I>P^7Fc!!&T9(vb038Y`l~&AN@i9EJ?Gla4@pW%jf;O0 zYwPX?-vex7fbc$h@gL%9J1 zw|FVGJ6w?eXMu9pERR2O@2f+0r3?Hbs`bcUVT7mOb3SCR)?Uy`%&^r=oQppeB$D`> zEhh{=d5^pBeQaV7pMzveYvb~YA&1rpIwNj@V=PxqMTn2gKD%2zLN)Vrol%@GBj><3Y9}5K670%F%6>SCfN(;uky!n+jHVl=H?DtJ{{}1H|8Pg%3$zGv9Li* zZaUiJ8kRV0C-Qe@P2C$3)Y*Eb(`e#8*=2HKo`3MW5IHdFQm&b!)=uo4l)GqZBHQ=k z`_U%%>h~)m5%ZI`Cktv;4!hfb_oDykzZ`4+eRUfYVQp=yM5S`QuVM#HyxiP=Zc+h& zY>mI1){CC$j4q4zMfyO0EV9IghxE_k#JW7*grIV8X#&44Z1rbcjfWts(y}r@gyAya zPxTUo3cPsH6T*hU>qNSaMbCQ!3RXHa$3p_(Z%iD%%OD42RiHS)Pyok~MIr|UZk>a{ z7^UKRqx(5c?|n*#P9x5G`&;ys2r%QoE-2E9F8b@Ozpdsc->Ma#f2f2 zAvN`3+8P8cAzw^aK;Qx>z@N2&;6k;FP7Wh|>vcDPx$p{)gv!H7QUv$=?#}jfPXPpK zkJy)0S8oGH!pX@Ap>#4^WErpJ?psprU1Duw5SY|l_#5JCs_)D#d*n~k)6yVc7-3*N za<6rMZf;U)>NUO?$8xXnkB9Yp9yS_7qmPEE0GICutFe!ugDu=P07+fH#5% z`Ahf~(Zo=bt9d@6FPECwNcNj$^#`~W3Auvg&;+C)P4vwZ`2$?RwA_jU`B%3?$K6b= zztcn?yRG)tNPt%8j~+K>PSsk9b+mp;pcA+%;rOvxuI@=T?^FbWJKC$#yMaKvmVis) z34`)8Giwx6?QdM`tvqVV85?w3m{;0ub%1^GN7e0XVb>39&infR)Xe^7d5)$>s9w#d2Y#>D(r|9)PmQG3!21eWgq$r=)=L>L0T8P%yAs|5Z>1<-ZED z8xfy{hz+2#fV9Z%nZ~!=6-@w`zpuoqSeHBc4gPh9IsVkCgv=>%wb$MC7{GZE@4@r_ z07U;noKcsM7a}XcA#X@f;)~goY%lyBE&w5HiflK|oH^ksIal%Z%a+$;E7-EI$gxRy5`O>2BdE+< zmsrZ=fd>IOIgQ2(RtB4iyjS3)0c^u}7H&phq~WJC;_tvp`cU}*BTQcjm!xOYTQvcX z#O`ZRf^8f=$C+Q29c%wIrzloFz*QQd9xtLb(D;P&uCmT_eKwy1b2}}9J|pqsN(5nbLCv7Vrqe(MQDJLfTiZ48%M;JtVlbzWem^-D$*|T)LgW zpUYu@#REljUax0n*(2+AqYe@C!#wo&ZM*8TGBS(@9+){0?vA~mTEBrV&#c-~j!uZ! z`=bfV5=yAZ?<>)V1Ex23y5gUP5i{meSzS^RBmz3olu3nj^`TYr$b5Z004A*ap&_OD z_pF(u`4?$;ReQk13$6*c{i>=^I1Us&^c@4X=g~+fiQ{Afi10wR-`~$c1pkpm;>ypC z^uI1M&^mWbEkSS<5CdRD8y!u{htCIVPSv0tcPQuq69IHCOZ~s~@?|)zXXdKbIa62U5yv{rouFyH zd$-AVwy0hDfE2}{zqK`-_ew?n5NIJKIX7!|;fnzRcLA=y)yg552A}~0krzk`s1d}P zk~0cwovPaw8n@Jh`dB_c$r^cK1#1pEVl@P?3%T8I#IHE{jLW4Qj8MHjjG-H`R+(O+ z;53QoCb8_V$D1XmJxt9dvbsy~^JqDQ--n{m>#~P0q%<~tyCHuF@!t3cbM4n-8N~gH zN^E7-#zNRd@>{d-hiG?H*-5$$eguLn z-m{EaW9Mn`US0{BbYGnv7<2bo&#;r;j7e{F8wR;fmBW}K7Oj*;rtmkje{%Yw&{R5J zY~X_B>beK0%(-WW6*?S}ASvL=V?q;5R+$#G;G+~l@o*esA;NbXLPU>KE=Wj#e}jzi zOo2CBCvNY*7*+e8e^CPUU3%mTd`rz7m@)u#2b&K_?YT*Sd}Q2!cuyiym5&7>OTggS z9)cwAF>h$v&rKh|bEKrsqV|}0IXUr$8CMR#qD1EQMSRPhzu7^C;Q(~Q46ms<(BBWc zA3&M6GSdew^vTrt!{a~(ls;Wy(?>N+sqlr$ z6Cb~X^^9P30$XxICh+-i#7efq4rt7wU=$gF0KD^cw`EqBj;<~$ZwTrms(Oib`KmHoAU z8-@pyjli36?peRFN7ISj=m_q^o5kEw6NX#6laGEL81hQPL4Va(UmT~woJ4Yfx1&Ukj=(xBo z;F>lzp=oPYwJTQFQY3r(`CD%(Q^o zJ94#AXvine#r6E@+O*57I`qyAH|f(&l@`1W!&O@xii7RYE*dUZjackyAGv3qNm8+9 zlp8K1q3tzh98oKh0U{}J}4>oMzNmKP6qRFY3FY_D4NFZT%Rktl5Uy`q2v z4|!yi6qtIJE3#er;MI_amdl?QJr87t#-1PYy7`zld;!`&r~qeuSS-bH&&Jw%t%mDR zFw8&ao{fv=gZaIvS2?48aSH&Iz`EyY0`TODbI>AGy5L>`P%=$`lY;|Ig!>#sju|)p zo7C6q{%c@{Y|YH}BCuCr;SWS7R(q{G!YEwY_f}h_OH4r>qPvTAojLf~9`2>3XvIrvCFD}11H90H-F&(<0!bAW?}%rG+yL^VL_-TnuE9o~Rgd*Rt2FC`ES5F~YC zdWWaR+rzu`y0n0ScfCrtJjHuqVI}6)$E}XJU3V9o>?(YG$*S`OLS@xcj=HtH<)59_ z@WyvP^N>BR%D?RcLb&`h5FZq02B^|~4*nL$Y>mV#8MHZqEq^xWYEL8UVY&ie-Npt) zE3}R~!m$V`8!&akH>Ym~cGq8dY^q}`b`<6>k*06X18$NjO1wbD{EfD%+T{DF!uUFe z!)lC~Vn}T;Rw$YIA!u6FQK4l2{Zf8at?Li?-6Z=?wt z@g8$gZZ8fg5P7 z5V_-3+=O{9Jt{I1&uyplEQ`SM6#V zdz)zyWF!#gxG>rn5pghbj6SgLh=G?#f{NO;YsV=T=U_KU3%p&0Hk+G6yFg}_;;npq zVDVr=riIQ|=tdx#Who=$x`2k{>G8#N7E+3&&z8BDQ*1To^-F;rA2x<$#t*M7MM?A8 z^?xDOy=ggjsQu`t4-OnOMGsr9q9`DO>sygzJfw1OI`>Ce)U3?Y+n?f9y4vQH%X2A=J(0%rsL;(P*wHfGo&&H+3?G8 zl?Fcqu64oM*O)0)4oxp_D_*=e(m^VKX~}!{c_&{ABkn^3F>gma9{C4v@|MSNY&$c-*v^@Yz z_L@yibtc?*zRvW4lHc^1l45vHJd5tnWb&&6J6qR=HukI3z3m>q(n^}V!dI0jb2?t( z1F8OntISR_HO>sSvy?~sE>XA?K5aHq#xa3Dlde9KK*P?s+>RShPv_C^sfA!ic!;!K z@1^$dz-UzD108egj(Y}-d&0t^C{W=vtugKlGsZ1m^>4q%5$&K)+ZN0mj1I^g+lRkP zNYtHu;u_2X75Pkt!>M?7^bk9O^qki|?7gz&#bT)z2Ob(G1e$Sg&OnEXl0Q0!d5G&7 zO?0aEA;tMO{fbDYQJu(O5oMC5{-|4AD8u+&-!vqic>VDDPQ#58hj>U#-=(wnnszuy zaUqCX*7#RfI1uwfLu)0fvb8c_^mu|U7k_B!42V25)U~Wq=}os2WRyh3`!<^#xlekD z@aUewsjmH!8ISeLpC*skiyb|6rwku*qjqRj^4eqGz7jY$B95I$;-C+P837)6K)g8M z(;^Vfrm%X^`tDuOAaNWr(~%Yz*ETSafz6%C$+5iILvzpz|KE9%|G)FZbJ*PnfRFeV zkg5Qd2e|RwqVlRL6)Lp>d-i}kGcif;nFjMZn4)yP0zGOf8f^v%a@?fMu9IW}m;{+a zwc{EKe^cKY+tSUx+U>qnuRoz!B$%|&NCX0a;!F#8rO-%0$-=$~XPZ7~q~I!o)uPV& zx8la(L_8FHkSvRgpp2#TEqeQ&DqR_STgQK4a^~_%rGL6s;x6fIz2aA5BiEe|@Q(!}v9Sx3P8%f2PR=+a3%y=tNEG z*{A4#|`pCa;&M_O@yN++fci7>veiQU*C_Dg`&riK%Uz-vp)btM>n#c@Lu7d3{*H%d40&aWZiERekLJ& zx&rwEVnaX`t(LXedG$18r&6OFfG~yiu@sq|h2`mj&p8Mzn zVF)+e#r}EL>s@)qbJ^1Db9u#_2D^|&Ap-Hzu`#C_^YNVBl^R7`mrlAt-D>HI>>L8F}MCg{rAs_^kJ@oHbo}V8KYtu5oaAg zG~m2R+F>7zNFj5_Ob!sg9S`?TMGpm|P1EIq>M-?y?V6$$1#-j4p~q!8h>zsJB6(Re z`+VY|td$0r_lCI)yqZ7ch4tnR-s3%p!=R81v1${4?9R1+g17VHT-ANx2t6s3;_uN% zRfLlU+~XeCwR5Np?iAmvy!dQB>0#TtE0JsNVItfj2 zNb4|%-3oNHaAucJs&qk%ScnHKRTle5i5KQgXcKMv;4fON>bc_y^X5US^3ASq<@@(U zBMf*jnM3IU>wp#Vj8MGP<2KWB@Up*&r_xn=> z)aKvONY&Oyu?%@BglFkR_x?(0N%trD8)0NNI->He^$PLRFmDGL0n>fRqv>V$bl51g z@?@GBFumKjF!|{I6#DQgoKl?DaDa2cx_x|KhXdia*FCg%RGl~n8iA0@Ex*SWz}fqX zpXmSTb9fFn5yWH4u1^jzptr0%Gh9^SUnk=Nr0KBn$bEPdPtw}XHz#A-V01Xco`DhG zG-V`F$ME%l5%(+YNCp}=-B-A9g%s5X8Yw2$JvUEqA_y!U8zxt8(b0|kQCTBbra~;g zD|q7|KnLV72A(tE+^ejuc1Evp&JUVlUJOWw$^V&IVIm`k@5yR8H?$O@nZMS=jno6$ z8Lfl~@<&$y5H1i_k?)yuOE?~6*ZXiV?82bJLFp|~MV7nF9L1U5yLUMb{HfyrmykYF zk+4@oa|Y#(dvQNDrCSQ4mFWJfht&V82LQq(BB`#Jhm8Ss&*wHXE&fPCK{@FMqag+t zhGgW6Nq5W`z`H}M(Bpstq0#sO(SLFs!czoTF+s2)7<3T;{euApq(Ax7h4?;LoSFfhyY>hJP(gdY`{rr$?rP)d*-?Z0HUM@($;$&D4N75AMiqo>@fb%Ug&Aa2?@;{hX zjb22EC_XP2>g73gVR5rY3s%fQvkQwgqCnH8Ks|7~VEsY`HD3!{l^`p}k$|xV!X9p5 z6d8`YmT_TWVaVkZkF4~Wp0Jj7^|_zEbpB$+*;|sdxGK|!47)r02RPeLoA#W$&n4w< zoj757Zu{(8(T$eWd_A3_p`l|x_l#WaU##`;4BNhJ=liC@XDYX*w!Wcc$oD!sjl-|( zB(c)gs>D%b!qfX*&Nm*{i{MkL2QPWn45OK829Gaf?R&Ie_;{9|{a|XVHTR+lTG2w` zsm`GJU1)w$fuHPeC^sGs-Ge~!XMPY71(3(O$1dVthAE2YX?W<7bR9lnH5CT#rLC8Z z1iT+M@8lj6EtMwIl)Z?gWt8{qE9PMA7t@;ai=v`u#=34;&QP@kkQY|F-e$KyU>;Z$ zO-zljP?~U5Va8%&SoC`e^vVHdK+^%&h9W~M1_DfYVQC=j zhe4Qx{%=OQ!1Ny)(}e@Bysy9CYkpV`6O@>_AjzfBv9nW?Y0+z4a$P_c3Fg3kV6%cn zr~+YVB0K}g7qC2qnn{!g=ot;*gP>gK5`zgJ23k{5b=Jm`8CbUpX^-&Rtj`J6!prAA zJ#6+?PZ+{3AX;8ec=dPh88QJ%n=ghviULd(Rj*y#Va`hDKeq{$t!H2W>(k*1Ynosq z3;x_`2_%!vF3fD)>0esqo1A7U!@L`fHRVr&N2W%g+Uazz&JjszuCo$z+uf`CA1fj{ z`M%bDsrhr!VE^s0o~s3}wTnJ-s=X;KS-o|w*Vp9FeR^PIu6;j_5MD5mesTM2jE0Zm zQ^IjAwIwoXOiksMsl&C@+uS`}_tY_1U_M??Fw=CW zJdM12u6?+CMuADZ3WESE!j!z1n26Ano8IVRqF7R^LYy2jt}9H$b&FtZ+E%rc`i#wM zu5z~|^_0*0SC4EBW(ARCH7-t0TU*;2H}FkJ62(bReeAfn>7+BMrBLa9U;nWvAQO>e z5ILrp9<9O$<0aUbkhl_?TCepRUGG3GQZWnTMX^;6mIO`kxo2RGqVvz6wyRm^!@ca8 zPRL|eP)E~&4jEwfIt+X^U~c}e5G?*z2)++QYCt^)+CU`24-MlZXtUXaZSHh*M5hTnAktJp>>`#FtK3LHsdlj{$RPo{?<-*sI>`#VA2&m9K@B5u`O`Zc zT-zP6XY5q?0$i}ZOX*zTr3Uiul{WrPg;TSbD(N$vB+xYpD$QZ^jT2|t_&$giV;T9>uXKn-#2Y;p~- z-#>Axx|Q|Wn2&S{g4^)j%QMT&+xCCVWge_yQ6^PLgyFufRQBGdVdxtQ<=KoMb&txu zlz2vIXYAbjcs|h4b>{MEE&`q(&I8(>MYbZrKqkcV^!9y0w{t0&p zeT*LW1jCCD(TlSflU8OF?vaAr=+md~9Z_mcr1BX>b$Nm^WxS(RxrvSrch%m6z=B$= z+Myg-IQ3%VYeDT!1@Dz^ORzao2?lSQqK{Flr`v(!_ub52d9WLhiuc&M3c%d?_d*qe z*Skg6mey)6A&1PxB-`Nt7!!whx24T(ughqa- z{60U53?oW$@mXTX+$IzNOr-&6Y2O_VoM|H8;{N}$d73HyM;Y$!X~KBnk+fZ6uvGw7 zPQW^fF3V!jSJXY%&0{8l=m|$M!W<2Px}}UQfJAd*(Or@=DoyF}OHc#kX)zHeCnrgd zRQT@u_@pRjuu_}TDW^oUUN|@4I4IVR>-(P50~!}_MI(urAUHZWqhS3U@dMOB5P8J< z901~?2~HB*TfIfb*|7igiN=?0-$jbxaBH1*C`RVb3AJHNiCuUnlL3p^D&9?WHY1bG zw0Zp5tyKLaUxnPXBBKaG+~j`LbZhd6t4vtvJ|+>#(+4vp>Yiego;+zPvvbdX|Hg%K38?`JLvD2l!AlB3vZUNGrxPt38Vc>I^bCf#8?h=L5uCJX`+lX$OilYl-`&Y=BwfH83VuRTd+4u>@VCCSstY5**a zLYtRq!At~GF9a5)31Cb}k1{PdD4+rEaemguM| z{vw(9mN{5 zX+=oi>R#RX4V7hDnG+{Zc|X#8S0epRpFz&l(^l>3 z*TNHd`Zn74MuYJ7y>1c5uANG$L)OcyJZ(L$@BHe)=fV!0@TNZ;^0`GG+hDoT(Ry! z#60|rPMlEee#HBd8G*0>?9=wiPRSOm4)$11Q0)$YERfJa zMzB?c7-H57w2Fe_GKtj2=4tG{N?3v-DIFMD`%9?5{td}^e1dt2w zUaHt!<;IiVBnmHOdhlh6K1HiEeZ}LNkVGGhcnyU~apwELRKGX}4Z>GQS*mxa+4P7i z<&XZVsWIN1oqv8bt;$v1mF(Bp;B>sl`D!!jA$!R1mvd%n!$>kZsjKtUblI1heF@lT z@7t-piFhp1%-<&Jo{pwtm2B)<*5xA$Pk%5N(IFlh=`lYRA298Aoxz zjJc_7*r#X(;z+V=Wv1a#`}9;)Wa!@CR}De0P5Ps+oKRIzpIE#=3>gzAeO_NL=e1s3+S z&%#5fJro%%&|oeG!6wjq@ZylfY>iRTrw=*qX9)!^2zE@ZnE9yoAdpUKt{--RRi7I+gxQHuk$n|0ON=&`eOFJ{&wr-O}1 z=&Ca-J~<-8EdTWFC*_d*k0CG{@`NQh?_n|rY=x*MUU)D`kBl%#quL>$3<)TmIKUQJ z6#(C(27{^9p6EH7XGGk#SkE~eR3F!lzk z864kq_>6ZQTCCek0gc}n1IV@}C-u!EHXJU{(_mDbHN%|wc>KpR<1AY5RU7$ArcN-Q zq^w%^F}umJjK6&O``oo6OXI70O_}LK#mAp%RjL z4oOl;l8iefbDPY3*WJ+EXmL>QiG}B1Uts$Ftn$zC9PV_=ZK5QAsNZd}9B& zyS-PZ`%KZY4F~DZ=zPaUtSl;3*KB3M0Gk)}+0ImhFl6VvOAMZD@-Jh~T1mgQ z$of5|dd&CxJIgDQV&Upq9N7lDsvR<$Z8%i3ng=kRbZ~h8Vo+aHh9@*KGV=73h;2vV zw?i11PGIj%-zA7}K-N;_JD^Uy-jkhYB!G5C2P@xLERtR2X+KbR%{G_O5#ya7xsF}k z6LSm(q6j)zi{w@?yUD(2VklD*gq9xOpW7nnP;)EbvB#^?)lM>-LJ$9nvDDYNqfvkK zbHqz#1mhdy=rzs_%3o~b6E|p_k-O1d&>$JK!mp}$%S!QpHd%D5!-dWkA9*m z_pYn|^qo4@Qe@NZ7U;<}`m($m8Z2Vy975QXiNFuP@3P8W^YxhArmcNRdI3{*4m$r~IzD zv#wIm3D!)m$Q(ce5j&(|b!~0NBH=$3#P1#F;pK&!#Tx?^AIaS!B)4Zqk;KOnssyba z$T$LH0UD1)FhnQqa{TyY_wU!$-2=(zhzI6G<$F=DK1%&ow5M|4@Y)^jVsVew7I2&H4*Vpk7R3>?N}J+;vif*s z7dauV`^!a{TXIXb-U;22^kM^pT}}3ZRmHtq!6{^cYmtcBZ;w&$XGVN_lJ{mbsegoR zV)By7#_cYA?8~>9NdLSSBe-(~|EJiH4aPdEa={7ng}YAp+@!gm>bmD%AFx8ykDY#i zU9M%-0S@-y1POQVFP97d+^B!6S1oKxU6_k=N@D5H0l5nH2YEiRrZ2zrFq-$@jj-dm zwn@k5XUA4F$%K}YAYIp%@4SkC3}UWe$D$?@@KRNdqwW4Mc#H9akl@F8l{1hu8UzLX?uP~@DQQKmtn z6SUl>)xID!0qZKkCRv3X%Z!@^m|Y}c|BeOfDZle;A5HpSSXn#coz;BDe5$K!sfxZx zI96wsm0e}XqRkjzkKK?E5${JE0NXbd>i2G1jZUq{F!3riQ1S;Q9HFofVjw%{;N6LY zBi8^d(r019X92r3iig*$Ah+tze_;zn$na&ym{YsoWR}cSeXE$OY#Z=Yj7m>VEK;nv zC>wW%e6p6qGNf{ywx-3{)W@|4eg7&yCRKe~Zi(`pJK^((PE>YLO>cF}SIMS5deOU* z+vh{cqis&c6uPMn?`0}oE+Sf=+4GM7E{P-?5`8*iuqHk@NpH8{cd662a;wg)qicO<i6`0bLR!JG4( zf&qSH<-cEd-AlJE8f|INA0KnwcS^KrGpF-T(Ampu?7wqc)vaPu z?7h{QU|rq0wu$0ix3-}n(7y8A$3^&G4j#Y#se4JYslHazX8K46@8PD+aMlZwgO_K3 zSf^8<_yXei+_W>PG}LF-EQHYpRAt#2iRiinApla58{OU(VZMX}rz%3<0Y0`iY|`0v~}e%J4eYhjkmZ!-7eRQ!IA<)l{@S@}5_9s76&Spy^|e3&Mebf`)AwP&9_>2PRv1@~*D4 z05wtQ=XUqapc}{9(Xm&&eUHwYk;2Jo_o7$n`y1A-(Oj}qU5xzT)!Jpg&)$sMn(64A zOr>sqJNEGLS-Sr5D2A~X+Fm;xXM=kB)SpVbY$263WL4xoo>ZpL%dFG8uPL(}pt7)& zg3U7MT8Y$ScXRo$Bu@2=r^H+JqZ!Gfy)~|iM_)S-{(JR>jhx$9ZV4P=9b_6LeYUm> zsQmSQ?4q5Af}h2U^nk}As~m1rlk2wFTjY_hXxUhcRQ=jfSJ`48lhfOOEHRdSy06`P z=9JI)sU1$oZa)Np9ZLwdN7jOzGKUT3`l4T6c)7br9ofdADyO7$N>^9wj?!F%lF{kY zW>kN3S_s3xf}fD(JLZ33Sjl|_X~b(Y39U(Q|EGI(ve^`sb!+{~OhvMn&ilQ1dWXv& z_$-NFOwP8_p{ycVMaV)^Sb!BH-$!SiKsKZE7FHu0vi0Z(5Lo$NI>Z2^j|icvwJ4Um zn@;&p?>=7c-}fybQ3dSK%>=96_o)7+QAxHf*e=pCSd7)^=&hutLOE9`5V%87!6g^D z-)AJSZc#m}S%;$=MKuO$jprL*3?lSuacsV+CKK&7^)r#U*5PK&ofoZI02_!fH_xI0 z@_gy1bgX84Y^+A|Nz#?=X-B2xd1A!`Grg(LZ_+f6>c?$$n7ydT&ZXJ)5;KTZ_X;^( zO*sZ*;w89)NLR>%GMbXL6uP;Vj78X4k?VXqvZh0F3Z`7a9w+x#1ud;mAvs@I&d)*P zA(gKDpk?YJd9Q-B{oCY6N!5rQi@@VVm_r14+fk^21}D6m zuq7Q>Y=juuKRVAfTTLlnyZm~}$CZ;@er5a+9a-;?P4$O-EeI#ORbFL2#z?(e+=t6- zKz0p%1lbVzKK8QRJB~Ht!+-#_mpJvV;fIC?DpU+&1n59@VD$4Zjc4P(z0hOIC>o?S zqBWCEsqS%y$!Kdn?FSzLdqVJrK$uo_!^?XL#oZqt5|06Jq1y-y5hyW013JscYNudF zdV6gBqxXRL#2+r#}Rj(wgN6ok$T z2TN2xb80e`5Kc`AQ}&R&caS2u&0JPWM=Rp=Dz;v-XnX7rfr_7OwE_vJovNKYsvf0> z#(Bhv*7n`azwX0_0r}!$*4dMpe+nB4^(3 z8~!L}v;eL)92_Cin)ejN3REg=XMn1vlp|FECZgut2P^5!W<((9b7zSj zL__im3*R`Pd-o>MyfCF=)Inu{%wD^@LIR^(?^!Bz4vZ-* z{-)q4|654~{;s4cWe=oW8MWv5?Mj0bKD zQ`u_A`~9QC@rwDf`7y=^C~<4#^Kz@C9uLkam~yv==?^{fxOHmX(pvLxlU9lvM^>tR z*Um_YcG9@RPj}n1CqqN`4*wPQ0GoEkimbbD>bQ^fu&~@0tPGK_J7(-J$KR=8lGAIX zG_vf3#UCmcSxm*^?#S_PIYIp-DlAO8(tUiioGRi=C%yG>DX6pEl_4k;%5g&}pDJdN z%@rL(`})0$m|`|OSGiy609m}Kq}2o>BB>$8lp5FjhcfWLF5ul`?+w9By~U8_u68bH zJtQzX-Jj08Ws5R-QI!%c-W!L`f+RaI@JzHIFYiW2IWsvKaTwV&VYLVU>0$dwQMrBN zmC0*KXiQL4QLf|r;xrTYCCXS%5r1f zolLX_LFI&s!S8x$K;ZXxC${l~9@e5$0u!u$tt4TM>=J-Wk&5T%=DzA>lKEA&00vtW zUnzdtkBRwvD*&(%uA#q8mILS*Y6hT!PF0{p>Ni=)f7(wNz9sF`j~@V&fw^gK59Abn z$UyYy?TU^eJ2&>%Ri*S0ZxrSMI^Eo?O|WO=LWlI5xZ)k-f$lIDD4+s z8iG^Jx!b09Rql^~hFn>xN@y&4U@suL$MsCyYRqrzlIk3|st5f}kvq$j{@_<2l`@Z$ z*?;G_S3hyT~xWL0^TDni1g)DeMHxqgI3aswo+q#=>d>Zhz2ucV~JsVd1< z0S+~Q!+^43n$-90+e@P3j5bU%NA zOO6R<|M<#lzQZ%i$?3CY_Hn`cYD)I0^N)Pp@_3=CMAyM#=6dMQYvqRgUrwB8@iR6E zV5k2Pv46-&G|ADFLy~f{XZ7;^Zzb>lm3mZO96A%;=qHQ+btY;HU}`4G+(|E1tp$P zXQR*rp?Fk6Hy5>d_{f-Q0}KTUbVDCZHGcNnj{K)mY*O*{NV+3x&S6FYMh7J1L^lEn zJ28j7ArlY^YpZKvytjhn$>89qg7{p~-U|mizH0e&cb3&wCZ6wAcYH+;EKm0FVpb2& z*0rA8x3#jGnKD=){`Le#jYO(;+HOpu997`GW~!-C^#_gpWh7^Ev+Hib0ELRnH#53~ z+4#$b$I7_XW3KQ8ulo5iYNs!q?;F>PeOx;pQUk8M{JGUB-$jd+yzV$jg>j=e#w6gt zODP+tkL#UQsOEh=tbG431ATq!O*Kp`efd0RTH3uq@FJ1$UX!f9yx8L38Cf!GPK$uT z?)^VWq%*e4H%y3cFb!nUfrR^ zajkDG3Zp}%klrY~&lOr!-%v@m(2Fp2QRq|5%)y=WghEb>&?_XM#1JM76lkB&Xn13h z1!6hy&9}GlgRUb$N7r!ezs=@)`QNpz2^*#S-0l^mXQCG%siE?UISVmMP)xTSrJ~VP z#hitt?6!5}`|qu`k<0PFP}{)li47OEnO_E9BnaVG5MmwBFCvjp69pz{r<|j0q`!MH zxWk9ZxZ&I8*}se22{4m&6c7J>yYYiNqwBp!%29yc?QREgPsl=i;vo`^bG zU^#FuYHnfI&b81iCe2sc*COc>{QrdSIGEz$bSy-_UUBp0z|3%$#LCk8i{+8yZ?g{R&U_g!Y<`EVn-p_aCKqk(VC54YZ2RpkIZW5#wR|{2=PQ z!5s9o^doe2$H&GvR01TiiE;6-h#TVZd~zuVbCv49oW|K>LnUQN#Ybl_Ht%QFX{MuG)m z>iM$4ZwmEJ=g!Z%`hY6{K}36dFuQk_{M>0u6`+F_!xQCj@UZp+P-*u=*8mpQ0}tSEfPy_O~7 z5<2Ico#3rELQ$`tRZM+c<$0@{vg1*LLJXHE@V%18(vS1rtYE8p@2<(duB`FgT%~3~ zD@Zz{K->1Gm&Da}Pp8}1+2LZI39gU;`O0h{-%f!CaAqtFRVHH++IgL~2Rf09FXaO5 z6RK^X@>Hx8jqc!rw}A<^w>k+v`}%QjQEB|qcTyJD-R|h5as3Eb*>(a4(8WO@$sDPbjeBSf_#}lTj0~bFs;1u8AP~bJb>ILR9U5 z9h5z?A?D3?IWU+4Q2rgeS61b=3<}Wg+KVAd z1ah3TK=lW-UicLzS@4!Z*~^!aE)^|N(Ouh)%nFg@h>;B@<-&A#v&7 z2^c6J9f%LCC^!9#eSEPYwk-f7mH#{Dbn^dQoJTH!leB6CtC z96JfAjKM)$tQw$gR2|K3GA?jnRI&1UJ}WGQtj67%bAqyC;+#B>uRAkl&pUUg^}Gg3 z#i&V@j4e0J&Wh{yMdNx@|8Fw|8B5n1OFqtfIZ7$bx}=|Tjk_uM#=EobF`>Fd~- z=hWjY{!fxtooqpyOj%!p^X=i*Z%22L9|v>u9(UFV6fTs_ep1m^slD6YKrrx1pS&rD zjK5J!##*tryKj6{*}YTZ>r2VV`2zb!ODq>g5rymyf#%kcMe6)h!#wO@U$64&j0BXA zkqV}!0?~Olsm9?eXd%u`&QKzkiQccMSVgtBvvZF_7$O8Ua3z77Mea^e`29^ErRG0> zj_o`WRY}(JAx;xRM(q;-2kPh!UQTWvF!%CYKL4JoHfFf~z(|&>cXq4YiR6jLh?wkY0g{A|jf8IQ2FxxB$YJAS`+;oHRX?hlg-w{H(Gifm{p`czpVnECWV z%KXQXr6yr1^<-))h~wa?qB0c|gGW}H$x=FPV6f8n@1}mp zX!JPB{UbP0KQVVnzAn?I$Qb->3F<}e$l7kIzobT3ubaw|Y=bSK)p5OO&Z0A5RIt$> zvwc=lOkCVsi!5+zC@Rx)#kMUFcZvGd=3!|{J#-7>Chrh$_{KvclKva^*N-WL;oB8g z+y7()HU4l8VO(}`0TRTv1^vXy$y`IReIZgjp?-V^5a)zy2@;b;)$bzN@ZXk4H>7>i z5!FW^^$4Zrb>P9V2UU7vVDu;zxnc=6{o+~t<}b>wYe`;s;nDF{BcfMXn5i^4r{AWp zaAZn&ZiT6)VRcbjc;-XxVmCSSDAw!O=_7v@fK=u^`N_Vp(&1}p{OlMM9dp7Pk2j59 z+8>a@R;5s}+Cu)yD~V)AGu@Ac@9y2MGWF9H8RsbVDK$O0r!>z=OD5fLH2Zjx<%XsH zt#1FU8@>{1;Eg+%=+KVz<{JKZ->{?c{04sXxFxH=#9GWZ&t)|)b`Mp^&0oIUHlIRY zBF$t@1mssEawity80`(KxyWrv^-r=!59m4q%LdYctmbo63w!&}-YK+RCD^d-5q<+2 z6V;5UBz6@5S8l4o%`7EBMh027lE*ry*1X}Cj@~PjtD!09X-%8iwz|iyP%M+!wIt45;sV*7Akh!gsGg!tfU;*y}m{zFoK7)Qh}8t%2l1fC%{aZOf(oJd_6aQY*uERb0Ww$Bg0*8XW|2kz3p$Z3ODZHV3Tfy=jSAE^nq+B>eDn~8RTQ%AoTu|czaA{? zzxC+H;$WTkr`KlB0%H>gT#Fd-|6bgxNzH8PZ0AgTUbys4Kk*`vsBBsVDA^)qEhdPW8QWt9y|hRqcr$Ll)yX z;4E;!+-rg=1yrmgs9^t*u0Yx&-S`>>E9Hnj%Mjo@94oP#WAOrm*U)*uJtN5El|*X+7BhC-un1cA`pba&IX-4 z9jztqvu$(7rUD<2o(Sq}6ykUPYv68`jfHVae+~b7id3fMdQR6Rrgww#Li_^EX{xuC zx8I|>Qb;?uMl7VYKU2O4mHlQLnOM!$6%<0xL<3t*GE!3)y9AF?4Mf5T{_Jix5X;bN z6%504dpQYvgn)*!k_H+IspJxpGUZG#;%$=kB8QG3j-bqm)g(uGe6Vc94jr-ZRJ1wc(o5!89q~3Ud%v4 z*;TVfkyHQ$WC%-hy-~BT;y7bDQ zP4~IA@uTrVI=Fi?tG(GS8+I7sp|Jcg#H*ah1+toMpJtu|;>r|kW z*($xmK6!PcaMyq zBX(R+D!T4N-zBO)nhp>QXULK}t)$Vi1<)Sygc0WScfWqg)Mlc}CHtaz-{icy;!j=O z25Is*-$lRDW$_*VoT8_1Zxq|k)bm`Vzto?M&CHN*z3vLn;K5CT2IVq-$lE3eQOYqz z3rt9|#-aUZ0RFL>{2$Jc;sp87=9(^dox84|N{e1KI!2f)lPe@1FPIFL9d&x>=1uKs zpXpIre`D9xm&M|`LZrsit4}vIaxwClu02JU)0AYp>b^9>>E8GfpU!Kp#5XRNT1wf&uP(`PBDT5AOivgWba=lU+d|{IdFtuo5HB zq9V-9A$oG!#KdRj*S7jpnn-1QnD(BbJ)1n(B^8Tfy4_|29o>Y)R|nr*@Tk}t3m>LX z4}EtmM-)hC>IdLtw#R#&=LCrW02)?!EvwlaG9SQsY~o=H4^aZwSZ$nebW?$hs!9>+b?gXe;I3gV&&$gT z;TZJfyl1i3@sg7hgj>;q!;#|a>eZ`Q)Cid$C=X+U2sCt&U_fABQgW0TzW}``{CTOw zkAo0s?1|g&fssz}^p7;{6yVd74W3+fb%h^4oz{rd@DR4rLbo6ASSx98u253JqZ?{2 zbWXI-ow!-mHaY2d2zh_Nk(5mn^05}`jR98DzqC`U(yiKCA3D0&**$K2jVB<+EW8Vo z)oyWE2kKrl54kV}uy{%Hy22zQO)ra@3EMF)ySV4Xv$T6?0eKK@0^AfTygFJHfY{r$UDdea4&Xx!Infc*04d1yCZCxcp91JrdroCGp7)ySj>L?wy1LrFy?6^ZcW?kSC*1KQNiZm52KpnlWMDu}p28xGiE zI5GTo={|1C{CDFGUIKZcS*gPSUZ>v47ote{usYZo;FeD%mB=$pkyIk@*Hd)wHd> zePJN09_tLzv2)TUkxJvki1Am52hOxEdM`A)fPr+2=%2uM+3AUGxH_kR1ft)7{Zl7fk|v9U4IVfP|$4E#Mk zv2hM16n+fyrtjXpLp6eriLMa3UwC&AwuI%PI46z{na93;DA}+(<_YV#eHl1yN9emgr4oU1H zV|&a5U`}Vxp0%?24%jJ#jUd*D$r6-UJn$jlqXBi%5qa|TDJD=be<&#fFaqKtkQ~H( z6J(}#0=f=uAjquYkA;9O)-nkD1qH0vEvID;<~%kw24*QO}}VGhPn7jEh&Q~;JQUk)Xk0+-$*%|pV| zbH=kKncpYe*>82bl{5vJ$jiAk50AeNzpq&^wXcLZ4mzKjni^=GfL|}gxoHsRmJa!S z1pzoZSS%oLPxL&{YENs7x_3`bPL7M07yGKCqNDdIDryQt{|(S~y)w?pF^M%V2)g*pkB52Rvj3Yfvn z!2kO7lj=Ux$v*I<3@Gxz4_}gxb<8tN(ZMl8Wj(GJhuAV07Z(Q`2KfVy0aYoQs&Efb z3;gs6?+soVzXxluakoIG5)&ux2|h2hgVcou;3>x%Pnisc+${2*YOh*2xDjZC#d`*G zP2g>iI(@Us*!h`^g0!@Z9ttExCRpae#>FE_$7Tiert0fWjEn$%z~g;$Q09Uos(RMgtmrYVeJa_Uy9|j42|s5ZbBgiNnP+D1U4b zkI^5CCjd=^eTs>p6A4DSo15Fki+Ch(py0CL0^@pN0|@6n5L<&JqD(ZvtaoE#{z1Vu zfByV^+#Rg2$w^nN5H%F@`9-XM+CKyFSMZ6j7%%hcQhT6Z?m_eHL1y22YCNK9LC_(Lp|$hpm6S}<8gYtnERg?z0x$e$PD{HdvkrF&S6EO`u&vl@ zA08dPAS2_Jc{5-QB^enG5E{$QZnTlHe_9+Apqb1yF$0{N|WNC)oSLw+Wl2onIA zQ^D;g(kyXNQEbt~wJ!0Pu!HvMVtBe-;N|FeyVotk922mAlD3k?d=B;nq){un{GeMv zofnP@i-(YI;BLbWqF>6*%?+Q_+|0FkGd?bk2(fo;?D^syLoo0zi8pV4_39NtEkiuO zZ-+@DCil1%!S@9z)qMNr$2Ck#*cOt|<=_{{PehyUyq*4-Ct zap;^I&&2fmAd~mQ<7#S_RsB1Ov^R+edrg+O@9ypxpJS2F(7?dUBFJ_9>gp1xX9Bu} z)E$MixR@B6CzgC7^}QKNti3^+2J1%_fkYI44BAg{sQAp7ZLzN9DZ~jOVfyv!GS)ai z_Z+bjjt7|oZV-&j#bvJm-ZQk0;XMAKxFe2F%;5Y&0}up}3n9#lQ=J7+*L6bU~2L!ZE|=;^E;8o+8S$3?c`TlY=vm zKu(SnqO7b8)`!cko|yTMWO-6jF_Pwb#Tgq94^Wu#BS8Bi0f52c80Y4Y94IL$%mOlm z^bA)Z$KVNc9`P1{H^l!%5_$(wi%4Nns=s{s5|;%n!h%+S5+D|VDg$){z?w(}&~t() zpurOW5oXip>y@VMyV^c}d=M5EIVx_Be`v)oew}8FHm6a9Vj)TJ}t^{2E6tfps4rhmw z3fHgc6fbKU<3AP6L!B+WCW=UF<|a82w~f{N*Lv@)KSo$ZF<})82@3T-vkczDhmc?g zASJ`6z`Mh3N3w;tfQ%KHDPAR(oq2ifmyx;b<<;6h4zH^t(mMfC3LNDQK|utj4(cEu53~#dGRFJ!U7RIQMVk3pD-H!%#89|C z6u?L}f!jywjlTgAwzRaAz;!iS#-qav+l!wYuta_esVpQoh$BD^3=DKd$ItdIjK$A~ z5k*^&dA$Dv`{mr$w*209HcE3D8NKwTEYVt~C*C6RkgZ#{*2gRPAT;2T;?AHND`+LO&$C34uCPmjFZe_c z=KugaattUdVeQ)H`1!u!dCrBFh3U{1m%ZJu-;Iv0eIF`XzxC|JNAstBdU?OO5k@S& z9d-Sz20T0@6$BP*^$-x+p6BOJ<1*omVtEbD)I~nly@-b$a05_B;WqF*kiFZqd2^ax z8jKz{7D*&94&&}~c!9{`k;%ffp}dDD!W;^rnB9omxj(`e@39(2V5UdnhGjO)0r3Wy1XgrTcN6R18U$>*1 zqhn@M|9jm59gCZ+jM zR@QzZ=>CD1@^|S^5B7}b&pFs}dmO~;nQ&~?Md$$FbBKg1dQQHxkwLc!M+NT%P#e4} zYE9GxsBmC7=}r4k6(IdYmM<%NL>SN8jUz&?gn0n%MP_CuDg{`hgM*}`B$5O?*C7nX zeXf?3O_wa3UZAD7gaj1oyk!!3rHKaN>lSiFYqizcC6$!g2QO!dA`VRz>=?l(%)zB4EXv}0>^?cp}Y8bd~qDdQ{ii+Abtp6e}utA z;hBAp{_n^CcXa=|Hn4^Nnauy(1>qC_=PLgfCWw3R|7nP|37XRnu#)&L<=*Fr6@9WWFK4BLXwnBvL#LmWgUZtq{Y}`5~8A#gi2ye zX)($c70Qw%WXn1jGxNRPGdlNue;(i8U%x+opWowg&v`eC>71_D^?GivYo>G2VV~ui z)f-j|2nejPwld!@Ah60vKtN~)AqakAEn?^k9^k$vdrbrc%92HwJ%qt)Snz&JQ-O!g zn?}G3w5Qeny#fLeDgpvAWC4LC@S~Vv0fDnx0s_B|2?*$A2?(q|edD>K0r;%~*5)P$ z!eC=ByIPow#J;(qQ8v5#ePdY72DN4k$Xbzqt?R${WJg;x!~UIb0mP zX?o{?A>MUUq=A&GXN!-1MJY3A8-0@1bhe3@eRZ$1N9qFSDm%(RCKYQ9UAND>TCF@? z>x1F_2y3mE70-VcJ96y*%im~xi)ym6xY-J;x|ZYr+ZOo$hfVzN8u?iM-v{sicILmG zffVAN z2;ZJ$PQO+E8X5S26?)1ia;(8VY79q+n7*fJuz0V_lddaUzaMz%WRyV zUbmi{ZLVz@iJ~((oO%BtW-tB7+{A!=Z`AU|>}10;GxJh9xeE&=s>X|*^?4Cv1NMfT zA5O`JQw?8}Nn>wI>I1u<5j~G=L_*~$J)wXl7~L*v*~jcPBypeUPjY_eFmp*W%}hcy zm)&8nNq@<{w9&q|cCIS9kF%_LiZqp$Y#1JSbb=VXF8M&-cINw;jS9u;_ZnOG>d=a^ zPx)kFGTyC9!qQq6X_uHj&6DmmtfibIl^s`}*Q8V&(Xp>o7?_u;JVjcbI%01WKG0wv zkWA9}%G>6}!yxI7WFBdWW=_*WHG8AD-{Pc16zT(uO#L(dWJdKK!2Yt35og*{QNz+1W0lDD?SAVfIKP7Ly@ewZ~Nc zu7N;%QTv-WJ#3o3FN;<(d5RcXQnk1+o~^)r-DFRkcw0n&X0-Tb{9;ij6sy|^Wl+wJ zUhJmT%)Dj0xL2{J)tTseQRygk@;^6B*wpW?10GHvK% z@Gsr7d6PuuaqhzSMuYvtGe#`$U+3=cr{-s$g4RX#xbCK8e8s>aUq58Hk?eDQ#Hczn zeDVtWiLw49>yz*3&%^dcX9wEp8uL|T5%b{S=W{b<8+8IpvnxBAawkUCq;{RWfA{*ficbN%j_l2%`A&9K zGl|cKninrx{!QOK%GN$|C$+?$LhO~;CYRkFWF%y6>%B8OUX zi8CXUwR4T{CyhyQy-}JbJA1ApI+MT-ouQJhWZR>mB??0XoV_&28Kh4wTzdm;y{rU81W2<3%JFdOmu!nc$*lB0nyIxWVR{OQ{ zWNMf1KEp_`(#I{4zN+$1*vsxuZJf8>+W_sSe$Q;PSjH-=!NY?>SS;2{1qUs3ZIfML zem-uqo*1}=$oiPJtM(GZdn500e<+ll`gxD=zI1tC?Q-QpTj0z+g3?9^i7h9#@TD0^`!i2cj>N;nSKg)^5H& z(rSm>yg@{-U8_+mXTI7a<&!J_bu~vuyICM~#=Pr*mHgvPZ<}i_=H?sw1C=zKni(&q~=MNqWov+YCD$ z!*;`th(g~8pR8PUfC?TqGLRMC_kGl#Ld!qcBwWE91Gwl7W*(<^vdX@Mh3xYUt#E#N zzoh(A$h;J5pAP8M-qfx84_MuGE2g}A5+~y)YZ3#Chc28Ucrn`uFaogR%oB^I zr+Xp1(3m&ob*sB42@}aZonayKGm-ahZ#|L{(#}J8qn6padv3+IQ*DwC$lt}b=bOFK z+N`%zETqum*iAr2NIN{TeyYZ+o5kSKa0Iz)sKj_+d~zm-d)1!1r*^4w@mI%UcVJnM zIavD=1ybCrC6T0|CWYm1g8)9$mF^_g;7ska+u5|6Rw;_SCL9=!15d_48?MX!w6Slo z1IWi2;_U31A@(kXbq5c0^3)h~!wa&9j}@VW`EFWgUc?Q{;gEAW&Rtubal8Wd>fl0r zdl>eL;wgd~HUP}$teS9T|SZkkESBNSvFVzH=)WDH7BERfw*!`{@l zRJza|IOtCpdQYz}iq4S+%a?>CCBz|^*`wpmepz80G4-{S##vsBK38yIEr5>I-mTDm z%Jl=#z2Yva77hZ^(BYPh32Lr9KoqzV?6eyosRpzKMR;vz>W&A0VLfi?o#Av{v^;4{ z&n`Jx{H5-8=<}{n;3dO$X&0=l7`yg|pU}fm*Ea2JZ>7d2G>^45YQ5T70SG|_&-NmW zF>Xktcs#r=11{Kqc-YpReJgxC8F09HJtrq>ZglzAPeP%lj8uKb8CKZ4s8CBflOTVGdXm};Qil`s-Vm)qD*0n{wB`|S+pV~foKuB7 zL2|q2b`J~eNuk(gxD^Pe-p+Qr3&5WWahp}z0jD=4_!TZ%_X{D(>M+4ryBL&}6@phy zcVyZmJ8-7X_-8N)N1tC)yR7iLvnT~nTayYAL;guSO@ER$>l;YojxgPcQ$h6Zb_{eA zwm2DdMH4U|D78mZ?yrr{{8E%dM^=}&NG>-`{p#Koy#FcwKX$>QA(Q<*`tOYU2YiNepb!?}n_ys`WMCeD;GuJy zluCse?iC=7*M|8-SrrV&yoyD zOUVnL`kFd8+w-^pbv*ur@Dfn>ToqnGCZz%z&38raGh}X`pKp zIuUyNP91!D`=r(6>^_~IF@0Rs{)_`#U93{nGyF5OS|6GDs)U>@O{^W5=w}sE0tA;ihN|hJp`MGoVmTZ^M$s$?x?IxXD9zNOis>9D!ZE{HyQ# zd=cc6nh$x&`09LUuTkVg7psrkeu>%p#V?DZh4C;ot%I)yAZ!Df$1Ihn5_hdv%#$zR zUB1_=+HiZtA=e4M6A9^FQRMTYH0#1Y6nnx;s=9MyhC@Z{-Zz}GBbO}m?K6qtxh4BE zN&wA32LU!!G7d=Yw;nXRE3jFw-Qy-Tr|T8oS1&|Xb{KdkFn^rgOj_LqzH(zxhz>yv zg#y@ycC!vs!x~Vun*956JLs?Smc^qMnbR5EMEj^UP&QQL%_2j`Ndr$RCXIqQY~%5Y z$jzWIGT0?>C+!D-4LWF&qKJv5{1HN+>-UGji;q9dTkLR#hLE^}h%hn&$s)K?t$BQV zv<}K*kC-MJex|*c4Kc zO(DY|JvNI0E%DWBZ(O@ZY6IwKolt-NX=SW|G~nDHcp@N?hv4du>3^4_Fg->x22<}s z2FaMjHtxUIhX+nYKLkxUOX|CVBL*$klcsYn4beL?hol~ou~L$fYTAty%qy`GUf28( zD{zH`{-07Q6vYkbxbhQYdf`)}Z`8(%MShyaCWJM7Gc)%jaBS16h2dtRz^504Da2 zRsxl&TUD1K5PMn~ABK)SJvhBxlQTJUi+ibbd3<@v_}c(s4^*cbzs@$+$Y7>sE^%r4 z&XBM18jPE@Y#~F-4496j3Kr{d+uF*C7cR8#LBS(*t-P3IcVX@31b-nj6)_h`LlI;xGUU`~AfbZ5xXJ#pC?gaC zCfIKi^ZUi%(ORZ)i#S)8z}8><(l>OmMTs{bK&<4n9d*xj593Tzi|mb~!V9Y;CFQd) zZVkH-NYGjpteut0y46WLAs0s=k&tEZOAc6Z4n{NRD%C@N7}D0@k|IFQR6xwXJ&Rqx zLSw`iD3m{D-UE?@1xB6}_Hy(jG@gCAuh|A_%^S|4hNRh;K1{JO-HNo{sBrbZTro0x(A!ut86N{mwX%Aaihq_$`Hcsi25&|mMt4W%_;Rwt7r8$=IMJLhlV=7z zp<(KlALNyEXc*89*7TY_F+cEM+BQVyJFP zARho5^|}l6szogL4nXp32rqGtsN;Zr@?zR?DB1k|`L70OY`Hh|k;q&QDQg*D7d-(5 z{*MQrd=l#kX^))GAzr{>G7jv=-ix|9EwB?X)d4arT8#l+$f za6|(NU>SfH6pKb7K;nUvNj;W)0cvr-%`+MKEGFqiB}deqQxrA6aWSLMyBdPA(McY2 zMZYlF)qUf}%deuxodwD2{X%I-m%7v5S-&w=f8LW|va!Ci z6oy_ zJnE9;5BNZWEr!El?V!pbl_v9Lnk;?qpL_w{xV~W@m}IpK4PAzF{lQoZ5xc#|)oIre zpW=Jhc@b)>6Scj!h`0}O-)4J*)kQPaT~7lt_{U&-fn4LT&_sLR?VgRPX%dLII51a% z2Vc-ndYP`uO6n)X?De-Fhkw`Fx4#-k zy!Iy7U^eZu_!m3h=XPz6#k==qK6dgQo4S1T@CN-St2T*ApEud9AxX9_0%8t~O z%U)O|&v#Y@_ukzvzyIK%tMkE(Pg@`2t~{{(tTgIp5Ea#g^U#~hDh_hKhV*ROxkKgc zF}uqq8P11|9CekQqgI-joDT&Si`nr?Oj}FRXHT8!Q)zR&v{xQl)C6VW z2p6VqVO)#T@G3+g3L3pIqA(K_T(|wuP_aU@j?u^y&)IpN=qsJ){KCR#~S8|+NIR6Jx9RWELEOiwI8%dC}tQ&$%UE>lO1 zKeq>m4j%%ytSg{GO3LNS;K7S`VU=!O_Hl;lboMSPcluB!?`rR9=xsR7xVWo@JU8X} zylPYBxb<36McWRq7wGe1xMNu`DKc4%+DI`m6%msSvgxEy z)!vz+ge9acQ0dg0Xhd8i+)G7`Vdo$dhYm^wulupCh{QNGMgY-(5KXE*lc~erT*|dR zX#r~dd^qypmwc$~62o=vJBdHrN5x5DQG@c*8SR4Q9*CRens5ry1pl;7qu{odtfUxn zt+e{JwJ38(4NxOG$?RV=BD3k%WvDfmwdlfS&Kozn5oEm zz3>86YBOR?6oGAdp^pUFfV$K+n43`I(Kz8QNiQ=L%*0194xOZkPSk)}>j+va>PQ(7 z|6$+Tcs_6DCzmo)TF5VvHP#As_A^IuU?#7R)w-%ak0S>k3=kBAc}Y;HjaYLZNgs@0 zx!Rfp&{`XE9E?}s3XqfD3MU=+@W?+@_V_pe?xmDBRshHljv*+Esb9bUAj#R=`N6@i zdsc-hbBu_0z3Gf&5%v&sMM>q9sd?Z%t$T-Sll1_{afFw8}$ z;Cw7W&L_)5L{1yDIu>RoQiOoV#i8RA(W}etLAgl<=)`h+P_T(BB94&&I*Z?JEhAWf zUR{7@m|9J+Ps=aG>2M!()ULhFFE@Lo+*;b1KH{i2@x;={qVmcMqVvjVdzFOvatR-p z7Xd|a?L;&?pp**^?RL-rye&9%NG&P;f8H<{rHUQpvT_(Dxdy1QvT{j2&iCG(@}b(Bth%L{Ms`}y0E*VZo;Z`blTJRUIp`_*W2lot_jch*sQP#`wuhDkKNt=y}}k@RpP~-KH*J#9QZ7Iq&3rCr9 zR2K?vfx{~a|Oxk*1O)fruohl%% zB*66>&||1-SvjY-Ry(~R$#Qlr0Xn_)y5HrwbnwqkdBd{W<>lb84OjdO$L0HU3ySYM zdyntjQ6eYhsVL+ND&B5$=i`1AIUj}>z;z>B2(a0Qa#0KtZK1Bzl4FnXC=0$&OTghK z6lx4QE=~iqTUggZrrZG~Y?5pDmlq~Tq$^@rbn$iR?>L=>xV)dO;e3hq{j$<;vG8xP zJ;n>?=PZqF;-;}M-EHV1;hl|w2w2KCDO6&BxfcNr$+fwf>@l@1kW5Qox$_?oUuP>C zi#>l?V~@6W>WWm$$^E0&IS|k-D&$?0p>7*Q9B*n@Z}08YpSTYo{%*VHaj~L{J9ZS@ zxpOD}PW%z?dvZQ6&}J%BMvO;-d4iml7oHIV6A~$sMT&OqM_rCXBq<`2;?Ovgzu+lr zs9RQ-Q{sU{qZxa4Tk+cLjbV9#>#rO}PhiV=(!@67(GS@x_H=hMAM4hm#+(6KXl-!R zTrq;N2Va{Oa{~)sX*MekwHCFjKyAyWf05cj4N@=u?M+)9bTjb*4L-(mVPM2wz^Lrx z^w+8L#TsaK^VaKg>3$nVxA4q3xv1lDrT*vYht0*#RrhxQH-4QZDEBbk>`Ti+6+Mp@XA}!UjRra7Is@pp zUxxER*Y6L=Sr{n*=>{z!6f5sk4E<+y?zRsUxfPoVD|xOa-Hc1D1`t${}aOwy5aV`wK4@| zLu$qo@didr{z~`)w&iM3ky{QhUZw-`$l18*$GTA;yfs;?xa?my%7W#KU!CoZk92Vh zRUCL`lzZb)$^7SP*YWiDqIBnL*D;{$lm?*aSsoDJv#cS*_Cd4E1x-wRR>wJ_OdR1R zc%V6OI2Fk-MVUKD4>rKf0o01phmpqR!VSXahaZF2Gj`dE|kz?0JY0=|#Y&hfC% z@_1TV8Oa)toD8?Wy4lm#I_}*bLfKF13V zt?a?WM~@!eJbn)WwS5Q3pyZWoc6rN(bk}td?wz{srBlDv1Rr#95BnjUnHxH8VY#P# zfA03P!@u8Xh6$@44MVPXuUn(3((qVbRi2{N(-J(=1 zInRi}q=|uvyFm<~!aMWh01Ux z$J|Jb2|!+y#fz!IkTAHQ@u+O{5ASlLatkHt7>;iWAcA?=q2bO2r_BXdw=8zhUH zTp=}(vzAp-f|MWF9nip^tx1=z-iYkazg2lOx*>kZEvPGeJt25XxWhea;?2-zy_$+t zU(vHettW?Ce=T2H8|<*>b9H;~#kq;Hf$C(V^5}(F+A6w{d~Vp7VDRXqNM)}=-+2_5csUe~hs+J&oQoAk@$s(d)Ov*xnCy_uBZ^WbDU5imelq;iG zFMypSm1$#Ihvjr{j{?O?Yj))UZVkIc}dTNvA- zh4k``jxo1jy*sgY&NA68I_&I2hWOT_n~lo#qJG@4E&X2TBA|OFAY#G4U1vg`Nz`NZ zfPZ1sGdbHsq`bxI5W~&{xB$v4PYpC0n#bTK(iRfws!pgi1&z{h5J+Uofz|7#1;uPa zi&C%9rsA0kt?O$R10zRD_=Z1O!FRvttOv$Z7p1sMgyhIc3+fh_ycFzHTwoz;u?SKX!x zYy*i?-kP+*wyzKAzlANu3Hu)|cntQ>oO}4}%uv$C@P>_YqXt2J3rj`8E%nca*49R6 z*4M&3%zO&aNik{+BS(0 zNzo5$hMm`0mM(s^QeXB;eY<~rung^+d)ULI<;}?>Osr89?8%s$SPk>POgmRILa~<+ z{~~ue2G)g;5O!3Q7DKHTK^%wtj?d?nK@^1AkKRM>(Xa04(7)ezp?yzs=?$CxdCPLU zgrB{GzI#;9ukWMJ2G@A~{%yGUtA4RT5P;|>G<4GXl7A-|Q1t*gDlgPZ;F?Lr= zZrInag)PLj!qODDGTtFI(JD^cHYO(Vh9u?me*8XL6b1o%jlw_mQbFxQ7B$#iQ3FFZ zq~;Jv1K6>OJ4IKQ@Z^kdioMm2UyR#;3{Fh62RM+1wH$v~&L?&r$ukF25I`owO zerb2#^Xy2Y#`V4RG=;%V9VmsMK)?jp^Ts6I1pIFR`c$;(ReRTm;BzFn#ep3E_rUbj+&ut|D6nqlWCZGq3V zLYbcjDiVN16rhg?LM&R9*jRT>!^;+gt$hYNjad2?i!~i9b#$!M@p2b$O;>GPbb z@x?e<3LJU;CLCcC7lT!+AYZu~5U(W)^kXnRMj{S{hXmA1DImTb4vqu%AKLxs(dlCz zAZM96s`00YH$w`vrC&$f7iwILxc9$qul*L3GS5EUf3|x*7+jl3FIYwmnMM@N-exm` zmo3zYr_v@s6)>XwHdF|Ja0J3|kO(go2|+;^d`w#Bz!g;CU)2phCcd7!|cd$QXQ5dW%np$rVBf z`9=+Fgf_oNoR|m~b3}su$Cws~fc@9D1rJBw9jvp4>8fKSlt99jtxIS$|0`9ECHU?j z+z|}xd}5e-^j8hJhmG&jIU4-xed+U`7M9I4%Dk9fQ2NF`#+AU?52e!?;zO563}W7~ z$sIDlT;q5vw*daC;UxnxS;8wHoFc#>n-$Q-|5bPGhBW|<56tw?*k%RN^jC}Ual*>l zlULS$-g~lHKbbo*c@=1|iCC67#?(Pj1Z$FrN+(lO&CPv~8(|qlm|)Oh{Jta<8Sz>c z@1+8hk~zNHsZ;eDUyvaxeMWh5A{TF;xj+wI&XiL@HM*m2e8OZAf6q@sk0-JI)&;+O@t;5nmn|usju*F}Q2x=!dBJ zXT!ai#L39zZGrs@XDC#RX)Anr;pluc2|G|3#bVcG}NjQ9{)0(vcSW?AC2xDy{`JTyYD!rO8RIVm2=?>M#Dvd7$8n z;h}?;F9wf1IUloQB+eb#2gXFF2lT3B#$3r z`1K1oDj|f0bAx}>jh=coT$l*}a-}$UZF?=Zu*dI94#FByVK%h+zS)~l{~<&R7n#Q$ z=;jtB6TfpK$LuE>%K~Hb;~a|3HW>xFg^lEvV-f{nAg`l@!Hz@W)OSBHGMRFTr(PJ| zuG?hATS%eHzmwWrh3s9eaEdKp{I6k)~jF zvulNnKoWhkJVO8`p{tDUza0Z3qs@I11deA3gR#y-1{_mCW8Es5hgaRtOo;|oeT%P@ zubs8|(mu#(>E(VVgpCqIdos6R;O|GHXP@h^H3Oed54uce_A78&n9;M`-O*#5>~AW~ z#|Bf2_br#?aod_oqY+R+K>ML{rFXD$3Q^l>EubwBBkC4WU8h523j|6AS@GhcWuZOI z+dKTzdp}<2A_?;ki48lhoLT;x9=aS#y5OgUdo3HAh%rSSPqcXv19V7omkC}n-8JUX zod9Kn6az=_hN*z37#f#?5(+xJ8~?jicgQ`mr$76Y;dIUVkNrxIi#mizoEI)e(;1gf zCukDC*(Ucghch(ksgu1592Zg;ixjEv8~ou;WZ-fnp?1+yUJz&wP##AL70l1Ti6I+? zDIUveFqHuVl_2>M0zco^$yL(07Ir3|hC( zpTwtO{z5Aa$Z`VEBQ)6}1|L*b9N| z&lfA{IVFiGt=FLmcx*k2JJ5F`JadhDnjhk1)C35FjyEnei0V0pl5X5>&@E0FjPv1rS-c+ox$Z|ikk-y*7 zl`HFZIv1KuAKa$eJGWg%8)q&iVRm^3wB-mB$z5oO5J*X&py0#^sF6CL!VMXRM6lV% z5ony5Knkv8yV3LDub0GW!%v?tsExbg2LrV0LI;GnV?vXxz~1_VUE^k@iyASdP*?&(8(_M&b4QY=LwlF7Yaf^<>&BkY;{;;=XuK zFy|dJvbK-&&d=vJr4Q7D_pejSq_ke~)frNrQmo_q64S+gtrLrE?PHtzZ=wZgj2Y5paF^DUD5o++8z zIDLh_{I-Mh-CuX_!?5^FdU`4Q2xoco;?JXFQecVz=SN1aAgIM_{E$Y1^Rq_q%uC%v zM#g%#a)2;`*9V4YUlwPaTNTk{JX@a4XKvpWzOv@}Pj`AIbKeH$K4Y_wUBhAJm`@F=nAm$zndcHk64;!DM4 zW#4tV1>&6PRekI{diH6V>9>UFfl<=PoB>t+VR(s4ZE9)n%b`B%D$eC?;4=y@TRa#B zf@BoYqANa7r>K!C;E|#wy0QPU08Effv7{Rj$8=mu7caPF_?tAa52c$907vXAh2UnT?h|#w5oLh93!$5u4Rt- z_^IQ8`^@#{i#}^N7Z|F$2L0u^!9ZAHNx^t_6?Z`#;fo>7kQTB_xpz8dHa}>d3O8>4 zRN9|QdbPec=K@_!5uCsS{H(wq2S|{s0dRvtYe@P)C0v4Abs|&;Q%d(Lu$n#*SmByP z48MYVUHl5FJPj7Ul@VA^X!;Z8ctH`n))=twX67=W0br9AMeJ7O2aT=(yRr2M5`{`} z0w2A>Kv@Xj4en7PbH6|loS>_l@(nNDyRlc2qZqn8quobjCWcFrz5-b6E<9Pu`hNqQJz072^MNvHPKSEpr7u@O)wy{nTHvQYB zD4Fy2*Ax0TWgY&9N4aq;2vT~hLk}NwA)TEZQ1F%6frbgG95WXT+Mg(U{IZ0Zmro)X z34~H1B|>|sfHDA#YtYtoGgRXGFVF$e}s+erpGHJf( zYKOVlj<*2lJIoP~KLaqqg$2Qxg13@~($*uGMnOTF7_@n!zJ76Ljn~{Q3@ACABW*NQn1EVBZzlN8` z?lc~G2|#$P55f7=jlpUFLV!yWEgl{Id_d=5DN8unD4Fj7n^$z`flg0wOBrD?W3I^f zRU<%<)e96=?)Wmd>pb&xwdhjs%w)@9|H*EvxSfiRU{x0BwjZPsj!uGaSC8MlJ2(7M z^>%Lr^{{VqkU zas74kmZJG<={NQNd>7!_w$a>(t;j)DOFa+5CPwm^ud7b6zLHp#=Q%M%*Qwlf@3|d= zV?|1Dr@s@t+mBDOH&x5WwywTHK6oO2i%Ej1`cBEi`RfwW{oYBZT#K=?#otjzw@IS> ztZm^6y~7(3snLrM zYpbnnsVZiIirZlP#hc?d7=>_OmnckZBl^p1vIUFXZ?m`~0$Tl@O|MlZXrW(OrPmkc zE0Na$*?{W+aH1jWffkN11GvQ?B$QOZ-ly-0X+=@2RXkF)t*uOL&)LezcO7~DICP?l zs*^k|wRJ4*o%<=)i@)xsa(b-UKvlH8&cRuELjDUxgoK5Fm<(-0F z^JBeLL-PP88i&mnt*`CtT)#@YU57iCoyTozVb-(8-oGae4X&p#6?2g^UDqhN7Tu<5 z}CQ#KXw zu0*MH8M5PVl}33Fy_VWyya*sN9mf6rfwVAI8ugT3+*0fIJ5V$14V@(1PffG%_2wXZ znYs$kVomZ6B2a$hdeJn1Yqj-P8TO<&{3Y_B<-? zmoKt}K>p6er=z6u6l=g(-eA@qGyf3NM8*1ql_0`O$x3iGLP;~SYxrFT)i^Kc zgmqo*Z0Ni~?PPzGzYcfqD<|T3J>0mL-O4Y}+K{&;=g(s|vYGkrrnW$_13 zU;)C#wyg2HXP1Im5s=$J{Zg+Xtaw1TF@uNv?l~)^!*vbpI)YgRB28BHkv7tLBH$%5C%AW_ za8#s^qbT)t!51u15zWWMHsN$@?Y&^L711khv%$vpuwK}=QK{R^HbV25FmJh==2w&( zer~y`FM!p0p}Qk`00o`eaYo@zi zd4OEc_QBQ+GBJGk;e{~mQw!%e?h7B>Vmud@_uch#PDUExlWSNK_}=EVNWb_5$O>;O zZ-XQc=p6vE_w^XDix9d671szu7=Ky#RkaN`Sx(ms&t`OM=J=>?J?Azv^0&fbV)eNc zXiwA4S8xG=BUKFs5RDQaaGv|Ke!#uldlq6dHS& zW&E5&>!5R52=-y~gLmJAH8=%O7h*%|q;RAFjymV}x<2k(X5eCSB|7p5bL#9RlE+jRJ>;)d zuNgJXqT7RCBG1p|9gEu7Ch6dZOyq6qR^C>(?cbny6H;ogRJ+s!G2VM3%#xg&xaqd{ zaydLdf7gGXFL|+T3IVKz`bq+E*Lm0#azbjWgXD&jl6dez2OI|7LBhvd`u{Na6NoDz z_J)6d_AVXIiPjr@ltNZL)_+lyz%A>@TbPz2EIeO-s_WU{RsV@&n!n~IX`J+oqDK7) z`Bhd|7pcuRjXQr^zpZTFU-)O`eC_Z{i~)%RiXtmp-bP9ILT9R^rVLKrZ0AYF;G-3n ziOI_9od1vvcD~4A0}>KzNU=q%(gmOsL~tkDibcTwr6H!aJX8Y>*|}%W9?jaY&v!Dt zI8pCBl$VQTa%zXqDiC|l3~gT3cvx$+ppQPx(d?spj;@`bZapeaoZ~M4YGHq9IrHtu zvl;!hBBRC)uh*^!_LiHFzes~FAP~HAfadYi3HUKuv2D07(w6zrJ7<7&9ZFE?ul6VN z9({AF&;1SP_>?f?hvs2M5*(I;lSLpOE5MNuJSoX5;5BL&68bdekKOl_mARHi_ApYF z(_h&?$Doayx2W5P&#iJN{%Ei)um9k?nYJ97N$RhxeNo#T@usBcXwVn%JNjQVbPDIZ zJobp=G#gp~Faii_jt3k?{{tHEGqXQBp5I34Sz>cGcbt9Othkvc+-r>ud5^hACpxD( z^Oi@h`j;xh4x|d$n3`Fi_@B_mLZrsy?wDm&1HGGqK#5lg){iiX2I1ma=H0R|)5qhie?y-nj9*ZTD$*QC6pg z8CdpBux#G7QUu7{cOm3M7g+qY7(A(6r@F7YBDnh!Ussm-t{HxAd?CAKd|}Mj+CdP$ z3(QuCKLzYU@=kQ2&;of60s&Ko{TpwG?pjo6Mvf0p4~FQaldhoFnpiLF*mw9$o2EPa zQtAT2zFyPj%kW_&%XG=4IKxOyczaMcWO{fOTkd{MMx{_87L+Hu{WUop zzAURs|Ndj9kI31}?N^x}EHr*TGTV_GJ?m;2j6b_?$#qQpGj|;u2|oY@M6h__bRKO% z=z`z__8u_T#_XI^q17$=)ck~TZ+m#}aXy4_D-hcCoULiByU;H#w_kFDjo@7fKPwK3 zHn-+Sff&?3^1}=2iL$25&Vipb?7wO4_C*Fes>e$6!WKSGEaM_t`dd?hF}*A%Jo-(J zU%uo%e?+r-v?A0ntp5C%cm1`^gryu!+DLoguUWlK4moL>$F*c1&_z`LEIcs=_>~{H zcpB7(f~;1t8p)v8ZS3o!4?J(4k#T|w2+A7a1%T;*uCp^u`nAj6>3jI#znKaL>Ine} zQqR4LyhB8+8uFy%N(_VWWY#0KFN<}xGSuEMW175IYxmX)qbCDjxnCtL&mmTsl4`_5 zET0?D^iUMi&qU9w-w3$S58aoz-@e;(vhDRKwC*{bP~w1D-=XPdCwlt3HHR1h>C~ zxKOrAp?aZG)4e8WM{9P^=+%&}KeJI1{#eXAx&+YAACz94Qwej7-Xbf z{ed67@if(hPUqmnmUjL>NosjE7(v7Y+d7|=km}FoWOB86&Tt`(@5U`j<9Y0{*GqGc zO;2n=nn7z%%!1!Z;Tr@TaWcjn7z8gG^W+J5v-#zb+}f}S{l2cv8*dp{6GgP6Ah)xWyIgAlEYHer>is)6)S_<__rIpw&X(;MHx`SoP%y^irx6E1q{ z@*Dc2EKp;+=Gj(-fM+u1FyVjmkAIZlu%Na@At2M((}52c^-sx$k7)8^^q&&#Mwyia zHj+D%XO&d|!SMgiDSiw=3EIS^#>guA{CHz*$lN?RY{0BaFFGmM0{;GK|I6n3O$3T# z?pe`#8TZ?Nvh1^4ljHEqs0@Gg$+~ zV?Db@|8lF&*Qs8m;a;`S?K~tO{CUSrGF2S3_qozh4i%-So%T-Zv)qW=@~ZWup=*<4 zQC_N%i!YxmbT5P=GE6KgOwd(o_|+nf7@> zqxsX^s~aP2`>dc4|E@oupDl5Izkk2_`mpv(be`dB1aeJ0>aa~61sajI@;>BU$!U8P zL7mDb)_91Fa!1d-?5?D56J5W5-t5ASPAc>6z}K<94$_Z>34^ud2`lFGu1rGJ?7MB* zm5Ix;?5XJggzjQ}qw&uNp3O(kPJGX}6x%!I9(r38iy3Q*HIS>%3GHqR)ui={pE^c3 z#i5@vnsY9ar_YA16&VR>iCS|$n)Hg4pAV%6b39}O2w-gzDLrs6D<6kKAfVo1eq)Dj=_}N* zUj7TfwLoB_d*xb2nXIui16NIUNoFrAK2oQ&r_ueKQTYs{LbiGAJ0Y)L-fSPwW$THY z=WHffLLmb*69gtOyWidErQ@AsCq=nRb~USn(@?wQ(U~4fytl z+&L+#w5i!%(92ekyw^ZZ5n}^phL!v$`4PL4IzBcY4xj2Ka0VNxW?g~7Z5!3nIMK^2 zC~{uBc=6;yVe5#_~1BmOuR?=UjuIW;o0C6sx7OOjBpMe@zj4*{?-+QFjwok2Z0M^x@^P(;b;8FeUS5 zPbf=4{ZT$lVtn6H#A|Tk+H`l&hQ5k&2ymoXHJ(g z_!i(>nHv9b@M%ID_c2rw`*RUjHo3{u9g(();Z**erar-{BZ~JiwIUZkFrz~T6uK9# z8xz;`AN#O*WLx;a>zjS_QT6{w=5{GSCBdOfx*_CyzXG4tMlQAZG)M6xqTfnHgq>I5 zoc{XBWgx~+F%5Ea^iAs%7b!p|6QF1!aB^j20(0J5SwT~DV>o+ssAjQg_IbMRp3Hzv z%XdqA$U?sTopsLs2ai5kzJGBFnZi~%<;!yWsg1R7l4#LC{wDIETgB1_ufV>AR-Jv- zKOWjVCNp;eJt`17XsjJV63 z)^W?wpEW+8XDr+M@f(k5|Mk=>VBpIYj3TSVo^DUKU4I&F|EVibm(|?TUBz)4?Yb1v z6Zueo@q60P^2beU;rBNl4>KFF@MN#ofmZDKsf)1?U}eyS>xS2O0YBy z7r9)BQ|)>5Rq3iG1F`Br=+eh5A_lKD9WgbZ|GInN=<}F&P8s{QFVjRP0cP}{ zg7X1mH}0!Z5_id#GoZZbz#boFGgleNlp#SlDh>010>28L%xP?%alE{KcA8`Ghh3E==$oYs@ASwK#&xWMjGiZ326{PkZ$Rc zlI{)xrKKCByPFMcsf~0=cQ;5k+(n%8eeb>R{ll~OIA@GAo;~OM#hlM{EmYj=0o<9J zdJx#I$7!OcJuGnBbH4$Y>n4e>g;~qtr%Z!%NAC-K9|v$P3FISy&gCG|xc%mM&;tJF z^Wa>sd5hT*o%av2PWCi18p*wz-M74JrFMbIO%dcGdsBG#Rp)rj zS0%gI_v8DM4S4N%eghp&TxtDvcebkKY@;&DOP7LotXU(wWnS;sL$!~+H0@7}RKo>1 z`?ZPdHhp;SF8eEQuPV8J8;&*3RVbre-dK5s1^_Jp$HS@br=UXj@{Aw(L8j=+_UzBm zM(9If*wSo0c526yw}IdtFJtylmM9Kbk=IpN_gwN{%Q~_*O>lqQ(_$`d;i(h*@Jtn*7wd$?E zkX`9@@x~=rUJ?d~Af#izokfK&Byb_<_9HX}HVxq-GUk2Ok?^ z+uu)(vAy+ljRnb7Jg*~59~2ucM=OUvx{#k=EFR!@p#Z)UHNEdFAIL<=cqqdKd{HuV zG>{w34~Y#4WyGJZa*RUo`_AV=9%b3QwRV!G4tDL^0t)-S*;00@>XH4qw~33oS3jvW zok0HJK>tM-a4?uw-I0b{h?Rq^C*osYnEcom%6{7&*9L8$PMi9_H~DQTe9vxFf%m)? z``}JtIUX9Td(s#j+$--SJlJyzXHXY$aeQIz*g#kWWVL5p({pv0zSeS%4hEoNz3sK) zeT~~@;B1A!5(Ib6kG2o%^||&kZ)?5ALs4k|7ij_2i68v|CgUd1L1!z~9(D7vD=>Ks zS;hP%0hi@nk8DNKeSLBm){?$>qyU8UY>KLP5>RjMCHxaP5V$P2>jUv?*}LW6lg5gv z4w;)FgZR4NtmQtj)aZ^TDyuSr&Gg-UKLE!|7o3}~avZ^yDphOxd;*XI(8{&FKl7)* zJS#SG$GxW`Z{SAkUw-|lkOPdk-{1M1%wi5a&Ikq{X9Pxqn>FEHjdwR*6ulHLdC>Tm)ag1E{%H|5y!` z3TRb;99w(>eK1t`{`+>a!Dag@7HsvUYhvq7A#NDs%HKhkxuv~8=FNFGWKjSdlcG5f zQ3NWkn*ut4N+#rN+#}zuHG$$0B_fX~*-1+QCjMdI8(wrD7A#`%S3uSIqPL@e`uC8) z-@5=D!!Y25x^|?P@p;yBY2o{Wh73xlPxyV6bN_uV0IL3M#NMho6WDe$MuW==I{}Lv z@aM}nzyv_6{5WXTTqT?l9~foutWeJ4YW=x8wK(o{;k$1QFoEZKJhkx{KTNx`ZkuXf zG`p!9@7O;QJ=r7CpSCRwiQiup5Rw>k;bR~?P?A1^K0*|5TuBirK&?a&U=jg%KsQh) zv#dLm=0dqJn;M6su`@=mc_6L8p_mCZey5iJW6rnK*T)OD z(fuw7BGA$U2=DO8u06l1$MppkC~)<;yYzbr}@eo#k35{7mulg(WCi@ zA&Q;>tbF|##1J*1y+?vj$PcJYTuqj3Y+OZDf$`nTIUtu0!UBZp@;8A%#l>kK<}&8a zOY#cw?|?@IqD3F8UH&hTd@JckGzR9{J64zQryuTZ(Y@-SqyNAMY*I(cH1(K=%W=Ho zz4A%&C_PPG%`U$Jyf(4W@(m&UwP-;4Uv4%-6IgUnbYFnl$Y9a`QSI-aTYPz}JQV>; zy^5&8QnN5_b$!xTYt?-6wN{|$vmk8N7t(O4s!Ng9W+KO^1QH zy1QSsash^se5sEOS^@>>y;6Uc`{}jL_|;B()MYR5F@hLR5v1fTx#|vM_CRdEhe7~~ z=%P)Q9s(&0D=e$u2S7V0ANo@=SiSzjJ5U6B|4%|#$BDb%uqz$*D+*5xK%A+W_-z18 zwud2}I;)jbK`M;f9Z1g-%x?&Aj_9)w}T9yG+rso_Vr=r z1K>92K{2|B!U2Kq-ViH%3@gP`SP!402{!I#l4Q>3Qa(nN0{xX9+Wl!!bRTu&fs`>e zQyiy~dzdl_3EvO99Q-CHyKdhIvj@G_I(6RL9Pj}Cz{!ADjs?Bi(yVSFYq!o`zo1M3 zApwBwF@JalXp06wgstWNgs!fcP3%B*x;*O!3*Ea1qe$v#q0vLC_nl1wTJHx-P-Kqx4=V2r-yi9Dq%_~@ z5MXGK$O&`uNC|V0d`WAFnpZ!Yx59=vJtw#j>aQxc#LX;{;bcaZS+iGElRw{llV&+J zc)TEucFK8jxplP_9F&pF$GkdPS_nRCbW<(*Bwt?FiaOB=FT_*t!_dRRt3 zkiPoKM{{7q%3-0y$|<2^!HU5xvM9gf{wR;W$RbARyh+IurxkD@gHdjKap%8pde!1A z^J6M*dcVH*$hT|As8%M$;e(5|ymxINQCV&Z?=JJ$ZO2zGfr+Z}F6nv!fuM{=O8!v( zGc8-4j-?>%LKQ4!tOHAo-_`5ddtCd^S52b16osJSqF?8+eZ)`qW|QFYEdY6h+MU|c z(mk9VWtrojXtVus$VB5?I6H=FC4D-%FdYg;01X`ieh|`qq>+3xe68c@5L)#LzC)>e zusM&_D6<9MW>h6q4z;{UIzV#C6Qg_DO9h7uEowO;G(Z`yksGSa?fcvP`qcsreF zekI^3c0_-3#N_GKvY!@@Zz!5YH;>U+K{QfR|Kg*^O+-_9{9d@2O4`w7iC5!NK`?6S z$!-2as;qSE+(rU&Vz`QTOt%h3WuIZKuDH;adTQM?tF^{|3`dx{6SMqWGTXCyGLJTNP+@wwcO$&fx*qdddBSkI0cxJB|>a@wk$} z44`RKibf%m#>+xc0D%5ZUideF7a@5e;E%8zIu^EHn-U^yE6G)!vfB59{^d;CYbYG6 z+Nn6+&y0*0e~Qc1`+ca#k}rC_EF7(+a{Qmw$MTydb?&5*G%jr8-sHq(j34G!+V%VM z9TbP-cpmE*T?8S`Q91rfb=<4s9h)mZgv5j)o{IAdxTQwgcRXmn_0-t6Ua>DZ2BCG&l&mDLkl+%>nfni{M+%!%Qb=J!mz^!~2|nB2d^&TPvim^sTB zBGn}q_WmF0Lsx#E2jkf(?9?gcLrL=Mk*=#&pXeHfBjWq*IrZB?+1P&|_f)Yz9#Hq6 z;8Qa)N)Mm&MS$=sw|B2vob+^}HF6wSDe|x0aoCwI6mH+G`M{}07u^ln8DFnlH^|BV z%ww?ckZu0Ee6Bp-uoZ~YU7HNLOdMTD8?^J@lrrQ;Ouf!MA-VjPt&eC$!mBIG>oi4V zzOUx8+zpWqwH!Vf6_<~$&B`rbZlCdoB@N+T@5llrA zAJxe_!<+OUq4KkA=*ll><(_>~BgTuRw!6fsONahzhvn{0@a@Hg56PG7(>6tcs;ZMP z>^Tb`@%{_lixp}3)5eL0-R#uSRd&I@TSYLgr>x6_+Tze28)>HwPM2xta~F-X0HyvX zPTkQcrT;6V%EGACS)?fhUHa1w%uM5Cr4W+4bNkJ%1ID0D_(+DLJSQ$pOHx~8(rz0btpgRkkw9Ggx0>9^R+tPX}=UW%NeP@AJid+<^cNQQt z$C@uZ^9`Q);Hy`t4BOggJX6L_?vALV1L~_Jf%|EKg9$TtuIp3qrvgg&U>mm#zdb~I zM}-QfwfDU7({h?+wMD!$^=0RYX*=9?8#?2wD$#K}d*;uz1*(F{Kv#)f6SL#JKW07p zLiB@`3406snUfY)3S3L8EfkI9#9FeDrHsd4RGrBNdmKjq%Tp(()O+saFQv{OJRyR- zAHy`9E3XE)az_XK2J*}4o!>}M^v4=wot5TW0*JyrbWDQSf&ljlsKB>;&;kB>FERow ze%p~k;Jfg3O6AcChEBxwHJrz&9fU1DaismLP}J-5&R5|!@sX4?>aFOMQgRi3WZf)) zKK%3sY}KPdxrdXkYyu%*XhTMP{25+ETRMQwt&%ixu5|?6Zxrv`F_Q#kW+~l|pPy<8 zbBM@N)@sG@o<)S=;-;N6A2QEP*^YQ)4dG`qwR4vDXRw;(TJLQ5o>P9k6*{*n0$;cuZhI4z@py0_#kx#; zmJVq{q7=>&Rsys`sW|d~Q1iTT?0_*2u*M2vdk1~*<6`uJ#>?7fj~dw5MZ#7Z4sz3) zD{D^6eSAcJhGEjtB|0AUf$3=TA&+8{((+`BHuS@9=q{$V?+xmI5);rI6!?&rBllNi$tFjR7+e+rgYr;rMv6t=yd^5u6ZT+ylq`ut2^8+s3#GW zCehpQd20;$MzE0Hq=>{sRp;e9KTJ->QDcki#V{>!*n3`~F7ybOBTFWo=ENg!GCQnGs zMV(t#S~_{A^~(YC!1*lTg<#!MkXQTv6;7I&XYkKGFBRobF{59K1h9R4w9H6teq=#N zrhreOLy$}angAfGE!k3bf`6eyoJz-}i!EnHIdn!<%MDwL5M7L13}K6Y`HwISTUFH@ za|xDT)q1&}iJWS-wO%!OjCC~OQE~dgtdlTR|r%_{T3c`R_@b2dyjt{(FybZx6aKq8aqQ z--8~8#`Io8XzsxdsAziQUyE8vOC|{DkI?k5wsHO$t@%*4->6f_mRi=kXr-$Xs~1ss zhC^wyHD(=!_r)sPCEJ&B=*8^8kHG(t=B7I(rTp}U(bK2Rqr>qe>jTGC3hW`HnO1H? z-Opj_O^xzjkSWz1;F;4xUkY_?n=k2Nt@SmzAb3M2ojyLOkf@;Fscx<5{Mw_cnJT&4 zSIwkBk)Pd8vrY&5z_HiRkYy)a%CyEm`;5P8e{Y!X)c;4TysRGencFyd-O>e>Qo8Hy zLN(DbDywARifpB%yburPYTrXqQuduG5Tw=^GqqOW8%L+oMwJ;w&j;FH0D`4{S0PNXi*7n(V6cAeAPQYP(uhw zA8Df`^nWNeaFVKr6L}r|W-cGrmx07T#FrD9k%GURtC*Q@N4A^7Fx-RXU0=EFfmWJ< zUg-(RL<8#9*`Q@3=?;9O-0_9X5VpP`KSW=)L|Z~6ny>fWdiyk}g|}=p)rK>ZTP81O z?U{oEGfQ_Ek)Te+iegw)@Pn>E^4A_^g*9M)n)h$!)tdxE;9*6kA^|_r4H3H$$V7pn z1JG<6|MSs{KJcRB=nuUtLJgjH+?miBuyUj>9cxBtSsR(~~g|ywYJY+S*Ez7VYfqL0|_Q z(KkNLX=J*ujedos$v>j8|8{&vQJ%uQ=`PPAAKP;iN#}1ly!+_KB_3F{K6g#uMWV|$ zl|*v2`9ixBmM@sKF9s=ofW2J%9QT&lnIK3OGm(|6wFe?8FBhA&Z&f(%x7tvrqWU7!4xE;d@vw< z3$|wK%tRfUJZ-k}!}ZAMx?S$fDhod_(b3+C*lrZXJYWbb`L~&|xdChIxXQTvMzv*g z-1ofB2VS%j6U3HPeo&pjUW)Ym$R#NdnEF_azjcVpq6IZU@~H4A8F-?y{D!dP!ld!P z-4EhcS**^swcAiZwoIAt$Sb8JKNG#J3MEU8o2Wk;0!WYbp)=qf{l_J*>`h^NZ0O0M z4@WZqwI&CIOB#wy6rb$L*q~wp{tt>$8V(vOW`PoSRom_jWRq5Z)m9%?*ctOAhAfH8 z>Unoh4>YgbNsN`((QsfyP42#0#dWjpPPO2c+pd4pv6S^utAFZqWQ#TUY#j&lv-Zj$ z-b5{Ooarbfo_yM{#QzH?)|CE=&@JKTMqNI#x50&{Hd|iNVA!fA2VO)}{mE zC#jYstS z(`KA+rhz`K2$5|t(y5?ZWx-a(Y`Zk1k2KXSGP_c&^g`lQCa#vU4p3roE0kJU0%y7r zIL~}$plGOt@kFr)A`v@g-T^Lu^KjNDD)tJXi+Gdo+lTu(GLvgTxyB}t3z zC)|BN`;#y<66i918rD^BCqsb0c#j{Vpzd-22^G|jPEEb^xJuQo`y2Jtk10I0pqcGy zE}W--6lq?=0&4m|Y;v%a(!bH!fWnjR0+y~6f$5h&2T*5&->eXN)4~r*D&I~vGH@rz zw_^YgSBiFKYj!zWD<~)k3kw6jsK>$`pPey(s>-Xf-V;T$Xw;p54QDJDKYj5&2u-Py zJyCU7@bAXnFP>-9M;PvUZ)=GvsQa3J4i0zu^YaTl3qk`aHls#=8VX#ni4Q`erutd( zods1|lqUd#`mBeY$|5D`Uwl%LOr`!Sy$sZTI-u`a&w}=nrimAQa4V) zM*VhlbR?QCr+L=Pgiy+0v$tn&o%)Vol@Oy4ZQ#We09t>6J5lCHZyZZxU-A zS|nH|i^M;>y&Bx*XFqf0joxbykYRJh?^9S%cgibqlX>{SybQLXVWF(G)~Wh>5Y1ih zCAgeHtvWk1S{-iFVYdvfk4S|%AQW?vN_GSv9?c%S$~`D)RijX!o<2UY2!~^YS5s5? zUxf(sjv*`y|Jp~*QFrn1PczrnHD?%BJ8e1?r6^!Zq@!7}>GzTGia&%-v;=~^;=7kgQ#nn_Y_J2NTOdqk!^HC1y zc*&%pIx3DVL8FP>FPAxL8Ms{>DiW4o`h{@Y2=nm?DfjgBM0FW5;2`^pxSj3wb#?J9 zhp@*osIxik&E(pRH65>nEct_QR{v-lecRs;^sw+Hv97Z?+OZqZ!QEX9(&DM^TW_*H zKt8Ji!R0@@qk&J<5HZhX+C14jjr3{kkE}4g3H5L+=|k)}St1QdN7}N(qV$Srgp&Aw~3 zf$X3y-4S{1I76Dc920qCg6|=`!GPKy4ehy4<9!i_lw4_qa&zxoFpW^)?#C-5YC2}i zl|19uJiud5uMsiL-twNYNXp83D2|x>`zt<)h{KbJuqkNNz9+fB|N0;y7{k#oVE~jH z`2o?rXGBAUpIP~&-o8IcSF}A{_6}F^_K9#11UvaUm?0TkB-~}Lr#l2sbLD@cC#2=HAbxf=I~xLM@O|VS9m|uZuwju&zZ3#I zGBj41B$c0_4M9!l!Cv(vF`|SvG>|Y4U$n~_A*6gfp{~q|~ zxd7Lms#hhAy0UHN`s?Fg%rxH?nystm%zi?@GV0BpuCZb|^u)}jgd|+}Ma{_dS7DVx z&Ph6=Z?_DR`tM9FNnWjwsh8dug;mc}#hVF~og}QB4KUNwFu30C;G*t+yeP>PSomI? zmn&fKZb{3xgPX%bgr$*rs*46F+S0yHrz-{Fj`n}pQgzD~Jh=G&_Qj^~Ya>aB70sUc z*`C1`f(f(f{UdW|sAV-pcxMWD8vuF@8Ry<&=~V=SO1l^tRwW9&55N7{sb+sKK(;D@ zMAHe}CBbw@RDr3h4_|CDX zrLiDp@fABS|1nvyzkAlNbuSB%n>@m6{ct;xMa0sl3z%*y6Y0;+YAsx^ z{gacE52XgWtDnu!o&XdZIt>5u2nkiK36l~9p&PHj+cqmwXv4gc$?bATwyJjDkgvX8 zOjXwch-qWtV5l0(=Aq`x zU@k>v%@f6Df-*vJhB=kyea>1--4JwPC7$Q^<|s_+gSi#=AlS%2l2Aw)1k!?R?99xL zkEiF$Y_V`lvV28Il|`#A5)euGzdzVS0OkLQl=mG92_v41`8Xnp zW$xMK<>l1$bPv)gh)6JGZ4M)W#MC1b+uGW7BZ1pRpKEqSEB~a&z=lr{yI)U))y{a> z{d?q6G9|JdOg?R3L&6Ip5K=*KteRGb&x}d`FMLNcujuv5e7XfN>Ono~-riD)WU9sS zSoDz~$mMcI^=?;g<6suqQtwJ#P=J2D9=JQkLxH1q(=#8+u;$)5yNZxlk+LhXm~G@@ z$(=cB($$*34b0d5Mv&G(ad3Fo!>ttK&infZ5cWOx`7@Bt%+Zrv=$Drt+b$*GyeQ#>ga3KqC_`3_Fh&nW%gLyboXarTz6Nyrs}((!Ui2r z+S<<;Mjl!UlBp;Rwa+}Aw)~$X1?PHlI&Vlt)|GqLoM(aO=Pt#YzL+g7vaS7zc`uh4nGEZej6--|6_{q*xOjMNJ zZ51Wj#Ro|4Ps3$>n`Qms%i^8J|Cg;?rqQO(%mapzPL=eZxdhK2F?x(fs!}F zOgw}Gu8Z1D&*%l`iArr=?bF%6#u?nF7gwNMtPfOTSfey|OWM=C)BQ&s|H;5zK!5*i zxf;BIA3{cmEVL0HlXgf}aCm`jyuV);;t~s!a)5J98%>y^?sR<#?=PByso@Hnu_E&) zY8QJHM(2T%cQDHLoUYzVN+|^eC}NHwB0gX{9zTGNo(`kovH(~FX>)c`$4PE{JK1Z} zd|K_ul3xKXt#$4pWJC2arfgsdumv6c`Z_hIh9&!MMy+uM<8N zY_<9$e{J~*80G3eJ=h?Q+(8krrd6<&^h!Eld?!Ep$>@N-1!bIP9)o!7N0|7-B1R;=yy>WOy+Rs&^ zWjoZ7nj03W_`@Jr>z#b0Av}>$^qaxKTn{ZRt)b5tAJjb-G${R(2zGlK-Hqqxxb!VK z1gx!fW~VCtbT&8`z%>#_alN&d(wfX&tGcjBP=R`RW7%`bOtKPi*w^KbgLUAQskCCP z9w$&9v(9YJ9A-P-A|33Y;NjsREG%qpzJ0to;?vmJXu@GO?Wm)pV`F1OhrPS8@g0DP zb7NTi0zYl_~u5z*9Ww ziSwlMwvqoeHz4OvCYzaJ4vm31yRW$0BmS4gdCr*2#%$}>cbEXT3M3&UHPsbjUDo;v z7VzB$e}_;nuL9YFg6Ac}g9+L{$Frd-zqd*D75YgNVX`c7b5mSENB-3PAw70~jq9d- z&`7OnPma4A0s4ua07<9-wrW~QZt~des34%2VeRqwZL^jlQ%fhW?bI8sgFH-xKjU23 z4j*jb5T2pz80frs^8up+OFUVEJR)Al4sw|zsKtFk_dyvaMr(M!mR|E3X{goY%M{RC zHy#EjQe`*w6!4mu=7RX=Jt3>5J=flYDg*Cy(6HFSaa;@GhxL>Yr{#}~%hO`L=Ihto zxV>I06=1bD=BGuvmSxS&&6$~P6-CZ`0#4#Qe&r_v-P(v>Ts)oS^tNQFbBt-ey|cIYre461QuvG zXlWr5KNOV1M7rd}V&va3^dPakR~?@-tPrHmg?f_Y$4eGKlBL^YI4DKYff+c$PeVk& zqeBDp#KcHSL*UNE7hSWF=6aEUWzIoK`JDtNl}zd%`T318t`1a=v$NB_`W-$&W^QwZ z>YXT`cLf@tv+@B*Np5rWFl>1l?%u|RbI~IGf!~;)D-!a+7c(>4FStR=2hFA<4 zE?|Uwg@SBMK1pjEN?EaYuH@_dcm5&tFPI-6Z^c7ZLH{lP36bj?lC=Tis8 z9igvD3l#sBe6E+nudTno<)VQnkl@NgY{je8kos9gT z9%VKi?MA*|3|GIAKsuf!Jui=DQpqWgAzG5EM({#pHKZVWUCT6ZqUBc)5j+mO?di@S z3I9n7;CE!)LgGVHNQZ>QZAo1$|7t3)^(C!0Sn?6iR~iraA%4{8dvN5cZY1 zDCLu4)9yjMwsL!-pM&zCpxtDOU_9iPXX4JK4<@eVENtg z$F~``Ql+vWcNeeW?G#RnPfkuwbTLTJze-C>6A=*^r@Yw@<%;y)2N7`2+)WO6LTm`j z@CMfU1P?sIF;AEF?-ut3F3-VxUN&A{NyQi=Skxbh^zD+H=IP@-ReMzhjolQ`u~%7) zIC_k~s|lFKk{1N6P;o~VP#Me`#X8sw8J0b7q!`?U$g@?w!BzyuNpSBdvR@rVRyRpI zm3UdJ2w&{J>3Nz7>ieZhb^!BbQD8Q}h9&3YZj1jqkXNYDk1tG^N4Nk<;Bm_&_xs}x z<$Lll+jtfxF?@0agM0H?;U_E^3*-apG&-np+ENsDSu3lg#PV>Zt3_At9bspJ_9yN6 z8n5Y`zNQp!8puAXh<$i@!1U$P5&EacKEFj?}fGFJ5(dw!@}X+>s6 zS@+i(pRF>D+P}KFxmjI}f}S7u@u~Zch26x-sm<9a_Wu8yM(A2HhVuT4!& zfZ7A^Zs6f5*SS5k`)PQ5Qhh04O5W=1KEG@Tv|Tebdm1|6%jx2S)S9V=Z#y1t4X3h) zt?=2h@-jkn`nxwOsc(Bh6~RIxyI8&%2;Tz9y@9v&Kmm{Uuc5wp=Hsuy6S+<~R(un; z9qXyG>-{~u;AcVeXYcvQkb+C^g85Y{r8irk7Tr`LrmL>oH>sDYmybDOG2w}EiI_Hz z9blkwYF}dcV8Bo=w<-aQ7sXYJTo9}>OayI!P0Q@=B*bNT*6U3zU^yo`>ht}M|<-( zrsrCevuC(;Cl3Z~>FfF9=HCpzwb{SEFrKWL9UB{)o_71Y(9#i%3lHOSdU|Te2Kk{x zr=nWhP<1TwG8hvlFd09zMm&=!WIdFt`Tp9;&i1ox0^6!V9|rf;%*I}9XoQlXacAk# zwwYwkyV>^ixf0P=)$NkNRHKTn?#K6);UR$1B1W;ml83>s) ztqAgvN{=h%8ml`v>eqx}ADcGzznt(_{4X!nPe%i8`h3yrYYVJK_8^)diMb@v04<@P z4GqnI;%49FRXBTWBxQ({JR7W@CIA>*sKNL1i#CO zW94JMI395-Q9E!aPe;aKFflQSSJK+$;P|LnR+eF-Ak&d0%2?c?CsjbLMqZr~>cgLM zft(Y!ii7h)tr$Kj{!Ka0SW{tfGccJ~_|ry<5n6M0%4up%PEOdR2>y3?cT;Ou3RpH< zn3aI4~|iqnlN1Xq4>6Gqx9~wlz*U*w~SekxwOc=yJTvrxfyq@mkC<(wb(b* z6OLWFCSARl>X8K8;Pn{$T6)2`mY9+Fq@EhP$S7XQ)kz(v*)Dk|`jtqgWPM^Sks+ov zrlnr(rFC>3Zeu6A43Wfw!a{>`HEzP^oR%|no;OZ>%w06a#nXJua5&Tpz3in;r&D)D zh2|P%3u8e03%lJWF>b3OWD7QqLKz)P(K(=tJu)cU}k3aNkgL$29pj~ z>G{_dz!?V$gRZ;nq5@aun%orY>!sqDPWY_a=429Ixnl4qD?}(Uw;+;+bSiq8JAEw# zZd(E_n<1G$+SIyPC(Kxh#a!tB8zd4X{(c5_FFxXv{R<29hQ-T;`gQ%}J*B&wp4wE0 z(KH?RO}3ZN-QC@{yK!mr^{+3Ob?T^J5!JojpvdqDO&T9Ssy%jag71))V7vS)3shv& zM7o#NE`uZkzj2FXJ*&e(=h?BinD5x-E~TaXYWvnE@4RzOS)Pf)=CO4hDVGVOrn95h zUDnh%n8Ybaqqc}qV3|-5e0#!gj>g%ip>#c!c*{9|n&cH9YBCS5B!;4eH)Zfc9kIu6xGnF;yMf|0K-FEz(4fO2Oy?$7#g z5Ek}=u*(5+x`v;OoN&MwuGVwm+58EghH~c61{|)t&3eC1b&aJyA2ayc>vLbjTdc&P z+1aSHG%w&y?SYuoW22+1tE+wStZipES|G>#EufK`COY%UR}r@!~~|g^uS1 zHHq67?A-W)14OluY~q6CMvOxqVaWitcSzj~7w2OAi-O5VuswGGPorPr&qI zSs@xl7%vV(vkYq49y9dxteUHKPiWw!1#P#2>}lV+xj#rrJKH*vG6_-5Lv)GG9& z#atW`A8|8>;EIEvRN+~F8Xi-f@vg6-=JkeOhA}mmBb~}-Qt?J+>6$B&EpuN=dM3IP zTwLne%+Afvwf=0cG6{56a4WB+m0~dsq{Du;9aGkQ@{B)h#U+3KdM%8{j%hWXsp*&= zSLb@Qq2Uq$wfR_)E{hsKpzarUp683({LEc=Ku1zJaC_6obvJc%?QwOgtfE59=UkSR zl~qwO>@W*~K&-j>9Jc;A^EKNnLn{((*cO ze?QsoY?x@uP5p3=eq<7OhxuTR5REkAU~H_&CUA=yDMBJCg^T65 z0;ALMOOIkjb!|zOo5Ptpc>i_JGhRmwg3G&axB~mNYLh;RpN3A#M$y}b-vsd|l@?Nz zhG&Epq=;6B?=)fwFsT-OQTWrofQ--~1!L`EZJie4zi1QHiQLMHHmCS$=sl^obx2>l zID%i->5wKYm>^sm)*v^=PZRt89V`+vR`D!&B{f<2u5T9o;)KY};0#ygyZc zbho4#MtozVI?i9v09ih$o841mP|?sp*8TjM>Q!h!+oDK%nbZE9QBN#(u$b1kUH#0= zjHaUE$nW10fbnM-$v`sWwr>>JAu2ks__2l~n5FgaB22v+ zCMiJ(J9hdq%mFKB|B~&+n?Cq&ZHw02gkj@>NRQued1%$gZS?S{(Pi|Kg`6o-ATTgK zLd0BzrG@&eXG^kRrw!_PpvY|t73xf#VdMqFQ2!2dDmmvoLbb4e&tI!p@Mw=D zB{2%Y{o-8CN+5o%kPW4qWP`MfMJD7Yk?sBKlD>NLTW6a`5 zFl{!Evq~ADzRCFahX!YwBcojUYcv5-`i zl-7`#6TS3&|(^2SkN`!4ozI6$5FHoA;o}tiAY8EVe(>B zE1@CC`V8+&3knM~XkT0 z4!Z0fBAkf#ZVN7D?eqky?m@gEm1L#`exCH z@ky(|a!PmmG;gtP0v@lv9yIg;w_Zzo*%uSsZ#pc~v4{*C`%$Ak)-zU3>Mi~n4oL&a z9A&zFt`U-KGTkV6xA6+&3_&gs-!1MnBkEm!XlzCp?}QrVQj1i=z_=M-aMn9;`v^Ku5-g-C@bM^+4hK_VIxR&wGt3d)@tdw*RZ%knQyV|JfPW{B`!$*4E_YWLOyLbWLDhZmzgw zz5S*_Pem9ZPvpRQ9HRy&JG-K`cB*7{#!z04>ClEn#BVBEBMXb-=)?Tn=7}*!DUMe+ zJ2kShQG^~N+4YHs*=MIxS{*iXN6h9iv)`5-G61sSCPeM*2(?Ih@hl_?uak8VtJPc&NG%ow z(Jv0ucZP}k7R>R+`8<19HiT#nrw^?fvTN+9XG3IFg1z@PuTM_vPxZ){^okUe-W(Tk zOG<5IL3z4?eLO+pX5oAUm$pbsVa)5R9W^)^QbPXjI7@kAuZbDkYK&5f7c(_e~0sINNY(>GMV4!)8>f|pfaxR%LiV&Gv2wW^8%f#m%Lxwz!5(kSn zDw^9h$QZf!BxPytEe(s3K2eUqztqZs(M?7Vi+F_<;r)U%rEQdpX27BvjW9CYGIPF3 zR4*8M#tV#H+Mhsi(EWv==7m^G&v|`=-0#bq^lt(uyoGz`?-UiIa!e1L`J%c)!o%a@ z;s8oh+bM=e^E~^zxWBAKK9ybEb)*v1I-Gg5!YAs|p<`iVTE%mS2~o7>o^iNMOn zrl6`iK0dChsJQG1@<)ID`ZW}=J9Kz)eSUs!6xUQMM}vZf2EK|!n+zBgX`d!J_Dw>aPA zJ$|!^sI=fjA#CG*whRli4BP6Wn=HibZv(RkOZI!!ciAh(G?AAC3^v{#4{e-7A1ln5 z*~pRfx9h$AS@(sqkm(gce60-} zv>)93MbK?*Z64HHReI9oehy)09)(|TlW=s|ajwr_UeS)+g$JV~_kT{tDpIPj!|^t$ z#+x$0I>LLkUIDe{uwRX9g~ceOrEy$k^)^dE>u3W5`*G!P*Z(kT!F0DbEf?hs1vIY_ZcBy1a z>8{Gt?KTwFi3+B}HB#JC98=H#k>~J#<+(?{4GORHyA6yFkZ(Q~8Peod?l3GkCR{>r z)ynzCjm}L7zvoXb%F=LLI{mt;K*zn{UyjyBT@34OK}nWR4%ga<66Qi@@JmI$MV z)i2qmn;AyqdC&VBr`4eKe|O;iOc5x>i3BAT8j*Y_wZ}pO;*j#j{YrKjIE_Z8cIBAVY(eVffDjCcVmO64w ziMg$Rsxgd>kE5ZWC@Cq~J2?SSFDRfRYyb62NFYrI7+L3-#v0KEDd^}3a&oF@X?YxP z3|VtG=2SZXmo`VJb2s@yC+kvssW3v^1U?o%<03eX--;k-+2Z@CF;hw^2Z(^_-{GraYooa>|30SSJWa@46zr&TUqi<8ub=PJ4DB&uFlFJj~{#{B?-<5u`Hsm4q=1aW- z9_8^)`EpFvqHVSlI7Iaa7e$FS6Lgj8BD`S4C@TYmwM)K!(=}8IBiE&qXlu?w<^PcN zR#9zkVb^GIFBEq#?ogn(JEgdLad&rjclTmJin|7v;;zMuyPtILZ~u12$VGCOF)}ml zdDeP2A$W1gvO#QkIObEzrpoR9G0K51D@|cHR(@j?QFj-li_YdV@y0(j+)C(B@G2=` z6D@S=6G7AuLsPqxo??9}>p}+K8AeOpE$DCm)KwA;7}OB{5jCbi9l4Wb(L-V{4ldks zwmSaZ%e1^fi%)R48h1&+B|ISv?^x+*x?)=%Z)9CDo8*0mO%&bc8X1yFDw8k(EkTwGe$&z_z-A~`CJZ|hKUOJ~qU-f~zk zsG_DrNEH+ZrU>u{!4!M^{ofOsAwbiOjcRTE`|DpmDgLAJVY@q^(!tUQBoKE%4|f3A z!wr?waiGK^vGTe9?wWeJRl+|bIG|Tc7=udv5oOOO(~n_qWpCx~PGDy_*z8L0rb|X0 zW)cDi_o1i@ksWW`N|%y{;|D%f=;M~6ZTYA9L5YZdMaY7Bf8jb&BEdX++dGwT%UczOE~rX`b4`4PgDX z!xhUgHze(GreCGnkeHS`%LLK@a7(~9KfBQFt$Q5r_ePMu=+?90vs4kW-Qto)r(u7x zs#C=d@RLgjh3?_rZ?+|8fKNtfdI0h!Z}+>7IezA~(Wa6}Z25!EnmP6=Ag|2wa|mBbl-?MF}AR0X;Kw4G_qQyqkBt`J!MP*NXWzYu9m-`~HTm7mBO2)sX;m zPF8v8a|EXU63!IWjz|afA8cC9cIS)srC&y;$VhfcCs!Fv%4nn1S?Em77JX)#Y)nCr zRICSa>Ix)eses|r{wW7eFI=;7px(*#;QtQ}0yRXJzW}R> z=mQ^SoC*W2G3JO9tQNvU(YxK_)tiLorI;ODC{olD^a2(8G6!#dt7)q$ZiafuYSZ$L zy<%uUdA}0u$7m01c0i37qQ%P@>+uN#>M@#z6f%*@tSoVir(`<iE@-)ZzFO##;I z*g9@Gfk^^SOopb`O|9*D5QIdMFL<3c)seF-`N3EVk7f!h&E29Wn^rbmy(wAsT`x8s zW1paf+{JxCV1pbQP{${|Z}Zb95$`}!h9wBTOp3)n&2=muRerv~_VdJ7R(~KdF>U0& z>798x&Yhv2972<2%KAR;WJ&k?$otz8dRk+l$7$-kT}x3@)54zPo?|Qjlwj9UMHcwz z3u1_flhgJ1xEu>^^q`TF3;-M>^lIEpO-tL_Je{2z+S+(K)q zll}em1tqzuXE>BTbL%a4<-Pv?b?(zh$G@aBxqz0MLY5;*6($GKY_qj(2&^EV2+7pC ziW!MVWkPNJ?Al)25tO?&=}}sl*1uOUipJkA&zZc7T9XhbIFSYnsz89W%nGp`Hj9l! zxpkxp%9Kb}k6Na*!mq@K@E)9xEZH?k)9F(4*a~YZHPFi-*{1P1_dVGsND+%M*AcF# z5ngK62kJA!Kdf}_Yul-ohW;7-!0I{hK>}V#Jj=4wCVNj7Ras=qq?pM8eU*C;c!F1E zQ4Q*Xm}`R1HgY1fNV_7mQR?=rnb!*Nh#^As?+Us)-ouRjh&?{R=C33{{3o%Jlg4c= z_*^h4BYNLqBc1FMCQR9PWx|;0F1*XT5}n~IgPLgS!!YeV)su2pxi)^tt#h0Hdgxf~ zok~3UGAEUu*5b~7*?o~W(cL(~XZh|>vZK;btm?5vS#2{{{Fy(V!`_l(Abbtn6H2h}?bj$xI2RIn_`d`ZUc#nGrbuPwNZl=Ab?~T^GhtQt*Xy%KpI0UINATULC9y?a z!~cM4?1apvL+jc>=|(i*Ps^FQI?pO+rU+%NBkXnOWP+EbKJ$RftXq8;nnO>n-skW} z$`R9b!(B}W1y4FRH&aG}ey&ANvKr!%0NAhAm*Ad&;vJ|@N9p5(gvZ5;Pa#UjvG`^e zzNB&C*G2yR5cANO$+!d?KzxmgWQN~gkhsFNiFpm;Oxie}=R;;|KvYW>Y$jk;sq4@(N~ z#s@z%Ffjz5#!2*Vz5Jfn4&MLRykEil6M+w+X*Ecw&a2R2#SN7tgNHZO)zwWl;PHF= z`q|3LN<>72QaJ}d|HL@>gpRT@_-TRBvmb-UzRQ}hFlF;F5^Sasck-%ODr*joEis() zzg*-**&dy5MzW(s{-&Hzb%ZuE21L)^&|?%C!Pd~__)_8OM9mgM?S<~E+F;n$T(~Q8 zKuB50eYG9bJU-!4S78YHui=sTui?qItz~o|gfhs63aaxLYC(&}fCs;>!HKZ2$02j- zZ5{4}N^gy|#2Q%J=fL-?Y^_5i^@`?jT3%lRsVB~DaoxydyhNFTOWH?ky`9`;ChKx4)6j2I#>mjJ zjS`8j7J8pqCj&u1p#F_pg8OLG^_fZi3Sdh0T|TO?><T&K0(B3#n2do)|Zg5$N>B_ zcqV9Yi(pLLs#8p350Grr^M2Uyvzmv)X8=YUYmV@+iTgxaba!y>1rUHX9aWj8DEV$CQ8>9oL zL3OM>=oU+tWyD!7r7%*@v$w$&BaBE$;UqrpM4jAA`^*gCn)orHvm(jb)!r6Z}7Uq$NN= zZ!r=Cizq>pw27O7IWBjao{PJam(9`AzQ z4|j3C67a07tO+tD`1tsA^z@~s;7R$%?Y)Ql=J(zy-vzfrs4zrj7)S^M7A7>! z3*vhG|IIqIRAW{2b1P4wKw!USU=qv$0gVv`Mck100{5^ zC7PsP``X5S2mg0R$SxzkFq=uVJHiK!Xf-^4v` z=MnwwlWX&>%22kH_ZeMS=XkZTUck71wq>tpcLHuLMJhm48 z$uQY{(hBo>~p-u$jnHtNB+`_;<1u|>z;7;(Nta5YK=i#|6VbB6uL%Z=ck`~_t z^1!IiSD3$E`E)R2hmD&Wk;*!|{M#WO!Ly9&{5gwuCbkJWTo&gdWxIGGwvd3}^!lqp zNFUl{z3GHkP_N~GRJ8HGsR$T^*Nq8l3=v?TJA4|7)}rxxGW6cV+t&TdOc%RgpiGpH5n&B2$DkVsxi?S$Rt(&`>*v=Ct@quWgNfnc6xVO)e~q*ulK#bDmzZ z%^P&}otDQDKfY93IQ*QUj?qgpF2!#so{-#ci0fMAM0A{Y>GEEH?1^?V%DNmCxEzYi z31N@|%uf_Ht>)s_)8js8^h^ebO5-T>(M5Nd+5M!HQ>W!p2W-9}^_c zQA*Me^1mDFyU7~zrS&t5{S83Zxb7Cs$dA)1^1P_mPlM3;m0^;Rg{>L<_+7VzjI{j@ zkuu}Mn%|R`__c}Sic3>CCQZaL>SM$fd#6)*2#}ni^q7^t98x)B)UkBv&7jzRy}*zh z_#8#~5mV%xV`IrQE&Ar+-P_zPQl^51w`uM2Owhu@f)%CH&ODz%j2rIg)^l}bWr4r@ zEEn!v+K*3nGzA{ozqdu`d#~59rMJH4&Dpndc@wPb(3lRzg^q?xly=XqAojff7o@p!IcYMs@wXWVb5g861l>O^xxLO>i%Q=+{$EI491ov@#E-1b zTeDr9fcfU%1yhuu;%z==j25uL*2ET%?cHM9X?-Wb_16|n+I(|J!&P2SDcz?2@TkF6 zkfpIIoHVQB55NUL7?K1UdfLJ%WIFF6I(q#08T;z{hiAAn2I_e)Qq{;CaT^z(LMPht zvC8LN%zUI7|?%@r>?vH7_Tf1`8W0h2j_%I)GERrfw1-fZ<~v-bl3mKT2khdkk7)NM*zdVc4`UNzd8I6?I&9tRPCVjkC9^ z`WWWTZDOjFiIzcl0y~d+JkwhRLts`%7K8#7&^0Ng!7B68C!jaue?wSyWnLX>yVV0o zZR|M+MLVQP0(96utij_U`vb`0#~mdb8AD0lXP)zv5C|hWkC+9hO%O=^9q?&QXfS2U zW@(Ezo)((57PU~j@3*(t`gKEclt~{Hi35UzJraD?IgKH zkdrE;K3OZB+IUj-EIq_2SUKaGqf?RD;4f(Lvr_9cG8h?!3SX(b%pp~zz{~u{&?!)H zo+aVR=KkAL$bpOm_JIiHLd|=>P(J$qz^EJYKV}*};?Y9^4_9CeSiX{@O-k5uF|p-6 zjmIwvScxqIYC!FU*R`hRH32|B*tTE zT6i)AnaHQKN239Y&$jzqtVG&I*e$LlnJ1av9L&DL=TR~kWGzvRQzXOkM?(5!BFEfn zia$mH+s`RO^Y#82=rhu%4?LsY7+?=m_p{3kw6o!8#tTUC=*g!0oK%_4Vr5r#7LpT= zAE4raFed|Ce8d(d0l%RQwo(|h@0#W-H=+KcB$WS?l3H2!S-+BkC$mWXe{J_yvN!^q z7(4Gv61G*6k>BpR!vbuP3zl=AYF(tHpE^z^)~=|K6?&_CPbA)r)=6~En0HZCvKb>^q5fqWAhveA3Ak~;M*d8p}aOin?-$Ie2z(~Lel=ig;A;_4&2 zGh)4TSf8gxsjjEfr%{xTGffh0E+3*5v7A@2RV8%UPG|1JU=K=po9&E5d&IdTAo^He z*=0nRV0)0!950#VXnFUtz?kzMJmWv z;P-nnoWCEC&T8kz#k>MJwjU}Ed5vo@eodKt9F9WDYY4T}IIrQ7!NcGCmcL#v#&=)r zb2PtW*BvR?E({pffHtt8AFOnEH^}=AVix|Zipbz(`}KnpsfZ884~*;P?BzyX zv>@Ih6TsB^8+~sxvwzvxepCgc7E#0SE| zrDlakg2xH%)es_$Uk!@tSvdE8{53?}2I5`MQl<;xPc4yFTNyEusIE;b|I&=J8mlB3 z=%x^X-&_^DUE*u~r+5r!1nSk^%KU0o@C@C!qJ4(LR&QdEZ))!saXn7+%x}sm>JcKbj0DXgPRe+!qQLY@4i<}>+wwiEE|p0- zjfFQdAC|q=2DuuQj?#kEusx>cACYZxM3`4rrrX0RXC;d3=??my5kr_WP`}uXVgyyx z4K3f40x9bZ`~k3FvqM@t00|q8XFz%?z>~(N^_wb=I*%O`i*3ptYIC&%0-WZLXj0_V zuk_~{;L#NVbM@r?&o&LKV(5;lI`&3zXV4m#sthoP;VFqI=3DRy^o*&6 zd#CcAIIMNO);9&N;ja;!4*<4{<%pZ@;=?@i)AF<8+oUk9kWBcIL7LWvw-po)&IY}W z6Rsm-JYgERLoAlVzB}P9rU}s@@uR&(PF{@8P}dTPQerIUqp;c^IiVn!G5a1k${_|R zk*E_?d~f1NJVu`VZUP_fy5Htk-)@vI-CqO+uNUoFuY=TeUFL7wf$t#HF4jk`q`_tK z000XvPB?=*s^CX8K7Ucs zJFN)<&hSB{e&>@Nc>>k{c=eajZ(x5lqicWp-!1^yW`XBXpNIs9(ucqorokZhNe3hK z81(FdY8vI}9?wZ0JF$&lWKf-vJ|^xN{*jGPC95>U{LIQwF}OhX>F64$?o@}?1YMjQ zAAJl@{DlT+*#PHkBCa9ug#l<)uTMDr8VIqn7$yeY79o=A$9)8hr;-Kng<3fB3760! zvGQ;OJ}R&9)*ggI|DyJ)d@pn=bShu+D!w>$-c#lKMl*t9^+Sam0S~oBi^6E@hdC;i zWa7ef{!+cPTnwTMOem6`6_b~ES#$YPwB4Hq&`-yLT7!(`jW$kUwR!WnE)e=H@|{0VOARbGT9Tg`NKv3i)9+JJPzu+ z5R-O+-^G<=SezP{I{}j8-4@#0$;gPitoC;KjAEs!rF&KXmG`^Dxyi@ZN21?uL#96= ze90V_74Yec*uI#(U3)!?Koptzy@jMzg%3IP%WIXBmd!}TUi11bx=is?;g(^}pbN25 zxDgF!RSYo8gJWbs00{Q!&iDl+@BR{gL9)jIU5zLn6Wj z<9cC1tPF%6GK@L-iB>5NWzw1{%Cqw@OU&wXg|T~uq|W>Z;$@=N*8^N6Z`&3Z!l52H z;s};>7VeOJ8Gi>IWgS|)f-0*I)E+VUCiEGa%UYk#WwE2q*PxpNL+1sWpHAb}U53iK zAMcvGea?3}pWhwd56=|G8sG;EbXr<}wbpq5(pTNEf3~4mgiEuTU3;E0gx!5XGp}Cm zShil&4FJZTP=;qfptXt=pop|cNOT#jdSo}(*MF|A_7hWKEWs4%`JYjUdeDE%5L`?t z_Q=M>yM5p_2(YeRixQ*y`uJRuygA!XO)_GE7AzWPYmd~>WLH#_~6P+ku(W}|iS8?(rW@=hf>W=uB$dHZfR)_K1xs&10k zAjP!R$ZV}<^jVg504S}H3R5K*P*^1fmyBxCuc^xbpLXis?_8Tl##CmfyEc|f?wC+* z7?$L{^l!3FWbX-Y z>53`n#5)pmSE&Bq_&JL)6U-u0|Gn_Lkp-_j zwI(weyW%-Ysr+D1tNnaF5bnc$3o^k_byXsOHTJUY^40bhMP7{|{F_>!gHGt6oSIr{ zL4FWKKP0X)o=U0(V@6XVV-zf1pOk672!f>Iv?9j^!Gi0j;LGGw{*K+O^X}!MUtEGO z3ydTWVVNtLDB4_9P9NV6QqKi{}MbTbwFcs)#o@iLf`}GPo{TTZm;W-BB)s8fGB6ws_vv zq~xb>wv9wl=eBII-e7ishG<}bOrpK=UT}8jcX|l1ePrRL{qtzS06+b{wQc}Tl>NQK z(s~hqy_iV$htsX8DpVqvSG!(dagVXtG`eH)GbO!9N7>?27;tn@&2Xm4G-{{wJxEG? z0LGYbk9a;k)AE8~G*o(Hp|tx#C&mWjE4qk|pXzg{4SNFG&t%GAQpo%a8Aod^EJMJa zkVl;tm`#ol9GhWmLKDd{XWIy1eOIR+1r{-}X1cULUXwnb_D ztHTsotL>NhSm|cTmd^{}q5@!2qe2Zz7y&m&c8d@|hW?JR(RspoB2Yd8l9>a2A!#Ju zYNrVTa!w~Pd;keavG_-ztPoe7fN8+xuA)op;*2~EByv?vO20JU=N~%j-`V3C$^S^2 z;O&avUF<`wTC-&QQXl#^IMRgq$(PgK&prF8>yUGIp-(G~<7v{hH zK?mbbXwW+q2oiRivQKjuEZjNZam8vS+bbjMpKP^JgEEHgSrfkC%*1Ra#h(7xB=eeH zSy7G=nXI8iblxZ0-#b4@^td`~FU(FRzDNWv zl$u@{T3Qw2cui{rl_zS{q^A!VfMQZS&$F9cv0VQoT|&QFT&q~dGS)Cmtn?FS%%6sz zS(q!Hdr@6%m`h*7^0^92Es9bo9w9ubjO{UE(XeWC&y4T0jnIy4Jk_VCe|>_i%hE@D z$}iV*+k3(i^vOr6wO8`ee(C4ZTfCouvrdA5HNb$d*3eW9cE~In&`8oaBWDH>a0Xy1 z!T-hA)mx0BRS%wpQd5N@6#{7+bIkDYr^Kc-Qdkwzs1Lu7g z?Q6Xp>n{S0hH||;dd6d~V*`Y4#!%Fy@Zu|lvE!Jt%ZaO^iN5>GnXr3yHJsX-hGC8M z&fi%NFVBWZFIQLWy>MaM&wXf?JtH1dQUWrTT=YCwB{^PiD(B zb+&~a=`3>1r&AV8hderTB|oPzgM&o0;9J+SGP(KT*2Ng2JqWCR7qC{y)=r_U5Bzd) z?>TL(Wf;#IA>9&|#mZcs#Qu0u_=DmP6#R80>f1BB4rx9yWz9q}{&-)^6Q9k;ZAyZD$n@UzkCHoJlgGdpOt;n7)1w%#a8O4M3XF|v zs%a^9jH&6X>ekKdR-B$>^<~t9n|%cZZSAbFy}O}$Vj~Isk)|r=<(Nktl`%Tr zz!5~x6)|T$e2xki*fp% z&=n`cr#p?6Vss;`O=E-dzx!BI2Mt)_<#z8-uD+rEHJ722Z4n-~jmgqZR@~VWp&ilS ze|xgfI7%KOY66)i4M&FYdN4RT7q?U-JyW-Q={0cYM}urbXpZ%03N|tRj!iTV5dBDV z4DbF8FNC}Yd0ngritO8*;&cK0_!xEpJYoMg=sp4XfC$Xvo#7O;D^WB|2;t!p3Az{V zxmT%K#+9YroJY;>6yo_&~IBJ3>P)ZTo}L zE{w_5djZsiW7$$xf@8@6!&B0C4FKT!&a#sko%hhsi{O zwJ|Ly&3=nykEPTLsiXV8>g^D+1k+#pb?J&<*#M7!f<0xkKG{&JD%5w+X+W4h{Z^UH zlYC~9mM4jMNVS)q$XIT8?V9XM8ya2t-o~aZXJY>hyUaTb5SW{NJ1Wg>XG%eJZpSZq zT#%AjDJ)py?d=MiNRcQw$nRv;FwDT0tk52--k@h{A7?l+`Be`ZZ7YAvsHN7*1kDAJ z-PBv0U^ve)cDN4{j8#p(3*K!(3Dx}U!ni#LJ4nBSlUcLk1PKbwMAfxA2rf@nek*v* z?BE7@$Fw~WrnMVubSZy^tSr|glur?YyBENI}=^`G}lQvmYJz_q|d;^v!z{y-AiuPD1EgLMbQO<8t<~#2y2JNg* z^*x+RN#e9MBi)d@ZcJ)$Tkd<{&X+?SQ0F1cc{(-~;YwKt)2V;ZdOJctOMYy=TxRY$ z>wVzlQ-a)u!=is$a|XJl*68AVxFwI~R(1ca_!)es#)sKJD;6PlWMg?;(&)>^u-fv# z&sjs}CK1(y#Mh0|kH=9nC(I=Z=U6qX1%>f;Ug^0%1Ny^Hh@w%+qQ5cH_=Dg+4y0=j zN|7w6Akj2n;aVXRF=AKR%xe$)ve4m+^eHo6MU(Br7YwvAjIj}dhY!Szhx82&gfeBA zBZCR<`G#c`?0+DN2oE6~4{5caS&nwJGmpSkF}hBKl`scA_C)9!SqNsde=9$_?-{=-4}8-te#Rz+XG4Azvl4l zaZiE|gv-r}QGqY0WXl-u#z4uC`};n3og4Y$26q$m@HLnnSAjGe6@(|38u70G;OF~% zK>dM)NO>*mKvLT=Txr#x(z=38dJcQ`jZgi0iJcl0W$7onu- zFsxX@5=*IS?k+^AQwQVMrSzs?LDVx)-{J{(&O0MdjxR6LJ#kn-^3y8kgFNOnkmLh- zwk~WWnus}1?1XV?k&k1=65}cHq}>f%soq;@8WZ!xr!-x^s|T@JtM0Rs8m|Y19mZqT zjXKjYjjG!!IeD!Jcs@C5qT`>7Cw&brZvLEMqj`3DYn|tcUsVYW&vN>@8>FlrvqmKlbHk2evl|>rDFx@-!ix?y zxoG@!B0>tF6tCFQiU-@ zFinL7+%>76^WMxy6@?aI{@p*&S)CPl8u``xwza=F`FkB&p_h^>j9HP?6ofY(jdZ#2 zlp2>D2Mj&khc+PoT5ILsjrM&MuYz3~2u|BFVs{pIM4ezXGvKD^x{ z)=6@{SO@HFFYZ3A`B?;HTGrT*;xnXNrO2 z0-oWOvny45DL&}{W+fA3gG}qSI4VmWe_wI)YMja4k0BnQQRS3Os$@&3dKow^9`kzo z&p?~SGXWn-xH=!3&-z-Ky1l;%c8n(USwx$a2Iw7CLsoL{qE~5}77~pkqhZ^JVo@%h zD)cH7XhOO5kcPYs{vgZFFpp5(NDI+(8H`o)cY0-B*ksCWejS@?XLCC^V{ADwc@X;0 zsz1o}VaJMK^eAYmk;~8G$QHTOT^S+@wNR&@IVNDGr7FCi{y_<~%MLo1yF^_wJVSZL zGScpPv~+iE1yc5H$6;jXrzxED~L?hAmn2m*~qa2x1!JiN=15a;c^u*Ce+O zj<|*e0Wq%{KMjKm{d+GoblRAzn-v*F;G(9vd295~EP*O@PTVeJ#QUSK`!WR^ng#L9){%B~BFmP7I{%9B8@DS2q zBFxm43fLxWZbO6Qf2{TF?`lZU?zHpzbMntRgAxa?o!{Xuf!`e?^|fuF6D^t5AlZvw z0k+$l_fu?hjaToV8|2&%>=ggdo!tIrTAwjzg5HIkr=C}Mz3d1stpjzVZiZi8K_EyjS zpl0kltkeX_zOlJ+<%bhXjJ01U<|n`6v6RFdlbEC0kY$lxc3%_ys&ziV8>S}6ZhZdx zo4dnt2|qvPK*QX?qPk29#^?vqKnZtqmF|%(4RD0mKatg_608pCSebG!rXP+we9GQHJ4fVPWy0NLLj2yXxhPs&1zhAZqw8mX#EU{|&x*zjh=(6QW;3;&TA zhr+|&c{BG>dqbv-iR){Z9ibgx_-5tqRg!yvHW%<=)Xdx3oh-LGu=^0syJ{nD^7U|j zx+Xy4a!-$C_u1*W%SwI`5D#KyhsyyPYSYOl(IE2V=#)2X{@LuFNunw@JVq?kxKnGJ zU=-ahcePF_$Ewf?iyPloN=mb$X+JzEagAz@otfi9m2M)0G~m72spAM&bacQsp3q?4 zbdc*fB*y~%@L~zD{AdWxVrsecIdYxA!H5_Lv)W^iicb`MLn=)MgL^?iNju7A2UJ)7JQ z|Ch!xSiVy55rHt^%~&SMz2V3VG9MBeJGk%5&O1KgJYDxd-&9_+29)%uFx1cuP+M`p zeF@b-=Tv<>!#e#^Qams0h0y820fle5@Zor8M&NeBqE63XLXx*gu+{b|N%rY-DZL7_ zS2l?Mp=@uI{uSGQ_h*Yal%DF5Dc>5qM8txV$++jLj$ZJG2ZkD@B1pI8gYGFjV^18P*)p>o`tiQ-O*ug^gTMeQo9;9zJE)G3{$2o3#k&(RQ9R@bg4<9;S=j|F;*p2)IcgY7C{{V*DH#xqTJ;90@Y zm^n>{k1E<=)nF^u;&JDfvk^WoR|2vIyfq^|pef=~xPc06;flqg2EFBPv45eEL3_gB z+A~T)fDb4Lgt>IaL$0GK2_b?%oVQQi%O<2glWI%5zS|9n_;ub+-QVT2&5Gur_)A zT<}WaWMY)JxqBu{zk1$sJeoZm{$H=g_73Fu7jqt*%8^BAn;>_p=phyW2p>|&9X9$W z7;L#h8WhlYu)Z8bye;nwo6mzTTd-1q_Uec2)P|n>n$c6&`nl3e;wJT7+7cUd1Sqb% zPn9-=(YIsIszb8fCAXcP_LntnLE1%+{eykx)9&iGhtI3p$$dy13g=sCV`JBq@Ws1N zhQFkIowkaVRIGOUPYXWgF!{Y!)_85muGe}$!%^RHdQ%fY^=R}1Ty|a4pG+#5%MPfs z!omkE-2|LNb$%*oz8*xZT}KQ@Whvqh&{aG~DVd){X`@&mBqE;;*euelD0=q)Qq2ar z6CUkEZnj_cldOk1snV&vgYFng5LvllF!KShLjH5{JAu-v2;mSgM$h25m*t|_Y z>C31YeVD!__31Kdq8NV{Xj|<~`r%Q{J+6FjJ6u9N^aKdGoM4gj-eIfK?^Q^)Kc-yM zP2UKq5eVku4^M#ChTp&)m)uf^2)G_Vdsf@5N*u7uJKSs`i=Zge2=8Y>3>5JrfuQ{a zO_So9$+*tKF^eWruT-5fujJ>qbSfne7Y}k+IxTgW8`(pt^v0EAq`FAoT$)~8o|OU; zM6{C$ItRK%?-UeS6SP=3;Y+l*LoKj;{VAWFJ}8CShiejrXQtaOj1a&AYH~q?G!SFO zjfXU-D*tV0E`_Co z!K)ydyR_QZnGE^E9$H8oY9)vmaqz!Ut^fPdvP!%qjB0DF?xu9&Z$z&lagW5g7EXv ztQ4|wOXNpVf=Ih7jTOZbY&1%tH(Kp8sti6kzIK9rRq@+>v*^WMc=4%yqpncS({Zkm zEo2U#iJ_+#?9_YhrcWWU;(A-|@*ES|zW04gB}U$O+@!wq{j&dEvzTd@!?c9E8b%h{ z5?VH~AzSYc)v2$s6O-8&&n~0e8fP;c*_uDUbZI$E8`pBGS47JrUy6Cx`3ifmD)rM$ zdw&4nU$q3}?U`mwD$UpZ-jOHg**VnxwhmMt&}&Hn$dEn$khliv5||ROliG+B5D*4C zVmn>G(vpamS**BM7EXX);%9yd8#iNaWBTm1E;4R<-d|r(I^?@tmrU)uzFs{g{nYn& z`S`)64-0ICK2S|>gng&KqHk%AII*cB5l<4vLT*{wEo_2knata?cEO)e^2hPra z9rnOj&FW052oHeF!x8;H7)Q=ReCh?qeQLETVL?q%7ip-KW80?lXWKO zGqV3jkbw|lHpn2KpttcNoh87EO!Y$4SyU<@5DNAMEf{!;fRlpcuK*k&w1oy9 znpSfcGI)L%_<+Je5h3(rVjkL$)4R3yeT-bEysQ~^o6Y=}pa0HjfTtEDuXCaQ#0R;9 z^-Ovc0Gb)&Ms!VYP(0NN1EJXVz-UPdkmft0mkErW)7P-T5ijp=e)|sH3|6rf%@XXz{E%_U?UYs&iF0yu ztRF&Hu+BQ6qmhKZQIxPfJyGZ?%RIK}xnA4QzS^pnly6$DKJtb4*)GyzwoRnYxyUc} z5QY^T?ay#8AVUdlc|6K|GWSZ&fa^h6pn9N7Y)Cm zHM$lNH6D)2B+{rvnKw9i6SEh1U+!~6gSSPj!1M>QV5dK1G(y?s_zOX_;bk<)KrkY! zX!l9sl?)1E1A{*6`PU=SlERDR|1QMH|09A1jujBJwG!|*nE7rVoM=9Qp9+5Mb-krt z28OkvTAx?#CzAt^K`=^@rU$2}K1P4`7v)fI;7sRQE#D7_mu`=zhqvJ_7PfZcG~nzd zM(IpGW6f{8PH*CgM5!d!x7l3&x_s%WId#{aAOBz3BlSOUno9RM1eY1`g)c54ohjy*E(64Ykf(30t`8t3*$xu36f;U^W}Xhl=$U;lVE-bZ&7MZ`(IJ?+c84iHHRfsiIgV8j=Kw#? z>UK^x96;p{U_q)fgbdHX9Uz5)42OV45aU+2hDQs+#l&ER5PL~EJrYl0D=#N5vJ{Rg z3NbAcNG2G4^c0MvQFFq$@3gEsJCvrLxuld-SU8`GOZGY8x^0#2!`#IOZS!#w4+-?0 zMhU*9o|P4{t!XC9b6{U?GrH%+zFY6Ex3Jh<`F3AE*;Q!^^00qtb$j=9JPnyoq0tYY zE%sY~N}+@_;C5X)DwQtOPMvc$g&|L&loL}*Odcn6ZWlr9=YS}d-f3P<*)I6nY1nS- zWr8KfqgZyjY%3tYQ@gIlKM$K7gbSc3dpVXlkWoBuRvFnV3GdaQ_@t(7&sg<^2Wb&x z&ioXK1{oKD-hz$$H_Zx)^#+g#qjdlR!F*Y|B?QhOF8mje{t$h}nYuTar0^yzpK2BKf3A%x9K=ZfmgKJ7AZHgoI(H=6mcT>c-{R984ypFAsa<8vN4*`e&cKcQF% zaA~!qztdJsb5I){RiMaDsOOo<^co5xdEVM!AzJBBM;E9J8NNM_m7dEX;wj^mbX8*;mHGk5L*)m^5tV zwMSPJ&p6Gmf|r0}H!c?U5?+GJVWbn3#+^p`zZrLA zhEN_Cp!HNiS#6D~k(o4$R9#z&)W4vsyb^Q<(in8w2&N|I{osHNfgEo@{^KOqZ&T84 zHKL40PW^V;up|h9)YM2Q01QM}T7O|u7FMYM6*_2eN@4jJt^qy;93GJl553`Ma*jR0 z(b~RM9gp_v5NFa>zse-Wy}_rn??`sGPNg6JJicLs?vlSNt#xD9q>hWpHz|fp}7sZZ^b->33c5UI#&k0aM-@n)e_+p6Er)$yQ^x0Z=-ak zcqeK1YjdV~ZOdfL`}XXUA~EjK&-aYnR0xXxE%&r)_vwt5jj~)wUNIEeY8Yahf`Y7|Uqx3`svHR3R`cF!Q@>~!a zjJx(tiUc)f4~Ki3M3JhijkPu$S?$W-9vagC7D`D7zJ;@m%#pLJ`Y$N^M2JN4w+w8t zOmLKh(1QIjFT9g=S&H^V!HqSz3CxAOVQLmlgf!sb`EkgAkmXoTwXM!0%DmC+cz$Qg zSoTjV82@iEa}EM_dC#+n>c}X`lwh*&KC`WB!qkf2jXRF1*Fo;ms`cOT62C0LF?W|( z?kD`y0a9JtiHrW*PMfjDl2fuy{>zh7;ovfm7TjyXo1uNB&(Vis$CSZ8nca)YSt}O zVkPf)etb++&vQUovzRG(#3AsDrtA81%}U+no*TdY?bZ9z#jUfZEPb@u9HLblhr9(r zACKDVLFOmjbdz?H>^2E$#7=XyYf}@-?k{pdrnNdQuo?3e-7L#|QfRw-x?hUG1N@ib z-NQ#x;QhXYC#pdBEWE-0$J9H9Mcy~=!(p-}+jec5Y}vC zvt7?z_kCag-}7eb=xBO%cFw8q=aVZ1L5ZD4vnqIpnHu1Y_}%j>OL4dwj2V~`hX6FN zU{wBtPmiP{1WxkXP2emb1e zf=_fKO4K)S#rTZADZ@S@+p<|#5BYDU#`WEIzhV8KVb}e!yc|cFVT*J%3|{vYFXHY^ zor#u$um!RlD|V}3SE0_Pfbm#|ab(!#p?mf(;Uhj+4Ttr(QwfA5ypPfC`lNjCxr9NV z?K{|KbAB0jd93BZJ@A32l>`3T^Bxl<=VuO{e4=;^rO2Zx9VEWQQ)~luPCAy$$AE8j z`Ye^43ksAm=2{G=o+xXGoraw{Ks8T6R&6HOp86dL0>flBhwA?6y!E5JWcVteCr_H* zw~S4~5<)pS=vSavUvtAq5*a*MjjpX21|qLaDA_;OdJ7`l3^kMtAmzLL=YE+{8oVPj-v!G>?YsY2ZyW5}iwwk!)@Dt6N>c3$% z%}u@Xzd-#?w?p+A%$^$YNPS@EgB8z#X9wRQnjJ}sPWmzbVXHt|&#ox>%)*f^XHh+o zdGIBQk6`s!CJ)kE$jIJjGu$&Ghsb)O*mWkI@x|>)JBRUOr&D_-F5&`(rz)`Mh$0lWQ6sFW#!p1nO(H;0j2m5zaSvJ7J$Vk`ud{ z?aE<;tK=JNx|-74&;;RUdADmRS@@NNRZYK{#f@S{G!lidTqC^tQ_F_heXQ!0`>lu-5dsbrLd;rY*~UV!-KVxJdct(o)4$wsNyP9M-?~k__cLr3u#zq!HM@zYnSp z)Qj`3qwk6Y5u|rmN{~R>oUaX9gB^C4=lWME=mtdM`F%X*_EVIc&Y-C6!!70WentQT z{}n#U(#7Zv+E#yc3SurT|9YNl)7H1DRq+naf#3NK-?rWaGI}-mt7Ho|-lE)I7S4X* zchPH4^yWGq`AiL2^4~U^wa4rg=nD1+l0p)>K8}92+=TX_)Cl-tqE+QEIqdNrmw0fg=qyF$; zRoa!>>V8Jzqj8e*@Wz^_=i%j@r@5m(aauuSi)pbKV8@9^@*kA+b^ zzYd#dx7x@vud}xy@4&4k&#t=vxh z(3kTbkNb0dgx}?ras>DU-1^6AbY-18O$JS^#f4x|fM3v#lQD5#Yq73j#Mi{vYjDQw z-W}{BE2OA>C9-2+z<<~HcX>*XRgtqOiBN-6J2_xdr)3xmDF}i@Q(Di-u64CErUAuiNh>cpSZU zGR!nNtLGkAjHx-`opE+$v-YaygqK!`w(+Ki!&9|MXOoz}lY*HQ0AxppRsetz49+JZ z@Tk(-?zej%_a32>Y7WzM(6RcKt$8-}Y#;VVYSU-r(rVG7>`@Eq$EW31FMYl#>6;Y+ z#3!=)H!%fy5GLvZ5TRV zIV|3Si2o-(#{&B-71vn=GI%?HC}Ns};|maK5*Qvk9y(*ZwZQET37G+agm1_|iZcGe z>d=vD+za}z?PsZyjQZncedy;Uw)Hhj)hbSW|FDM%S$v+8^zDY#-g~O_wI7r9JstPM z<3@iWxKk@$!^pp=scK51=l;N}r(N&D`2F`@YixNze5n|wSmI*s_@9C#L%Or+mxs6I zyCsVM1p>xj|MgsEL{cjBJfZ zH!RId(Vw;cRwE-hv(9WE7thm*o&V9;UhaPzS>cnZTH~{9r0LQ@$K+4XtkH4RjJ;m# z`m1^bPG>!#-_GW|z_q^nIyOJx?BdTG+>Ij@{$VM89o`&EmSFY_ZkPI`y={wGbK7s3 zW+mlHj6!i>=#ZRO-KJqZLbr()c6owHyBQi=+h62Q-s3rcho&5V|8-lUWyt%R*JghY z%8Mz$%yuhJ4~x1G(bDsM>%}9*&v2tb#}pZoP=LS#1dAd9fV-TqqWhK|o6n0!u3KBO zTF@`Nfk~P~IkC!#*4hhd-Fbh?$E(A~z74$=_>6OU;C!R(-o{2ywO(oYEFF;axRE-Y zk$&JnFumZ2t7UoDdZsF@d>mD7^!z={?;cYIM$&#$l1Y#vn2O;;BKW98;lb1lgaRvFCG+5!zhc1fzED2E*pUk?1>{mZ^{-|I_Br}0kjg@64$&^G*> zEYiSU&g5=;H|cyauJv7txDAy9cEo9zTKeh^aXQBtRw;ZcgzXsd%joK;^mUGhDY(ec zU*L18=HX$Ig`QCqfbc0^htHVM>ZQV`F@!x>#jL06DJEXjQ)T|J>W-a18)1GSef{Zp z6=@fAwOn?GyXkY%9hLDg+Ogha<8NX8Ncr)alapCs45sv{)(vIhnH1w zqBGPbBE5rAYfYJI;D3ZKWDpyP&yMR+E&SiTygH!%i5o)Ig`T!k`8U6(QfrZ3`;Uj4me_)+^L#72owGfMR$Dbt)IE;Tq=M|3r^VSf6 zC(X_txq$iT%Nj{4#o*$O^wYy$5Se304lVIqB1KhoSv7oO`DjZM1_X%tU&(Nh^Dlc_ zijGa{41&w83rsM1dzmELgu)B2llVO9yWW?KH04EuANQ-a#cCGGndFpfsINBuJ7h?$ zzhSYinB?a=qvmFKrQ)+8Z~c?pLx9U@{_CTdJwmV);w}XC6bWo=Q3t)luuWQ|3xN<3(MqKoIV`v`rPncAT2py`Rl|J)X^$ft zx2zsX$X1CUv-SN4-}nk9!C-w2C4qS3{8)y?2(fE`nb`d&KzEvsWyW>w9LE5AJQaFG zGUgj+ynbofF^r=}Su0j6<+sF6`GFr^__Fkyt6>*ubpF$80f!0~!kNN1K}sJ7jCC&? z=TJstc>19WVGVKG#(^gzMh%I=zF1C(4YzWSw4#XdHxxQNsivX>Y4?=}EZSXbqIII4tfv}FKE+>F%#dW+b zf_-;&ODOjH>z9AgQ;A1{?~^xq=-TUllS8uJda>1L-XrI+cK*0Q2Ol@Q<6mqFLM^u; zqAfG0Rb@gk{HvE;qP7%0cH#~>mnJ1fS4O3Uj2Nmik3vs>553XSLGj=dfN6^I@HjPP z+8td&rr8fJ8W7_(ww}OEgD2TPrRxy^_ys;>oWSENcU#p?(YELk84Q3701yQNw(XRL z=VNV1V~QG2RZYW){uUN{q!HU!iC|jr2)>^Yk>biUMD~N6zQrW+Z13|NUb#=QVMj*1 z?H(CQHO7dqC0n;$>w9l8{GMn#fyK(H0AEEC_fkJ1DSg?eIp)z&7KDBiwj2o5KJBOE zF9cLoXBok*Ma@Ud4|o3>ekH4GN9zfm9daQ|f(8G*;_%IU@p1^k$ob){5be6b8)SRh z|1Ah|dH!AF4TF&T{y}@<6<~nF{GWl!SDNTcaVEw2UxAmcQpiRKD*!ag$XoBfmJz6XpHspduqGRCC4Y*;#XrG57dp*C|R8?drIRE zPnVxa9iN-wgl5u?LAzaSAX!QZy-TIzIVhPgLPv?&*(ft|ekq7Awsr21>PrWU1!i(Q2=-`l2s5BK8@z%-bisy=k?8SKAHwtkUUuF*pLnS% z3S+SnS4z~*xxcZC1{p!2sW@92tHh{MnRZut)yh&aA||FZ;y0l3;c7M7>(9&U(Znso z1vGzObYXs^Ljn-Sz#uLHu3>m@ej^D`&qdz3gqA&NOB3lR<0?AlrjSlS?`@*rBI{ZF ziCx|e*@o4#46B@1P2 zYWVL%(MWKoX@}1buoH31m0CLd*tNJRp#Qetn-STKA8*>*bv1R;^Ek}52{P963tw}GoO-L8mJNYBpDa;oa^z=5 zE!k`u@POt>jRyipjLEL_vo4jG5JFx2A#uqDL_kYb+kbjqNN}ZL1OW>U>F9E5B3^mT z$9PWLn5I1R3K{+)(1+NPoWyE8u-o^~naJT`BtUcoSDGFIGdgr`*^ENAtA>Sb^~)`u z`PTp&>aQ+U1SQ8_5}gfo*&p@CVqtODi-c3$cBPpwpd1L9lJbY*DyP@SWlapkhM z6Xjm)c;^X+S9+9O?Y`}o-^2kCQ!#g$hNia0-yy<{t^{fo|K zWpg_=HuIZ~zeUcnQ1hpR@|(-q{>Avf&jJr<=7Gs!f%JiIfImwEwlE+4{R8Xbcnvpn$BIiWdwU$>@p%&;&{1H{Do zo)!)U2|i#7UKqd4r)zQvp8t8&|9FBa?}$Qrc|e#qxLf^3m6!buC7YQxU)v>@K&o{k z5?HqTm^Ug%t!lrlRoUxwf5blT;y&>MNm8pys5iMjO{64;MrYw5(>D@MKRY0b8@8`u zcVian>D@&+t-z5n$qiLcGZm%~*M_S|ezAXce9oD^kkGs^;fmpXt^0Amx&R42l!gq( z9a2#QQ|GP_0l2-ki0hI8yP9$E{?qQ=R!IS#N@vg{H)>j9H0Sa<=LV$RgKb^Qa3BR- zmEoi!7)dgJ^~Q*yX6N^-;p%-1o}+!r+DmmXGo4wdakDU7&!6BRNj)hz*}8^v*)jt^ z#r{IKG&{ci2#P$|TC2!ZwI66j*I^T{vB9~*qZ}B*n*^p7L+q;4zq3cI1>0@sPu0k4y2Ig_^Uc%pg75CzUD`)uu0q z+D*0IYO*Ppg}Hv8TQ|&X5Ef*|pu(IhHx-bH;(nZ^X($*NG@B}}Suw~D$pM{cv`s&t4nFu?eGM*mADb*1p4|9-oWo%^Vv<9 zs(U*M<}Rt-qCU1g9ALqJGJn@jbyzW=7Enoq##~C_c)N4#f9(|XREPUE@DAuz861%E z*X!Sme#ASt$yyGNz-*fv5Ft6>-ZJ%Xr|}=Ug|J~ruP{HE(xcP037mg{jQV*w4JipLIl@6#%cdZFlBMr}1u=I=3ALuX#yf zQzpTWnY_WMgYq)mu0@X}14^|!G~*YBXyl0D()S(^Jjz<^Als?uhTPY1I+R=f zx3lbWds8{-G!0T{-^6&KM=^r8XLr;2KM=nRrR8>f=woT%;nm>>wz2K&iipKT%iqRqf#70UgYreiaLCYV@3;)VJ-aBwGVr9*ud!iM0?bP|u2eqcr4BTe2UaJ6Bv5WU~!-z`9p zP2lVE_EqMCQ4cRqXauCY>(L(Dr?65XccNv;8i;*9OR0vD)+_MS1ldvumhhAV=JD{G z8FplxK!z^P0YW!#N4R1r>Mb-T116FGdfC(`?*EfM|0H;w=DBe$s3W@Jqu|xXBdW#M zM{>^>+K;*G?C(s>4UA9GbIqJK><)9Osf}H2yIka!H|@I5o2UIgxg}Pjw3nMVU0&Tz zhKAr_=YyctKXuZV@d&DL5fuP{lEH|K;-~LcT}K7dpSGfcfsT&0hAmnK`xz0CD>{5T z$5#u>PgW1N8}kdAhNJqLPTdbT_EQ>jU&pCTDPB!I|6Jhu>9~c+<>3M_+DGyJ7#eF) z^&Q&4=-XB&mA-f!blqfrEcGWvggR}dSFG6CFte)aV(i`BH;I(m*KDGks{g4W{;{Zs zw6YvbxXRT@r9zHN7|$pOv1%lqnMx!;LjaN6hY?c}>pQ{mt>LU)DJkP{s{;!cCuwNO z)*BtL1px`lliZs{I3NHeMeHpdPw_N#!eBTel;L5{Kq+_&Uhl!n z_xKSL2;lVzRGjrVdf&>%+Yg@d zS%R-SC?2mJUi3Fma+?-7U^KID=E_%d3p`Tcl@;llIZjeet0@g-r%)SDRuj5W;<94y zZ8sswkuhGiiifmrOYcyhwtcIfT4}tchC(NFj0o2FW+uh>`v8MF4D~xz^N6xZ@Lh7AhYgG}&BSRC)@M8VIk{TmWAHU=^WGt}VP3)*Fy^ zzW`B_^MOD{8Qu0ANeJ1&hblM(TIn>Oe*i7wS_MBnEKL}%8XIhT^O7JPbfvfd{F%wH z`EGdC!gFVQf3lL_@snWik^(2HkdG|ba&RuC&eRuCKhd-qttGMqK|12Je{rT+0DeWh zD`r8+eQ#-t;mCT_d1zExV2}C~`%(#Vjo#5_yZe(7E4e5zMuH+mh6*Ygd>c6Ut1J3$ zBD8atK%$#V7g6FNy1R=&TtQp~!+UYl+T!iCSvDKt5Tq_jge`;ANp12R<<(GnLe+qG z3t)8m+P>V2 zb=uZ*brC@37MyXgR^Rzeo@I`>)3d03#pp+I5O$BNjYw@4=l8AW+QWk5`F59LdmW&c<6u}&f^zzUg`qPP~lf*hGqH-5|vLUCz6jx`3+-mxn zH9t)4+7vtxJoGkME>MXM&Xg<{0*h=bJQxB{!0GL$e2n_Hb|<1DVmplS`-$1=ltw5G zLIirxAi|NFT?_hi6@1)_jVT901Q$irwtvb5^ATMX$jE}j>RzFWb`P9(%1y$FiBR!N|&5`wCl$Nf7@JIIydPUYOBDEdwR^SwU z>1@uNtCru{Z{vp`xA{$@fNR6X_mmpzt_N*L-%iu$d_R*WQ0b zjG_n!5Xh|Q@CpE*k-GU1VF95bAoye+5d^vr%mVZFkZr2JEPzl2WY(lDPFaym5$Bdb zXlz2mw1O}UcmR|r-1w)r)TxEhh$~^WsSFVjFxm-jbo|87#iFwP&43C>b9>KXFuB=kr5eoQ)kJhxg`tI zv3$aIzs=ZUxU_JGC+CAgXC%r;yljW4$Gxm3a0Fgv(7ZE5DnilygJ_HxgFT7=U>l=7 z+GVtVVhe;j$~bt%6v~pwQdISr^mk|%O(T(1Nb<9B$(p!T(B!g)QyUqJc|;XHu!mth z8@CRIb7r6YS6~*yTNYC(KL@9$Aj$;eZXJ*iN55r;g^)o6;3D$|#( z?j{nb-Pb0VFTGcjn|LZ51?70Zief~95;!E?q+0|jYG3<`kbuFvx_~Xvpsvj$JHBEU z#60s;xlrdjtA#~En6nrN5?%zJ76JwyL{3Ju1px<&rmkw;cjp-L5!3f1S*M_I3U7jH zM+iz`Z5CsuH_FHSGWu3bKCA7ckAb2X>*Jma|A%R1D@UX+}#z z5!)lby{h6@jx^MP_L-TnzXE1LGK`QLF5zgaWql3*zCsOJZma)1LQTsiLA0{(BzlDf zoR&hY`b;uh!1GZ@00T=o=rC<2Et`KK7du+Vq5gh&l+!l250OCm#kiOI#yoCil#5

    `&LAo1prc<8-YKVu)xHmJE08<>gW@n zr5&Aa*5uYXz5x%i+{}V|ipH!dU-ZP041ED0s1@yE6FS5M8WIqCqY4$W#TkkuilBsv zZjTsrK5Er-n?9TV1>+M`aMOt3=Koka?8YTGYS(YzA0TTE2We2|w4$XHOk2mz zVoIoW6-0fC!_2|NrJ}#a&bLBf9X0>VuBEjzSf~jc^wIPew*yZZ-AVSu4rLd>$4-3Y zkA5t>oDktM?e%9jFT2`_k55IWRq@#Yen?M1vwibW1WCw^@bP|xe9l1aO$A60wlLE80m!~R!DBn&ymBQ$6qQe)1nVLt5zbk#Jn4A^9U5SwK#;g`sT$kl5h*#+kP&ArL6{DXPbIbV^enaQ z)4wHNHSVD-^_)pGWNA)zF1~Z;uuU+NXI}TDw|}3LVnAIPzNDU^CaMz8oRv0#O9lXl zSS2$Xynt>V?goP4D2ljgCe1M=p)B(u60=u5jF%MfJ&Yk+;1h1a)GOBzg5mCe9RhRo zSgBvGEx&r^m6**O671~Ug=e>DJJqtI?vjg+_$B?6{ADynfArxrX0fp~viA|@iIt_9 zCCpO%`)rD_I5UcV*lA(0PB8c-H|$jO9_TcnU=~(QW;p1Jb7)SK6ag|R+=a#wlD(qj zqoMaj_#_f50%s9ShVhT27?Tu}0CO++yEr^AqTGaC0isQ1A}gRI7^;;$+i3n*DN@J3 zC&eGuJ=QjP0z5-ydg$zth~rW<^DS+xgKK|uZCG1TdCpC9PIk4Ay*xxz9rj zc&Q^jRh?yZI{8CW^PXKwAfWm8<6DF%6TZKO&&fnlppQ7c*ylMZU7!n%` zYk+t4 zRoiV*f*~XVlmJ0wW$L(9&v_j-@QQ3ihI9Q;5?i!~?))!KAx3R-gQ0V44!GqdP8tPP z&hGxgIp@KewaN;+MW_nL(nd4k3DnaIl7HSOlNlPRZP25Ra$WUSco6+eG5zDrT-)g< z5q`H5KF^i_E#r!pP|M-71KL|A@A@OeoC_XC4Y!a(acgjp4nix6Ne84avV(~;_7!CC zE|hAW?K^0<#)27zie_T5iQzBgjijhjW&4+X3$r)PPEc~zPA;KqY;Z=6q-K0Ar`2=3 zi>^xFHXws=wF)n%nv_J=(ZLS|76)?|3Vq)8LhVu^19kn_|F87zW(C@0tl+`)1Z)2O zjmNL9`~Zrw)^wqF;%j0#HYwG+25Pj*12mcj3yR{xmWC(I#@23-8MX)^+EHa%arsqzPIv7VI+Ga`$NRKjb? zZ3Y%+RFy?tW((Vr1>Jo<8NftP7{F|TOK`d=J> z^#1?ZmnHGW*#JI~10*sdd1;8Q*&k#d^XGkH^PXeP(f4E>6U~3$N!a$;K2j!+&K@PV zoQv{@{Q}TDL;Ef|eI~BRSFu)snyAE93w(Fp=>_Ry+t$}M5u$YjrhFeLbbK_o#*kzf zl=>=p1gN=t0+jmf*=Nq#hnF9e)OAEeSue~e9hs|^MG+KCb6G+cE}EqqS7DTK5$OOo#k zYtS6C(09d7Sd2rlYPnuXGL*m2kb>Uhk8+&%Ke<}>|UKw8PVDsxmmg7l<5fhPyV_5kpPp0Mc zCNgVENotibJ;bax=y^lF%_1Tlq%_{53cH{6$&K0Y*pHTYS9X8Va#O6&jze*E*45CI zb?R8is$t#!I`z{ib49f3DfxEc?YI(CWK@N^J4T*zr-5f3DPwhc${1v?A_jq&F8%L6y)_ zSn!p_4dg6gYC0rZIR$`X8xSNPya}B%6fn08u>cFaJ`{tOh8uOGlgt#E5v2!PLgV*2 zsL>nb!Jwtu`FXdPwcbxZ`{3c>Ms@L)&CIXvKLTFf-(DWh)|Mz4O$)#s>4CIMT{xcK z+EJaC{YFn`K!9frz2;5sY(`g)oK|l@+x0KIhk$DTtdL!SsIwI`qNm@){2wBsIEMfD zKz(uMgnwS05G*m8;8q655xhU~!H-^2WV^I|!a(7~@W!v?jJC`O3khz_^gfJ9bc+!V)Qx}$et6;*k2sqBu|^7Q!p?a0YQ z6AFCEf79Bqq9y+{ZWhVJK(kqsS?S zlWY5J@`RE|z~tR*w+$DhSdWvsW4BmDUMjVtkB9asX3nh5h(}3efa$^WLma2VEdGkE zbWbmD#VH&6FTqtHO>${atAmcDo08HMV4uw0*!~;fk*sQW){dHs0szo^)&u&uW1_%(U>R zj6^fpVV|AIFLq_`qbaRj7vDZw*2A0X4x5G&tjp1b3w_x zEfP*_=gWoAB(zeecDJVBM6ZI^9IycppK#wo_+nIr`zh^opzDxCrZzykgY_{dx@Ryd z)ah8U1$iM^T`&e7B8je;F_Bd&Ae@M}DYzeig`R;XH`5Pt@D7y_4@MV|Cp!Yd)4{+q zIMlqrh`V3wC1BWtf6xyrCxS37O`nffE6nx$b>rs3Wy{$a^^aI}h!k{!IOs@$D!>6ndY?H%F#bWeSr6-|85&)yt5?Q%v z;4%L|c1K4gmyjka5{Gr9_*YB={~yu~aSylt1N1IXB8w83*`Xvful|z%{CR}E6m*G% zhLc3{z7w@+e8mo@nqeKZ)r{v59KPkI5Ia8Bea^IG44t|w#y+j4=d@sy3L}aB zBU0a?jf>X0^tX|r+&$s0d;%tZZTxnXH`|k#^uHgh*t{$j-;3bag~NZmoaD zgy0Z?SJ%hY){u^K?xA{QJ%4OT&XUPt=%h9VQlmkbq=1lbv|f8@fOH7{nqEh_QF&{QaIZ>P0n>)>a7Lv_v* z>pyZE*8BNOnYLG`=alYAT$1dU0dc2+w%dvRs0X8~XZgC$y^6p& z2P`z7sHk}dGk_g~pDTh7v_4e@MoYA}KMaLr5RqXqy+BL6U8IVA;UMZ3z!^#iX!kK%BkYaQUk$(*iB5@>uF;D zL*8>-m$1&E2NKRSJdlk|K)Ph_@Ig*)BnoK!|Kc(kluKl6Q@^#x#yS8hF&0eNVZ{{xC=~tBui>Yn zF6{h?sKXJ}ePDy=jLo_0O6+5`| zr+jc20HqmdC|-a~61^q4Td+lq%&ZI;ws14JHLwXXkjF!?V|)MoN(l}6MJ*{?TOU8{ zc>-zNn0>{jip-e$2SThyZ-W0(XQ574&2Nm*_(~qe^v1*fJ>ZNz*UFv=TmSl_ZR4ZT zWZQ;ui`Hcv;@p0>lD>-@mM>1aS_c#{rClLkb(782fRlk5rno&2qcQy#+GqW9jmW2H;Mx)uhSiC;)QCWw{-60+wc>#AI)&aM_*>?i}aT^3KU_9l~4xp zA{jdwyBP^@a=t(lfMax5$P=Fet{_Z&nKMDiZt(r!0CVm!c8Yi_-en#T2TL^iH2?Tt@Z;@U|+dd4Qpkf`iA+3BpeEDBH z$dW_zlJ?_8)yBNKYzNc?JIHcZMev~h8#+;3>Z7b$(Nqxxq03U3u5ePk$>_96^SrQK z>M1 zC^HT|e}&&k*EnE{5qu2;HA^f;ZS)*AX69s|7M4RKl8PfMZMwk*eS2Z|GU!h=8g{&@ z;wOf)1*3py^*o-)v%ad;;gClQwQ<+4=?xhP_|R_n!Y5j1Y7-pbd`f{1AJxcyiWao( zXh+pvyR8L&qk+8$x_M-7-RkgoI%4MD{URfrn$LV~MbR{GW`)2Jy{W@~q&iF9@D&r3 zvp|xH+_RaQvKajWQSM2g&BVSQ3yC_HX^wmt#tJK$X@w63tgb3~k@-%Kk%zVcvIIJ+ z8?>wItM>cV*QATSI0Vv(+ZLpSoxh)Klv~P?`?GFQme9)5zfMiFjC`Ir?EcfDW~~WL zO@ENM_%IzI9~|YTs8llH>cek0i30oev%;;I$>TPIB@USj5lMe4R|)s_eT#d*k;X2t zY&$Uof(SP{zN|%6EQ<(wlydspnlDQ=HtOcBdFRB_HOE#L))KN&LWNn+*5cO$SeC$wj+)hj@XDNmm0X@zViy5LU0kkv-UOE?w z5rhVRy!Qh*(G#NyrBs_|8@~rfWnLak>DWL3G9L<$XZ;PVpGDVp9ndo1boZrOGKp=(ff??8ACGaSOn`5 z3Q(>Zn%E3>kmcy^Do{`=h;pI`MtKx-gpnM^c`Q4n4)UKpt=D9O5GKOtupnP2w@w0| zvL_n!M9IutVMC%P?k8o^l@R*Nq+>zQpO;X`0hTo?02W_J$Gfj6^gO;o&yaH7M zf-dexul5{43>e_(Zj9tF{Xg;DMA(svf%m6u7jLkO%tHnf^;RbawEOE~zNsnTVKZ2d zppn}iy1x8>O2g$}rBO7@>t*P#4OZ0tLC!!q4VZccrad?zeJgTkc(iRz^`v(%?cU{ChmS1&)-VJ9d%4?X`SH1!=uv{3C-(jm@pf>_u1y?qlMHd zPFp+dvvXHpY36}0^W%J&Q@h1U`3f0q97KpPbyHGr_ z$i(oEB&5N^F-#|)UkRfFgUUKD^8VZ@AeyQ=UGD*xe*Zm=XdjtKHjDL7F{rwI#G}p= zRD5N=Dqi3uI2mRc@(bd*V2qbxEGBlvKXMtMDA6Cx9nHcY49;sv7xf525EaUtgz zG|-8w!coY}NieA*Td=iO6);m~P2i3|CXPl8h(0z#w38d3BJQ|%5b?rT%$c~SHdZ{y z0c?4&{ciAdrWB^+A_zYn_B?ci_{0+Hvck)v4$*VN3gpQkM5Tj>P8{4-LT_ZTSjCI> zitATyhiuO@=KJH0InsXh`czkqAL)*qf|Tyi{vL1kJ}2yrQDy{>fjJtOTbwH%by~Pv zHR@~)$K8eqHcn7x!HExV#9wGg+6hXHejv9Y4ne2`I_dvcs}TKLtLR*@?bStP{=?J{ zxTO*qS5*T7oEZVZTQVJNt^aNTcm=}Mxk+A&BQppCf01rjEiu9gP5DG;j)M4AS4cC} z!T1eM%XSNE5rKiow*K)JNe+(x5vbMenX%$kfkP$UW1&(tl@77=MRcR3uHWepnvONf zeOcU~Cd`%8l4A_9z1zUFUBapl8(;N0475UpTC*a% zkz3KqoiGXl49ggCN@bE2yN;~jg(pEipD$ZZn6QA*mNhN{1N=GcsPou3MBb6 zmI^%JH(xt*%PlvD+1Di&0&G#aISo}pTat{39fRBA!6%v#J#H#*Z*-$#6;e`Ni$QMnFO?pjlRrY@ zg?8pgjkB$>PqW7B_u1%_(9Pk+`i&2&ZHVW-&|hfyP)`BHAbk#0DR!Z_ud?>S{wI5N zy;b(UKlwu3Hf)40&sXjKlV2y4#F#J7=pssbZmGFvq@8MIp$zyQ<+*BZ80jym z>LpyQOwBi28Ji8SBi8m^2F3(ec%V@?C=;5?k8vB}eLtwNbXw)*=D92~OL{{Fs*RA1 zs#w57eJ9P$!-pN|^l;Vtx!pNI&}A_On#a(*YuCEoj06`cscTq)W_2tors0D{z_!}H zT8L?-%VS@NC@a>bS**g7t6h?qetZq#jwX#}fWo6h*3!kVwzU&Pw@RC_70rEgmgGC3 z@2f9(_jg+c?J=vY8`l*dm;AIxm8FUTIAn+B=xut#q&Qd9kQkRbI1>GS%%_WxFcA=N znGL`#C{>0b&Xr=2&QKntyTerBu^0|p%E;^|SH2!sBB!iAdz1+jg}VYCSe_ww>_J)Z zqT){rj8Sx*pVifYVp|ib;V_Pry0<%iJ#hrC87B;X-#bOX6nyOu@nCHScR}4X*CsBy zhzYrgO!kDs(_>z~vb+j@nKANd6>1<^aR`QI(@$5vj-NQLd_<((>_Zm0%rwRJAz*ak zIz!Px@%`yWva$n>4b4b8>rF+{h>`)}x#0nX@N8Kk<6>}-RIzA54kWk*|3z$)kmq%O zIzyh@hR81`W3E{%x_Gzj>jn_Ac7I)Y;OeXC-p@;m_+L9Ss8ovazbO7lkWm29odz;h zoOEBEt2_xiMv7ceg@rXXGu6w z_z5V0pBIm+-5&=Q8r>HcWPWWI9(0E$$M6yW3Ngs|P}Oyj|BgELipVMc+rg`9Kr!KcXF{I;Q8p}=nAs<0P@qs#ziy-oU@kp?I{3AOmPFOc z7ozDVM{TEC6iZ$XPd=QHso~aCaHQ6>tVf4e{0WKYB`r+H2pRwZcNFSl-(*#8zf`W3 z6zaz6{z|F-j z9Dr#Zx=`O|&wnglO=gOezj!VW`Gtpc)ZbpW(%5!=)5|7AmvP{T*Ks@(Hrj9?iu|LT zNc+Od371`ER1vDjeRIvxXTCRs?TOFtz{%I~wc0%0%OWpDHX2Ek%nlJ?z!UF5IQrAt z7f-=N9+erFxE^0}e%J(xxRkpKLS1m|_)?5YGYhrM_wo`$0oMp#Q$kv;{|b>4oj6tS zwh_CLwcqa!XyO?>i=}{z`IPb^{{+${iq0Q!^DIv~lT#+ux8hf~??F`zXAny#1JbB- zXAHPwM}~gaC8;AExkBtOffuV}u|v=9wK*Y__LSCkg&gMpa!btq9hD^IK@;c1q~ z5a(s8==2ks6}`_v;mE+r2;ldeOm+j;ZAJqd)Bw3(G!Gclj80M7|BeXTXv&R1*?d}YjiSa*jw*EhIhI$n00Obu{#X2Wu_VaeYLxgff(_!e2 zRKwk<2<`0nnRlGzif8T!>h;(&kCssFhMct~YUia@NWf272Wa{+?}hAVHx<;i9MGY+ z?BCm%+F!@|C(!bDlqCe_>)kM`AsQ zNf#lKbJpIk2F8W7Ph!Jh$NpSc#>{zU?met0?d`;W1ZjgCZD?yhA%TxSy4yYNzn+Yd z1X%$95hywlXM&Z7_R8L_XF@N3x1WgJ+a@zjYc^lfy{q=LsmB06;oEx@nHdejcy6ce zhsd=6ct&EX{4S>l{go?R0|eQ18gDNsjnZlv%uc2ZjWJ&u%xVeb7|rnnp_4Xxz?aF# zL9|*PWN5p!_aplW^g4%omp>-RzBW?_(NW(=EfPKl$(S0yCkFUD_31m&YR~4xjlLvu zj!M56gp~xJAE1ow(vq9F58L7SFo>l3 z-G+}wZGbnlxDFYXW{hRl8(s1XR5tzoP7>3_Bq42{&M+ zW)+#3ltuON@ICO8dLV^jXy1TA`es#KX7cj_f$*mD!0^+sWH1>c01f;Y`JG21Ng^Sv z-oZK3k}IDlc6Y$E1*VBmY`kZW2_VmK4 z*t~_vMARKHK2^L9XSx9d56c`UtYdETEbpv(_!yW$Q9!&Q7-9AAI(&v%07hOcw0sAA z00=)Q-^d+#S-_uX>!&A7Q;47l6%kqwG$%0S$!{=_fBZ7?5ginl1?P;=qWO7Z)SE@>HnMr?dIn1TGRq-y^7@S0%lLoMjxdRi2tH&*I^3n(td` ziWW;E9}hLU<)3ttfy^Ep`D+C*neWy99;~f=ES{??x^fLy)2^>X9l8K{ZG9^J)xE+IPVz#QzDRwJ>BWrW2b<}HRK_s1E~i} zfDv2F=ZKQ=ilQvAZ;L>n>@kN)Vv_t(g*Yr8x(`azrh=RfB`dNl1D=M(y|j)cBbdsh zJ6IDni4EY%CyTSHmi>3N-&1cvJU~70?*SC~2M`!BBstJ`OkhsI8{Pnapr}BU%vdGf zSpOZ?06-G1;|uowgvebI5A(#h)8|tE3kM4r>Z%i3SKkYjvo{wXFEh}|-qSJD{|D%9 z%bRJYI8tEw^WqyIfyJG7C4O0qY-Qwu$`h>J3z4U=DC8yiw!UUOc4lxC%$61XpfESPtq05$?5NE8_->^uT8 zG|$-<6D7ta66-J($RT47ROdfUu&xCQStsS>WjX7tF341fzslm?XV$TWkN`N{L#0*{ z49a%6fT_Os_5_eLna&zOo~$f}Hey@=x%x8<9yk@c(!3|upj}rf%&ZdM&c$aJU2e7zhBs)HD49Q zLkxQQ73$hnx6pDo=pDdgjeDC!$V4D5*KP^Vp`i(e)eJ~OC&c|~;psqmW}RYFw-m+^ zfi!s@{DNK;=7P)z7XuvR5kAlF^1X?(Y%Nh*I6R0uH?Gcu87)T!8@Ct@aL*`0z?uH2 z_8@YAuGkyG8w?io4-45$iKS%7E_r2`e_He#wvXU0qyt9mAi5~+=p0n(_ zuA${OdluAc%|_{^lV`XFZ*s%2O2?E-&2e>cjKH z3d0PfE90=(EB5Q9u=^I)&+o=4hfcMuGaCh#)6P?v)k%s0cJSzGBIo`6SWmwJKC_%M z-}dz(V|>UVYu)cY>P$v;QM4hiM-I?p`(qH#yV zlI?}B%{Bjy`d4y1VKMpVEv8USu?-P1gqeM{F4hv|3Zl*>C@Rp$>ze))B>4thg3If28FuaKBJ>ha7&V5&;#QoufKEuUF7E=OM!UP zA^Qdat=%{Q087Q{$dbv2bABNLoi6YRyJX|(mZ0M-aFhfqnzCEgJ*AoOeVe12`&-WG7UX_RlznYzyls8Z^psq z-YugAZXk)FMmcByGk@^zp_^~X{`ehoqC-<6n~qwK^lpz7DsUiUu63`O`P+$x&8|B*7*%79c^@JY(9Ykmvx3%# z-$gIvFI_W(osTcCv&)aIQ_+0v=rZ#0&QbIz3ur7T6G;savUXtpyLj)?_Jj2viULTG z(FCCBgdh|nra`M7c7_qhcoR)E+~iZAtBtK|zT*zB%Xo4QY_7MsXu_;*yPxd9P;#i5 z#N;4I?^Y6IR_QT#)9UVG9kic>-S4yd9}8xcR*WxWEAhXly{v|BHZJead6u6D*drSA z+!mdlM|P{}w`<4S=+wdpJRe3DducQJE64gx`k6^cbYhb0({v(|Vz%-Ios3PYWJ*O@ zq#1--$fUug6p=p$^*`G+$eH58-O&4&`IfLPoMnP5@abhw=*y36Jj$IbPGC2+<^^H! zf>Visd#7nTR0}JKnZX%S#}6G_r$BN3DYT6GJ3EIATjloF9ruyYpXV9&%8R49&_|XC%>eCYuy4y7p#O=QHUZvrK z?yp;^4OWNNH6E5wCfgO@sx3Nd1;*0@^I1!KHQ84fRBKmd?wEti%?j0VyP4JqJRkS!ZvqZ? zDTl4xj3_Z&*KdcGqr)pS_`vMs8f9_ivxG$~{<#U|PUohME>%~@wH|9?hQDZJBR{a& zJ?~jyVkTSNjr+~6EG}0vxiD1Jo0u%htPu#VVPnnC9f_>fGa7U`PIML)Ge>fv)XG@t z#SFVPm@iy}+d|LF2hIyiF% zFV#dlH!j1ItXIg@8cyK!2MbR^h#>I@pGqFDF~5~ zh!n(8VpY4)u;p{v86W3s?)=GmU(>gJd(S}lSl#Z}V%hyDUfyJzZ~e8H(LTh{@s_K5 z>*$|DL;g&fC9O6Z{QNuouS|8S?gK;qDUz*O?eV6hNIb~NtjMNG$;_bE;Dk$Ps!`N* zQ;z5sNzr8O5el4R3J7P>NDr^!({82eiGspBxYey-iAjrSJU7-gEscdub%@@@TIOid z%cd13e>K-{(1AsVAxX_dRjD1bEDqX?qn?E*mSPWzQ5cH^Abj-**Kc=vn53I=(JcPn z_^7hvBie5zrmcKr3Z}t7J2aOr%~++9Lz3Jg9Pt=tMF;#js>8$6P4FX_iX(byB3O zzFu1Sl5S)^Gmy_!bOz>(_I*8YexnUrxsYSvlbqqAz{046)jGlVD59dZB%??+H-=JB zd!>N>BG+KPNyU^&$jpC!XilVaL92r-RxU%mzkGMrogsE8@=~AVv{+WCH9To0AuRL- zrHeaMZDhHYJdLIv+)|brJ)l4q1O-e<$`YQJLP!FNBlCUE@vA60GWlnjg`d~Q`sdwF zU@A5RK#FlFU_Z?y!;vy6zT1Z+LG{j)C8%3AsZ1|v^BVPs%o6$@+S$DaKS`f1j2#+Z z`y072%E&+a@NWysn;0-GZ8rO^Bd99!eg4?Czn@u&zx|L$r*G%Eo^Xq#Jm^xOLi1X; z=Vo|DVD(_I7&!{H<{=F%&!uVX3?)Eh7Zzvqfh`rCcYapxc9};1+VL{h z)guWYj3LN^ITrYsbhC`<8*kT{VN?KX#%a;{+abB_%>OC$N5w#?J)luWX^AySJ)jem z!H9qj(xH0GgOF5M)Jmpz@HFJCNZe`|Srba>)6(UYAL1ypOBuv?!wagL4OB6u6D9p( ztI|=zlR$QtgARNLsz`rI<+U`~+>5LyxISkMw!1p|{axCdoFgYC^krtx_?46C#CgXIJN~q8_qT z&6qNK)$Rj-br2gD0VS5i)`y_QE>cK<7%gvvuZ)1kRNd(l@AEl zDJ4dy2){@r$F{j@R|gbARmSSa4$XrUwKU=dNZ%f1xI3`2sf5Jmw1)Zp(!<$82E8pS^aSia z9EyKVY{Gw!ZuPoZL8)x<|LTYWS;o;!vS`8T(A2Xs0ZBy97Do}3tfKd4z5IMhb_MW@ z`LrS1P=vah>-czOjWjPqV=@jEJe)}nf7G;sEz37Bw~+2#Su3;}RUb~jiU6Nr zvTyxz_T7ZMT_bw|Eq{&%rbGJhGz9;1?~~Hz^rn6fymwWXvaXu?&-<)+74Gw&D(bP* zaTpG}O5Z1G;Nc_vT(g45FWxp83z4OcCjQ}gArYm9=Bzf{AQxH3cl;(_dE98E z*4)eR+(g~3hW*~1)yvJs4;0CTc^ce(v<77j*fdaZ@cpJF(spsVRO0HAFH9;4z7%yE z9ocN#*!w94fb$&2(Si=}pwL$&6Ea_2+BmUA9YNUpsv{p$?YNs;rEv5yak?(d(D6!>A3pz$U1mJt1l{SPYAFISJaK}h2)`<=Lq zDk1@x@k+0%rF*<>hZvLl)mIu%m;0iUd|4M9XN#)zN`FLy4%o(Hf#2|C!znKFSq8|n ze%6?KUNUY!>=bu>x-KelW>D#r?@)Ct4WRwsZPGJ~1<=`r>ckw`QNS3#yYqHvCvlgO6_H7Yg&KSoWxQiS%9hNKsYkxXC*7m44f`UzT}N zM)0B3W_&^pyeKoC_~FIUe&?6Kr_-fd7cu2kS@%mu(Xi(*_ps|p%qZi#XpbedUicO9 z`DC}EMssgj6IR4rlUd3+ghjhwL`FzbNF|k!>odM`Vzaz0^=kO7nCM!tzecMCQ8S<8 z`!^r&s-@LV_v6_I=1`}7=o6YEsr4&tDR_1YE*lbY`LL!|5=jAh)B;+7iKLJepsZuH zdF^jNKSRT*I7OVVvEa$>&97DIEuUS&?pc@C7WXfbtsD&2rAuwS2h&cda3C{CERt;< z&A(SkcWfnzfIqtTHj66env*;J*;%`{%M~9*^*u)g9f>tvu8|lGcm+Q4kXM2nn@uZ5 zfM8n1Qa$a~VfR3|SA>i`{iK78hn0!xvQj%$&wl&_*9W)j7VQg-40jlnf{@jfzSIkr zz(?D*{<78(@!I!9x^5JQ8X0iPLxc3z7l=T~B@%I}Ct%`EtHZ)annlINf<8*E63Rjm zo66%|o?P4plgv5bEJ}&nZC`{lPhy_v3y|O!XHJLiJM>sC3D*W8Qe6v3_yqkJ7q0BI+5wLLQou&5qI4eUzi6H?7JWe;6&}1?i zA>w#~4@aI!5CW zkXQ}<)e$E!he@{z@=BoP)vKED?pQ{~d}d;#n^}OXJVs;I>>I37vUcor>(~&SZo6@Y5(?);5Y`t77Pqq?Nc+ zNMAISR5zR8rx?0QKX(OmZ(X*^%D=v)8)`@J)t7)!Klgko!-Qsbzve4c(s6R|RM~di zbHJ4AMVbZiMj%=CB!$k^@$6Vjjr14JCI&0W|7JhYK6$9nE5joQD{19Ui%6{EmW`Zk zak?&W^0=o zRU)=dxSOrviYK?8tHF+O_!ha7W)Ab9DhudO}movJ`-bKL3 zqJw)L9D%{~4G(tOR~{fu8=~I$!9o%t&X>9wHfVP^xWJ-9st9=w zDJ3zy!r!B~uN=JI2RlDFKihEK5Q2rT8b)seH3sCO9kz)hND4clamYCr-SvvN=}I`*2y20r)fo+ ztu*=QraB13Yn7Vw$W`Q9?ah4W!^2x^Ax}S(nvN=dg{bs&dEfceAVHRJMo+=)$KNFI ztNEoD<@&gLD{yz9QC7~O&cGGZfA7(`m4+v$#Xh9|;NjO9$I~VEkTRJ#S!(FkQAAPI zeD(31U%hUpa@B1*HOndd^S~l@MPEVS{uCF%BBv$s1Hp~wePuVUpqIK@5sTr*L|_x- zKjXa4F)I8&1?{Ri5qY)0arA*T*)%zqsDvCc5ifzBYF}X6m2yF#f`{ay+GzfZ%V3xX z52n=qp=s{IM2rc+HKN^vrEl!f^ioP*c2ZS(gn~Ma6SZG=u4k;-A5A&hrFrac`zV?= z$=;qdl$>;hESj8AWC!O`&u#UKgDutC=vpID^2;fhfwf^e?l+r_o`Q}c?kiu90dwR% z8GpPjbvD=091BT4UuSuW?#d&=I4*ewyo5@cY<}((itJC}ZfSnV6H;@?n&k$m3nMqE zY7xz#(S<&F*PvW9c0G7}9q`B6+ZJ6+5a3cUJVujDF|oJ+-@g{tZ5%8Zh4p-6iWpGmsNgbprj6rF2O zmSo@sSx8~GBG~$Uy$VCqFJE%!-$NBtb0*)ibIdv@P9AgD$EiN3EW?ns?(NvJ#8*tIZj&fE0pz z6pc#dW3zNY%HrFhG6;XH0(al+cIy#*;y5gH>0n3d=bZ~KNUahVGuQ5`mAjMkFei)mnzgfo87NY#ETr1q1-2a z%%aC9ZVBe+vRyo%Q(l9A{&{^1B6Z_MzNQhq>Tt-!EU{M#84`GG&+q>7+d!6TvAjef*mSN7De>Ox^P0*SwSO3v`mWeZ5^cFSemU3~A% zjW;A^N#?1eb|@8mepKknMo428En${lcHWgxw^u;6oLEjSrMHYwG&in-x>l$(67U=s z>1XsnAQrtI3r;tbIY4lI6<4o+T}I&RQYhn8x?>H_;nT$mtSEm#OT`$E>97sn+v!u&NRnGxnl{C8v?4p{JprLr>se+Hg0@-&lo{$=L4N`4?)bsYCkE=6H&v-iaG&6puq@c+XPkOlDYhk+?RXT@j_=SS$ zI@iFgg2N8@`dCzsc7b}~7A$UOK8?}P{J?SoBW*;{Dz2(lOlsANU0vQ-OOKI1_Qosg zr9nb0xKtAQdpFuhN;HIT^#mI9vvHGu6|}4>4*l?TuLHXmNvHPmwYIMNdRyhN_kDZA zO`F0^+juqM=_%a;EvdkEUQ(f!Frn}LAmUDe`Gn!**K;Xw$Ojf*1>FzAz8jLCCD4C5 zF*?PLkdwf8Snwo>+FB1>5xOKF#~#Um)2pB`hWq`AbSz&a#e&+i@mIC0#b;C z?$mE*AE*1Nix2_tH(lPGN^boY@2BFg&%m{7p9uL6f-KRc0^td%CFrh| z*nfCc?0ld*-FEw@I5yKAaTd3bYdxFntWSI+vLTTOad+gl5IH^VN?zC9Ixo{=WzT{X4 zvp21ljMhcsSF{@~jJTXHZOTlVKD{w2dkFe9Vo>snCPZw$h_q+R1HfH-Q2HIi&v4% z%6gR2Vqjt?oqnWQq7KI^L1phQ;7A~WC>PJBGpv%JIa3^ok{zsA7@X9t=9w6nuOR3t z5A+iWC##VYG+DZoJvJliDtsG=DSHh%+GI|evE3B;$;OTub=cO%3a($3om~GDIj&TrbGnLHdHSyX?z9tcnafX7;jtBF?OSt&DZBgMq4vk znM@ogA2={^KqP|J!D0mft)6kEo{r z%L8-NznxlX51KZ)!2}E*3@~x11>vw7CAJF7wl860Ioo%53KH#YRXMU?GLaBWB1#mH zsB|M&HA(T47COH!tC{?Og2;NuBT7-GQvC7k11H4JJNo4aR?{M$A z(S4b5x8PQCG$Dt(wZe)UfO#+ra22=s4UUlL|%M z1B68eZNi;F37I#ZF1axgk@CLRu=xsIss`1(V;l-}41Ig0VQ!I>E^1-fL%K#&7{n}F zP+TL$OWlo^1q*z9L_B@CxgZ8@+46o;d0sWCQpvH)Bx_W&^~&wY-U5U^QF8gF^J0}$ zt-FJ_F4+&?I~&NH4kEYNq65FTe6%((_W&K}LVpg<4Bep?EM_t3VM}5$g%2v_6?hsP zDX?3#hzQjooMIR3G+Pj0Ifgp&*a~9wBs5D1=sJ<2#I3kVzSP&?|8ZnaZ zP;&7Ae&G&4rQ=xRYD11D+55dYfai?nmQM(-dyXz&3R|UIMO7Q^)pLw^^!$D}n0~`U zz=R3D%8i%!*2wMS*vFBy^;-19mz+qYT?wmVy6bv*+wWy+`iA8EC#H9~Isg_2T>IqBAc=1P845C2- zY!S>w_&kXKBn@{rMzC9Cslst?*~n5)IDPfCP7oR=UaH)@WJ|}Vkb@PDX&{8SNOPcWsA9#@>)}>h*FftZ%tC-{<6?1GzXSCYr&yF z&9)Tk#R3zfblM3~11)X|kCoq!#S~R#2UVC=B`t+LfHr~tYKTR1Em2^FodLfjd*N@yn zkvje2gWb;s@27Z^mMm@7I|I1jjj>1Yz1^<<_qAc>otP`d79B^{e>fUYk&TH~mW^THJd@;$w z=Z$%38V4H7?z!zMyzDG`E<}_>YZ@Y!q9_$Hi=O4tyC>D*wbk0AjEkc31HzZT_`R8B zB(uEu#`>Ye+sPT=M=^to2Rye3-c69C#9m>Un|)itFAOX5hUk9P^}ZfDT<6qgbnlm1 z6xsdkNRE~I0b_vJZgv7Qhwas3QuTj_|+V5$0U&E-}CNmk;1+f)H|51qsa3@m5>JG>jA1Cc8XF)V+FsJn8pyBd%Q-iO07zqeMli(#@UbFzB8%1 zVmseGk3fp= zGYMvla(aS}H@g#M&zuH%y`#?e#6f|N>La@x`=NbPl64vB?~zO5S6#bBq#5TiBM1x0bHM?nsm1fnVK1Mh?L_Hd;$FDTa<2uWk zLSZ+&xO6>(*%2Ii4YwNL-;3Jngz6VliZn`A4K*P!T;co0=EoKRUv5*w7QVI!Yu!y*U5THqcKt6l$bQ+EMJtWU->9goNV+ zCEq{wIUh&OT|RHZh&t|zRX^wgoI!eL-banXtFjk^TSeUTr*DS##`@f13hQ4Cy=^zB zyo6R=CK_J}wgk8|-}LrFJ4SGMo8KRA6luA=OV|81u(z?+?k-n8lHIKDzVaERo{b3G zgeBH|&o{R}8~wW6*ZYbrDj$~^_3dZ4@Q7}L?LMSL)qGD$^>Zf`74Yy5jZ2uSIK+>= zTF&t|a0mYZ)3W~!rrB|L|HqGbXeKC=6+`VZdo+gIFp-?YlL3?Rrg(HL(Od#zS&iI` z9_dJc)DX$SZ)9q=`|qTAQ0Q@Uia|I`B*|*bzr}-)nC;BkxCy@*o{nXbELhu68;ham zit&ynk5$Mca?NcewG=FsH7pbfE~ERk5qCcvxE)8VrWmcqfP#>HAq;RYxP2KY&e!7g z5%dwP>9uF)m&+U`!*Vw|FJi}xFP8neIZNq`EGi3a5}Ai>EF`|JrS-}hgwf^qq8baY zm^bHY<&NlyZ+L-!=l<)(udu7GhKuh(Ks<%<#%t(BtKij2xZS?({`j>xb1eo;9@1%YX z2{vh8?84N-d{%~`93gG73(9taR&bsG1&Ir>ZWMWeU2=>jqWXtLP7L7_GL(^@*JH^p zi=t%msF@_d;s4nN+DCwq2?4A&aKMfS*)*j`z^G88>1xNw!NGyw$H(^DpuF$rfwH`a zaIgE<>p~lR!jI`f`KB6o ze$;*4v+0ky%@CpeU%b1$-gz$rAIlS%LX%IQYhP$Y1uM+UPubVDZ)ef+@4au=ACrt~ zp#wj@AH;TC<#K%9Y(fknbN#98eras>eRkpSHJ-&{GNyFj@R7?c9?0>ZF_?-oC zYZ267d=p@fB&gCN&mm9&44iq&!TBJbf&JfE)NC<+im4!5E+nQiM!SJQ^a3F;#BRGD z^ypB}*U*VeeP&6z(&TjKbMABU(wb8hRe8b}@0xp<+@}tCg$UCM=(#qD9NC?5TeIWm z5W70B92V`16UaKvBSn%g0p`UkY_sSc3*SICj%u@S^6SA_4U_1l4Pl-)rwxxG8j0nJ zf339CdbVa2?g2RW2Nn(~bC+8bZpib0W<#zR(tGJS2TsTs@+UtZ|81W**drT@Jr_>R z!(6=>Mx&JpI^@`z8X1%bmpteWB-n55KeL6Y4(^^w$Uqy?jn%QgStL??2-^`n1|6Aw ze!;rA3@NuCTV4Ae7#!9m+)s*E-EKP))rEeJ3`7y~^=wQu(@>tK3$05K$ymi$B2o4p zQHbx8K~i~^$RgvBuu9HL-_z4EI7J)Zl?RPywm{hZRDv%Ku0jb%I^P{7R>Drd=OoSq znS?J9y`ZZLMiI7(zbI-AShCSj7fj9z{nghp`7FnZD{b^a@JBZgCtp)svS=@~?U2Tb z4C*h(`>%Axf4GNz#DNapq$>L$h~g1>;TP#6s(4!{$D{Si zn)yO3|7+sb)hA!$?t?NS`MCC*Ax{=XofCD|s=n_7VK*z6i=PuB*Q=CrSKFjA{&naKQ`M)^_8b~wdDXUAOQU2-19`gToV@W9-7XZxr$7^_K_U-R3 z4k5b^BiuhTuO?$XobPIt>sXs6c5V41Q?q{~X2}IeGzLUTDhGLNabA(7l&XwmAzk&4 zC2;kTe&rNoR2b=H7-c*lD%3%(TGEy`ojR2GnQcf~PJQIw>)!Z0qQ%&bfeS`P80iCxgmQx?!`xW*DuWb0c)uUe|2f|Dhj|>c6$Ri_n8{DZ015 zCNj4dC5$Bhi=)fv%K%t9n?i8zX#S==~Pj5(#StVs03kTqne@y|caWg0u&-g3!-NYTyaG<==>8H1^)=(qV+ z9=ra=QH~o(qR=o7{Ep0%VA`0f2RR)1Vr*i^=5iMptG~zSOiSgWc&*l!qCub`%SJK_ zI@L>?G;V#7>rlKMF){FsOcg=}?$h{!=WD-Ce>UjnKR`O;Um%^BRJXNL_;1Ud5_60o z39`7eRHi%TTb_I)Jgp@~ckb})DTlNkRzjbw4mE=jZ~rOWsJ2@ECLOKQ1Lei4Uz-B| zvKOJyq4lH6J&&h_|MZ-mt?u;f9pHv}IKdORl>cE-FM3bFfnOJPKXt zDzXg>b9}Ir^Zuycap?35nwvgbhxkPF`Np%xIssYjn+Acm0q^&iX{NTALOP`yt>4(Y zJDj&zM*GeorOU_$6zHtc-T`U(aQZ87jd2MGgtruwxrrNANr|7d0<L;d3dLsA;n^ib`qHByas`YWCSf z&2is;+x9!o{!r9!c`USh=k!n|YT$~4KNuVT82)w_lHKRi>|^}m@?~>6{nhFS$#}?j zRH<&BsxhZlXga9ITP`N6_Ce=xeblB@MCe=lFP@O5`?vAgqLu2_2)d%UsF-NJ%(A^QK+Z9;?1s`ZWcf1n(| z1lPy&rXoc!$?B08B(bot=<4bwCMK$pSh11Hykfpmw1a>OQI+K_R*oroNU8J1GH$RS z5$IOQcs2egO*@B1@apJNV!>t2i%{?q>IaazA0ljvGiaOnfQT!>dOU4opR?~7&+t$Y ztcAECm&d1#1$W!`uNtRKmnBRAI}Lih?5p|ek5_a=u(I=%;VOKM6>L6c-J0g2xH)K? zyK>0YB%-}s%7Izd43vhC&`Y$lXZWSekv$fya7FW)qcMJru?{a>fTCZ`tu)9!o?YI# zt+F)=I0l|#ocg(sA~#wPy5;13L44*3n8#jRxXw%jApJA@H{;k^R_4!3{JXcXl<9 z$b@nsJY{td0J|0H9QYydBs)uJAe8{+WFHO-x$=R=BOCEkDt?Ne1pN>GQGy~2@dCyz znQ6eoH$zZ|j|suzRL2knfk{o*&SYsdDs9f6?80+O$O&v^ zLIs1#lD1lgW75}5lNOo2O)~Zq1-#QoNR$kMV2bck^;8ZLd9XNtp-HEcO}TaNmUVDhD(xl-=!#Mec|sHS`rH;$&)*1IoJ`)?=C6M> zVt7#FF64e)effkh%pjFyt4S^ilbm37H6-&HWUVkSy@b`fO>ljRd5rJwUb|&>+(Ezf zK$xubn9q$V-z@QBhJ=jw#!R$F2%K&?^**i(7<7ClrnPIY@a`jKzou5}yddi;{sWc? z=Klf9zI8UM=67_X773Vf9dx782_3Ae$VH>&BKfoCjauR{c&i;A^$}g~uum_sHl^C7 zg<~=Ui4)7}YUTHfYOBSNaEsoS9&Q`Us;c9{vy~{NP~_$!CzmZPXcuOL-BdWTSjsxOh#jG1!Hm_LzbkR) z@_FS@^O)AV+AsIQzI5sz!)iB-DGdW~GU5ScZ-%5(&Z3Vag*&4V<$i z=mwVAeKfL&@X2DRv6%HE8?3iv*oYB*Z9u3ArzlxjC%#EE=b&Ke57;_LgQFy50TiN% zd6F$LJ5ebSXEPK;G#0o~25i(XoaP20Sli-x8GSTg8GO(FiRTO#qF--0{Esr5X{%Y6 zKI-Mk4RsYqdQ6?aIFrCYAQ*suj*>z%rb@3#GuR7D_{V|S3$cXXO2e(R434bS8EdQQ zUs`%q*Uz7Gu^eZ9eO1yKtrFqBp;j?o=ih(SaXs4&(C0tLny@w-)uI-GDIpHSwQ*%S z2DE+m>SeAO-ih900zxH6U!+SbJKt#kdCUX>;=jWSfuz%e1-R|t9!t<3*oX)SDtoXd ze0Pv8^+9Iw2V91ymltS2&u)LH1G9L}?xW`$F0QsEfAi@a`<3(*=ay=EI#;K)QUqo$ z%C!1Mj@6DKbb1A;K_916qa2A9xK={TgsX4QbqWl*bU_$h=E};= z+ehj)=S|?g_?}~IPdMeW-j&^6wq?&i;@Yk$f3<@oA7t}+nSAqv%ATSWH9AO~Y?Ipi$h1uuJh zUao{-vZXaTcU|GEH2cwb2N!Oj(9W*O7C zs^7Db^^&}ueSDrvs+zIC>Nl5!)Z2fJOkep<>QnUrg@|l?ojmHN3o1S3*qh8R@bId4 zEm|Dj06tU7j3_os!Of#mk6)TC=-UOU&gY7#2!G3J(G(W?E{q>Wh>gH9U*bfJB9u=E zk3a`={-(LFuaWCp9p8@tjMj~mPbsFhc1{HCR5)DOxDs7bJ# zXvv?N@tNg@)nGLk0{at1O0XrW4h-Vi2CxCQ;n2-QUo+5U~0PVTClQ|mmGU^JX)dZTKpU-)jFhdjN zvflyH6UkL@cXWP`l;P2)xtiVZI;!n$M-IuX-OeK zb-f8JKCvLY4TYIC-xhh%F#83TNLPr`*q8jl(6}@lEfRE9i9tUDxNkc)Dr#W=HWn(N zngJgOU>SX07qXsoKB(jO4gP93<5G#d=N}b^r%_n4h1~xy?cT5i9TQ9be`LL7P+ZN{ zHjG2C;O_2j!8HVz;O_1c26wjvcLD?m?(Pikgy8P(!6Cdmx18sE-=x*<(6BEuh9}6CG(aa%8T0h)!(Co-eLk@O5y0)skznNl`@O`+!?rgl0AwhLi=dklkxI11YEj7WD=7 z%y!Uob<368$KK^tc5z0z>GEMv^L00vumId{zV!g}<)kHH^%jTmpby2~O4V3-$9<;^ zbWWy<-At8at8D%q5tW%@uSW}UzF{lR8W6jOIQXHz-*r>>(nG=!LuMIBXCs+I7h6tm zNi2#kLLi7jgee%)^1K5E(d=7d5snK96|z;V;w{-; z&|qL4em(Tr`y>R6(*rq^kbH1pDP$*P*_&Ve?B-+|;l06Z88x3Jd?6U4*%;{d$ej;_ zLY-lKtzp!xDBKLDBCTD%ijD++z!#iAXU3wg->v?-)m{sui6SV~jGP!O+A}*d~rbnlbIcM5^+B)9_E z*0@Q|0JeY)r~y%g956%>5*{=;2o)N^prpp_P`)(8lFg{b$mb%M6geEc{`&jwU0fX# z(km=F%d^7Gd1<*tFBaKV$V?gyhFEa}s;``?_R;JUHr+r7rD&94h2KlTk8lV&?9_Bb zb0S9i4!qiY+3X*_>gy}gJWGv@mbtxOD5WJ;h=_<*THP4~RxY=Vd$yegq_5;$3nh~Y zCluR~!JvWo$_%0?5 z)Zs$L^XaZTH27!u3+>z*mGsYX9Jpr9vT!zeW(1`#$_xs;@u`saFtc{ZkrNcC40_ z=rsn;KKbKjB^d>{9G)@14j+m7C;aD8%C9E*5gt1iRq@92(wD6qOi`t1Q`$F@m6Yp0 zDLyFa87N`|Y!bA2;=n#0!`|*P4+`(3 z^6$)vmJ#ACE3joyab*&*o;bt)#5_IAHQE>j*^6AVmlqS)u=YB!*d!1c%%Ky?@=e0# zIz+wRXE_MdF~@p&c5&^e^UlzhvonXP`OFVgd;9xsZEc=8=f}rSlKj8Me?A z5`rChaM2gc$})l_W>-huE3+=%aF*#zYP8W(mvWNxdGVczC)Qm8@U<7gpb)KVe&!tkyt~mTnD)*@GD~QR+FLS z%fQW&YFPdKM)Kv0vj&oBUdSSo8f3#Oheo>eQh6!?I?C*$bu)K|?OriaP zpXN*}BI3wKxSJ(c-u(e9AA!X_^X4Shlp$Dy^mc$fS*$QD7Fg_dr5R3}L&MiHQkL{XE zt!M^~T5h8>1ywwDX#C~or%w$#Pef`q!jA@@bX1J!hMWk+)$d=bLewUdkXW{u<9P~j zaK_qG>57K1W)!HwyA=6nmG6F0V1*CJM_xeEYSMw27xAV>P2X{EF}b;Yo5;EB_+1;W zq!dxrHSn-8v)f#?&zD=4QK`G0m?i68tLCZl*}=ECv9@!QrPYssCA_Mb^3KDw5j75( zNWqB^!F5#&4o?(SWt2^R>_-ZxI9Mi zP`-56a%EN=2t3%^+JzNEK|-db+1lvKwbH(h<^Lp5825krrL)LJUqDj`a(_bslXK91)xv5Pt#Ulz z*J#3@Gv%FFSm;M9qY>)B-9p){Mq5m(yCKZ3Ce#{KLRD!mA%`^zi-%Q$D36$E(h=ew zi^9|M?fW&wL0_U=b0^AM`R&t=`@6d4R_tX{ya*$n;C{iJf)QnNK5DY~Rp(~O9rtpa zO$?Pv^1YrOSmgKBC7b~>Z}ir~8YqBDck{Cgds&DEqW8Bg6}kN8*L1s`!nKK{4n&K4<_I7=O0D! zGmgolLBEj0_}LRhv!i_8WV2J@8}QUxZcinSpiKqFN@)=xv&xz~31ZPwp;KOekZRs| zA%od>M#eHSY6sVx%!I8BrBrF&@2Xq!kjU<=RCW1Hz9dF=9V0)-xBXDB6sYE+j9{)b z)<>mjsz2w5%YHE%t(^b#=`&$8bN!2w>8M%OumK4j7-j^te5dUi2i^VQ0coCPrz1-( z6sEhI26EquPnt3$Sq`F&_-G|CP&EIhK-Y3(g z`b=w?X_9cMr`hQFfwt=MCwH`<@5#5~vIpp52HB+6Jz$E(rb;3MC8^L63-F!4K^G@oQQ*-wGvj5d`Hjc=vulcTU*Q~Jr@ahEK!>#cz*P76f%-%7suhM8Kb*J#l;?{OW2W;7M7OYUS3#I_{7B6Qq!AG zbWy-@n;97yIbKKf(oLC);q!7xB#VQX#Z=#EHAq1qoMA-i^f*o2K}hDB)`-i?b)B_E zCC7~Cm(4iSsuI#+B-ro`Yup*1hI-EOK|Q|up-1tP3H0_(q+yP*BWF7lsBi^zUiqkS ziz#ABLp*)4=WX_^dEyX;?WV@wub@GkG@Kd6%5oEF_Y_>G4R5f%br~-Ia1EIeF*9p% ztiZ_By_vfnu)R(uE&i)$27z^Z!hB^a5~1f;=F}5RT9651jB&x6c~+xB{6d1-cU(V} z3nZ&Eg1#ROB~Rn^rBh_lEFH7uc5m_L3pa}gDc9a+o?IdtklgO*!Blc^(11vUQ7FRC znYNDTtW*gMOJ)W5<_okuFjEgpnq}i^>vkM4RucTtm_}Z4+o6^ zjlg0Au-kXYWX%EWXhE7LHQ#Yq>${M;AGf8SDKT%{A4lfaPOAA$c!tyB(akd9Mev{6 z@cOqlr~m;cB{bR;#Qujh$gyWhQ@s(4H{^_|`Btp`xOaR1l9Vgi{NPOc%5~+4lRc9jY0bTEngz7YDB?J*XaFN&BED8`R?HszxR<06-`oJaNiG&pDbJAc{2ERaN`UnRcrw^Sh^i`0$)PP?+tBN$&On(I=+>HvCZv66FVc(V zR$7<5{5f(zwOG_LjTx;j@7c`AWh(Wa>HgjqP1k0ww!5T1mQ((SCT01XS&_BYB4@qp z$^C)30R7;mB@@Z(W!!Ve`x+Y6kKd^QKdX`C>7hn8xa7C|xdQ&;9wgF}EqNd#wJ&CicqD$bV$Y z|6vddz!5b$k$RpUYQ84S;nD0GG+it01dhw|cSGQGd4FA9U0@HV!$O1$p0-Ldwc8_g z6mc4yc_Nk&DsNh1lbeWQRs~OADZO0UI6b&OBppz3P+~Z=jJghv>&&z9cG7Zu-jP0f zkkG7CUaF}~vTE7;{;llcvh$aK{}axYSFz^isBMPk4Tku@;2?crk+n`rzjKzkHpJZA zT*C0q&!0(DG6EiFcJ}t}{MisAMHA>0&Ra7jhYZ}3apC{Sneh;R8pontDwRe>Z~na} zGHcjh4I^yd__NuCpx?Mvh6YP2KvLAz3zIko5XfC!U9YdN{klXjB7tOM+&094*LZE8 zIQi8e{F&ZZvAl(L(x!SJ5}J9XYbxK%GU;!VI}gd^GVL4zArHR$5x3f(=bTH=DaO+o zu;Y@N0oF7;4foZ0l0Q)bC039UDbD&e(GOQlgq437xU zDm(D523x0X7jOKrjT8?w=McZKs-#3yMuD6eg-&6kxjITPK-?z*-K0I$XcPh85 z{3VnulA@(mNrgg58x<1Z#8wt&t@7#Oh*AWkOrhY(e4g?+(*G{qHci)uB5|P-A2z(Y z&S(N5t4Vx+MO8^r=$%ZE#ynYdA zmk57J%ZlS$0$rG;C8_xdoDq%{wA)uGB3-@q)-Dl>sCF_wn+7OTWHLX04;Ef}nKc(r z1uUWbgDp=f6|uwtY3t}5ot%`PpZa*@I=j)RD$l0>#L%Jnp*2)voj5&8vHZtZ!!n(3U}@deDP%#eSRB$VgJ&~1%_bwJ z&=&>1`iNC$CR{XUiH)g^{`t6V2?@Shn^> zHB1fAhAQI0W$(*#OJ{e+EB-6>owA{0P#goeOcdP-g#Hn~Z>8B0gA@N7H`}-jrbb)6uQa){qm%j`7Z1agQNX|Ax`A-W0^q2L%o0}&kB>L&Ex@EZ}L z=;)a2908}UQ%GN-s6>mbkT*ymP;+#4zz0zH$EyZ&zp+RX`?Yh{pn|U(nmWU>n|MooH#xs=5V8-J`(LB zqobYQShJgNOKmMkp88haLMj&r8KT$7;};Yit}TexfS{EjYxyjZs-g504)a1oE47%4 zOHUJazL*=fv?H?RR*lx$C|cI5=`f^fLf-r63!dYheCNcpWkazuf#`va2}BbNh75s( z!DWLJ|Cc*J;_(1P6uQV28*I{ym$UEKcFI#cqg|n)Fk@$Bg-1-Ru0DHw)7aFcBrjiH zS=o4ZbCqMN`-~FLB($nw6YF7vCcpcu(q(k<_wdAw2Pdv`0sRH zT8Fot9TOVDx0ypNrXo7o7CqE(@U+#h`^)W3r{>Da33)7?5`Lwr4b?7=%kFvB*Xp6m z>OaQ8_@_wpe{`sXzEX9zFn}5TUkwOKYKS8E*;{4su(KO$r!1eQn0uOUJcI1xfkh12-hkT*Io_v`J%zF|1vf5P_Lf;#QXk|-B5`v+&9}A^Ecpg_ zT5?8yUqin&-~w47;|4#CJ3#6B!FBT!NF>Ar{X~e1j9lKl=J~UEL;iAXPP-V|_U<5)u zQYohEvDQ^^GP+Tso3}MtGI&(Q|As$ZDm7P?T&V1&Kzr_n|*XT%g);Pp;QJe16Qy! z`Cc>)WJtt|Zaw|y1ncgs(4$4%&rqt{&*8U`To910EvoE$*(OL3;ZszX?l4q_LM0>1 z_}{xr9AsdXomjYd2VljZC=R_W^Eiz_`nhSpc_Gg4V<$H?L$o5YOL0b`XA!&Vu}tM5 zvbxcfp)f=RAQYAzGw_QOIb&x0{2gnW5AHlNi&DlF?_X9Su0a{}+>kmI7Uqi{k0*4x zRT$66e{lmC2w>;${mUVM6m=r`>u0Pbc3O3?3Qcq@MFj;CXd!`tfuW(Hx3{-y3=Qtb zb1g0J!ogpL&01Sq6Nb&y6G|fttgoFeTzDbw2NTb2oUXa9%e*473 zRYv22`VVjJL-=Rq%b2vHvbE!d0ZOYiGHc%jQUp`5Du9Pjlx1;oaP(L-_4TtWk5R)5 zIy?QGot;4-KCCEyqE2|ytcNY!_-ww*&&JB&>I;S~kYt+_NkjaLh>d;~S{@R<%?Sdy zzVsbRKLHdXNydOE4DH-B=0K4L%7#GkG=6}^))<_FRq(K>a5x-mr9%(6ZecaxMPW+* zByRhj0gm!RlG8DOj_6VD6exE3+$-4VP+2wrPHZ0{Q&Yl-kl6c;jqVRwkZ2>FuQw_{ z4&K_~heABVAN+zX$cJKs=%!E@O;6y1VsFHUzn=hm%&3%SyN1E+qf|IcYBFiw><#nO zDEhg&7>P03h*+!2$P&d;&#HWD6HyJGBHpx|1UmNq(s>1@J7^iQ7$FrV5WI!>O(URJ zBF`(L>|%iQc9m5LqtIgFfvow%kDBc`<-93g3zFYW6v$!iq?qs8S!zK)M5TKDxAPje zlm^f}Od(itO~vV32FVFP1mVtd((Qn|07g&K_NSe+9`(8q4rAI=pb``J;;#!y<8!84lFKC zn8HU0MW`z1A0aUKrlJ@|qS?kU7?Gluv<%7bn%X+mbUw9h6VWQ`l+8xfo=}ERN`5xa zEwa~JKHNwgO#O5Ge2J>e8urPw_>PLd>Car1=HZcg!nq8SsuosEtqZS}N}= zyR7H(=;EqH9yT;WJv}{SxL}Bp-CFP_pX;8y zAjv)-OXm38{5-Joo0^(Pg?&KhYaNGft$BIIK0ZFja}}ZDJ;yh2!9B^z$zfq(b8{Lq zTunRIz7vm|C*s_i4y;jyvcqNk|7`IXl>c#w5BdL+jSL9DNbKzhFVndeA}{M5O};_# z{TKc}pPzl`uo#kMg>xrQKLKb;v6wkJOGu!xrswr^okZBnO=4bQ<{Jq64Tag87u|)N z`1>S{od=U_1TZ8}@PT0Uak{zcG7?LS1LW=>aeaSer{2$zjjVX`Ay(cMhkp!Lar&6Dc~%G4OV&m_$} z!vo$+gCe;kNyKP{{SjnP2IoIl1Ze0nX-gTFckxYgC(HS>jC9 z!-Bcp;sXYp?g+vNrZWfS(Z0pZ!Igh3H-kh~6>_2eF1+KKrUZ@wlL4vd3ll^9?dv{V zGiJngjtp@#ruZj@Z!Di4nwLGTys73cKtoo7Q|4hIQSn|Rz}e2zpGLRd+vA+=aDjiU!XJne{tv)G{?|MMQ_R6^K=`KQV{xOyYN@pjNBY>V3rlL58iRF4 zBNo?W5$0|`73-U`ocrR*wVVHsDkS?KRft`GaMHLLFD!N7LL8Yj_Q%Lwmt#zv*XzdH zVjaB7Ve_vPJt`pKNwgEUsd}^K&4pO-0Vvo3=m%QveI!SQQTo zlfM3;2X6&9@c)cNq9kmRG{_=|BY=ItbwHmqUsG*}GWu85WP%K-_au7X_S8PR`upmb z7y3R1CzM_eXD^%^@;;&k*8J6Ooi`|Ns61h?J`gqXZVs!!ERoUV4W;e2OgZdU?KAq% zMr1TUsca5mQ)sS_pOM~$SGHd&O+K%6bUob)bQ<e2agccH}AI?is7ugr1}PcuD$l zuukH0vBT{hzUE@S&&P_q{_5Q|`!c=#?)jlaf8Or(kQCNdS70;olD1ezg4NT5c$Ic+ zvgncn-K4cw2}{*G(a|U39kL#>X7Y{%%ES#%+y_vY;i8;&gI=bKEU};pU0G|PaAL}L z+hKgP>iXJgf)X8l&jL#R0KIVNL?@*{r!;pT^a{#E9Op}kS_%TV2iF&qQ(b@|8EO#&+fd)5}v z`|SUnUV{qw2mSw@XnPh6+b5h%@t7--=Dh-u=j?Y~gtCG<48UwOw6sr8Po_0#))|0! zqM)Gg^6~=6LO}dCJ3IT!hi`f;z=^^~(w&bR<`a*LvB{%V-`|KF65I8zZ~C9<``R8S zm(_i=m>hfz;;m1qr1KP1&FqRrOBlDv%*@0$6`XwX5r!yK9X`J+R;3RILw2*p0Put% z8DQS;czE_MK^*DG7@yy7_*9Hv=%TEIMc_b zral{2>s3AmlM;2l+@@pFrl16GsZ&Kb(H$HX=02(c{hCR|g1}1D0^(?OHUTvdOcNL^ zA^HXUb`TIgB~dAWrhqB8u#7M+SrS$7=2wW*JRLt2$d=U&IwLZUY#^~Y4<#c~gH*>S zqV?iHFzo2Ez`4BzJ`w|XYS=!g0vAOPj>5*!Ok+!0qOFtm*x_*EuLuOTN$063!`W!R z*W}C{tL2ZhPbwcZU3i7C@LFh){<1v&?N!nZiGT?Uxx9g*BaRz&ji{a|fxEp8>Gkvb zCd@UmT8DZ_7nEX-p-;wZk`!=nKPwuyBC{-j78(drce7ew-CHipnu*~x6d#Db>20}E zAm#dM34XfY&P^6OzLv*I7U>eePZ*tdoA0Nb;B})_jH!@*F);X`QPOymQaLM8OpE1H zL{%Rp<6!f;9Y_0;P-G3_AG0s335A+KaN=m!gE{*uT=xWdGzH+$;cM#DSCKoUqCvC% zTJ~XAMeT^gJ>W(hth^kK4lCljH%~TZ{kU(fQ)osv)s1BqTm4HE3I)UW>zE8UE)55Y z6WZ^NKa=BEUpdzHLdPYUr>CWTn6qIP#n6I&gb|C7+_>|A64zf{Skg(fhFU;LLYB}m z_#HXpS!g}+-A16WsEFEKX#3jTg@{##WMHL~^SsW*q9tM?_YkaF}Uw0YeIcC_jGfsud0gQ_iS1g;^yA{)JFN`gCL2B@1q+4qxgt; z1lo@8#**G1EJG;_vro92nim-Pvi*)58_bBCnl^hXLB-*w5SYpky)5(HJ( z)qTY32QU&KOaZ^(BTQNm4Qj`xxXPkBV96SqI7jjLCk0w4`5)hT#@!BJ_U1u((L-Jpoa}uqP_d!&26hsuA_f*2o&`@u`1P=i%!-++>I)VswY-`4quMQRI zevY0kK$d7%=V3{n+sHWy-@7$ZjVuN%6x@75>x8v=Ti^#{2H}d`CzUj6rBd@XpCz)v zz1il219+YgZ8A@GO0h!Bd({N3|qV?zBX!Wtev0IZpuPAImatfN+3#c)p2_-nFWS>)t=6!`c(f*^{O2x#l2mr}88+>6R}KP_?7@ z%RbxxH&WO04`n95H>WeLdx#RFH;CAOSa$5{=;{(lmgVN+N-J7iT@_+yM@J0@c&)DP z^8GysV7G9=z{}Ls6cBj;In&j2{KQsH-tx^gKd}LpOW=72^N=%2D^C}j|KqPilNvl^ zxTnWQE(KjZy_msmqQThsc*dyS>t`VTpsr3#L?lm>h;qZOKRsQt}+y5#=9YXuPH1ErZ<}WaTJ!0(~TRRC`*gho$^fM}mis~H#5f(Zs$(cAW4U>!Tx1@i5AY6)_M zl_Dep>W(=PjS$}pm(G?`p_2u?MSioVL7FP4Sb}d!RoLNkVdbm)$Mw@D+`HMq*WI;O zRN+&$G#Ul|K?k^5Y`^&A>@4EaJKR*hF1p&`n&5?wX4!8qZrL{X)ADghmpTgGH!jYvWLIvuGFruo zl8sS*twJr4QVvT6OO;YEK@0i?TAD;#WBHtLjO$_WIp%pSF}}6g%a^cYs!NRGqzSKu zbkv>wAnlVnZ{r!T&o{hli|=P&mWKc$U#lkDEc}weQl7n8BIkGrxmg{_o{yV#{E!iD zXnq5+a$@NI-q#Oxk}UZx+hJ~bU01rCA&MCU6W{0h217 z(-I)5Pw?x9K2|!5i*BWzApYdmt&ApB)Lob9?MpXz_ucCUK&CRO;p61|SfbW$aDIQ^ zoKIKF#L5iBL|g5b8+9u7-1rFzw`U59J8VoVM2VvcYH9$nr@5h_LA3-65jJ;HlMYLM zMonEE>yOm{0546=dEmkuAtB$Zu^E~Yms&2D11o37efwx^Sc3v?-r|3&MB=|%Njt=U zRZGsGp3cb2y1yB6?yb)+Q$4znR}^IM5BKYn#XkF{7bi2b4h_yfs0xhv;dv@$N#Ira z{ImeYZw{mTCY{_UqT^+MD)&ca@t_JLN;sJq1qmqEnm>H3wg2GRHrAfYr))uP0 zbjHYv?u7}<113<^h>y>DEQZVTp+DhF4CKqf=;Gnf#nktYPOnUr6M6P9dbBCQLj(v} z14|^;R98ghqYwTgx|*jwrh+cZLzL>phZuK4voxi_YqMp-Q`D|k=WEY9xzCG(`ie~^ zIJWs1D(eUiaj8@_tw)z!+By^15fR)%iMp4q$FK|u45G*7?RlB+;&&}^0{gwKVsxma z=Y$$8-g{bHV%)Tl3AwnDD}}GUNZX^{Iq!S9_Z0hmZQQ)c-yUgO9yoG9uyiqlbJCXA496vq+V&k?^>Ap zIq^Cb-B>gyv^1d6AfUPv$cAoi{A4H+enN=Os5a;b6P;00y%T7QuaPo>)hhfI6&iZD zwuYlJhKqR3qA4^PO`=qnuSPZeuyofICh*9OB=T22``_^1|C(`=rho^hT3J*EXATlp z!8&i*&xwnR12B#i*AmcT1O>Aci-9pNV6g(h3E%)7H3oo}jE;`>7_nuJ^YHRQe^6z3 z*)um#Umd8fZ?A7|JsIK;>M^4Df)Fa6YUt-l@x{u@>H;JfDo&m|>D^(VokHq;QbYJ@ zbqJnMf4*Rv&NOEG-ib-r>$U6d#0z(G=*JI?LN}mr>gr~;FO_B0)v={i=5LJHn%mn~ zmY0zN_8*i5bqGrEbQWvAkSx@i3+L>>8}u;1^weyhyBN^F0uvT{3#idFwH2S z!T6y=a*qG-=+q~~zx>@pI+AJ_XGjdLR?O0BIc+4(5z3r$pJ8Ka&j1A(p>^R(W&YZp z7y0CbpAWsE%x(m5=#0SnFgSF8-T^g32?lEBvI})PSb)sQ31JE)f`}x&f9*X2QI1v^ zz~RYU?kB9D--`?+Ovyh37dCl-3N4LkPu8#Ju5%3B+%nvL7JjkdS~c|+bbv99VMnDd zO06D-lFnQNm5lv*a+KAKk&Z@70IF4edQzg4Evs0;thJL zQGxiX!(02xXoD^*>z~!J4gC=b;<3*1R_qA_8M5}P{XQ{Q?aXZ@T_zfM+pAndbdz+f z6gokRk_w{5Z>B@KC1j{VBM(0&C^@BTneSmbw2Sp!@%#NuwcqSPA0yPNl=evu+JL<@ zX$X_s4248{M$U8jB;lpJ8!aDrMy{I_KYyGnLa+-gc)#-qI!T#lHHE_apV#T zsYdC-jNc3Ud;@i}X^svYmPu=rB4(e}Z&zus_Z8{bwC@Kbn^>jP?d766%q1rRL?V}_ zTsMIe+7Q%fQYBYrv0UM&+{sD2#9cP>Zw7{laNA!HhW7=kOW^sY?QU6^%H2K<@F|*( zRnFJ3XfjU9K`aX3HTr)BCfHys0U*g2?@9GG^xrH1pd90}1G8?xFh%2EsawH;3&g!L zh1DWZ2{5#CzS@?$|6s+{T3_GitY>Ly$&z~g^a32GX=G&N?#`VqpCVhhwzgJSSg6GW z^fNAkUC-ZuVdv1)28hW`O`7Vnfb$Ftrmd~z44bKzsBxsju(7jG&(Gr`!_CjnOXxMf z{9X$!Nbkrc26C{#)kKAb{k7#jB^cSA^U8>(A`c&q36p1MXFEGPeT2_lTG|b&Cik~J z4HBpnX5ir9fb)|XlDGIAtZgb6df&J!<KhD6*4!oQ|1*RZQCdAnw8DkYI8Z{(r6nYVZK8PUKb_^_Z zKpzN}0~XN+nG+glWhp)*juyvR3Nd_Hg_F$be#7s1T&3L{tu!}N zZ&Q`+!JKmUiYUY6g2Dl|FTV#Xtz+Z%uY-3HzvZdcOMW_)ue21F9jf$xjk5h5ySDmU z=7nF)>subVL{2XW z^v*)!+Cj}lQ9}wd6dWzU_FOT>I5OKYT9+n>wU`8~{lM0gccN;mNXRxNPgH zBN}JzCWiI=JBh6IC4`c!BS|Nv5HToo8zvw`JUB)L{5^PouL|FSs7DSxQ#Cg%w+Al| zM|0v$zx4u*K~xfLAIAiFpDe0ekPUoSoGV|z7VIaUZe-pmlxM;V8l$iuzeYy3ek3Si zbq!wgdJ5WJf+STWmwBK9XJ(K5z||0t3rJse^sDAQyF?r^uoaNTCq)Qji|$b2q$Dl6i^1z z($j0~mus2S)sJty05Q(c&=4?g!od|46+lQOQb{t(uyTSV^H^Zz_!0z&3P5~(Ys+6358 z<`=5&`unZ%x&L^rSx4t@yFlXjzshm6vy+%%0&1sp6Q~_}Ug6JSw8(FRGxL2(Eb-c< zE(iPs1>vK`8!j%v_n8G#Oy6<%f^g~mkx%c$AmBoG7 zv@C_^`>}P#bFV}jWy$A&klgakC77I2)BWR~{mXGiwv_(6yU*$6OyLb?+iaJw-*Q0V zC;kkg3BzZ)j??*H7D4TL)4YPc*SU{RQ!A#V2Ga(db+x@JnM?1LsZ>9yUp-Q%4txOl0Yz^guLhCWiI=vuuJMNcbn3@C_A&&X{U^>LjP zhA81w#&4ytO>OQcVM!$s3ll}*{Oj@v^2@x*4^R_EF>JB~uq|3ej||^qHM{X9D2)2P zkM?S+D`$Z>rII*F_+i>mGS^@Zy5T-Io-zg$8MmXesi`w#%^}EOa>yRC3@Ad-e1&KW zD7OY$5ZB`)M`(~7mRNJ=OE~=cZQySm7RK)iK*<1hd>t@O4VdxJ2ooj?l1`|9Y)T-p z7^VOtGALP6vouw$z@JS*M3iLi35a63le8Fb;s*=pqUy~7w-7kRnP?EW@8R(95a>?f z;(78koc#Q)-gjqe4C+ic;bCDM>GE=NqbDbJj*jOO*#e`xwNx^UjEpy4zP`R4#l_*< ze@KxT$KuQkC4%@d?QxiKP7fZYl(U7!-o+;PaR{2Qpbry$KfdbRPfqtcYkg~UqMOubB@nsB@8tB8_F&b%!>In+PR z1|ITH0Xgxp$jQ%K)Z#T7-%Fv}NjQ-QMH?Tz?R1P)y7$}nNCK>2IirlmB5hMsLXS1i z^@WA7BJCpUZGb&R2rlX0&vLaJgYdBkYoi{>eRPpKpSQJc=4Dj2c zivuV`2D;!iUrrN2Rdo<@0L8aR?&T9qm;wYi5ONxk9m}he$Zf_^FtIWfjNH8+R3h)D zoT*hii5|vSVY3?B>uflQx1G+Fm%$x8Y4=AFdcQ}^8HwO4TT~@9xrgGXoZOOUzKur2 z-2{w?C+k&gIm;qxeJ|z>#0ZSHiCPKsl}8qN^v;1rDsgyU>`d3dp@?pjBkr~-G<8%B z87Mm2C6g9GkZkoCXxCcgACyDnBWNTU`j|PSzG3asV`n5arK5ej{r(j}5;-b}{vw4; zvfb`-NL}G8b_oGI3&uw0v}i%la_d(fV;PXb!WPW4&0wx)W^*9enWQvUP9;3VK17`F zKCvt$BmQn~7Y9r|0Fr@1Lp)`Ru_@%B93|IAJ@k@EktkZME`ML4aqYD{@6+HF4Zp0H z-bu`g)}j;jeCT!E6!HwES*2VlgAeA3*<@NCz;B)4Ldh7AM1Q~aS^Aan0C`^}0GbXW zwAn( zOrWBm0Qn|BDM&9$pWOG%iI=1R&UA^X0bcrTp8(%-&!uH}co@J}K%V^O<_6$ik`(BO zp+`4ff+STMWy!LC%5J^W_sfS6)lxcHDvXl(W55#%6*r#D5$ZQ#PaOVrcc&Qx#I^QH zS0XWKw=VD1HT8juWOCYr9@gu5bZSR#wm!2I6GB*6SOE6E-SPm>u-VnlaN>RNK=kCQo3`rZ{}|27?bw2i;o&vtDe7qLjNF=3b?Ru2yh zE=4m!5N^6_U19udoaa%}odoF~6l6QpOg%6#*l|7aG%&!!HO`?xSVfQ{y0wY4W#56f zH)XO><8ZPlIuRNOHK1FK7Q|o#f+jThh4Z-*4@f5hXbz8u2{BrnQ{~6h7F-WaSn9D?;U@bMbX=MNgD&z? z@~GKqap1*CaMRE<>i_9(qVlI#ht6Zuc4GVl(j=Xk^KLN)af0bMS|s-!16O$%+lC)K$( zl#)g=5g{pl$tTt&`tuU~`nMp32fA%Smfu``1~S#49xNCcH2F5qk=<)q4pwD4!AMDH z`%p&R-8f73Q|4a{_2tbzH_4%*(W=&$TU}#~J}k-prP%LrYN2KaSfi8`(@-B%JmkVg zmsw=jsugB!>~->(Yl%2wGUyl{gpL*(M-W-VNqaUi% z(Ef_V+bFjh`B5`3UP372nw#u&YEk_JwLYtP_N%4rpBgW zX?a^gqzH9zS1jNkdW2ReKYu|HW{>Bm0<(;! z7qLMBAiRZMw~pH;f76(_dy(I5KXN)22Dt1M>VU#JYrpO^9Rw1i17%^f8?fK>L58&a z)X&YhFR(G8PTNp$*UC&VBYc!=qOFL-y~BK5ke1&VBVR%K+i~F}Iid7obr-KhJ%%Dk zv*HSapODG;25H6qh=6>}k_be|goG&Na~HFTfQC?jPk)ATW+gL5Ak^%K4a+NzEto!l zU&G(o2!D>>GaZs(?wIv#FpBV$T4uQHQ?xoG6#3B@kAmIo>36)>+I2ddFQyhW(rDz4 zWBZ{dsrMHB}%Wm<${jdgt$G8UR7MFBlfX|ZwI zSu`IwsqA`}+r>hUGtKbxQzKbMmes21Nio<*fvpkae~Rwkc*(NTm)q#O0^ogNxRkNB~d?Y@UX>x z1#E}ptj<7BTQsK*Q#86=lG-aUZ$gb>iQ+?mMGJb|vLUMh9Rkk)hgDtwQl=d$!@5u| zJb<7Ya|oKb`?{OO2q-a{0Kbi=Zsu;&Zj=C+`fsZ1#cr(1mk&#}+#(mA8`cWTFR_jw zzdOZIJQB9wM;~u$_S5Y#?TjISS@5KQ>2?i=sGGB`cXi$_8s?HAKtn?V*?AzKA7*^A(&B1j zl3!LPhZX{e+W;cu!7wA0Vd7q1{XKlFA5PsdxZ1-?hmIq!Y%{hV=T5AI>(Fzdh8`qj!M5IHqjakxv}iuXv5wanz^ zX>i)gzKn|l>Sgmx9>d3iL6npwtMP^(?f5>y^+?pNHvFi~)4uvfx#qS%*A-6u2J?%w zR5-11ULZYxo^~}Fe2WwSCy3NBGSOnh>+*CgVaM`+egRM3!}>!O^hJ^ zd^Vh)TX{h)>w0fRgOOX6UKtyv&L9;iTH77St0=L4GDeArVKg^+CwXwQ*-Or#efBnf z`N!@(BLQ|pusR(>Wn8L$OA5HA3B&zICr1WKwc>GZ5DZa4oR2D2O##X)S#!mgjXH*ho4t zIYOr+xb-G{PDl!`%R)UTo^hh3)?Gczmt?BGT4MZic?6@S=W%1Rzp5sh$s1)w3HjUdd*BBXgR+&+V z#w-eAW$~b(ut-Tmfr;% z@C~4p+I=pkt?TFJ=G2+`|6qFbR6yIq#>O_degdc|@O4-I5vRqmv9axKhC!z#y@7!N zL@^jS`HSMomP+6VfMQ{}ySi$pB6S^IR+X2>#>Zd$`qi{#uagRt%V769K0f~W(+pr7 zU0tH>hFe}8RaMxaWI(4&PA)Euvsg&(Y%3ZemOihsuyF4zasWG>vdG;p5Ug@~-L`O` zsquE}TDrglHqh7CH^RF@h91_E+WOo7p{0o&D*|Y#-)7g~RB)#s5Yhg>;Ka2_3Woto zF9yt?3Xx6f&yGbo8@?)zXt6Wrd!8WN_`9oQCD)pibYYBZn9Ht>pASngA_b-KAdoHe zf^NwEr{8K_-Ymg1j#?1TMFmw}ulZVr;i4eM7jYE{)ozli?0ypDgxgyL<)So^>+=&q zW>O`5hn29~VwFi%l^;o>KzIv>XfX#3P0W} zqrC9jW#en}FXwRqR}mrOdmP(> zEu1{|#;|&|*SFC+BpnVc^xP z8VJP^VQ-)rM)PXeK2r+EIL6cC^ADVFk_>H3S)P=vK1PpSmvH4qQ!&O#M`#m;;Z&C( ze1;&(8YkmKeNNRF|D{WrDBEyGakGzd8!;)+G|+1F@HNh1_ROR6zIUFu!(k*oqh z2u>UL9qRo-C;(i}1{^eAKwjDw`QMxfzg{>nZi}R6rsIF)vtqO0PKi_9pw9I6bzO!m zZA)vbLZKRKT1@||rKKf$V^OIN>nP`RsxT5A(8pR)5LOH1fnqO?hlbZCaNEam>%JD z>F|V%guArrtjh3F(2Fq36PBNQwnbM_)rygVQ68`w{5inP&MA z;RV92C8=8wLN+gGlw^>9yRhWIj4R`Xb?@pvx%8eguJLp>nm^4?1yZ^507 zt+RgobCbTwq%CUjqGkDw@8fXQ^V?RXI=E`g!Z%!cHdG}zX*MNTBlK!XgFK}}j^Twy zlMn8beZ#L(Y!&G~vaG(5J3*q}^+Zx6tQgeoCPy~J_zDM*)jvK2ieoZIBz8i+eUwsR0DYQ~W=0Z7)SrgTL*rO9`hnY#xEanc2G(llwq z^^J|dFL3+4pWPovRYD$AO4OnB`59Xi9O^g@FFc$uBOjjFn(YLrU*aNv( zkE$r3?v8@QSP>HWDi#)7b)&)yGc$u{Z7WAJZU!1t@`V$VlLc1u`4SOKdO)lSGbPP9 z-}AmjqXKIn*a82=$^QqkIPGP|2!~_W=l@@`9u;7Y2CQPUI<~r%J9p}6yvJUV8FGh) ze5E?np{`hkrzEpDrWObBwI{yUB~_slO|+7#be;?~f?i<_tu_x2PP#?|yJl zEx;VQ#Zf_P635AmT!x2#M0?vM(ph-D(sAaCT#6L4CV_HNF=?q=&0s5!u4K>Qaksar z_){<)Bmay9>`|;}DP5b!_*|0Z-X|M=+Ncn>YGheNi!qe0C3Jo`ytB_}!``bimkM7B zQ5MmuO(y2Tk|S;|!p}tlj+^ICxl*54O#{N}>fDpR^^^r3GVlA3MT_8B3_VPt|o$KX^xO zN+iQlX}G|v+)s5B#l9Bd>b>|=Py0RAtu)Usq7%zl#8x@moWc<1ZpOHBIESuI&63bp zEQ;@Icn&4~PJY_z70$2lH(j063FmelRg_?>e-^F1N5q~(VvJDeJ{xhq-V5q#wXQeM zWveLFNuamVQId+%<>+jAs$q|v$trBYF@USL3cPJhA^pdku*#iIgsRwi!8#;;4#RI~ z`P7DJ8|Ar&Pbv{@`XD05KC`YUi70JdcU=Zuc#bmczbv3aDA>Hq$EhCS2&rVzEsw&s z&#Oj%kKa0Yt=qkgGPU(aWQ#Gu2W3NqjALu^A7cK0u=D?3RmWLR&RM^#XN2gaikv1T zd{AR-T*wAc+qEx$HhAva0YLoVK*(+PJ4oRoG5xz+@jQzAyD=rdD7LBB1?&<}R-7dD zxwp_;d4NiYfByCB*XpXVAbCRntAc`pKP(kNn3^sF!TWJbW+LEQXx4wBF}1O=0Z>C< zVc@XI^}n$KcX%@p$L8nf37tkky!HBl+0F0+W1{foUZ62Zc|16HOiIcLHTCsf+&kYq zy9OqV6HoB{YP1y#)r4~aSWRzvkX5$_z|AA#-!{0 zM@tnYGwa!p$=8`FzwT8p=~It4ozx`}SyBvU>*Dd9uH49CevD)NHil#|%sy&@sKEQd z%qVamX5#!SckvEsHl1H_f2;;A)|l=X+1%|~nVNf-tLWy7Fm-Nr--=MUw2yjjK_Rab zH$yk;#bebMUlr@^+h)4_ZB3qqkCj}$J)z~cnR@a8g8Giwv242b>mbujO|^4{y#?bW zRDkV-1>(83=B2fizKZapC5<<7<~27RveK=dVn^n2F%l!QGnLp!7g$o8iE1fE@Ryh0 zN?93=@bmxE0yM3~Rj;L2hR*Pw(l%sQ7kkBzb|^)47i zxFX51aB7j-jMkJeweM!B)n-2mz(13gmrxxoC?>6|QMs)7x^}RZl&ytze?0#6tNPV$ zNOLcTv&nbb-&G$StHp)L%Cu2Sahyt)y?W~l&S)mR1t3+8acV&8U-hJUKj+hCvN~Zk z3{b=P>?Ev`6*k^0(J?x?N4m@^UdC)R$N*jw~65DJB`%>E+Esk#Zt zJveMXwClV+?7qupZR{G_%edarmO1Kv-%asgFU+vBaxEkF^W^Lg2w{xTOBc)nP>F>9 zrGxmx;-_sy71r*)jC}?POHb zcy?V>RP+a&__JnR94ru{A_CL@^zt$}6uE55nwh8|1#rhbUn06=@_4AG?>7$=UUHTk z@|ut9 zgBk{sj(>=$|D}hZc%Au`%jpm5*T($M$^=i;wBIPRe1B`&9r55zcb*|V`N17#p+fpl ze1b@w5K3CL6z5JN9BvLzobV0>i5KR`5gs1eK}|;^JDnHBCxM@b4jxqDuc$u!@Px17 z*C!&tC!wGvWyODj^d>L}KAe|w0iYB7w72W@;VUp$dw`<<@l%iTb{_;nk|#68oC$gK zv6HHb^~OxGQA8*v&MjXy~7NxqFq6CB;dnIAmIKEQv@{<^vU zu=e5|b%V`xsowqo-89$M;w#?3qGn2rFTppS-~H<36gXDUyI$)~zVnF5hSXRtJw5oS zK)>6;F0&=+5X_ZJjL=GZ=2iLu$$oi5BQifY+TZPMNLE2Gs-cQ*Nj~Y@U}aSNzYY*6x)f@40t=ma& zbQ}q``i?oFbDpO{#zsiOa0G#?J4?+Rn>R`A~6a0Ug)ZeWM@-No+M=uMoKK)3Cs2RnfYAZk+ z0edqDpm1{oi#~{$G?)RtBe2&4nF0U}R##VnHUe1YKv6h1>r*FDhI$I-02L9Cd7}oe zo_M~<752M2{s9!VpzC-FcC@ttk)TaIFiRZl?|(>np{NJ~!l1}NFaf#~U9y1t{^!?q zi0DScHh%>#_ z1;TXc0)Y6TV3B>CvIZt7vO&1*-CghP{0Nw7Fr{{?IZQerAfRAewovV#sqZ8};6Juk zq6lrWZ}gv~i8UUmjMC&szAoLIEFz359zDOfd^zJ=S&|tWp1

    $Rk=TC+y{^xF!@q z>>jaa#`yc6C2I22S2>)dCHpnXuH;C=>ntO;S>98L6Xr*Gs>+59hYkn7`T<22oD9#h zaFT9|e;-UtBA6pDQQKJ*Wuylam+ckcbrg&bkECBPK}*L7f(HTT7S&rp_Bd!6FI2U8 z=Q0_ZsZEqWZOl9WsOY@>;zJt7_^N98tlwfV)*?Z~cb3aGxx&TWhDYGA!1`GNXQ^bA zjdEpcJOro85Mj_b@~~uP_7kqFfyubHl*nOnc=T>E?gn!2H}0=GX^A~_YecPCn{9GW z;k>F|S4c1M>V2}GH&4QVTa6lKapxKFf?s|@tKqUd>VYUkZ$~pa>Gk9-?M*PACHIg* zE#*_Dtu+I9IKn0Aip@>mU=}pwx31j{;^y3!Se(a!Ece)>vYHNlS^j}0aN9l44ZARy z5&S73#&L38@q}k^%6kI(An$B)@+{PgBH=#Yf})d&BuU%W)Z6{oI3^>Ps8()F*tgd!7hcLD>4z&1E*lfd zGKOhz!&8xJ?mmGSYeB9{0YDSeYc&zj7U~>r?x%PH0gS>?Y z(-;1VoDw1vloe#!b#xPq9dIn+Y$Hgz_xKls`_-7u(5NtMo(ve-#+6{Ey?LK}vxw zMj$9fZDu;Hw6xCCXJwhaL<5ozt%@E?bt zQ0@IyQP2Q{uaJ4b?fgN&XT7)Elz!*t#)$~owGG`9K1gOUWbeX+0%Y-gl;kdj5l$E z`~bO_7LwIE_C%Q=d>3o#i7-wlNqWLhr|0;__*r1_1Vd9dDh%N%JYgcF3;sU&?Jm1$ zpl7+;i#M0p&=e*@aQ$U3t#8Y?q`7|0qvJ-wBj7Xuy)8l|K}n<2Q>unT3bhK=3i(#I z<-|kcsEosX>q=yWjePUD6!+GLrmipr2&|5D|3gA69>larYk#I(@w40Pd%~!M@VAyr z>A&O=QZmSJ;Wmi`m~Ku2+Y&e=R@>mWSUx7mr0l^V@u^YoB+8h#lL zRc# zJcktWHatT$#C83hyC?#OC|;I&xH`>4wcq3JD=uPTo;KYX>`I+7lM3y-PE zTvNFd}g;^@)d<4+>z zg)!%aQ z8~oGZ{$PVVxPRHK|APyP1KRZ9tM=f-)mMwdj@!fT?rwp@CW)Ezzg5vtQ-hl@Xt$69 zh}zxVQ%}K`N(&AWF&w}H^YZY3DEk`icNrNwdwZnh2mp`pmCURP;}gOd~A=eU#eS&O!tfEUqji z4UMdkO)xbo27Ar1+RR*bbFd($NV_kG7`I zUYIU^+IevG=heGG{%BA{Pz9eOx;nNtDBy#07Q7CJ#nY|jvHrL?$&F?L5#c>%lM(|R z0frTRbl5wT=&=9RGK-J!Tp$|rO|TheN|(8KO`bNN#ItAVgCyDJpLuk%679&oCJqWj z$=)d`Uyt*^2=Kz_R#$1A-GU!O-wn1NY6>>DU1W$%JnRNwdV~{U8JR!(K!bZY6oSnh z*Lr_WT8HiTbo%3Faat$ws(+MPdMZ*5N~WOG59R@e$>-Dooe%tlZ|<&k5gwRUm~h|% zyKX;ss5(MZXa+s5zuy0u7e5V)x7jOt_vN%a-y!0!>3@m|bI*A;`8rc?zvwIU^DO}5 z!8n;3>D+E#h0$j*QL7-U@ypb{Mz4;;nP=0QMEQC?R(fs(zOh2&^5{3!H+CP_+Yvj{ zDBB#)FRk^3cl-j~x*paPkMk+tb(kHT*Us|O6MO!S8T0(=-4~3K#g|8_4X*~lX756x z4T2g&vPIvjcHWE%1Y8%<&lJBfdiJ5SJG<A@;xim zJMNgXq0vZ}bxbs_S4M*3NO?-8)Th(tH!|WoT#n9zi`^?PGh36CvWES6zb*2Q6=o&9Is_JNI`=M$9Xd>lVF~x1O7{*3 ztuZp^umRO1ppr2`3LZkRnF|O zu&{tUO;AxFe@%^1X%aL^0AB#c3CyCOKg()qrL7!!H0y(v4Fslu{y1*=Nt+p95?{Z5 z{RA?yl$3yOO76|~<>ksfZ*~}M=+}{votBQ88n`^ovWoI@s2Mn7#BUhvXhNgMs6W}* zsm=yGzOQN+hHKlAx`1~Qz%x2JJ4Z*ke;)$~?7X~N&doq5vb}97NFH!tV+6L!77zm` z_Xd^fzd@7xzkaANkt6hj&9B6NROp;7AYw^=KvqbUpqF~?NQ@#J$Ll?}cPp3~bpqF?;^)bIwG+K-qxrO%I*=oL? zgUbC+ALH1!CSntb>C%gFTdf-}L$%a0r&aX-n9sDoUwGZ;BwqR*UcQ)fKOYr&h?IPj z@-z2V%%(!qf=9$hmv{eNgn-)27R)wbHiD(4-F`A$Zyzq*-lAkb>~WjZ#x|o<+G`7f ze1kd;Rx0yNf(|Lskx`{{xWsEsanC8;Q+Wi)nVbM-tFf-Rj_meyrh+W@h}Vd&TZ{qd zlTH1HV8J^TOTvIx++0_3>8^HBa(PxxW}k^sJ2vDaqhGF}uXDAwdUnWR#k*KB6~X1P z0+$_H?9LlyvCN-Rmm;=Q)=!SQ z1S547@tcP$N#!I%u-I^(vvFtU%kdUI)TRnKA7^$`+#Bc2(~IXL9NiuB?#V1aT&UD` za^C#*GrI4?bnC zqG%WRFVc$U)p@)*tlZtzZMi6QDg9PbcXV{$y7Njd@kz#(>OckNv?ZAHWXeUqG1*o+$_J3kU8BZwRm=z#|ECWcOBp71`QC2R(CEfJ@Ws^e4!l z9NuVoxW6qJ-v$gwPfyRD;U$00)?ZXKV*NTMQmV)L=AKLw?}b4i2TLqL6vf*KhJ+*pXz_Z5ELS4(UaT z3BG>R8uyGb?kuA67apptYE-(iM5X;Jrx_yV;FCw<2>aJKFyk(hPvJR%;fQYs8&%U5rd!#W#7vc&hPr1Ds2(jLS1 zgM;l;Uo6O=r>J154$iFO%B<$qyPmC^*+~^%lgri7AEV^Y zM$OQ25ahoQR;_yXf2lh~543wKCyHi_+t8iTSV1MSa7(f>vo8PHUim@Hbo=*ev7+M@ z58N*0Atu=x3QovYZWC3&k;1gm$=tG8P3?20KCJJ(CS(eQJdlr;QOEG?bt}}N2%Zq4 zDbE2ZRGWD}Wai$;6kTX9t{ROqt#*!FcE+fc-RQBqM2p4ptq66}iua!0N=v(+IV+Ej zzVGSc_p6JD<);RE2Q8A~jD&Ln$#5e@;Yu3A?oQ=>?C)YernXP)pF)$J6cASu*7$=h z#Nfo?f=vl#aLEcF-IEMRR9EEaID&C%IKfA+ew(aeR2sArVMTya28$$Ul&<^$$80xr zaCc8Np98LFK|w)bVgG~qdizFFR74&g9*|@Me9}L(83=|poB>GtlHkdsI3Obf+yg*y z6zT9$5ecMp^z;;H@q#H86%`54!yNhAIy*;e_a`PMW@pn^jx1nBnq}8__h9D*TkzSn z;oYv5R+B_DNU<-W5GI7SEw zxT0prkv`r>%?Vmfm&b-qZjmA$c?$-qM1>t~8eL2|p-0J4C$Y%KX8v63apRlqhrv}8y zG?4rW?Scr}A+vt{_ujF@Ldo<)RV^bA^H~!X%57Mmet!|EZ8xl2(zTdHQ~eqKMxOR} ze|!E{fx`CW;&n}t7=aw1YN2}Pfa%Bu~r=ACO@rEXy4lR-3-L* zrRP;650DRfZm+>aP^~T=NqC~in6^O(gtbWDT}Bo24NOk3wp^XutmfzWK8x zK<=^9u;wMWoZ+D2k*x|dvRbb^(_F)_^$3r8YpazoW*Bf!@tIdVDapIoho%d{D2jv? z$k6qp1vUon9)y|*8S299LSN;rn8FUYt6X`0awUFS?4Z2=*n7Et8iQvc*dC+L-uHM* z->K=_dxJ8}Dt7~}PpQOuY1p5+$`5#4-+W@qG1le}krG4+9Si&(Au2Ka(n+uxMjj zA*mg&71~gwK=yLdQgl_6lB2KsAk$io13wuN=L%`LzvgL$p~_D*e+Uw44iXY-zZ>Ep zgQ#OHJfd;|0XS#Ts2aFxl@h$VkZ$=V(pfkcm|obSrq0gJ0E;p;Ezm48ubTq`PY?t$ z@)|^dfX)Y8Jq6>(*S^7&`Yo#61-Uu6H_KuJ+?wt+=%;>QmYW+I?n16t7%btZlf zy<3cTb{TxqjCwo28-@pW_eCE`CVX<{&(6ur)Ya7;GULd8F?e)|prWDih8AL2MLYd zuFl~KBET7|Nf&-?IrLMuyN}-FWef>;3`Gc+m<>76J9$Ii!Wt-5jqqt4*M!q?XZ!4U zdlr>?rAzy`)G@c;z#xwer@hD1KJjx`jN}R_8Kai5EE1rTJlNi6REQ!Cj zDkPKe)8_lKtt({h@G`4e@u7kED;-|{__Ip=9(jS= zBnNV#nwy`8^;E;}7mx8ebN0BcR`?S$CNt-ztM`cL7;UGR<$cj1!%ZX&(p@Lzt8eD1 z9;RMizv5|`-tl2AAK{+DFm%ESwDRZ~%GM|m?V-nqqb%EM4kwR&C`EaDp@o%sN>^O+;^1oE8sZ6;RUohuZP@B2>{tL~-;DLhxoiIZG< zjIv|2d=Qx@_JP1kjg?Zf4gv9(^yV%uCK=_8 z?zMl$PVS1}W#}V2y&klZ8}a)*t78o55B74m`wr-Zxe3J=AN#q;VH5$sq|V+_$urcD zNMhjzVSMmjLECtoJH=S9YzHGgqBExT^!YgdeN}$}T1gYSp_5>46F#*GBjMX6`QbV+ z$=xeSFC-+0TchT_=GyZzG6LX0W;(+2`f~(3zxSc6Ik~?#MW$!8VoINFrCsW^=XISy z^HU7%E(Y3aKeLnP*lmA*%HH2G-Dn$Tjw<2aa`%#IwCfXLd^h%caG@rzDPART6^4Ww z|EIVKAfT7?MDL+?gsd&hO3pVNsFi?29B5QNK0g0o&g`&bK{h!&Nc=kZm&!fREpbpm zm=8a{E^8XdD50mP2So`)bv4?*JOu&r1tJ#InViVdWN8Vc{tWwEcFxWm$zLop8>*|> zK|0sD_w#t5OW1MMRZZF0Fqbc}TVPGw+np-QSNXVPf9u=Pz06d|(=q(%_pWG`r>P>z zTB#=0DrS0-9O^TrGf=)eu9-L!_KnG3el9MO<>dd7pFdY67#tV?KOZG3h&6RCn|k#4 z@dn?&Ejy=^@1Fv9gh=8n9(fas@Xq)@9PKCz2T_Er-r_>&%quPLFTZcjxK+uMBy(J8 zb>UT$t+B>-LJlFd2A)cvnR^~{nGv+fx~_6Ka>HjCm&czl>Eg-T&mty~lamZ6A^k#} zMf8J%A|bsOYI4<&TML(vr9&puq=uCw2f)nxnT|vdNG zxqNc|os@cQj(t97m6aawn=+pFT3{2EeOe&5U!#0%znm4F8)gy|Z z-xaYXkUu_Ov)2)mod|h%KUsn@D?yW4Bv0{a1c$fN?dJI9Ew?cqI~*1ap34|F9R*z! zoev@%qzvzX#1n*@#~8&~<-b%=lAmsZzRHK}*lbxpUqp6v>4S1iI@|g4kRAF-sE-;) z>1H>JqEo1r@N~UL*a9zOQLCyVMLs!z@3 zTKPWyPI>G03)jlX)2W3kgn>^@%Ba(JwN&9M#79>Vjrdt`4Ea!o4vSZ};RF4C$())m z^%`nFxYDyI7)w!Sm6Hg=6O#0-!+Ospr+ZtF{T=XZKTlk|XH}lr4ZjO--Rms4l@}`R zJbhdBAtgR8u4KgfI>|w}`8fTw-p4b%iLYU72gU1kahbeuQDK&<&gYiGz^)~aF;6L` z@6VWdM~BGpiLTEIH+QNn+J#`}3~owk&!bi&^1(%C9hJa8g${Z;1pEaJJ#^KFLG;)U zFC%P_Ei_qzl#~=Kw%5M?4i3tx8?v-LwYH$cFDw+Kv@F@jubb&qYL>lcu+HQG885Q5 z0Bu&z5hO_%1f|FqL?JvpP-ft)vVsV^?HdS%IMQ{*C{q$rIBjiWcR^u zY}#$9;Xs9fi<7gUba!AtnvV>qEgI}Np?|?kpD%>II-iC z=ox*92DB{E4V;}`YFJfLa2nZX{bE)uKaAGRgQKR)y@bM#jj3`pG-wI_{Wn)^ZJVjz zXCE$?FX&knO3c3O{Rp^xXkMwPwr~8^7|=RlEu_YhL28rJ-VSnfbD(jQun0`?169o$ zf)^U3_LuBbik(K$FA!}MQePkWq;nF47?qjZvRZYu54=UGgRj4o`N5Xywi}n1D*gE+p&m_=vU11TXqmV;h2T`*l?n4}qSm8{Nk~Sp zl2z}5C{2vfXuJlA4HM_tu!%f>bh8=@-1zyxq51Fnl{tc>BAsIbE(v!oq1~8aaSgd% zd|j%+xr??dlJPT(&qd-ELqRR&hRzsR}A~pR^h==6~X2x>S6GIU|ag(b`qxW)U#`liD|#0QlY6`Hf&$)_5P=vBHvu#%$|_G7rmxWaE;ktT>j z=`l?<;biZ$I`ivWjtm)3)UEv5ZN2Ck9`-96Q<*j9Sv$9QT`v6xw3IcD{4nR)hu;m%t72PPUu*2J}y~I3Y(1564CFXxwH=|jje2`hEh>kuZ_s( zV!yl`u`8PsOe`NaY^3$tmV6U1s6ZrG3)l5w|Aol)j8B!SUIjca=_yafO`eTD{%qpc zLPq8^cFiF=+tiI#mX}Ls(JlxsMw{Vqv+PJb?BDOC$Nf-5y?9VXxnrn_DPTVSJGNRz z>##H>%v2}1<7oP#X7N(VdYjm8QRz zS$hLPCVaN_<$fmZuDhd4uI=FMS4eU3Poc9mA%fsGw2YwF)W1I5t01xMh(CiP%naJ3 zY1TcoSH4>l*zA9}!R-Bh20@w*LS0314_pYu6h*!WWUj_ug!~FrGA1{^K@h`huQhA* zMp&x#Gi2*c^jG#fiE+5kI%C<}py0jO7bO=)LzhZ6E)Lw`%K7M793qra|A;6DBYam* z{gJC>1Xjox8Kdn&Z*RNA+IvdAr4B9{`>Q8s8|U=J!k*?Yqi$t$;YV=Rt>()|j{SeQ zn^)o$WusT&t3*>o&qA>#5M#TBtOj6*JQW%nIWH?DSzk^@t*oKUchUGT6bca{Mqa&F zYS>W~e5>0(7N^K`CQyRSA#_o^@(aJ-!LRU&mm*5XIsqrc6xC6N+IV($8+udZN4!=9C_PkAP~n&$m?8`waWr_1 z|1bPT$p@;tSoKd^Utp-Dp=8A-eF4QxI5;{2!To9Sh0e{u83GK(qg!Q~KowO6KseCe zff91uvYOfFe0Qp(q{NX=pEb?R;L=kNm@~Di4DIT5!HYMvI;n1sj;qeizx@LW)yCc0 zr>sGa+hcNaEaZ^ab>do%QN`qwzlO92RA~8?NxrC8vRI8 zPkAE&!(u0Qt-~fE#AY+KnA%#*qPz{BO|5yGhu4aO$=vf%K=d=q?<=l87P8;rr@FR|R0<$dCkH?lD8E4O^rlecK zim%k6xUQ13P<{RzK|y|=;Lp5?Ht(rSsN%J;v9U~N6cl5kh(vCivFn#5SqbM7e4P&i zhSJ0Y`i9>{VkzlOlocIOBb{Re+|hfi+#mU0R;6jbXnWW*&l{|jXj%TrSF$AR*s2Ug z=1zUf_u|=z@Sq%V?>Zk(?X`Jlz`NRpQcbC6qNqt5pN$>+YJ;t?#PfBOY|u(t%6P4H zh(;Ti{bu@Y+iaY~6*h=k@r~GW7t|(+%)2o0eQ2iDoC($| zvlqY;-3-^8f07z$Z!+I7gmf8${HI5+ruRKT+3e^m#j%8q)`hn1aN~!W_>}6i zPWMfgZ;}Mgv%6VRAQPDJiALD1bJMnp{K6j^qMtfOTS&9Q;KY1hmgD_pN+?aP15O(P zCoYQr5spR_4u*sd!C;2a2g0qwZw8T%Ei5JIl8tvU*f%ci@jgPPdb5z-;%xr5KlE-x zi>z(K1!H==DN2N+3!aL&;}auM0(FsvcKw{uCCl1#Dg&m22?DCf@76QrNpdzWIuz#K zwC@|0`*R_Y+&J?wa_t8%W{?9>yB7Lh{v?`wRrtE-XtbpJll6{bJEbna1fzc<`7&MG zH}+7Ic-ux1M(a)$46>`H2z|^YjyvJb&(Vd>Ab+5j<3=~v1UAW`A@SDp$4A#ZF3pg7 ziM{TsCZDBe$U<4R?#OliS}V1L>~_7Gr_G0R6;Q?=d#!A=CP=8{;g14MeIo7!^7A2L zn{2C2oBFA;(jt=u-f$u6;ZVtj_d9tII8iuI<^LDR4gp==7X?XF47DR77)?5A&_kUe zT%2mSR$5vbm|MX44G{b>vqzplpCnseUJh<$g3aNr{1b4(@-IFPWLoL6v{=~Kq;Vkc zEgL{$Mn(=?kNy~Vw3&&(>0+L&T4o?K0UWn(1rfMzuix(N2HLizr7TV;i0c*4A3Jad z-fLKRv*V9H#}Ejlo@GXa+?7?k`VtrF*IiJ{KR4lZzkRF&0VkUDSsND)016M-c`+Py z5Xbl|Z5W7OKqP9n@fZk}J8-AP1D{BqP^?*|!Soiynt(S0pa6W3W*H$AnIt^uUyz;c z-;JG21S%p-ezi(*9B@)|DD%*F=zbi6sy-yhfx4bcDq|ZpYbw4q(dPd@rh(H zZE#NuSLGz-obnVicFKgkiC{2_LzntRO1H`fJy zP7pI}?=fFH-?E(gfgKW`tWm#v@&WFZ&LdG;#?MZtf0{YzLI*Z9!SoG*+EgY3^79w& zt&=Uw1X3cR%nHdHiGux8SkY8{97*wVP1p_{cCEZ-D$DPo9WmodWp$IhpgvV+TQqQ+ zWCbX%hX_m5K1ieZ0>!2=1GihN!z^Y_9GuEkQb!Go6I!^epQ+568s_>1syeY^iAm5A=!X?f~*@zndSkm=lY)54z>u@sr z8opoqF!ylqxCKN1hYBK3=#-?xLOLlt~o#K7I;`DpZd5N zG%^o=Qp#OTmU_N>ai4}kvU0d0+|kZUi-EZWjq=std{uiKr{(i zH^EUJ{yLgDSw*s{D}!h0@FV6(tZZAv*6X{<(%0cn?Ca-pFIs6+zqFXc2mbBh6d`}w zIeaKQ;)>KCLXFb%Q6WgTkFTjA;Okg8+AAV~A}dV-APwlPfzxJkN4;#yR~Uoqo*``*WJAu` zW)_t&$O99F^M*VS&FJa^3+o>N+gx2J&c85w&e}gPd+!Mij?TsJqfUmeBlQ6fcQ+Gw z9TBTWs51M{YtB2id(y{}U;><%_L8?_u87E2W%!=M8q9r;!@^KxeC{i*@8(w;KS^g# zXqLn^!ex42`ZC$V%U2&siT1C{r3iXbiy_mIu2>9qcGG%1>^{tnvHZT^o%QM9vPx0Q z^So3BgUN1(8ZB)H#!BtZPI?r{ zio#ZXMpD0cd;+bmPd88p_g19T$AzhWJ@?e>Sti;=lXLE0NWz~)Kb_vy|8@IfKJ|&5 zSgCq>{Hk+5WBuN4A#X?O^3RS&hvx7XIi z!H~08w&1oz8L?Pwb5L3OD04cDn&h@sa1@y%U)KECtCtK#Gf2)D+mqxN#}UI3u@8a? zLy(7HhdMr%>l@@AIlKh9z(A?rtbf=o8rQ$3l}Z%MyIZLcl|0{Fr8#Gav-XOX*H&Mr zc)87~aTeHp@S+73r0b@$DcSCgA+sq=P`NNj++N|;uVl1 zcZ$T?m5@2K^ADJs=i$B$zYH|7TA7%l9(4?7`+(w-S@>)UZvh7(%5cS@U*JpJcN-C^ zrZ;bwme`Kz4iC&&&u|(#h_tj$llX?2%US}6um7jLeFR2={Oeut|`!^^NJUw|1h$N^3 zIu_LlhlgFfg34?LKCNhsyJnapz|+@4JL3L42t>f?S-`!C0%Q9ha{ccn|L5zFWLbpI zTW2Y1QmTKv=i%X?`Ri7I&c6bj>+|!Oz;;eS0kkI$jSFAQYSo$IVq?>byf%h_;UY)A zkm+qSL-bqu{sVV#O9|-7-CIFabK9p+T+g0$*Or^>fXP2QD+>(g8_r&yp0n(+AaV~Z z5R*#0jL{rCJemvyFS7ZO^3KB^rnP-gQ==@lKYjb0V;A!{(^v1KNDUfYb6p)i6d6g3 z9a=EC1LSnT*{an*v1{)h20P^5y&mWm>!IU);d=OYhoST{D-c;^Ed#jnV zMz;)DiT`J`{~w6{xAvM{Bg)`_0L6XC{YpT%E>A}c1o1(T@0CJmJX-dp6x(PNOMHz} zx#!UWgv0f=*o33W215q@HPc5XhSnqp<0r9`D16RT?14(hDf;-t_~{?lbYa4TX?WV` z`1yl$9&`KLn;N;M;xdxEBFCIpi|A)(6vM7rc&gqW9f{2kHF2C4R1%0g?yMkxtJx};OOyIV?Hy1TnOr9(hKKuKw7DT#*;0qJf5>24n4 zEcf2;`Q`*a7-nE_80TJV-B&u`A>0n^SUQcMPG6OOAsNlk`s{$@Uc>ccR{P7yGRs}h z+?ZWjmC!n_TZL~B1mY>l)9#zfRJnZqn-_9Kvjm+EyiwO$)l|wxYeW`9wf;=>ZKUkG zpDvlK9K8^tC)pv7p_1()G_&M)? zK74sbDWyr6lQ78J(p)ymEiI~xuF7W8O(Ik_ka zxv#CutB({-i&_=aR<~22CH0vPY;;y-{gGO?65Ma@i?aSvSI?)joaYT^%VR`2W~w6L z>S2HKU}JLLElmJJ2Bd+Z^^ue8=F7!RsV!|!wbwizmy5(1&iw>`&M4Ull)nCAq2BXY zmX7)lX;ryUq3ZFDZ_S6N7f>l3ncw#%T9cpm0ukvpAfsOI~I$W zUl_oa3V&arSMK|DM;3R<52c&9?HUr!G(q#{VG2%W(RF=G^KVr=m6l~eQaiTdsQnHnhmfGg1?Va_ncsp3F zZ*IEU4RJ94q5rt9&9Zi?8wvF+emVJpt6^;R%#nUOjVY$2rw+BOY>@MYzs^{ys87k8@$@kWH{NfR09=#cJ`&m`%2LQmaxQR9k{4 zxM5XdeEjYY!_s%AHQF2*T#6|eT`v0nT(1W5bLCFwcq0Qn zNWp7YE*hgH z$B3m~h34xNdYtF^bk9Sby}b#Zzenu`wYSVT&wo_fWxkG~{5J$cNZI9Iz3sX;kG;@Q z(DBpAXwHuRjU;f82fZe)p^@kh{{_uY?+;JtnIo<_B|%u#5PB-g<9&RVp#P~%Y(pi5 zT_1TDO4)qnWc6k zu~emtA9aNV&PB@=~HU10p z?Mr!u4N>|*ap=K*gl{~MoKC8tCT3kuz0+3CZ{NmNIoA9{{O|O1UOdLRSEq`np;mO~ zUEvP(3oZH6o6R5QOPjkkDvc}kb+DKiWN4FTdUIOOpYAULa&}6ERAAJ^;GnIuuuQOiUJ9@BIZz2Qh<(#K}3Y#%Il)X-Ij_=d^V zZ9ELfi5=tN9E4;dM3}+GRJ;Gj*OCeg`^i;(#9E*`;2_li4qXODURLFthZkndwpbs^Z10}&lpX3i`tW0o0y zhV&nhBLdV1j*W}p-zO&a79w420LnrpJUs&g#n&nSsCPj7mp%)S?4g68D^E{gy{XW2 zYgq;yML@vv#_4AP4_g_l>YOL;Zo>apm& z5%dh;3S;bf5C3i+Q6ua;K-vc%bA3NN*7Afb%?igr88C%&!}To!bC+tO`#m-3+X4zV zH~gks8D9J#B=Q~jA@84m4+$qK@1I&CcRn!Zmsez>wYokV7j0F6v!;1m&R_dfVFj(lE=D|?}Oztu<`jcX*Vn}n*}QqB`a@7D&i9BsI>QWMJX zpQq9Oeu2Ou>>s$-m*rI+Z_lvCtQqw`Ex=3(agyPo*m<0?64`+RwvzVZf{iTZXrBcY z=TOZLQJ!~3&1wqU`iByZ{%r-ZIaW(C*F)56>0LNzg|Lbt8k3i$>1R0#Dba ze!o3;UU%?%I-qSo^AfIy{|2KT42vv=mOFM8jHy2h-zTxYEX((`%$A9eThWb=+dlJ6 z@nWj^tB?HV1uiwa(_u3#WhhM39e&O;ktO(nyzRF;rGowVirU_eQfaT$n8x*%Kk{?8 z;(4U@ag9zxp!BM#!=yji>uT#A-~}v`!fD*;$xU@<_U?4RY^aqUWt} z-mSOW*Jk*(^s)P|y4P*AjJxR}UPjdxtBR`O7`05E`QER~Cabk*&sh@4hY)4C|9oyx zlAisM@!jFZE1VREP8{u`vDq0xO(`tC2ygE+nt|p*C>kNF93qqau`I%0Lh)Eh>+<<$ z<+Zn29N|mCI1~0QTw?{v#_ELW?@Na5@B+S1{A@N)!^oz%$@}|^I57j{!e8ZpzRX`4 zAW#FIIK=gjhUbTW&}N!Bz6RDaVC%lQx!K(OT4aNSgak9O%QaLRVR8X|C@7$U0V00F zcv4c*hQ&jWV>etM1Nxz~?Cw3Qzc}9e(u{eo#Sn*eDDLy1x#RL)HBL5)u*RI^p)GK} zFb#oS$k5Ob)WxD9z=e{l$X6M*2?z<4nELkBXarS* z)Xt}|KqGgPw>z>uf1+N7T9M!6A!n=IPZ|;5Wh9DOx$r0G!$*>Sd+!24;-UXTyM}Zx zhObQx(5sl!hgo-Z6~X}QiJ_JLnq zB2->gwQ;0=z-DZ#|AsU6>|yUJ-7EtiLC=HxgA=1#UGo=(Wy|@#q~#OW%0P(3r2tWu zlg13kXw%hNv86z==R^Zfb(BR@= zvczys5cG*4CzL4~je?K2x)mRklr7y3*nSRQrJ1Becs(j8dyD#BJJuf=oy1h+6p=EO*`> zY#6!~4NXmaqN1XLg5_m<-~*f|lXt7!;UAkOoDOoZBLxY9NHEb8*W(!+!Y8rEa-dra9CC(U&t{v#yl z|3^qXF#_uov>ft!c(hUU1p4Q$o{#sY?#8T&am7&$Q55w*P9k9ZJ$oJ%W)>Asw!{f4 zf+$WWC+^d4d>B+*&Dc^oq4!9&-iV=OQYQr%`o)2VhF1#Xc|HZ&D5oF?J6&m1X6RGS@kJLTe1U@XhC?0uM^6m)UftP5rd++cI2! z5l5|?x2eV4bxEF9i~Gt<@8zzNUAunv`>x6I9{$mvhibPozFs3obZvWgN5SyChxhRm zPyfbwjfBx$zvh`!=Xb;g>f5ZthN3L{1&9_?jgS|#i;!wc#0#p)XCqXc0%$o+nj2?VfymUO>ohu@jzTuNU-EEfyT*(_xaI)f1w}q?jVVA`8$6m!F!1X zdKKlbEAwayHNF-!!tM$(cCS;c@~*r|+Cm0tSO%H~x3=y442<65;HEW7j29S*3h1i) zyuoZWq#;fAch2+lws}nRNV1X)EVT1BfD`zFE;j+OVyf%L^73x=YBKjKW#uW*gHPW< zN9=fr<)hUl2DrTHc%$9H<+ zX_VBzUoLayeaMrr6WV2as+)(_4l(WVuszzswETj!u3Rt{nOlQ+zs?%`FRSp*NYRGl zVH4DbP6B^86rEjal{6k8Gi*)qDk^p>0j9~y&*dxk?W2b*yxzt#f>fugXMvFEJIHN_ z3jf?JbH8io$`&jaSLfPV-V^<- zu4;V$Bg!MW!9l20dz9y87!BXSFnokwkq+WuJyeQ(co&Ig@O~)A2}U|h4rbjs%s#OK z77uyT*zRglbg><3#HKfHZR}p&hKMua{*vOmRRqBjdX@*1d1{ERv>)o3d~N>|x`FokX&zv(ODItM+0qv}ZzGA)!pK zF@DPVEAaCA?tN3PX1`+p7=QYS+P`g%0CPS*yLJs9mb_;|IZf9su+yDt;77B(9&_!?sBJIsKU~bM2+oH*6*>%Lz=mj+*EcoY{A8@c zKybM^F_BgUG4ooQnpn|2S67})cqtbA7|7O{c(J{nUS5Jy!=oalx9Hfi3~H>?^qSf|_%-4sYL zM_7AL)YT%L7yO$l10j&mH34Kt{%|P@y@N?}6X&Z$IT@TjkR3CvS*-kf0%J9Y_$)y1v3SPIU)zw$3-Tlw| zq_=6;&a}ct_aqPSqw0+z4%k|Y2`u~#HLEUfr_XM>2o_P$508y@IL~5JO5N{Uc85ew z<|2%rd-9^&PW};=JeC^B|1kpJOGKDiHgMzb-nyWhSgd3wO`@<;Zxs06V>l-5x&{`4 zGhd#aC_k^{#k!d@M#9{;g}B_Na!|eJ9`v-VF}T(=^Q(VWxkOX+=6CwYbzqZ*T6`Xf zF&-1{*Rf9}j7ae`T@5;`1n}Xs0y(SD)&fr*WxAs})P7c}+O{yP{%6uN=)o=RDi}Ty zZOL@BiVC|#B#EM7?iyokGj}ij#4h*N#|{j4x5%+ue?Z?;6(8}bKLz|rs)@`=DF6P` z)Q^Sm1|Pyvr{cYqx_ovnxUXerS)nyOvevR)2Jy?gaYD+TR42GP>@tr@yiMN$01SN?- zmr5>XlRIn{K7SVbz5`pTI%$ow;!%tU6**LlW0y}`r7h4pL~&u7k`%3@VXcb7dxR=| z{u5Gr(sz*)(;af=ekmVzXc zdjxoJT$HtBzuv&C`P+?g+oLOb)2XF-zxT3+6V}`PoG?Hv=S_!&LEiKVHJA-1v@sYK zV+jFKjKDB*?Ikz~_6MXE*ihqYObF5}096dc0r78uCkQ#T$s4rz=^E(k4_np&i$7o< zL72Q+DMDE1?d>h-+6Hh%n#Di{k^!n2x~|S|F9QU-TqKqWCys3C^A0r{2Yra<5am*V#xD1rsEb z&AAAtxg1PP0Nvu+9LJ9Mcix-zos4jr{+;~??Ktmyh=?sTy3|Xk?Ywv=m1g-m>ryf+ zf~)gFbbYl+{TnPyB=K|pli9!H{gR>yTTCpa{iFwmO{xxnPJm&q7$=Xs5dxF8dLJ~Tsgq%{s{Vfx=+gU zcWzTZhOUvFrgtIO%bM64HJJ2vmU1*;yp*tO8+Iqn>sNn z-w2<3fj4h$oKmNq=0?1zlC&{brOH0(o-lF#urwIN@A@d-;OxzK<4zo}+Th4<`H5uQ zKK{hK>pP!4uDmCrIewT_8LJWiv`MOo<{9V-ZO`rJkzc-6Rh6#&kMaa&+M(U=V_GN7`Qf^_w+bABJ zW~OYp7X+q0BYe-<`_rqaPqb;|K`zHpXcF3*wiUFMffK16Q54yy(wlJjDPq*eS-^Ex z`{XU-D#;FVqE(EM-!o%|U821-6aI!Uxgm+r4{OpfT&&C$@ew`ci%_r8(R8wJD^Kw{ z?AP(C=xIK4-58V|xfHK%ugY#6!ZG@sV@pKvQR>TFzCSHqQ)r}XcfgP;INc@{ck=~f zQp!sGR1*!_9E8DEEyU~P(N3F{C4_+>MpFw{+oVwsDCBQ9h_AJ>*BMxhn$Ou-%;CKH z)ercYpgE@q%$Kc)?`#tU5EdhdUSX1SoXkDvjg=bllof-YOrxu18#B-JEnM*L z77s-BkR+R*{VK@++~D9o4)*4o_64;mW;1wq-0lqyIG9=DE5Oax&a6_u3?F`%CrSa~=ydI-D( zNQP>=)=$7AzD64y0mykkyRhpHSW(wzVrf-CCP&j|6BylLmutlM$ru`v2>TyMc|Yhp zV~ZfFL(#puX`5@Tt^Iv|E1L}B;y^?kOdns)C2C>g=G4bZ{2cq1Z!vRbocmQViUX4ZNh{?UUqULub_60P&A>1@=7{OB3Fj3 z5h4VoxU9EcmP6cEN1x!xD6{=tGzyz^TLd{d!!QX+HyQQH=QD0E8Syugs_9OePf^Tm z_O)0F6PMcC8hr1s1ikjZi20tK&Etn9uPG*?v>RJ^*}41w?5y^=ZRN!{;L_!1W%h-K zQ|$RYC@ZAFckbS0C#*nH>rJ-UZ`+S>PlyCl9%HJLR$1Cgu0~yfP(Ky@ed3PbV< z*@4*rGegqv0Nd?CIU?u`+8eJhvW?a_5~947U;0j2nJ3GNX{tr#<%rAYfg6Tp=7Q!U z^tU%X;bDgn)SQwUHkC+SbvPI_%%gD3gVAo&qwy50F-lT{;pIBu#$IAM@thjhr=xLEsJfe?HAIDN6>W|E$P-GV|IK zqqgz&@|r!qMhXLH*(ar9(A(l+kocwmXo^S^m6eo0)$BjrE}R6Yt%go5%Pe@Y$*_zq0YvyB3PHdvihV8BBOt zWHdMCqbn56tV3o=KWEQ;AIfAo>@^va!OFU zSN+h**B~`w!sd>GmGZ9%$>3-2SEZ*}93`><1WFMA_j!~21+?YjAGXQg8` z*SqQtZDhtYBNJgb%Afv7@Ls#0NHoPh_;f4VztL-cad+Jl@N>)ptTF`ZOOuQ5`p{ozn!}E8EWtvGkJ2pWn%5M zhy1L9O$?E-vXlW z-}QO_FbeM98Lreb=DV5wg@#IW?A4HPXO#Ov8nb#iA`h0z@UAu^@OF8LigV?pxDoCp zt|Mk>mZUQYf>Xp=#NYSyKl}7kaLwJJQ>L9=f6!&hF`w&BWA@!|`y=Gv2z9N}K9U8J zzHB^H))iqRhr9Tu@a+pwnHu4p*cx|_2iN|Nr1z8YVflvIXbFmDJh<@r1r1hsEA0lV(O_W6LeBVmSz#xcU2`XxSD7?Y7 zInbkR4D$7!NrP)I8S^>8J{I)0s5lu>5!Nxi@K-Us=`wyw*c>%g2Px!v*S?1iqTG|# zm8IcSI&X9a&l^nTJ3FiK(B3vI>aC9p68gT+4}YB(bhSs^A?!;y)^v7ARa|iN-udf)x=1W?E|bO|%BzZcRPia`^SF_+bE*#@9#?K> z=z%Y$q$SfEGD${uUP)Le-EGU=BFmK5N7i*Ypm$L$q;ZLM+j28Qsakm@5Rppaza@W5 zmNV?=`fi@JwzY#!vVv_#QHpxxyCfDqoOT(}^Ge#Av=wK=CXDE3w(pDh(-919H4vTm z?Y}|<&Wiid0t3(Wslo<@Pm-ge(ISzNUkpb{t8;1G#1{_^QW#mW8EcU26{P-FrlSUDtT}(>DH~Gk$xQpdaO=YJd#SP=IYpe1+oU|)-XA&FD zxsY`G0%4rOeMr7M*I)|5`&>Kiblot)uG%9$^q%|7Lj)>!4Q}&@WV(qy?V8U})AkSx zi1y*HTj9Wnv&oN1BW-o!D9%S(AR`jvOm6a9QfE$k> zf*cu)DtVN*5X;aRfWr(7KVGRpf!F8- zVi;;S2-^EB=*5yM?;$_}1JuE_OxMtdp>$U0!((r+bSODp42b0@d&e+ue+4>x|C?He znEy>}dh_w(w|$E}v?JJqi(n zy#79%M=+K!LjS?Oz;aAs=ZF2UCt8|(YV>$PcK>JM70;)U>lclwLwS<1pKVx;_=rjo znHG2N^^-|>tgGTuv!%zd=Ml!<)f*zjtXuCHANt!K-Slm_374x2-ZrtTNb5G~J%o|m z(v0qS%Qy42Kh7H!1`5`c>lGE0mRaoKk#Ts$o7@IA(nGt`@?41VUon2(d3XzNJE*N> zqk&$s^N}g2s?qBpvysypv2sv7rE_hMDo?0cNaf+PkSS^C;i#GTOCD!D2n?y+AUE}}iC zia(mRe5J_863vv6>wo`0EkM^D-eG4d?!K+)=dZZW;&g9+cB2={ZwU!|k(Nih1mPaG zE938VduFfbk!(6z^{DJompk+<=n5mOm-e@Avj*^Ux;{12LK?iiub>L6y^Y1KB)S>T zN#D0{NXJmUBBx(gA|?E+L+5-H0F$QMK;^Te^NY=?Qs1pMQyQwI2sdEwjf5I#Nm5j zdU{LhVVy&cqH4~U4Cj%PsxIyn$Lml${(T?Ue&?i{90v6X9x+^{4Bu2*>FWS3x-L2` zoWUdq$uMS5NPfTf54I`12TJMO90HWmhVwb=9sL5)4P0ad(imzC?^k8{d!i+t$ML>? zMTHAW(%eU}P|-GxX2HF~%&UB(P2{eA6-E*Z{XesW4;vKGv?xuah+@vz0Mhyo;JU}{ zalJ@docALuEJCM9wryN2vZ<`7_#zUZiz6N9Qa%krW)+Gj8yxyg*~7;hMacTR0|JDzM$Uwe`4aw#;UG;^$H7hPZ!wliN z(#2$DWq~C2w5>o088U)xeJ0aTo{H?`cM#oPS64vy945TmB(n&lkl;w~UPFPLznkpQ zxo&>bXQjd6|Fa6CuNxC+-!KX;L`BXWE<)p-d=4aLL$(Ob@2e*xve7tAkk5?gRF2WN z)gOdt+V3aNpKeYJFBn_Cn|3B5{lDMRPA}~k;C-M6v5+L$KyPU1pvvmV&+cP?PgVRQ z9bqQ8f+t^1>L!Zk9-e8_j(+ZzuymGo0o-lg{>>`w{*Q6%DC%ECx|;YOY#S$GgRgT% zwO0ff!+(>eS)Q%lsoWS*MV4gwBA8`bx_gMJes|FM>D=*x6pkYK@E6I`g!iqrSZ(3^ zjrWY(cuGr^v$6GW3TACY4wB{*SA5oYhn7)SFj=s%eEjr0RdP;@3k=@AR{CP_r2pC< z=cA+T#jmit)V!4$W*V%|eaNLk#i$JLxth7wy$}zBJZY?K4VIRS>>Ltlj27F2dsvjm#*$6XZy0Rae#Gq^~l_9=g_)7Fn({ zI>WvmPyWuk^qNsY7f$(3+q)?$Q!#DM-)9gdd_$p1$Zzw=OUUO>Yz+H%%`1O&GHC8a z$DotiT*FYeu6_�tKDe&O7bo^00^wAFbUXFJH35m*L|lGYa1(lHU#f!jPB#N#%d&J5v?6As7``B{hYF# zXYJcgkc+`mq^CKq?y@&$Oj~sFOx#r3Yag$MHAzrORtO^?D2lkXsL}77%Q7*It*1TP z)vSeh2q)~fg$K!D{zz^fiNV95E8beyR%X#k*6#8prt9{Hswr|8wRVlU;@$sN-}0R4 z#zcOm{TyECBXTwM0*Nhx1Zhm%>Dy0*{4w^nmIjjo-JQSENwCYOAS^~eHOpA6~JEmizKou z6{;bK_iUU3#jHX)3r)(PZyNxYCU-ApX7Gk;cin#&Rz*tWwY3Q+Q%mN3nBD)9k)dN? z@Fgb)AAure(B9r2$Z(sRGiJe8?tG*vT%QP+YBdi{6v;@SGADa|{Nflwq{!0Y;_t z9nj`EEP{MjA(*NC%eSx3L(u(UC=mYPrkYng>HZz=EnjS;?v5^_`SA%XpJp3Fd$G3L z)#Uu7mh^O^0X}x_5F}A7gxSBV zF>g3PyJp1!?&S#A$xZNd1X14@%sG2DCi>8Wf9EmmGH->o$*L43-mJDNKbpXMQSs)u zjF&G`YV~SQBd6mN9?v(cV!Ty{?+l>g>%mM*sXpj7x+;*L&&}T82Om%4O`B6dyyvj- z#1UIy9@m1eGS*pZ`l<`|@$776Q@ho`RG>Q#hgeen zczR9UYvf_7?^f%<5GXY>Ge1LT@I~N5sOKy0$OM@xw06t)4$CPRiq*vyk$bnSjmRq9 z8&R@OddWJs`^rjkbv9NFi6;cHmd8vceLZb{pxV_VfBW!b zxo}Q85AmX=Q1H8-*8RRKUWUXCI!e{<3WaYcYHH${BmP7L&}2s)`)_hC@Nmz3PfS#F zk9_z*jR~cx14W<+2%=>@GqTuORSglvRA(LEY0VA2KIddb8Ck!4gYYI-Hile+X&rPY zb*`>BwK2YGnj#d!ILF6*kdn3C)%;Yzy@?Ua+?v?Dy=-pzoB{y`bRB>^JJ7be;i93znE@Ws zz%_^S9B9#GsVRqm=UoG*aNeF&#Gfx~v)DW>dsbkacDB#4an@yRgxWY3eOR6Lp^3aNE9vHWub((<6wv^9BM z%x?B*StQ8{GKuGp1C)xBnME~Bf;>EFquVrcY8t8ebkeHHgPT`ZJmMH2ChPC(Tfcmo zxL=MME5bzRqyrvM-AhCS5g>SzS`HB|WPX1BO@a8NJ7v-sSNyime|L0)0y zH^twV%O}Zh=hd2jhFn%(6bDH?D$jYAyygZ4M*Y#kuoPVl%tKtVgo-R&RFM#Q(Jb<_ zvilPzR+R2eh6)dU8HoPDG!Zi^{8;79B=+(>8g870X!RfHUX?J--!*j%`=zJT6;>oDZ4Ox} z79UH!R_HAhY?`M%pn0M?V+;-k%~0iRKQwv?b{c;NoC{UY2+_sH`{I?M60mtdrG z58JL({_3|JGPEPSSF5Sm`2DCCA6MaZX)kX_J)i^FWWak&JjguXV!q!R9gr->RhvJ8^vR@Pv@(YfA z%f^>%52}6`J@OH6=lHD2EhTA2sh7O9NNiBE#dZ4?%`&nY4r75KWFrNha(f)n zplx1_@7G4so&4(d%Y(>h`=~V{;i4bM?z#;&U5TBP4EO;lsh4 z=F_eJ(qK~W!Ab90c6jqj-g4keyJyXOkQRgWLPAd7I`jX5teYZEo@Gp;vw5|}5|XIn z6gERxhib`@|6z+IG=Pnk3>7i5+k_4WasFBJ3BB*=|dodLKR1Gk_j&sgwXy&OKCEs+ViwPAfg-`$+FZjy?;x)5a8a0ey z>m3A%(P&f1V4YDnR%iCF`K%zQ3C|k8E&E6A62EFu5GXl*J;5GIP7uM*#~0PV0emt* zE${BmMHt_HF`~RNBU%bbR^^gG zBJ~4s_#%-VT>29C|2xx_ja1M7<&~Q&*-37~EG$~AU^_fV(Q3ncay6eMEVNBzcS=5d zFp-KV=O#FnP)1tr;!ypeTi?d?c|P(EV}%nX6NQSy-{+YK*C-Z*{c>}A6AEdRoaMT~ zByS@9AH40&iNG5Pkg`fl6bTRF-r5LJZ{LRHo1y6ev*Tt_l{?2E$Bh>ZViPC|^v=~= zp9qMaPY1lem;9`bcIP?n*ZX7gmnv<%Ldb1+)l84~X5|)sj^*i^;jJF^8&+R3m2w(W z9!ERzu5xP+nWMAJqSO2y-xqY}PjN>O&Ky=5wOyq)V&oC4#MJ^J=;39mMV*0y((q1L zcF``vHU_wqjSJ)+5=K{)nHg3gPw#)yLhB~8M*?WwN>*6;Oq2JL+V*PWx!&rz_y`R| zv@>S+yS)%Sjqz44?3m*5_g=11OwQ$zG;A3^9nUj;>>9Y(Qn0I#B*T@5%ICbXG@<>N z>Hb;%Y|MIVo`#)2z3t|V4QC`hh3ducqd;Li6g@m|zHyX=;b=8Cuj5ajQm{n2*tXss z9eA~y^2^Sz0=$3Pvk!fh=a0CC?%~HDG6`S2z3HXuN($Y<=BMpar6&)S!I7DCs9Rx- ze6JGK;BG{V$c}R(Tl!2WEd7n>4Q#AxD$@4_WT^Dt3;&27|RoCRn_=K3AM%QHwZJ%#G(pF1V4Mct>=fn zn0z$5XX0i%Y%qz?z8eg?Dy`OkcYzrq4TG6&DLcjet;iBC*l|M|5-CAP>%uzY>yjOP ziVA}$cG7L^O%j^b0Rxm`l%SE%JF0nqJ^m_Kr6R8K`1m+6F3w%xi)}q&{2QPVn`TubZFpFi8Fi@@qhh9G!gWJ5aOKnLr!|i!_xlmW=mRX^ELqRQ8iiCTy zuETY0nj!9XUGiLIFJw4>YLq%VC)E*p*RbsmABg&wm*)NtRwD+mS}O{i_59VCOBc?( zj!qi7d?Fxu0_g%fJ=eIAtI%Tt7rJ-&HecdJ?o-Q*;Yj<@cXMe+P{;|^d;6Yu#WL(G zq&}L$fxr9CF7G z`Zza9#NGDcwqN)$SFK`%Sa|&4Wvs%sJ9Z+qDFQ7AsnbArQsPm{A1G)fcu?Y5DrdS? zkJPA7MJB7=I(WR>#!XJ8%h=3Fc_#PcWXXn-v;rTgucIhDq(J}Yuguh!ny9*pe&Kuu zWg-E0V;7_ujVX1qBiH-H7yFnAU6<1rrt-c=NDkcs$Xpu}$^*Z3$I6+uhwfyJ^?9V^ zYBR*_nhNk5zG;_5%O;K=%~PA~Mdd#;KfZJ)t2~?Z@~C23o{Up8NS1rP_ebpOtKQIx znFOPgM&A*$r1>A?v9Wo!Ranu;`bJlNyw60rkg5&dZ#e}vc0Q^u`Tism^0d9?l#VEy zMM_rAMK-V1do`$U#}G#{g(`ToVMaT~E8>@$!8TLQhLfum*%s}UctDEk;EF67N?M10 zy0$ek<6Ly~y$hiNX`6>>tR|7#!v}*rDIoQ%{}q3)=&vktdq8=MSQe^_!PrMi&bWE^t8GXmz;CkzF2CPC3LgqSsYIGBY9 z4;d*Q;(PfvFAi!<1ekvnpL$dURKo`7lU_oy5vIs_sy5yrno73<1j&KkbdVKOuM6y7 z&H4${V1?EB8}~Q>f})x5&VAc}i;Of8ghgQ^V4_88XuOQ<1}(Ti%mosxK>SV0Ah@I* z?Cn)>K(RUokZSd~eD-Yv2skK|sL>`SArTIGya#g!x&wi@11<8_UnCT({RO=@#$(Ke zJK~Lcv>+*GyCLJp=9) z0LsGvdD?H#{=hT@ta7A@j4@rc2f!e6clTpvvs#s7%rhjAReZ#;m>1!i1TkRm2dE}SM zz$=){`ZY^Hku%C59ZtC9?n3bSwg9Us{OY=o^+WTPly6yc4&+?;n6=X2l`aM{;>*cQ zQ5Wb$20rm*i9^+g$0i3f>t?HC^pz*{p!L&!GKf7BEn%Pb&371gaVM#K8QZOM9+IXX z*Eju*c5t1}U#EHfxH_$8#zt=prx_&2RN4eykkLaQFY_=wEZk)1o+SM46xghxMZ@k>Q|`%39BSRY%F z)&|Oikw(2OXX=HDKgYMbIrFQmzykFg=}X8;F*2FWJhK8ldYR#P(Ad&>HJ0>*To7XE za*bHo(qhaRJ;lYTFBt-&JhL`N#3+#w{?}&Zi$FcNPuxsfi&~=R)^|7gzt^KeEJ;bO z8*M{v=PuhxDc-gpW1kmTe!sQN*5$u=ftai)uy%a?Y{G;ccCCZixuY^h+5e%2MxnRp zr%NaNLW@&aFh&<%h)>woUDM(?vmF6!U`I79!><=gb(ZDb!#oO%CuU}88!rOUjaBGd z@-vUgUItiHxlog%G1F4Hawv)9)9wQeQGFvBK2!XuEhK97aubGE3KYw0YS!rOh z1BMZEa}Z6%h6*~bfq_IP4Ukv81XgwP5_u|2c%T`ctxqI}l>l|20mRP&i8YXjgFXpd z>0Qs3d^#+IPPRC55oKzxaji=mdpi}HOCy$WnfC<Sngl5)CKGlpOwjkOac)-31hrzi#k>3M$YI93r+>m~MzA?c(YR(0CBB0cvpC+XH6} zyre1r{xHbJ3CECDU3YF8w?=>qSzb1%nl0b=Wk}^fE%+Nu-KE)> zq!CnD|7{oO6Bf>@ptl)zm;9!d}@X3T$u?pa0X**Fo|OZN#4M-KywoMnAW z&8B$k{+HxQ&M0V($1Vz8Gl4Oiv*|X(M<84gg^zfa06$GpP2K85Xt+}B_@u3r^|3o= z-trv&M)0pH1qjXDkSqV9ZjXe@7$$(wmf07ckC-*C-sk2bSV|qKh}EA|v5!M{?%yRq z9pOu$8d|9jWQRSg)Rh}ph)!i>?l1ZzKxk7^2X|k}q5B@cRl$R6(d%91%NKqwE>mQgd)z<6X}{WwoT%P7`6A>9HLO4a38vCq-MSyo_0?8lc-#M$!apnZ9fcc?v->X9h=4&*J$&>|yU)>j(8A|5p<;*?0d zx@}|h`|z^ckwnRI^U3|{JGBK@o2~BEb>h}h>*s!0|55X*BCMiADdA+;dhf~tjbb7x zTPNdp-fwe!AU;7A-rF+N!ApUM!bn@MV?T^NLkbSo3xN%Koc}89I6lj0Bco$9`cSdp6<(}RNCYef3>fl% zX=}T8o-u9L!cz{{8c6bQuZsP}LHz9KHn(DmMf12dh^caHY^keLuh0Zz48$GMssMTW zzu0=qu&B59jduuT2x(>L6c9lML2~Hs5)hDXqy-%5Mp{5XT3SH51nCh5L_oSrT0pu5 z&eH#HpEu|DYHzQ7?MwG|eb=+@=e|ETuzOfq=8xIC(g=W#C}7TFCkL6%v@|L}s3r^# zGXo;{S8Bkd7S8;A>;-=AAFmQO2=qe%-*rN7{@^-TmjPL9&Iu=25(528nB5&NP%eI2 zvgd!i(Jt)ChdqHRSXI}Kz0=U{YMb{E0-?9;^vQ^kEE)lUFdDSgnCOV1m6b&6gc(vb@nqS zJv~sxgeix6|F3!;`#<&k_*4g2$($AK>W|u0U>CRZS$fWwiXEZ28rxF5 z&<#t4zBfyQYpc5{Bw_SqU}*n8L)yQKJ^fCnu1PfskE@`FZ?li~std{jHOTvf(JZ-0L6TxUbI5N2F3&Oia!(7m~dMf2S zb=sWmd)2&bwDv)y71^v=HX5}Wm^-_U2zh4z;n*&rNz3?ErS7IfRx}+mZ6_*{PHuLW zwlZ2&!edA!E40l=9X9^WMevSyj3nw65iYhY^0uS$*bFNBz-jOh6C(pxEMnUER7-OF zG37`HBfAi%h_}l1>1j3Xg?})ij1LZ0>N0VBE)Rc;M`xfRnfJwu$eW;CrWX4AtGgD& zUz2T%jS_2A+6k=4$Su1b%sS4js(!L_>7TrJM_gFRX3f61+G#i>ZyM~fbaZGjh@rUT zl$H-5@88`DlejZCYd-h#+kakwU!}ap7#4`FyRwm%(A)w;CfN|7FsTod0~zXwk&R=O zD2X>x?B9jx(r6C%QqqE%CF9Jec&mF7zN%YwKIz{`ua`)89P<-Fwz^U1WNdpPC-dn0 z5R25F-v61roiVT&WK;)gPQ^MiK2zgn1qTOf6_48Tf!o-_2vj8kw2KD&ikr|(J-E|B zlPXALmOpQN{Nzc29Tf`B%gYNMxgazuNRtJWFHcY1ky_wQ0WzGB5WwJJFl4G#eEOu2 zKpr9URHuK{t)wJb>AoiU<(1#|9Wc75s*qw=wYAaXg%T1HI?Tk%FeR{X4bWU%S7a}9 zRNHAYm31C-$|U`QV9#P=o2H2cfq>z#()sYxh8YA9={fs2zTKedeB>297jEU=TsxH; zdOTb&0Xe=Oc7@(v3D$CXaArd{nNE!8eX3{*96C!G&E4FF z;nAQ?4_M}7m;X0IJS4pJf15f#hPtQgEpddrhzJORyy@+SU;;^oGyZ-)`NCixIE%w6 zkLsclx*0xm#6u|EX^#)XbMsrYMItGF(}b5jddFNj9`uSEa$5m^Pj73liFDQodnAlL zHI!RtvCaw>cFyL1wDM)J#qcJ0;Z+mu8CrVJ2ihutJt(=COWgcUCS9%mz1MKS4VGD7 zE#XOo#A480AI^5BfWrIy^5zM|?r3c6(&2e^hsrRg^INQmu`kkm^tPPE;*k^q!L-}& z!_;q2X;OYAVF~p$Y;5FMzcnU@r6YULK7uz}{l_{Jz4B4S-4+XrB64Q|>E*V>Cpk2; zrCt-b5%Vx^z~pmnQ(YqEpp8XNj#z&9T9PxuuP@Z_g-Cie-}J(?(9MZ=p2hjX^2*yz6c^5hd!vg!z=)wC)q zro0|cq^X&nlg{0p(P;av3a6HLVZt%I^I0>y3&t4f_ryW#K#H_xRnBSsIyuErv`*CgSe0(UZy7U|cJVV38;7!|h^8xJpZ@t3ydl zd)2{;55f(FNGC%MG z2D(Fx6c0!8EvHxlAp!T_JP^N}3LYSe>#CRkl@F||g8en}ky%IZJt7ePTuLWyCYJnB z!#33?E|c8^C3rDYZvl&t30gk~rEN+DfbsykqR!4fvqu6BeX^EGi@5B@!#FsC$Zx#e`L=ZcgTsShc@&iNhr8 z=qKqqlBBjykqwEpww?^rgc>t5`7O?+Yh&l*?3 z`9D+oMMs{&nP?n=JnO*0V$KgEyKZU5Gd1~PiD5Z%#m%sLAHr$un5b{gAB$0Sw55eZ za5!<*$Cpg9L&OcRNjth|96TlK+uZ_+FyPIvZxi6t;GD?r4Y`;R{H`Fr*)J!;$86=t zU0=VqvTz;Xw@SU|8?Yz@H6{<*jcwnUzm%rGiH}{W!yrb)@zR*1@ItZL@k=r`tmPnazwry@?z*B;oLZiaSj>Od&o#_`1n zS*V^#%SrLAoAl}FA{(t7R95H6_qrA}o}^;_@~`Usup}dWD%x?EKQt&gl1E6Q@@=JP z-uMDhKN$r1y1sc?lkX;{mEp>?+SQ6X(j!k)W~pOj0uQ9jhO9%Ft!)mKm7}Jf9=I)Y z213Iuo7~#C>JqQND!ueYq~*aMRJLY4R)A`zxj6{Y5enPKEsULHj{S11`SkJEvgUOI z{k2}xka)G)yL>jxS1-dqiDjBzNY79(&_)v%^4v~lnLv@@P+cnQ*9R;d+4zRXFq+?o zw72{Wr@v5^*drj|miBftBJezRdb=cFxV>-f$(48_|NU*Yf>$YgTc{9Y!OlEAf}f;W z1=?Oi#>V~(`WlO1Y?uHt8DC2?C<~*q*r2``?@8wJj<(^7Rt`dUzh~>c+-jLA4%jq> zyj4kOjDV;Gi?YO4cYJP2UU)H4s-^HJ?1 zn`d@_0taS|-P0F!X;%7R0SAaOTI8!68$GTW;J`iOw1(Y=0FN7>*McGA$rBLRepWgb z+4XZ^K&|ST3U*58lzc$3?h^##&_fj9cP&V!AaaaaQOLd)hm)gU$5|^F!aA0mnnwrPnj>ROpWrsocsk2J3xg0x*&V_tdI|PEiAQ+IS z_(2irPV|jra#K(TqW;5N&!5t5r9Rtv2k0B@E#X;g zY;KH>DCs@KztfJ<(QsyYFwY$(zQ0y3ZF;6Q3I8-bV964M+_k{OfEbu8OU=sLG>g}8 z^wwiR>K(=H3;o6SYw#lqay0L}zDSNcP#3rKFmAE9GGYvU8tN=!E>XZPss1bwe`0?8 z#S?ek-_=8l&msimsrBf3*VwXJ>wRWa{J{5`Aux2qvT=5|mc4j+QY}xQw!pZo^drjn zC3}u1*X!-?KeMmQs^B~~;Y4A4Uj`~`)nPq(S^B3Vfe^A#go%z2d5v%_b-zLEm#dPmZ`gzKZ9(m3w(m=!FD=Pr=B8ij;-F3RNO2jCw|Lp4)I# z&flBq@c>+9lA2Ye9X3&*`*_PVb;tc~u;?#WF1wzX)?9hK%8%d8R9qZ3bjbXL3A9Az z#FH8C^ef3I=y=LZ{X|%{p^U7Y77nxweX^L?XDVs&nWLB&)75tT)|v>51d)wRhlYg~ zdn7MMW3_5&h|&TXQde-EZ7;>%;%1!=@yCAoU|zD&WYLEl7b2F%f?-54R&QO1h>l~8 zyVWd;GRGYqRe>xjl4AYdu#U8VhP1kmwusOUI~1)PR6lp{9YC$oufK5B=m&4u;B3mlTCLsC*-Nj*lkXx^gJl?0jw1l1U(5* zoX<^nn^N8z3x1qHr46`dEDHkaLa*h);^HC@-of1}NE4Q&<3Bz+`fgzt2Ld=O6%!(v z1Ez3rDT6gTm~TfseBrPVDFCU>99##S1Q$WzlY!=_url|70O)fQ6VS^F=#)z~n@xVp z-7&!3@-G0&%E}5xe=r-2j*iaGKCd$ zMhA=V&0XRCGJls)`;nx7M4SJ&hXs1(+BgBB?e;;bPuik)-a%e74fv-X3p`3qA!K6oEq}u zqizCO!O+U4{9VM=wF$xZ?6+b^lBEWr{>IR(;6+)`+DnWe!VCZ-d+nxIX8=WevXwx3 zNJ?7_H_e&o7kltO$13}*om1e;i}}2z+cB<46lYZ_j}R=72ZV^?_8=ox2!Auwg|Q8 zk~4VX*@4Hv;89g@naE?G->`j!O?&697^eGoRnO@q-J6H#v$35l-#9;X;TW62ZNjfA zBh$092!4-kT|TzyysYUph2(Y79phK5LOL&Y3g2KmYO}tl=?_KTXy%n}c^Er`_RQrw(W!5!Sm?NP4@IIith2zER>z`uOC;_3^ zTLJ80mcBdex1bEYS|jfb$7LZOEWYruLWEq%a;X}NEPbk4Msaykw>2W)bQ#UoEZxuW zjSfty7*!I%R3)~RABF|me!Hzs${3b)a%e|%XzPt++Q=jMhI}7pea3Ds{gmGB&U`{t zaed~gE2rY0Gnt>o^R}~nZrGBH6| zrtzlo6s7xdXh1utdiKuhHJ~hjPIL(H!2www!_>lp`Cb%Q(g9;iuO$eC7HE;k^3cV- z63%oNrX{!y(xVnt?^zTPgXx7p^OMo6<$OpNH(_7LYcrrh?tw)195$DffW|5i33GJp z-#QMH%IPrGc$DHRW>RO6`Tjloy(qAu*Y}mWc;QJcP>IJqfU)k%E$G5qiL$r92Z@%E z*VDFE|0(G74@sF`_&|}g`}4#WAVxf)x+6(!UNs58Q{TUXb-_R2gaQkAq~DS>)%SFC zbhNiu(gEOyZ*UL_@3kalbO#LD7`eN$#S>e=>vLam7*6m%Tb+{3|F(GaFvqcTBE5ow zEDt7?7VGG{w%FW^eJAvYU#4f?X}1O^;DLF8d5b7@iCO$py~S9BDUP){1J&LU$t(|H z9DVy2^-edk)~58!#TN^W6$hL?)chWI;z#Glo5YftzpZos8Q4v4ySynjX`+Xq#Cfr~ zL7|@nxVN*U1vkKrEq2XJ+xr3)8F2&e%$4tg} z-@L-^0>0!1)@kSvvhxvqKIwCZ&OpbX}q_QJLrdmwsGWF&> zzBkn(sWeXAq&dAtsPoy@#3_&BOmY&3ij&_}9~t^ySY*b2P3k7u!r7mqj|ywQxBAu8 z?;#M7!a!5Oakwh#@vZsNOhrdU6Wm*Px(fgu_KUYo=gom=Z<^w5-7lHXIW$P*3l`5l zc#t2zql5c7*K5EcMT1jvt11hL`s1yLYFCi=+LzP!>f^#b$_h^Qu7+W~KDN|<1`wo? zb+SLFW%oU9RQDe!Y>6JMo;8ZN>2=;SJB)tyAtEhLpZVci0{;AQ8TaP`M}fi&#G9x1 zFS4HGlg>*Vy(~4M{IZR!QF}Kvt6c-W7>8#Q_^1Uu&d(Ga7VZqT}TAz6U*U^u9`CZ$nn8k%Z3^#jS=4~xp4or9l=c$H|s!|pd zlB_ST0;g@gTIMy_N9_UoU8~N(_h$sCVUht-`oz{ga+a@us0LIpef=6zXh$x4CtO-q z6W|u{LWAtm&~fw)oSz-M9jL88pdjra)B` zSm*Pp0;W@ROpL0!I`^YTB_#&zt0NN8bZ*uj$j zJI#3iV>*=66XXWopmd5$Mc6t=UvxhUl-o1fi4w&QSfbbBLWbD~h6iB;*h?wjjttRL z4KNFCZ%^gZz@AMAB=W`T4qg{OxR|(E?IshI_PJUygvww_FqzQQrW2rSOM(>be>jRu zkf!)Ai{l=$t%#p}1z^>`|RlOUMsUqzB zO{e51`2wMkc8_j^_Sq9i=k_JFm%z76spuap$8S4&peSBq7n*gL%kI%20gWO_1C_T( zm)7~kPlU2d-V6>(+-`)YQ*td6q}WerBn;jeXO7Y_jcckm^^XRa#WI z7RRr*Hn`yTTbgJ{LI!1~Gxk)P85+c@ph!!Cz3+lCfeIgbs%eLyJetizIsagpcG_aA zzIId;=D+t00sB>W_?6Jh@$7q;$JL*`dXMFr4#mJ~TIq?-LjnfRS{qXwcqg6afz0N7 zJ?I;9_=v{0EmP`eTc>Z*ZHqZ?z*-;D{G%2WU^l3?zd>_ijx%G_NWb{U`)6Rgm)+t| z_Ra%`H@F{@`8C37Rfc@i4v}x)(0Pqb_@sBuW}>&np`f2#e&4m zO^-Ib?Z2F1@xF%piLYa;LI8V`OH|dIG$3ClW)y)k0-Pv>e#*+KJg$&EOEJ z%AyUw$XfWxTNy(EHtfOpTs^C@l~ahs+xt;HWTqc;+w0tyWi%Lw5uiB+Fp>^)B;K^_ zahwcOzj+Qao8q@CCi<$kudl^qHH)9({VhL6&^0)M11FL__#%xT?9&<=Kov7Us2!gF z0aygkr-p)uN}1W%6wNuw=M4dGno%w;jshroO>z_*wWN`}3ff*l$i=uq07gJAi;Im3wrDl_J3T(XUQM{B2T@c% z@LlHgUyFj$tQRu~LY;z^UAzt3Os9I6#o3UopTYcYU*{uc0xOTH99kAF;2cylSzY((14>~W3-*?c5*A@^y-bfo;98DxVkCO>5#2$&*mOormFf>STVb_GyDy4$6@REkg=V8*#2H_@eBUCkMQyHiR^5VV&6q^ z>WSpVY-mRfF@ip5_jbo21CkMYA;ESeg5O9TwnszYPt>vS(o0n1-TCZUa*A^)lPR1f z7~c)@xn#m)WHi2u|9ghGmQ5HG3ZY?bskdlJ{nHlixZBR7bUu4LcBd^@zvQ{F$5x{M z>C|CG%i#8tN!#u%$@?``lbYBzCZ|XaWj(~w*BG`|zx}Za{idq-k+KzHCu5=bujUWM zvn(-lPCjtI;E>kz8<+w1koL$`R_N z6n1$@*9LDo)|_YI3>iv_qAF#~Q;La$4hQW9m4vRLTDix)ZBRks49zS&k9Wuz7g|3V z?I^!u4U$Hs5qV+kajV(9Vj1gfCkY8>;cWL%9o(N?*nYJhY#b@^fJm8)JrIVoj28LH zMRJoZaki)(9zx$G>8K(cmfFyu%|PEHO(N=h{tIe@aS90@ti592V6D_I6Z%H7vkoUfu_@|JBu1Z*MQK(U*?lg-UTG4fClI zhsfo{D-~qWJ->#L4e2w`{wD6xO{@gOC$eh%`h5i zwN8{bOH1mVFX0ebNa&)Tv;RwvAM>>CL|=`SDP!F0Dujr1m#Tb`mo(qeONkFhF9%z% zWUBXG68RiyR6F;t*_dnd^=T4}AZCd|m@-jwNLDoR*0vywq{DW0c(lXiZ1ilFw(W31 zp8i~PRog$13!m6WoB>G~L=n1p4#k=C_TN}`-cc~72G8ppbf30JnMkBQ zi_4_t)L`O6yh6(FOh12nt3Ce~qR?TcvA&kPH$&sDEFUNR=IBHU=1@p&gX{X1-^MSL z30~4#Zi(9)pEV83RYLmg-rJ)6wtqfUi#58)Ra&ybc-^0*sI{F~=si^(;WA82g7lRZ zc2_-bf2ct)HIme`eb&i!POji<7c%rx6C_xk=h6jPwA>iR|wmTk-P34n? zxU~@R0XOWv={xH(Ii+u;Ul|cmZw`!0nQbcB>U(S2(Q zW$e*V?eE!(HWxz3{#G(j9ajtS5sM_KdTLnnh%G27UYK@qNneJkfBxFwBz9t){xt)Y zB9z=pU$^mjGRx*aB@HZ%(h3_ZD?iw!u}1<;yXu((=q?WK08}NV0;k!}K#o!!0b~ee z7SbRF2ha+)yBjX$#4-T+&kK;FR>UhNMu!&)-sXx485tRzNlFl4r~~YkFLP^xkAMUI z`}dC}O>J!p4*W$$MI)QFR{Fh`Zh*K#j#tGAa^>n7f`L4smtn~E-LhZ;pdm&@MO|bg zGYB!b`x7YhgwYO8!H(^!E;Mo}q!Q*oRlm%{7*{=;ou1}MQmS{*G6+Vr?=Bk@71zZ)**85k(I)hWj@rSpiAgke`XtLMJfMASUz3gWW$iV zttt5Pxpoo#pD)}vkBooOY@d^D=4EpA_aw%!?y6>aeZIrrp}}YV9~^Kf^D#E+@nTcGJcC1`HvTg4-+~oyVKm| z@pQT4AB{h|1de7DJE;Boc$`GH)X)f1bdK5DDOVwsOGZ$0#d^)9K0i`;@+L1){XyI# z!FAiEG3M~pw-l&E(%uUhqX?w5_pq681|lI%pPy_AEo?5Zh$IOo{K~8|fzb4`J)tBL zeM2N4g?Du7Z(Ycd@U(XGSbkt!wzttQeU|dg1Hs$*R>=t7zA@h3u@XagUa#93Z0# zewbIiAqJ=H-)Me(d~C~CVrRgg&XuH8&8f$c1dOnM&Rl^LuW$8PvXPMyXiFbe^&aeP|W`ev$g!x_-~B= zEjRes;m@e8pUtoz#BW~d*n+sxlI zo=y?UwD?DDAoUv7w64{i5IgIie2Dp|%@J_y@+S>XYchN8#@0_jBY$F&^wqoTPZ|u{`a89R6!I{dvoXH2d&(pV*4ng z@b*0|Vg!~lv!OP3rBJFCTjOX}MS&SUu_+EOov;KF!HJVhMi}a&zA&$P$~riE@pWDN z4vU?2q;PIcV{x_QKv@nxOYP<`#kT%03Z z;;cEA)lh;lD;Hs`ZlXtE6c-v)?^Mk>lOkW!_Q#Vkh+OvdUIz}hz;@k-a?u zibe^^s8&`VEzlg^)Ce`FJ zdptqMI=`IQh4zno&#`#moxf3&H&#RVsre<@(#?C!xW*P3YNZ#oBs^MYZoKzPZd0Mo zC>S2kNX8;*UpPP-tvXFxkhx#LXKsRE-WS>#pRcax$QJly%RwlubID|0J_=1q+vcS3Ue_tzHom4Hpovt@^!!=!2k1; z?_STs7<|YBF<=QuRgR;AJUUfkf!haMnjP{a6{_KP`=%1>u+anrQA`?da}e0BAAez_ z8Eh-Ep~Q$3$*~_vXd`5g?v!qyzJ)SErfPQ;!-dn%k>2l*-Tcyy?paUvIh#Iewl5tz zP)M7e=lt6v04LBc9RnH@3JylxozqLuOazC4RoEUPyKj}V517>dq6q<&6qw;X!Vh7d4Fqq@Li%M?!hx1k^$wPec|$umDc4@4`#dzq}Vz?KAA7yV># zob;0m?9y0z!DC#h02A`BXX*REz#}d$S~|LJbDj~tTap{6mq85M+aTyhyTt7_8MyoC z-HnGX&>vn%pa=w_zv?04d;XN39KXPFQ8u6Z5B`w5VR_Us%535rP+e}X>PMwV%cO;uhSc+m z)bm%V59@=CYwVDsbn|^!^&TrASN7nW#?xpX`5`Fd0D3F!`fHpzCkrJvN@8YtfzxDF z9GO*Rxi=s)nn}Vlyc15nGMKd@eB3bDe>Fcm?A>Yh;TiAfiX@;=xd>cCXb_yGr26iGQ>-imQ7b<{dAj6H+W{KYbL6Qwo*Q9jiecsrN9tW zIV!;_k!p+J^A!Aey4Ox|;CbxVzMK;OEx*UFl%6lMm^<5d&LbvztvG_MBWDy9#DeF= zt)$ILNHAfoO;&oZ$h>_oTKx6$MsCg6ZL>F`v}l}wB}(#Ju-025Frhat>}vFOd`<>? z1b7h6Fw?tdt%9yeVHAl%DoUmXgfRYr{q3R?gCZ2BDg%)sDO4e3KsNNIYVK_4`KP>e zGO>Zdx68(akn)p!0)RaP!r4M4MW8`s)R!6*7QxV2n%6{?{yQq{B1 zFnJR-?26OX>ILQ>EP?IP2?UZycec7E9-Rr!bYO%T2t>@}U02KOhzaNL{%1XG9(A17+g-ILmwgIr>K$d7}2?yG>&VUP~Oqci7ipb*7 zTq9bRWRMPJe07teevW3E<2CX@-y^VX% z2nAukAJJSUML8q;v#-bfy^eTatrgM!c@i10%9_z9q1Vw6vspiq3k~X+jVJwpdr#!E z#F|LVZOOM{{&1r#D+EFc7<|V4bdv6CPh8-L(5sL2>K?Lv-H$4;;6tsUhwJ)}7cRcq zIQ!3u4AN)oi62S6^u60kMC>B~CHA3aqH*6%>7@5pHawW#bA%dW-|qDMq&5@35@C*8 zY%sXR>p_-UA4-cF=N3Ka*t2V`Iz4{N{3;#CdTn;{duR7?!FkO(_27m_c?C^*;y^{p zVCuRK zw#cgiaLv~PcO!@}Uv8#-ExlsyMBMwV2i7#Cw-4V)Xq&O*K;sYWs>h+RRxlmE7!M*7T1S zwkkfj;drwo)W^upQ^_3#wud#ru;d8K%!CveTyA6hx<0?=`aI2m`Nf(~Dtb{LLzzlT z5=kgY+T(hWi7BhM-nyqvcM_J=j1hp5xaYe>AHPRhPEUECeu(!IF8z95PeZJ%e6mqe zZO~wzNbKrjtkXOR(R;%3UMkfOlxg&7$qrNcSy$i9PAz+=EjNgz<@Be!&ywH3AMar4 zpkd$qhyodQt*-b&iTR!~e;<|%lY)fB^aa`2NBrCBq@17soiYJyJEzu|C7 z$oq_pPh!mj*pKYnG2jIfB*eb zjDNkM6;C;qTqf5K%RYU|f7SOzmkgyGnJliF=6{EqNa{l8QS$n0D5i$?zK<-tE~Ul&RI-!u9@N19gwGs&N4Lx&2efRttP zP5Cz68OL7lusg|EgkkTv_nZgj4u2;$6p8O0Lf|Bkb6JMYN^heAoPxtK(;%cBIoQ~4 zbTitIR+EZkF5tg-*|5y45sP;QhH)bc!IO6f6|7hQB4BZb7=dO>+&y#O zUUs%qHl`+SX2HG}0fD@TY;2UfuN{w+%E$GDI$xtAO1ozcZiIjCH*5t@t~seH_xtEZ z+&p{R&QsCyMN97c4|Ud{C4m}LU*EtH(~B9=Ic3V*Qm`7DhYytmNjFctt~DfR2t^U< zOkeTEW@@1cmWoQrmSM{TmAl?EhRpkuT~QR`r;UTJyJXz9C%DqzubG)FMP}4Z*9~^{ zh7p1O_n+*&7u@~Lpc22$5i;d5gfy;}rqjy|8;`0xBQmThzB!gcZhLz#+ zRF`>n=QY|}OmrkK@pNwq(N{gh$!5xB>V#UvdA;j`9XsH`yCFjOdkpSAnj+t;v;xj% zZ*At+R$%A^%0%D$QV1E0WN?K_B4aH?VA4vIS9{s-1XHUQS!&hleV=?=z!Nf&4Y?%{ zxClK%rx_G3c6}IoHYC3ln>Q7^W11$xA|;lf;`LsAw{B226dNt4FWfPN4P-UuiHmCU zDV%DaH7kA67A}er8XLV~csEIMdFgF=QrFnu)Vk^oGN_*q9)H(@{Rl}p99q#*C#)gA zy{BmzQ230r|Ez_G|8hOok4QFy;1b^6h1B?duR-m(;B}fnv;ylIzI%GVj8n5g*>ruG z-82}cx%vQ6xJ>s25R2e2kR~;*SUv?4~p#o}XrRK-fIY40y;uRXTbZa1B#c zp!1kNeayqx+FCBzDs~y@Wn>XwT?Bzitm;{`)fAWjz|#Bl5+qUJuoc1b zziV*2zUtf|+q@y*X|rpXA(xf?w^~yxvZ$K8zHS{{#|n^Ofb;O|A6NL(S|Iu|KKaxK z(jp)9rkZrhkr}h1*M$28vb~+%eB>Yy#f0i9@E-3lt<)_Ax3s&kBTTM9%M1owXFb&p zu&_cq0u%&HCGD`SCMW%ITfU!yvAG}JgprcC$uQPNRz(@;hDlypO`ff8yq%-^6=Q z8?tCM*+B2y$EtxHO(1wLxG3%ee}EK})cBcGhoSX{Qb-Iu0)lZ-((0YX*!SFAVJTM|+|C48ZLrNC!Z3#}dxD@q#Ke1sqOHYQ` zP1j2&zB?c=!Vi}UVgPR=bhV<)`(z>VaB`*=F>b~9HlttjV_RNVL9_g=2PV3{OX90s z4{1p`95*eskRPd$dWts*LN90H7Ce7wg9a$DJpqvf#RN-OH=nA}1arKCAdR)Yr+Z&m zV|4iTHOyOS^H+S3%V%yIOVox!4g(SCL73so`9EYkWnaEg$alZVYYgP@(l>r8@2AU9 z=?IgdVY5w0#?_=ZjT1NJkej8jdKfMJRP&%uxTYr+amHeZXIu9mjl~g7a@QF#I(|X2 zy@d(E)bQQtxFu9}boZ++1BrBA{c=%9n2qM*bB%J}4u1+nUlmRJUSV8;5E_DAf;C7i z_xh<1wgVm%zm+10d68bq<>dgPyHmNx8=;wY8-jx(n~Rr7q-OS*9%PR8w?zD6j7SPh zJAyNhXgYq$p>&Ncj;@V0Q^P@o1>0f1R7JC>oagU1x0=FU=Tq@y9fmV+W?wYO3%m9;8uHh_ z`r~&4W@R8!+46zv;lD!GUHxQG{|f;veToTQEygXzgVr^$Wx!xSyMm4%u=qtSRXWaq zd}!W~EijFNCHKruWbU)SUX%ER-4qs(&Tyjvw(HkfMeH2pc(gP$g0aEG;3FJn1^~vk zX}aKJ+?8vW_BY1~VrKvk!$g4>{>!BT4Je5$`enL~e@*6~fdp*osy_j%3|^>G!SKPs0r<2n?|(kz z)FcNr3M`~T2t+NXvW`w#Aqd10FsG^n{c9vC*Q5E5DAE4Evt8)e+iLPYUrac5Ba#mAx!aS1{8NweKE zlZd0h9z&{f9G z&4Z}WP)TcyrRF%F)&;%Hra%1_IP(WoiZA-rK?~QCivpcpabD|#hopT>B^BQ+Oxi0v z3FaU25LiqSR#lZ0W3>76!5C(yocV=f4_$&B3?vwbc5j7gt?=x|H;a2;eu-=aRG`2k zlbeAq0W1H)&8yJ@R_@d9`EfHatyc>#2g$l0Un45(`RE`fjJ_P<*8JnkB0>}cF)mM>ROEbqcWY0N;Ff)Oq5-Y z=F9{bRivIjzr^&Cb2DQPPRH1n3K2m3axvbrC(L}sk$^xjhyw(pJ&U0})PbvLsm(#T z3sa4(^02_5HpwSMdFP3HWc-9oHxMZCnbV4!%ASUF-x51t<#v9%U)g+{D4m8wcmaDv zE=1#<&A=(zHS0cvF;)@k@ZQ3WP`o-rRe#yezJps6^14ETnVjssZ-4ZjgR;OCXP)3> zXMRqqy8BUR06E3y^gKU2$u}0%O^pKM%S=U6gbXDX@fN48YsH(?PGYW?^Vip^UFK~I z;x3C4rDMO2y&}OgvKF0?Aa$FpPk|wAT5l zsR!hEh~;Qs{)4&Q+%aky463zVl8?({%_k~ zGk)R(!Y-W0l&0*0ZA4^ZleF!kvXk3^DZywC7dVCy z?SSiimLhI9oI{o`YMcL+k7n91dS)z>n+vrd(a!KoZ{JP+(a7ZZDn|bg$d6}V-e!o% zz>Qm%of>scv5wbASG}=Ly461zL*4*x7>(t*wNR1_8h8{8O^IG*(*kX^Nv2v-yU{l!W+S z$D3%h?M^Jj=;Ml1ELG05jcSzBGy0#2@mmJaS`vfe0t$M{ei4SqSFCp+7PW zcOX!P*xRb42uKpwyASO-JQ3Ub%0#yc`SX0`>4NgeB%rPR!2uek7F4!p5e9}oFcvrL zh(aBaS?nmsSdTPJ6yyC0hW(=#BW78Jj|j=drM+#HTxqaflt+t%^K*X@+!96Iql_$g z8-pA5qrKJxhnn!wg)BDl(&XoMevd;R6CtV-LF`z0UjnI@ew&8mI4ICZoyO)UhoPvY zogGL0s&E;Du z+$OPdd4SwR3|y5a%!#$~#oJe@@`53x`C$iJ39|;5f;RD?gaWoW(ZY0~;mgY5AU(AX69m?w zko8v{2`tq>>vPEBgYs7zI`r#a*Uj{jDGU%P$f7P+0ILsW{f`$<8y+F*kTZQ45XKN% z`QNXaJN7=0__%a>c{5X;AXQ}juzdvnM424YKGRyb5%c!Ozg}WIYi-5@kjE~u{la=C zp#um;+|p|V^Y5%Sj_#BDc+3(I=zKK&HGv1)OetTtnJ~H~8euLJt+O*OzPDux%)sBc_|3HjU{Pm*1>FsmL$I)k=yZ@Pt~H&S}<%qt4kZIUl>ZF!Ph1DuH;2@ zySNydQ(?HfyE{=`EaLw2P@;qbhU`e>gUh100zHwUhk<%H;Qh%2JQ)A}%YtwNupBS% ztEj1E347R^nE^8;utO^*0G63R>wb*dvy=Xdw1;zNxor(k)CxW?-G8#3XRcX61;2bz z_3r(hz3UdIC*RO2nlECSG?VX>OPYp+m|D!vQg5#^*?FcM;yz@lFU6Vo?gVpfW`0t+ z#Pf|;Pj)K*lOgqfJbEd(<;Nmr3_ccXcB{n-g%vgi=3eC0OX|RA73F=`HdP;p1cV?h zW_gH^Wjf4XDbauJMa)iSx`m)sj|JMTUHpgSuRX$}_`3=gvfqcJ} zpJlhtH~sb)KKPitnnsGz(xRH?ZBtka`4I%d`r}7GSyg*`CB6L}r-*Y54Y{9FSn|IK zWVZF1%>v>pect4%NcwKJ2414kM0alO!2MA$u!3WN#vS@4d2% z%xobf*|J9nAxT1ZlD+r3-(1)Ad)$xv{+*BWk8_la@8|n@kJsz@dX#IPLU7=@ccR~P_BpCrQBLk(Z91@>h1~Bayuf+5fmiZdc%vAn zguGp33g_5#gM&(LN|RZDXUmtm>Ckq%cIU`e{!i2T0mjLdQhkvx)iCO(j6#VC^aD~J zf|ac9GroG!KM(UpWwMw~(uj6o!3xmy!wZT>-t%~)6C%qCRKd2iymthj7wjMaMgwM4 zm4ZK82hb0tQN&er>IvLl0H|w;y51&vWBH0`q zCbvtG2&A7CF;O5A5jgemen+}~)56}>tsYv>zXPv1H1Ms5q%t))ulsKuz1$RaM`B`0 zKWSD`LW-IqOH%S1!yEh%7})!q2n+YW(*~6VAL8*{~VI{PH#O5pr_T;nmUo8q|iv z0B>7amBo%UR!Qg5*3s+I?B^*KntCOQ${qOq*J^2yp&i|52Ur*pQ|n`E8r_4i`h*1fGk;^H*|D;R&s2TCi&B0}j9Bw3+*9?>PWL%n z(6;$x>g|0ZZ|gA#r<)*szC`EK=5BRUgGxdDMwG39=k7A_K>IR;g&#Z!O`is$%2@~&c(H>&n%3&#@ zVoFkv)~);2y`#FK(D#a>%wuS^RmI0;i?Kr-lyEXJl5FMiThl*$KoUqdpKb)@la7e( znEGN8JyythcGN8knM1|B3CI14`tL?H};qEc1sQcDa#@fGMjw%Wn$i%Q! zF(*ZttXJ|+H${5=eOW3k%GCqJ6{YK(%ZDk`UL0If>cNOvaq{xVi6r<`R&Uf8q7GngmmOII?m2D~<&AOA@{-q@y1d zDy0jfh=K)=QZ6BaUOt#NqClSwj47;h-}!xl`z8K`@iPlEYwJ5`eAaLk7BUk}h!zUZ z-ahi~w1<=1#+j>fi;6I&a~8;MMx|fM-qRs3GKgTLZjn+|QzJ9TP0#d7h7%v;?-ZAV zS;E5s*)B4b_r~Tsw>69e9UNj&cOhPr3)io*vQmWZV`-@}3mKVY*PH`1U6M!;n1AOM zgnwW0-NvCnG@rX$lQXT~Q8G`_XC6v*Lh8kaf z5SBp~J zOU9$+V^(p1k*Gcv2T_dQQ*knTzbqDia?azZo8{Q2H!=I&XC-G|r~0r8sLERAJ7~`K z3%iBHd2P&EoGdOr87x$IU-vIDrnW;o058O@U8s8aCnp19ouYD!)~EkWSxf7_(6Rn{ zCXw(Zz}Br}(eK}v&GDV~{}sAs)02&bn4tIEd-kX_M8XgonZ9%5P(ALWL0dUnE5a{B zJs@GGg6wUf3B#QiBs^j%S%Y_taP-I|A`D`fl*vs0)tWKjJtX144;9B0VU$2-@sblW za7NDZlDn8EysA$xBYI$yvMpcgQ{w92u-RI0+soFDQ(f#uy}QD3x%~8s@ZMvh_s(md z=F_iGu(PqV`z&cs*3PGU()jF8CpI0=-Be5mivkiiP@vyafM%>}&N6%8-@SeT$3giA z-p8}FiR3juA93)n@w`x%>2pr5eNu^uC8+KzxKeysE8O8%Bmed#8p<#MJbED=8g=nU z?_}2~q^{lGm5gggV?Y1=rbU{ChDzo=QN&QQ3v-3=@*lRbX}-R-73G8{>Na+EMEJpO zhXo|iK4?qEMMZ%_qQjZ0&wTNZ{&7!M9?L(0_kT8!>7Yg%^)e*PYJ?P@*67-G z(sq}Sgx*1!%mVy=Wu!8a_i`mc(TC(~uO5e`5?~_^G!DOuyt?E3lcS7`XN8nnjQsd3 zV{ukumc`{{^pS>?(Q?33jq3$?fqJj`eaSTtGcwTS&6JIy_ zqm-nB`PiJ<*F5rmoQxQHNs9YLG5Nx{{f=*rZ`IiBta^Hkh1#Ap$b9^Kv;n}_C@FEZ zp%#P8!bJ!ahskEAePN-{>HaKR4-KEg9{|vu_++5Olwr;{GB#E>m!RD-YY)v$yHPCD z%JMSEd>p7;fq%QOV4+O5v{RdBQDt4u_C}5wpcu2f0HxF_{<-8lRs}M<|7vb-8U0st zBWyz!@a#Zy`)4+bwuF%%YRZDU>P3RMslsq zuJn5viY+`QY-10{R2cvr7GFAJ_gVmrpeO0EOp$u>`u9S4Z048n{`sg5qm(>NZ0%b1 zuBzc^u$u1Z6nt?N14^4SZ?J#e+bFf~67!=^c26zB~$O{*EcXVrix| z6Oynsr?uz2z$yKt+(-HCt@OOb6bsqLk?Q&)?OTeCD~XmzN1Z-%zWTblbM7?8Af>^e z%jk!aTBpGyewH_;lM#&DZVnC(yj1BBGWbdch>$LI-c!x~3i*u4)}KE?NpnyBUb37~ z#Vd-ngv{S^I;H$TL|+lp=u5?W_-%-zX)DB)AqdmouX7eskAeRBN(OZM z5fmKcmvIm%NqbkTiH-W7ENlNoK5qcE*A)Q7EGK3^7z{Dw6qpT=49*;vsnh+r(O!XIgfYdC~B|bxQVr_(r zaLsMLE$dFp&H7!ZwUS`D;171n3pE)t$;1Lg7^$1)2d(pGNyxJ?Pv7CKS7#rNhkWsR z0@i}3Xp{7Fd{=y#DvFbG9oGd&N^M2+6hX zJFs_I+})grPrXCYN~_Nu_vB$9>m}rScCrV}p$OgjpEyMoGSe}aoB>|Pzi^3s1>Ynz zUcx5}id)0K?b-;y9=SK^dzKR;1hMhAkgaLE5BsRj-v0h({`Gnp!34iN2gUaFr8K>} z);n4i!X^fc28#;g1@e#VwPL<)N@g@&itQ_>7gtxd`xe)?z**LLua;_nPgA{(O42w$ zGpHV$IHt2It%D^fEDR|t9rDZQ-a?Aada(;WLc(OVhhBpI>%gVrGwc-g;GEr`f3vRK zpOhi}HdRMYY2~|?<$7Fh#Q$M_7io+YLZ`za!6?C4Ll}u87pSM#P7_5JSu*jZU$^7< z%S4L!lcIV9Wwf%!2En`0td2K(h)GQG+E-?Q1k` z>T1jP;}3O7!qpoYP`iRl4cKZUBT#0Su|;IRvl#vSSpv-4)nlEDwA}LW4lsyxPuJJi&u4jVVG(ACjx4oEfoMdn;*d7OASEV}4UY!tXewCWpV#E) z!D(5ltQINv`S?CnRsv?Sr>sErxwm(N5(~5jx}O}{=eIy}^CDYDS(TeoS6iDDd%89F z3gj&Wy#yS@(heA9-Pzt3r)Cv%qAvR|5fTth*tBicJMPU-*AhrS_)+ESc$hX3TwR|F z;7We#lsr(g3(&xeOIJtdGn(Vh9Rl1yfKR1BSwA^C3U(IouhGQxltFrPKdBgQpg$cF z0P^ZZpxRGPPKGrA&}IJvz2xGW-f+VfUB95*C(AvGHPKA4ND0rz#>CJ}ApYNJz7hJr z(@Y`4_!5ncpu(BtBJJ~9CRh`!ZaST~DMU5Zi8o`COMr<*a)sxb0NYd-N|KH#z{tP3 z48J`D$KevF7mm)JZJUpZ3p!2Hm-N@%_-VesS$qO*#pESN9K9XI#{>k|<6M`~#}vWc zhFVEGEr-32erFwf(bDfnGky<55@e|REWVrHLS)jPw9THaSLypInp-FzG~=ae;pj0T zeN>SW5hUfhJqCD{s45FL1dVA;_SM$ z5`){YO#S3IuaL@1AD(@)ebXnef!$IZeemn}--mQ%dFg!0M?7uvbbk!+LcK9UjP0Ez zNu*uO1Mdb%ys;Ok6LiM1#~AJU70695VNy_4-Zxmm79%c{p+8zuc_LIoVf-~BAhfs= z&v2~tB+K8zVa0_E;nlbyv&%>P@K2;gC!Z+=dMy^>UQ#vqdGIC!-8#k}_!M{zGLp8G zwtU%TAsE(3km3`pA#}NJ!*`rM*sy10)pBLliPtA~Mh!3h-qu@;VJdDMmv?j9-^0yb zt1&V<5H=f$q@X^%{^DKm^Nw3kt(gONw`@R6>9xzx3$M*xYwxI?4I&==S^Ut*KQtwf zuJZ+VJDrkMzU}Ci&qB9SgDZmsJvPF7P>5z%v*iopSp3t|zNTT5y>7d8t6ZqQQ2bi>tJ(j3i3RSyz!cZgxW>_HA#kycn`$f2t+0${H`QMTw=Nyc~R} zpt*x#DlZi|Hhr?(eM$n^*zk6S{;dn?-16$`>iIe>dD;$0kwAPjM8jM^`yHt5mUcj0 zn-T?R2xf0zG(H?+Y*9z@maY1n!=e`kH9|q((l#wI=<2^R1kG&JOs>JZ1)dpr;iTm0 zHhPVey$4UMBNZt3VEdmxIPET!rf}rdsLINN#)q&ON#!mRK)7lqcneKNJ(#E|D>Kpr z;3FkIE))(Sh6a(^#Xk)=4K(j3%c-+o1(#0G9KyiUQ(O791cNA2^nZa5iRAz7!9V%9 zNvo7+>=#VZqGyTH4=O?hDTu9mLkj4euBvcWK2DXP4?;*tWugGj(^6(#@nDy%z;8@H1)peSM zz{ig^W}YPL!S?h@ee*lLiPI^yz;yh9+h$Iy&bCV;nd(Jp!oCpN1mEZkVP6^qYkaqL z^|;ICA6c<4#xa7sA6y%j2Bc|&EoV0NA2c0+%>i^Z@O@p<+pCR(7Ms_8<`Ryh5G!Xp z(fx|L{7*JO?q`DPK7SMyffqr+gbe{j}chu$9* z#TME5_6m|E$SqwQS&2s+jWJlkTXnOV0Xf4^lFx88-IO~GPef=^gT@^L*_kw{V)n8n zpl@_s7va`U!DUUq|Il3ebl#Vj9fL8{sn-sH;9F)m>^JPl#CV2eBD{t_4x8R#|0wHED)}Mn4THFK z^iE}#$K$VSC@`2ySDl2L{7as$$xFJC@e=ik)LxkWpTQT$yxTXiqvv=DNzZ;b%{52a zdaTv$^6UC|TvH|!Lw>jw|A>NJXZ^qnJqwl0;5N9sAObwG$Bv*wV|Yg_>mwAx<>ep` z17=F~7`!)A^5Fh~Kmryr&JMtrarfrt=EAawG72y-bf_2S3#FfB@8K5|sKTj2ha{(^ zsgVWG)&N$;fD>|xVZqJT1EBSD-JQI$YJqCDg@=tzA7>=|0^rK5?SVSAWcW=on2yFA zsbB`R;61pHD=tXmPfQ@pDlxSg1kw*pR-I~>Jqpb(2lV2rohJ6tc6c(h6L=mxcv>jsf!!{Y5o4HiVPc1)`+vDzY1Llto%V(4WAC?z zd~fvK+8*3-Ed0H3nYGt{6(L4fsuzUPaTMnq(l>vW+!(&Kq~DQI-@g%}y)$F{#nxsSpRDpKS} zvNq-IFF(9ek-r9Twj0H^J{RwetMi*^{shpa)iaCT@0PEBti_n0J{iq=xaOH7=NL*s zj^75Ns&CHTP@}lbM!}$iJ}4>A9T!t;-8P4x67f`Ez{Z+HJ@nFhbhU%MI z4NVY26hmxk&Hj)5BUP??&PP`;GI5$rcr^^(-4-8e3Cdz2jcfP&Ot)PoF;yPl=kHfh z1lEvT$@F~XmbQ|fl$b0@N;WzCNDGlYg`h_DwOk28gaoBwrZ*e)%OJ(heaNZ?ioW!mVUvVuBo7l&t-{S?vNXxO$Ne z`}~%Bh#^W0zwPy-T!&9qI;|+waJhr>PWF56gGn!_lEp&_EmEWgoj|~lKbXz3>mdk(wkj-maS*ANrT{z7b1D5>mhQDZ<4F0zAKdUzxeL(zcf}mr=69i1 zV;_#Wvk-Q&+%nu)YS%f}lh|41a$E3FFwcgswpnI9wKHT6E4yTHLAC8QTa5bCr?w3{ z>S8h_!)<8T?|&)NVIw~yQR59il=2;GzVG!QB{hInB4j|C|BT)J>(Sp_U!t|6kChHM zr@nqhsdgWXS&lO)as4oLvG9j4#e^v9M%+-*O;F(u&Nqj#hd?jyuL0^%yeSr`a=Gxl ziKD?|1K0ie7@yo{(YCd7W|p0Y<#;DzYtIAJG z7@g9QvJvKp&y3-ES*4Q%vJA%B2nM8E2YyWF{ePl# z>+cP$0$c6Ik-xC@5Gx|}A@$z)9Dcmq7#_Kz95{aYFGaZI$KMiDj_h{)(jb(jd^KL`WB-n-OTo_d zx8P*K%tQT?6ys{|)d>C9G(LZJAFeIC)PaZD*SAT7?Zf-`NqG>CX;g|vKyRc>R$X0f zJ(j?9E3WHbtbcF{Yt8OUCiakEFk-zSHTc;)|h7jgJALqd3pI#w(DUMKv`iUhgB}f zP2oiiQ{fkrYrqkQH#3Z;-}IiJ*LqV;kZ-9JNaQHDal*j7K(!SOVlnV<0sR;*(E?Ra zurQI7T93_d3GV&^c!IT=8FR86L(qSR!H=(C{l~?n!$Bg7;*EZ&!S*vHibZAG^Efd; z?zW-~<%4)~pF8SeNQ`FCn%zyVcUmCn*ca?h&RA*}LcKGlTNh+!Ib-_L?Y??_eXn)u z2UeS~qtMRk-U;4rlaJWR%sj$)zf06k7qw0kc(wS!0ulX{7NWo;=8+P~fUI|&bvDT) zJ*0HTPw>RNQr|sHh@uwzvRce#`Y}c_rF_aF&v`eD<3+)@JI@!yc5Vr6+)QRP)b-U- zeyxxXwal$>@UJiHx{mKOV-bNXR=3`5W8U|49!#|qjqAZ-mWZjijAIiz6o~KOHUo49 zbc+t3V8GYk*Qb@xZl6krbT_k^>AKVrs@1I!6tyG%^c_v!9?s9-KZaPOF_R+MIyD3-9p1L*pQg?Ok|h2@PX?AnV8Vg!GJSM3G{WLM6^>?!ef~_)Yb${!?ixV9w!LYQn1gju$Wx%VvXHJG`X6pcOhYHITNgKzW1v5n*hi$bl71{`(Nw=d=}3jjU1sU(lOV^aqunkY0_7IZO6+NZp2OLOf{cBye*vmq2-F5pVJ-N^uQ(h z!C4~9roG+C!{Vv$7(0qWe=1Ve_r%vpLq%k^_bk1BTy7@nsj|BC2;5pEJ!f(hQCQl;`Kch z7!X~1BdzBGK~3Y%!@9I5|D=HjWB>Q-wUj)lMPS9AO$SgLSeC=%aJ~j1q~_@`Ao(O70o$~%u2zsckaJj~nG z7A49l_9gFP;3d?DC`(2EzYYDYI5%>)*ZCgL?(G2MmPKQIjL+jpmWffyL8BPv|MLP(8~_c`}T6v$u_{Z%rAZW;AQ9f4O#GQMVoHRBq+T zy_RHQ|A^I-yc=fS=JBzp@zz}RC9V1e^8Vw^SDq8^l6F^zifA&{HVbZoY!9-rqG<$c ztE$X2f5Ny5Y`dIjD#B18{@B{~*T4z8i+}IIgZ#q9i3v~%MqJ?LN35iBlqHp+WrlSK zbDW`Ol`1PnvjHanHiBN-@lxUAUZO{4L6Fr&4+PB$ZXmaOKNNZVX)sGrWsUDOs~fig zkAGSkkG!L$B?Q>RwhN(gG1k%6)`lwxp!QnDf4AJns$kaz|)~S$uFv{#VWH&>&Mb!iF%Ae>mN5z2N=E zVBZIcknnOTxzpot&IPR_?S)kAwC{WnJV zxxfbcxP*CAV~Ptmu8enonppA@r3Y{Ncdv;@)x>{p$bA%FFPRi%JB;nt*pM)yPWMPy zefEX)dQ0LR{D_s%rqyKO?U5&n<94$v)%?--1O-81cHPU^)bvLDqqK*vHc+YPl}vgp z6<>Vildx`p(=}q{aBk*=_l;Y+zP7eFTxB3B4CR{m^~(VLx9aLv*-YBc(%~^Gk|#l> z8fm3r(o<}`O`-3|oCI(u@>+2h<&;t~W}X<&F)=FGW6(yDMqV}idOOg7kF{W@&m`yi zXNg(9iH~gQ#_oCkl|g~Z=%yCTrYHKPFZ( z@Iq%d06JM^)Li|U#MW~0mY29HMoI`3Zc|; zPj6bO8bgT{7Q#mh&#u=iu^tPcdy$>gKVPEPP-u}-SP16;%tViJpQXFw8p|Oy_4L%$ zc*rBV%HA&>Lh}N9$eaO?Etatxpoklb`i^N`{{l zko9ksu@x19-H1#Qx>m3&B+NmPND~9*HDDK97^;fZfx@l-$syQO6I?~~Nc#U@w-(V- zWi5tm;|y$>VkSAh66Dvs7wqqJhlhd?0=s^@j9FJ%-@_Ll1am~#xO31gVKY+vNyVT! z&VrU5dIYi=BY$3@y^xFSOheXo%lu0NKTIA%@DisN-te_8IDh+pAxb$3RlEV7n%1}ooc38%Wj=)lYo<9-78^Q zTkyzca2*Sgz3j3@XnmVH84^mjD3|R-_|Dd}=7jIeQ)BA+ucCiuWrk*bYb%~soX^G= zV-vfNdX7VPBq=xs&x@d)}e0v(UlAVlMeCKZK zcbS#LUH$8}-o|B7lug}Al|ud&EJVL^d&5Ho#7Kb12@C5Nt8;ZA=?A$bl|g_C(i>0D zF?*_>vb)Ln2#`f-CBO*;x;vZ%IusOuu}lSpml28Vx>`Cq%R3%`pXEeNFouDR4Lb^n4gn|?Hx(iL(X_tD8#ns7RxI%i@Ht|8Z|y&1lOuX-q%;mA zHe_-1cLbeO&0KQM>tT@f+{HKc@Ze9DTdW1yEqu=R-^{r;>aZ`>>ambH>B4dV8YU1F z!xKa%37<2xj=-5#FS?44>z)of3`nY>B6Q_XgVc(#U5Jus(A#qp5a_QSTaja)-SOa& z$MS<-67V2vdtghXL&@Z-ko^xboyhQi_5fC}z?eS(>ZZxvg$*~4Sz>uqJ>tz&%!7>S zDnV{}ST^dyFcc<>a4*o|7{9JrV_EmsG@Y8_hxhVb$`gyV$%d7T#+zOSu!y4_dvkqV zTx3046w!Q_iMHC)6oDzsjXfC>>fN-WH1KY{_KoySVbc1_KcBwE#$~su=#2eL!4g_{ z;3UW!cU_M)2TS5wH_e$z{)^M8exdE?BOg}5S5?*^YNHkMa&vWkiVA8AC3-?OwBRH+ z2&D+?$Kk*Lz2}C2=JPgL0`q4E)3W9c@-OZ)%>BEt8VRBwKB6 zD`_y?{aC9Qvk*6gP%#uaE_i@!xxJnmqCk*-nHW2d1%WB5pF54I@__Rn(&zp|_jrO3 zU9og;zmG(m0%@#c6pE+Pk}l0S_m|Wwy?6|Mth_~_5Z_*}(_%?0y3p)#RlLbsjO90* z^g7Uh zUk7RUqujfEd=}^qAg+~ad^LmL1yaZ$)cK(uUD*YHDs0d4^C7%3HPs7L=7KatlF9&P z0ZFFy|R)gfG!~s@*5_BR*|b>Q~fYaVNX3cSa|$C8J3>O?dU{WlBd%QxUECA zX5!rY6ZbRIL||MR2YZci8wz^(0^X}HfdjUr@etq~aa|_Bm#fr*51(fd(OyC z{d?}Y3}jvSAlZP_VI#j1`T4>7C%*B1&*IBV3ULL5y>lG3=h|9cuHDHv<~>Pny6%1E zi9n}c51_czTfm)P$Vkaf9gq7)Oq{%i^35nOE+eb6%SkbXac!)Fz1&0XKJ8rHJVIH*YPvazx0*tcJe5kB4LIBw;5 zUs3|+HnAsOh6#p_KYu2C03#LTSl8A*uP(bE`s}Aq==BYPuJun=g(3|?LBy-YGn zeAU0|Tb<0mb^pZCUrmL?q+1pFF$mTzx@Wfv!Fo;ADeau5NYrz z7k=yxpJZa+TJXP;fom&G$eWU$n~x8i{z4hFQBq`*S0mbCyNkkxXJ^)&8=eeUPGNvv zRh1PIM8Km3nlm6#RBFKoycj}?qTn%xG0HjCjZ&{3KIO{V5aCI3~_ivFu(82DI@Sase$MtdX`~K2r zjSpy{>w$yn;^-J>h}Ipx5Qai0b+o%8j&v7DpSFX=U0fGa8z)W7JY2g>va4g&Fi5wu zu(*}c55HW7i2)ff^c>cMuxp3c#O#Jsoo;B`^p3}y-n?;}y`z)(N3a7lDov7MGSP&d z5Wg*z&#`0L4u)^U*cfnX;K1lPu>9u)nH=&>T|oxCG}TmoT~JU^TwH9&ThEvg7;z6_ z9s(da!q6NYc1NmVo9d|2X6qftDtp{8ziCbLq>#rUkT)0=y>nUnD0TN))A97A!%8x_ z@R4TDV2Cd*G9B0d_NcYB8-7$!#-)~Wqmw}O(5h}8F|wNs14N_!V>Y!}o@cXC-)5rZ zmXBxcyB~2s9xD|med!SQMpqQe@<&_I3%8y9MBB5`V%x*H-tSrrulE0r=44q1yJ(@H zbB1aIm|w7%9s_hY9NS{QY2?MY?_p0G zXB!w+y!4~27>ttSBU^fX)aciGx90IwK)hY`yUttlZzH8E;%;z1ytVGV@wq-Y)8b)A z<~v+}^N3CL&zcqAvj=R9)cof~(5uN$M2gl^Ia_}cnl614X?1Y`XAXuGZrOdmZ&R`+ zSCG`~?Z^d&27e};bVB3oQnz9Ohqk5`1Tq~Hs~dZ`N^(Tn5$UNmQFD!;(ZCs!VL>0$R!1LesXn^HnngT_Hq$ny?;Tg2- zesE8KW4flMroKK^A^#3}53FxRQNVP7hcQd(1(R&kWDLrIKMf$qR#xzn;Z5rsFb6>> z?1c#0U|eB_mP(it%bMD7v%0Tcs`2)c)M2FL5_(NjBSpKduYjwlH{4FufG;Zs@s9wI_^FfYvqV03&ADLEG`B_L}vB%wd0h+JLhL zCYo~0&}&(w0P%RfFAeZ;P!l>hkeuH&CU+ailnu`B8n}173?rYat1s>xo}L^*GrPR} zzSnHYr7r&q4P^^Z%YDVQgg={sI`r4t9(+9Qz=?nU4&QTxXJ`!ET(W6q!tUx&V)xtl zc~%bzQKmT5FT~LXDvsx+3SBz8je5N*U#-1FBhEO@M^}R``1`Rn=2{zup1${1-R|JY z*GW$o`^U=n)EQ^%>9raD$Dp@$A%9yr!-3wcidsci4JBN)w(`{huFa1~gaU*)MZ2kwAD=g%*-17<|OPfujsWVbVPS#+PK!aiB(s9){P(EaAH<{ zo;EX6@l#or>dN~eOIj@5q5I@fdU!>wI`{z@BCkUN?_eilV=)s4T*2?9BYufw#8y<2 zW=DK<3Pl##-3n3X-o_L~1mw4(Js2H|LM#*ccwp4}WxYfYZd1Jg7d=JuMh_7sLqJW{WuOOFljsbuZ_ zRtlz(RGxD>FSBec6lUj9IU`m?LYqiwc_);y{GNPnlfKDEY61FXZY4r_oCh9ba=chiv~#QU^na33=rGGd>iStcZZe2D0f= zL4=7`_qc*+#Y3WHv6<*FTS!?RCo1{Vw%mxtFD@xa;+k5J6070(jopt4^;d;$pwqZ# zQKxS$ql7yyy#%94j*RlXi9~{oMI=o~_`2NF0cx^OEpj$HZ`hfh0&>W;=; z7p0>`Z*?5`&L484)8hzsS#kKDWeE!`Bb#@tIL+* zsqh$5d&-3m7JdLGY;M9Z<`QloSlLWRG}!*`ctBxRsRd;TI9rC7z;z#D2*nkwahc;p zk&r$kKiJXPSzT2{PC)^j55U@UqG7t@FJj>ATsdG4_XKb|mC1mf!`1^)@ptae9XHUEx*Ci8+jX)a%x?y6>AjZ8E zlOs0n*8Z(fY1fuPL%9!kd{md`xtNJD28NXd6j{Q7YY)TtKY!k`gtPU)N~~@iDm^F+ z3EIAxl>?ePO#uW=;O7Z31drI}=3P;gK)=58kXqX`3IQGU@Div$2F#s!so-oquY`$R zz24f)jL|0@gRNb`SsmdC`9xPH;U z^e3|QglE5lt4sia!Um~v z-I@)atS>((Zd>1-$zJhVIpvE*sNZDjQ*s(=(Wr>$PurO7C46voAW>`Q`Cz&4vgPKi z(XR=SA<{j84|&v&S9^)>oOM+i+Ex}B(R_NvP*fi;Z8B@hbhGDO$3g$goD-XV9ZNjV zhT7f_+=sDatFQU82i87?ZTL4RJa$o0U#V9erWVc4Txg)L{9{F>ay+DLo6w54qb_|X zjVDORoKgUz<%Vcdmy=(!orOj`g4z$e8TVgO^9u=)mZm9OkuJMi_#!>0gI|9V@FLH; zzb*V+-R~PM;$oi8wzK|1yPZ$)JJopv6(Fp|b~dkrrbpW2;|ffF#CJa7cs^72?50E= zqvt($QCr|OM(?3FNB#m04A9-3fA}+IChZiIDGmI znh_Ynw(i#!eOTP~*c-O#zIu0Syse0>oFLpkF=QTB3(6+X=(8fS1 z1X`H>`76NzhG^)G;F}QF1&0sb+2!T%_-Z5oq8>sX@+{KlF9n!akCm~(t_q|+?1{j! z>$Fc(c;@WP^QLzdzE#f7YE1~^NE8V9N;U8ifW+*ag$(ILrmkjQKx+s6UyeerSsVHZ zSuV>XhF6&^ml3gV#JdVwZoF(p;Kx`H>|es~CxF~)i}FqaJ!9Git>Bvm2y9`04Ae2c zcaEp_4r5Eud~e1v<08kIdhNXQx&XafBl6K+-q?8A<9PFCyRL69uki%dc^3cvTgcd6 z?ku^*^;*3sT5!FsIobHQZeln1(B8_lH0qV>L*9QkLY_ycSve1pZa!YJw*DS?c(;yY z!rjS!T}Jl$6_STMmdq$EK}YJ5U=oJF`gcTLHXd|~tdGYkvZ}nxIX-@;;SnX!3Wn$q zkE9L$OUbNVZEq6^h_NQW>6X^$h(!>hcT=jaXA!zYW+yrlgvwtT-cxSk4!5~?@MNM} z{JQ>9p*MaCZerM9Y@b9`EW5CmA50TJt#C>H#eeMiNl`*F7)vGO3e)8y5%KkM3&dSP z5}vD^xKLH$6jp2#+M`;Nf+CD9_!3Y3gP(D|l-DfkS%mIf!8M4bpDxHerR>#byZ)@n zZ*#%hH0&sTLzG*-Ap5kj>%^Y#?P1y{>Q}!-e;eT`wx`zJS2kH1xAmOQc?NGzhxI9V zThbu0fp+{xhH157Pp@gx7c>LvMWzU^oyIy^eEw7rTQv#O#N?~oYU9*MkY^$R(7LH6 zIRdhZkO9BSpT*E2VLh=tQhwkyVOCCniv<(~!q5|+GdNyyA$#=*@DC9>9+V0VbF0XIZ5k$}F&+Imm-AZaeVNRY#` zf&2cz@jwhqX7^mNYyB+sOylVUUY~Ntc&gzHZgZE%*+r-EtKK=@AT+w^w~*ySVIX?0>-l)9gyRN%yJU|elhfv zAI_@`tzsxcbce4>!ZR2pH4Af0!cgP2iH2Av;Ef@^%x^)tfu03eux0{Z^sKuN;Dy}X zHI>PtXCYG4j<-Uq7=*4DyyJY80zefav0YqT;JF?h1-k_3KwrtgkU6nuXlVyb8NY2@ zvy^^KOeipszz%yD-g(xh}t7%tj5cF8-5=#FH ztL4`StKc3Jdj}rxxULSIQVli~63m&THx-n~+UG# zo3B@|D-{w;zpiUJ?-OY?6UJ1ytqtEI$?bQ&uXST^6?J=B zB=Iv{wYT=fkF2WY&M^XnQk8__Dx1k=j{I+f zWz4Fbxz(4}`eKeFf0h1{wY7XuH83Xo%;nM}`@ym&zNF&6sUQAzC|gp^Du#1jp?@cL7z`#8$U_dk~1wENmjy*IWVcEY{ovaKyX<|Ue9ch1&kQK{x;3ZTv zbY4Ac6#s<&a`iVKoHu4>aD)H&p;|qb%ktda9Z>yS0x%K-Z(!ZHKtKHTtb7Fg2zI=` z7n}grQ8KKpsR<%)Lfk-5C3x=)1-3x1532|{=0Gm!lbK`{xy*nipi5 z?M7Td-wqFJd*&8h>VW8BECAldj~~I^(J^1E(YZd;j7*WmZ1#J`K#ZG9{n&k}PUBV8 zkhW9~na$;o%AmE@DrSz84bKLB7L)9EIHU+WD&T}%B>V|w zfa(S&SL#L3Sjfgw(b9so(YbCMW_xoEaDbtM(j5+M%j%f}pvr{?5U|K7?2e>)cQrM< zK>u^ds%*j>z?OGBZiNFY5lR2wJ&KCN|MnR0$!jf3mLqq1o}ZINBQFR z$-+Ye1w4F?Ahsj<8f2iD1YKm&(icvYPA02=?4mveDrD+W1}7&XNZq3&1r=_(c`2IR6h>-yKhN`~QE)IHVj>N#f8+l8lmsY(ivIl4K?$Sy|bH%199^AtXr>l4MgP zm4t+>Br7Y)=J!1A`~H0Y`2Ba^J(}md-`DkeJ?GhPja$FFg^%4j{5K`kP=bGU|9b9q zH%FOn#q+*%*w&){PCBtYa)N?$!t`}% z|LsE8T8Am-LWvuH4jo;4m|gMu*yHvkcH^x?*UPy>ttB`6rLOmE)GnU-C<9Us`DSoP z+MQ{|{NFLU+r4+U3=VB*v^mc41_|bfod#S>l>*Lu zyQqWwQoMs$y#Yw32aJcUVU*i@pmtqw?a44qBB_D^c*acbKSr(|n3hPj>Vc`%p$01i z`dVuMWLieJo$02={bJiqT`hnEs06=YY3Z4qR(O2s`z<(;yLVbR4#?`<++1$1I0!&a zhK4Cvkn}SV*@~h_dr1hz9zRAf2$jMI+=_n;WHKjEvxCVdREaN|;wzUd7zRXn=9@3; z=|}?E)0u2=dL7yGRqJEkkPI=2f(=J1adQ(CC{o>L;w7+)BPwrGxRslmn}r2GCrdOn zpcgu$jn`CUc~})mlb$7p!q=lvr3vFb=uixFd+$&*e!soBeRZY-zamN^f;z&Rg~pCZ zwXKn%wSB#p%1m+=s0s$)=D*x!RP{haTAd=GX1>%U$5>=a7MXs))F7(Ri2m>H3H#sO z(`qB3q6Z{z$Q2$EWFel4gJRZD82Va*pn|lS=Vao`>oQ(E+t(~_H1AP1?IaMYDkdmO zO*ylgxiK@Mypa-z7>r*Bke0n>Cr>ZeJJMxjyeXf5u9sESuQV}57Oal3TcdVYYh8lD zsk35g0g7wB=hP{)#)SC4Fj+bMeKhBm=1j*!_K8FC+S50SpSte~mX)wlwlN!&CWHjg z{Yrn^F2Bn@M0 zKX^D2z!D*D7R-5>-9&)jHh@0P_Vevyxu2Ry`m~{7t54b~3)~;e+;w8Bc@vZ6)sCdN zm0MNsPp}^M65hn1SoG&wlYi-`&&qU~91~~K+8}G?)82p2^C~{acC%SrpeKXGt&~Ui zfCWhzFQ;Y}H|_VYe(U-5V9Q8bRY&?s0{Nxc>pH7$^2xt60f`#~(!$wuy|Y?Z4vZAE zhIUev2)f6dk0=9qQZZloQP3*?{B(V2^vJ-+Hx{|R3x9o=r;@Q20PG!g_eK{IwhkzW zuoQ5X2;Cp=@K{l1?VNv=g+ixB(2Uz;pkZcHiq(Yk0PZ^&f~b&bX!rO|?!Sfid?r?m zzWQ`@bcK@kvM9sdKz+cqn}F*2`I$sNz-59CrMzF5cFZ{+KNb-d{v?sO8cIzjJ?j{S zL==LVQTG@M91^_%-%ovR2BE&6Rq;0?`C zmy!MylrgOGogl{kjWdQ4p4!@edX&H5=-K>J_@#OFSuN21urORkI;O7R;47%C88<%@ zu6H&D#79T_o*v;`m^)kS+*e!5ENG54>bMN z(6a&Pn8>XYp(lOe0pG?4dQdQ5le|#L1Zy`01HPN?G9-@1D|2k!ntCv|}rk zH4D}oGEcAk>HCu*FDk!CF2Tjb6-*#KywtK~gqD2i?IZrQq2MT<&PSp&K@E*3w{xA& zUEEW9XeyN=?kziShD7eX=)P^Y5_4H_+o{r=nEzahuB!FH*tuGsIxGI2oh zt`a$t;#Nhf4Xc+{qEqT|E*Rc(KsDOLW2@yE_FB@mUZzy*KL=l|3$O{w5{y2U?EJer zk0Slxb|mMh&_-G|-%`h&ooj3tKenGO`p}mWaJbX7*7WLD>&@9YXEJwIN-`3wt-=&e z`hAEZWmooB(}h}-x3p`tGvd_w&7w=cz+^!mtdC-s_Ys^?D}{zi^p5~Z%xdq!@eVofv!2jLZ7zuC|=Cllo_Ny_hkD#%>x42seE<2?-uJ4FMD z96GmwV?MK_MYxS$7JDpWHVw1S$#B+ z-;2RN8kP_E93hpJ(6-J$6*2kx^=l+~R8^s|`0;TeJc)SaV(MC2PC#C!ia++%Qym>0 zRuLPjqC~3|9g3PHl~n@+oubX%bA=tS0a4h8+>4PHV=RJb z9qUabTuXv;X>|fgS})|78Uog_uM0A}@ikzw@a65KbCE{yb1?Dj2C47hjY9m z!dopSnGo40rK*SAYk?S~Uh!#s?wgdwH-*h_cB8q%gvB6d>(ecMoK<{3-4CCUo}JdN z0?zg1%yj#>>zIF92d1!u6v@XLqvO5vmfzCSs%(Z6JGP%=kCAC8pz1z5J+@IPN1Z6+x2YjRS>u+r|fRp_4pUH$}@hL6%) z%no~XYBKEj_JU-v#&YAn{dF&oytFH9*rH6Mwx8fsWyT^|*67>KD&y_wET_i5MkL1i zf#3mot%>a~eV$(p2(YeH+;AW;I`C6Z9+|~H`CA+7J1)-4m#dQH&Mo+}Xb}{|zXY#U z58lJpn;;W;pr&L~SdYd7_TzWX{_I-p&8}?w@%mOsen$yfydZ;Qg|BkFbcTPgFtc)D zM`>{}5G~LYI>~aQuF|lzP{W2GJ1MD@_O9Jo9_v}pw`Rh3rnAt0W!Wg(9Zn0NoLF&@ zdPaqRHmOdY7L{jzxscL!_DjD@qr@H!{qkD!uJ>dXk+DxC=RkIjw+pYMm!NeUJ}ItrDUQ40t+%k!aONgM=e3fpyjQ zZKb)_Psy5QwNNxrSO9!={S{?Wu#*%}Skx41H(@)0Cy4ucuaoEU;+zVH#e5E>&1XrJMJ@TI%?Cdm~p08nC5B?v!5~juV zS3EpCE+s*!=~uq8T8;>fCNT)YQ1Gw-!_35BDgtC|Wn~3&u*D9dY|x2NcyL7`QbOtK zL)(9sl+XVYd-VezZp5OHt*xcy#9b?2s;J@kb_~$e`KFVa~Bv52GFqH6pIsSx3VH;+JxujgC@hdBX9=FS9gA9xV2N)|GnD`Wk zQ}?Sj;8pNszeZx>BGYZYLLde09GqFYVSLK7I%oNn>_Vle|M%T_?JvZHjeFcBI}RmR zo74sf72K*l(KKPgC>}cG-t_eo(+Ax%dviPV)M**drdbMpWXlZ{+sl$Ca*%g$v~$!s zRE$u>8bI?YC#C$3Qn;_Se^FmOjmyXD%1(8z>D&4Rt;}eS(jN`<4`DN-3#N$=sD8jK zy~q*7F>#gb7Q|C&r9^Ph9Dfj%l1+0}!EE|n<;v~Cl8fSx*GLfp_@19GwQf%vuCGzr zE9ox$)H&+>E;+fWyRD^dcPd;qSuUdO#8iA%}S`{XqUEztq@n)44E&_IXa2 zt-8JN)InK-1jQ>@9Uw1CI^=zwSDq)Ww9@m()8et;3rkRbK*}vZ?`<3flkJr%bl zMAX+|^9ZL2_tn?U`^(pCeo!c%6uOqgw3+YZQ$-?4smXEeqoitp*xPt{2M`Tzr%4Ki z9Pw1#%vfhQ>D|B-G|$8oEMC-pY+3hTx5-3N|GD~v4*~?)*`CW7JmKj?D)Q5(b}(sU z(T9n3V9Gqg_O8K+*oQ+9tvE?NZh1`6fGzE~&}c_tL$4F$H!ej_MqaHtN~wtmoZ3xc z)H(qOZvI_3(y#t+;W!-qAXP9`(1ja;st7W|7FXMc&#iUj%%%QV4@D*u@>JD_V=o+Y z-W~ARzcK0cqsQqfYz(3G0~_hdK@;{Y5rpdQm6QiF($pN1k6`U$_NTwgs+;(aVb9T3EInA@p zH+$6irNsJl?acM6Av>LlrXHUO*vU!P&Qhg+H^1<3t1wMavc`^$o}1oUIqT+ChxNFa zCz>Rdx0SkbsudHIUz%wyRvl;i_-ZDZmB%X{-^)$z!eFMvz8b69dh+K_o4cD-+4vqj7Se8lOb-k@oyf*uFXsC#kK5cz-9Ajf|!c|7ZxXLtuS)2s6A$)x+XkjtED z#qtj)OVsQIiJ;9v!B>w}uMl*s$x1ubJx%NzgA|7+?1{m@Zdu*G#!$m4X8cL1lU1U7 zrMP@o}jY${D*AMjHOmNAuu{!Vqnf7A(66Dvs&88;fzwvOlU*T0Ia1v<9%z+Qq zuZymHoiy&=y`WaB!M??bNmhAX1Idk>CuSO5f?eDomGGpEq@Zc}!V#5BH94pz^r2f+a5Z83XKB*G1-laZqd?DoG zN8@KXTert;K2-L0YqxQiw{lMYf>1>3fdjl=gDG&zBk+EF2IfT!7B#bhj65*xdL&7e zaZZ+Ur<`^yJ<;?W)4f>)eg@Fd{I(K2CSdlu)Y2yN;!Eve2>JLiN%oSjnnnr+T=T{`>Ss@S&;8J5~j*siG)mMY=)?c0dyIht`1 z!Lv<6Sd5{{symC-l)`Q+!L{o6#j6a?`;&xkf9%PzU%xPgOfBN|6%3p9N~F|z${r=X z#$e-B%2JJ;|4kpro3heU43(>9+?(pJ`(41TV0`&%{{mZ)Lm^e*uQeU^ni~B$drgexC3n@wy(v~K z%$57d3iRIZD?A_6Z~Z=|9=|R^yeF<}(QI<`j{3y*?%oBT8G`LHarX55okw)da) z=$;>&|5dy^VqGrUt7tl<_xz{1caAHc=$;p9*~4RQ%9es#U!2k2Vk7tQY0L2>`af^h z^bIDk@DT4mCsf9e2(%R@5>j+KdAY8C=brjXo|10RIFa6CJ-IvYss2QcC({`ZW;gEn z&V4U?X)Y7!$j-V)`z~eZMFuFjm2Tr-AiG5MY>~)f-mDnSv3-hNbWKWSzj#Gi_-L_$ z#smjNN5=B$h-o5QeEQ(ct$v2%yRR{QYeTHx*;9Y5M7_5tl9E>z5knQ%J>FgJ4^yhC zu`!Z(0em+2t{qYzCw)2b2u?dw;- zG zWAH?HAb?J}v-pVz@JW;-(U~|foJqZ`T-)*}Vd5(?XdZy4&7y;v(!XZyVr7)HLNWOcw zy{&E1Qx+nUfw@)TE1b%BJ8dN3?A@#?en%^h8dU6En)J|?P%$N2V@L`%$l6h#*D;C# z4HJE!!hQV3V(QGqkjjYMNJ78>a&W#+dZz2Qb#{XHCMYyL$LDOz_0Jkx>iVB_)^!ep z+PQoQ?Qsk_Vk{BPXo^5L(tAUYG`906zrH`*A2X5KsPVh_KqWo_&Qx?)K4@^$jlgR9RTi@s$)Mu#Ke&(tAha_o>WzrV4 zW2h`!cWb>oyd{r)6 z^7Zf?TKl-8u(b5U)Z+eDW0=gXIcq+D{tVc1{AJ&IJq~=7V34f~KJHGl^cy%`y8Qe1 zFvj_Je&sqOy81jYx*em)XXEFI+Q$-u7+;0f>2aR{8Q_Y%i#?17uQy3tpcYbahQHCL zMtl9bwqa*g?=w_jU;MBi#OaT^7zkZkM^w}F2>1#i-LtY%ZIZa&hf!>?HJ)?=D@iaU8lyDp@3ibUM>nZFA-d(j( z!@jQFL}k9}^DwxszQIJk6?)D-kiHN_h{Qw0p-4iaC`NZTJF%I%J-%lvRvg3{4^1%? zB;1}|7iE4EeLK~?U)$R)IN`6|$-RCjHA3yzq^IkdajF?IwbNm35GnkPVcdtadskz$ zP~wSo6?)qP2Oyeasdkc11Y-_)1*Ug)rXVsd7HCzRq&Vm*f!^%dgP)JXAK{0qniYI% zZl&Gh7pWxO@e{FD2RWF5kK)9}y?_Xpe}#Vk8(|vOHca8&kT5pOH5{IPC9oTxB65kc zJhzcb9=S%-1%!C|Ow1Q94xg0Q;gUAyI&0=-dF6Pm>s{D%0@Q=;Ig<0=utY2jKjYsY z_(?u*s*<&Iz%n86KX6Rzu3GbBtxGg9u{HL&5oraxA+g@eJ5nSlUai-}?H z*deVaZ+bVf(o{`s;4&YLkOiM`3 z%uPEv@7H%gCyOri(fCS##=bl6drQ4foLEOkJJadWon06nqow&x^@tff8NPI!bo{T5rDdCaZKKiynB@8%~P zjy)e2KB~zpjdbm;Qc0Kd=(zCV+(p>yxFYeyUap+@Y8i!q+!#vH^XINGp&ZXT0gebo z6q`50lS9#f=)sDLy&xK;5%?wYM^J4;r}zy>5*jMMoOV0}A9QgidaSS(jv^}>CR@A` z1%-te`7z@Vn(g)%cYYLmkGH#83`#+Y#>WpI*yt+7Aj8cw$clVpG40ja>(p#lfKd-3 z)9Zbx)U56$5D-nx$pYL^F4;qho6{1`AaNAvaQ2;r(eNO48Yplz)0sn*KvVhq%X3A# ztZ}&YdPwKw>lC^id8P9_3N)INb_3041_37FuLGo|umeOhHOSg6xd9bkAQJ(T>1T4# znIn|~dks5NtS0bdTy;=I3UYumKYA45F$g{??7-3h%S2z4yx-!ibGkmV;15Vj(kVVO z%0@JsT>-pGx`Ie41R~bmja($~;OY7xVyIfHLKL>jB`4pxli6ZNwi-Vk#3y-6|%A1*OhdU1>TkQnhYh+?C0Tzvf4!U(ygs z*KTN}91wD4uc7e!?OwVlo;cFFJR23Pv$$hMhqb!gSxKa6MYO!vtNY6GIIG{EWqFx| z>OJ)J6Y~zQ&zALN@05KV;Qwc2k$3U%(>4N~L`9CN&uq2h!Y()ZnEiCE*VgORKO1+r z;G3trkj}(N_@f%6Hp{A6E?dK4Hf!Mcv-JIrb?o$njqFSnY6d|ARZ-iVJ_w|WU1gqa z6_Z_4xlfE>cJslyg_7Wa*JSo*Be4b>gw^d<=xtxD>t+oUJDzp=7<1ElpTj@&zJ_cK zq_P6a#k`*8m-x+%cnY4iW+Tver)H3ni@}R?-kysrZ8Mu zOD2^6Nf&+7H)*9m-<-YA!}v(oC5JZe@2_>!!1@58IWFYP4R#jw${}kv!+wfv2C3^C zR41?PMEmJ&7-}%ZNG7Z!)bvfBEc+b`_6(Wn(G)!MxF_1|af;$M(G^4vSe%t(QGXn! zXe|M%-C@B;E|{c9f}6m@qp)>^FBnn{JQ*M)=oLw-;xToob&r^YF;9y71!Qws`(rgB z2cPuBF-|b^@`AZGPICu>=ZQfES)Fzu1)n^5BF18wYY3fciyh#1z@ErQ%r?N< z4WuT{3TB4+`FVuIA3NzTAlem1&w}=+1i8@O8g&(UnO%R3YyIk5F7_bOZ)O3vR)G;P zCFT$d503-v*91AjjIzNoAZ%#W;~)~h))F~7*i$vrq5E(sEY=l-Bne4l`}gDZfPo6g zYqgj_%+U8Y;jow-CW=$LZg9Oo=LcAA&IcQBx_Q9f_e24iK%l4BNI&*+FPlTOGT1k*t@fPu`?TstPQG=Sx4a~gik!K zxO)GBoZ#l(P(G%FV;jF48m5xIiP2qEArex(7zZblHOp7Vmz#37SU(K)U)qw{5g1Qf zdEQ>aVr496C_8dy@khf-+sPb@@QEh*X_508(#y3C>ykWKJY*(>ubs1ceClbJ9s9Dz z5slkx-t??l>?nJ|wJ}HA@Q#Gci%&lkQaOlMZoSDiClKs{%rE^g-8%2%x^!m##P;2l ztYkKVkf#HYP%XdxO>TLhI@3JY(9I5~dIBd~*%AE`#)iwhG?g1hzw?`UGSCL>cG`Y} zu3e}te{p_gs_XmsxU2Eg-=*W8Lg`oMUO>@|gR|9MGTG;M9nQP6dovqt@jKhmH>S28zS}~fY~MJA^^Eru2waR->yV&2=i?{E zjgy$2u92$1&=HCSaCcRQr(BWHe4NYQ$V`vGmBNl)VW@LxeR?J#DM^5c zZDV|F?4f=pvMXg|uoxi12Q8(IHt^sOTXeVpBN1(wWSv59lel z((`cg$mZAI##ZJw$RDAv>MNh)?cA3k*1@PSA*vVsXJj+)+@#0it@%Ti4Q=KFlA|fv z{gSbbH-e97Y#?3>IF`6PJn>XwAY_C>{`hAn4Oz>qS~n=+O0V~gFo%f}T1|t=+z#{m zYFq|xts8>VY3M=+C}EZ+>=c%FB8&NK-$=ogx7bc?|H7-p)tO|__$Z|lulKz?F67qjJA*H&up=_(w6U?Q|1wUbo0K|GNm>u{ts8h`+<(1` z-3_rrH02N|Li}17^f{QJ;>27~-VM2Ci?<3$!dXa4rC2qura;=-^$QWn{(-M1Ty;+7N&wPY;g#n2y*;f zyuJU>i}?y~%kgwUs3HIzK@NoRJF6v39O;n>AAr&(H*BVcw|$oq!Q<3%;c_KVaP)2E z8s4I4r04>rfi4_5l*r#+%_u>m+c?I4=|ug^Z(Utq>G>artO_4cAf>FXdQD-_NunC4yiI%9@!pf___Y__Z2 zp)hfVqAr&@?ckM2U=iJLJ%2-#;SLrun*#IW;v}-Y+boUPUu&MsVc|1Yn@xl%f$(=+ zsIKH!qiY(qI=nqBmB;%R;wW%A85kHG1(b(Rsg}q4NsFCoTH`gIS@nn^}bR|Gne3kH4yUytRD4wfMfeFnPeXC@*Xe6(JAA< zytt?En+w`H%KP^?A{jzD@hPrjQBfS0_LB905@yGW$K@{m1Z8JzXo%MyBSQB$pfs4! zKb!+8Q^U#k+8Omx0E&^?M>SZ{WE&i5k{|#no1S)~Vsj{72aE$ig8dqNks9pvd6+^h z@hrpAwY&_0*DIxzt1A4$^_V(wpyV1trv?9Vx;_N<{Vr`y>&InZ#A~)b3+^o-JCr1Q zHVFmLiJpDAu&?j#c#r7mx4Yc%c&nw+DZXz&#WXzoaC{kMLjlU63Pc9MpW$yFjc~7L ztk0`7)6G0C&3zprFNZ>Hff%I}I1R8Hpd0U|dh>`Icwz8U_oN!fXK?CfG~odPWhH(! z;dBD@Mgvp1!uUvPosrN%zI%nI>plpKtlXpP%NB?<>%j*ozU=`Dt1+1>BjAZ1B6Uqq1q?Isb_lLT?>i)V!a^ z7aUQ3si>YRyi3p2_L)2b`@@4RdMi<{h5`NG_}}YJG5vAJaM1VlN5z zHtLz8zRhjl9WT=0-?IiOi`=yZ9T(uU5EmEciNZko`7^Rmsk0}@NMKipo~zG`lAC`7 zZ7vb`#s+Fj3m&lk9((4#5x50pjNfUHma>Es>B1%FV z7OIn35Ul_+FcSlFjlVpG!8=-N{A{a3C_Lvd=TbvoPP@4)H{{J7P)*Sxn0ZE$m1z`$ zw(91yhI+{6MFx3Djgd6~5=TB9vXOY)XoJIM6>>DlLS-ldEt>v({J7pZvC`~zaKhA;B);N;AL{Vl^0Z&oKVuc<=fo_|Ky#P<#qc>r(^}a;O3$$!NM%xa&#Z zvmK<{5}nTe%Pb|oRe}c3yS;PX;9%I1Ju21gbWDs8_6N6K*z_< z^(T{O+7XHRYigHTejZFoIdA#t*n`a}+uR?dU6bF{c__|iR%D-rzuMBRb-5Gze6!tR zi@Sq^zsm$rJmYj!u0NA7x0@Ls{zd=wBk$2|^aQ%wEk^T$)fJU$Jr?@pf#2PsTgAUH z`#Y;~59KU!KWHwubv-!O;P!-V+Yv8?Mx?QzqxIampJ;2s>F-dukL4ofIAh$oAho$( z$UtM1)j}_O9Qr+*)W`Ve~8R zUK#^EAiN3BjuMgsaM7Ry?)Q&6bjf`9_!0IY0Mdtq>mN4RUa58-Zq9^G7Kw0w1{=Zb ziNtFQY*=LtA$?-M=3WeKED-Icp<9$pqipHKj|kL#1${+WsvuhTrhJ4qVNw;YpZ6&P ztv2n2uULv3@jBQ_y2tVV(G*s0sZXQsPZJBmH9T*VEoC{O;a|s zl@vYLL(d}mWbo(9?ORWb|IQxW@Znrj-z4PrFkXQkZyiBO3Vz5&0s^KxT0hYPk}BA4 z|3W_#QKP8OQF?2UYy8ql5nGLHj;^3s4IU|=4&2uj$YPuu=!T^a<0FEc>&kUz!ZWTkOOp01(p>ofv_Or7&jAp)H;HSExLavM%VvMj8BZR z9|CqC0q_j7*t3$7#VzNTYQyJcP|~%j)LL&qx_fukZms)+cXyi&&e-~~93X7CI@L~L zuGChX_@*Kp*F4?uSN_n9<<8CQ`QN&i_n%{2ogHz>$_i@CXI+smPZ#&Ga9pu2HDI}) zK}-u;F6f-OzJsgmd|b^Fju zPpZW7rn*YDK{v{-SgHXO;pG}_2l4~W0;CgV_}q$%7uJ?ftOegn)m9=;je~^&S@Pe$ zeS^`u$XE`l4J2rzijc?mPh;_T*;Z;@+aVsP{jTHNs_lc~jC^%xvd`y%DP*N->F9)~ zVoyQd4SaV{Wvn_QI4#j_4i`gN*;9ioz?@_fn3G;7_|jgyfNrVTZW<}Mc-Z)Fl2mg$ zMuF0VzxnQh7W23^d#FH2LV68J?2PBa^v<)U{MB}!1C}h2&3~NWW z0qm?zLmYI0R&D3l$eMQDw;AhJ)dt5Ti`>QI+VjaD!yK&-lY*7qXF^Pv)`Xt?x_P{8 zMq9FVTL!NHh0TO0pnJfKj?}wRVXZgonZ?gBC*@|F%I6Qai!L&imogn-sbmfAnO57* z-20`hD|N*v+qW>b&PnN<;Oz0l{p*Ppim4U~X&yp*?I;!XYpO5a!{39^{5PU=jMKX3_SL$( z8(?j18v0XH1BtUvx<1VCv^0rFcM_|h3q@=g-1-AQe}-14wAg_^LdH2pD9n679FZKB z(F95XD?_L`I(`rVrkblOh;%u~-6Pd5B9IU%JYKR%FnHmHb@UxMy;`pK!{uOdgU8=r zr*P%F6s`V3ux)r2^fS4oT_3?i!%QDjM@PT|-#w1rkn4TOBm)yw->*c((?Ct-z`Ovd zDf=~7>1~A_+R;CtP{?S)rVfL#r55S6lN9oxA;_satDn`PmWHF%74}q=Z=;R7=w8R@ z&o7=YyYF*adS>e#Ufx6s-TF-ON(<+&h$C4oxC&Ps5dirarj3l>&tEgH}q?N;Q- zVS>bK5>!~=<8>*+Q%R*!-A3gqA<7~c@C6Vo3 zy;*z5BQH0rbk(euEzMksubPH=WK$Xn4KUFYAO-Z4O+vd(VfoT1n0&%BM1SC0QtPW` zmG|kXpaEKvZ2(s!awQPD0oS;9DNn-`1pOeD=11gaiW+i-7pCM_rXa4B)K+QAr!1mIfC-PD@0Q zr09ZvEilS%8lvWC;#(Q|ydz@r`*(g-J%BZQDoxlNp>H54z(DoVP#6&?*gmdQ=a!fA zUQ@wS1uzup|FC48-3uiHhbk;nNdp_MspNms^m{B6DPHpBMoK_)!i17Y!}L4xb!MLJ zr9a9K>@gyck?s{!xBc*Spo&OBnpwadPbS(GyfPMPl0b7kP;=n@HM8)iaH!&9Tw3zY zXwry&P}^6B2Sb5i3Ab9aotsEJ3U~t*D&UBgPV_6ss!LKr6s8onJ_qpky>}vvvJv8p z+c={MQd68}t2;`4e_r?aX1c&WsR(f;;y(yXX^I~HPSpQ)&-YBqur-Q);3Eg10Pkjf z|L3f08zTH2t~Vk^=5nQ;cd9f`#qNgoCo!pn1GJVM`i0){Y$gtdl#U~XFD|+hj2~a) zoo{>3yWC*9u695zc`4Yi`^q@(RqCd(Xht+K@zvAHHzx5K%=q&0N5y&*#YhwHsuz+P z%RJ~r!%|t_l|^ssd=)qDP4`m#DoG;cm^Axvbfe^=$7l89k7K!IBxU|s4HV5Y!2bXy zR6F`?y8fjG@2;ulV>%Geg2=<6fFj|e8NkaLZAx7F-;EY_<07-n{fb@>3{gnwSS=dv z?&?BPHMozQR$PxJC7#aIXa)*SE|>=ip0zSv=o4SZP+eFyy(hw1mItg1!{uI7hcJim z$JgKa@DtuDD6nK?>ZcYFd)hrN8mkE{w?Wn(VPO#e_LAY^4ia1fF`2C+z(g)r!bSvz zUwuE4M+jt%=(@9*gfRa2`JufGF2Xn~oU;fbNo%}8sk4!=h=BFC%^vALkQLyAUv-1X z^tR8B4!_)9aelpdh#RGHt>CL7J9VV-v1J(ywt5(hOaC^ArU2;19#!z_6`&We`c#1o zDE^WX?(jE|-orLnyBd4!0U=~qD!|Xe4*XG)35Zx`qzweoT3(Kg7sEiq03?d|Kx!?6 z$Se%X*#;M-xZR6OjYT|)&p-oabOFL1wX{|2-MH9&4^LEh>fqGe-@kwHaH6_HDE5Eb ztJ>lJ5ELp;lhuNpGX2cgVp_Q)yOFQM#NB zmP{QRIqG-yO4D(gICByhA|@tu(6CV*o@%CXciq`~X4x0FoVdikac0xqrrYySBU9Kc8kHOPXr8aW{u zP2yaUEY)Ta7{t={KV39&|F)@Tny|fYrgdUXc4+a>6s1&x*rQmk3b9^E#|syrdcvg* z)-H&QL=%+YCMDtJ;k1mYLk$EE3j>xZG70lOp10%%sNL^AL|+c>H!vFwQ@BUD*Ml6z z((GQ$6a*>2>e{)waN8Fc;Q$9>Qe=$1rP0Q-)FfDU^-)9osP7pm?uUY519J|At0?$k z;(wgT|J{pmN-0+9mi;w1#%iCU&Qk&(8dcU*60U)zd9V z*HEi<%rYWZfbon>i9X4Pl_4O-WOi6|6GH?+ltGCorbvwT&eu}+d{paHEk>xh-}AtJ z-+__D?}wEZrDD!!tk>eM;6zlVu?WV(`hIpg#dLjY4+t_ z$bfsosDoLz(FRk76>e810`6NW?ivg6h+OJ04{L%T2k=9L@2z5K09Dwp35$y2i$*q$ zWP1qX7S*d&67DKP`VoaumXF5)*f5>}9_O z&<7V!U7g0iM=bD0s5YRvr$Y)gf)6l{qlxwQZJeH{WyR?$5OZzd65u05r)dcsydJK? zk3+Y`Zggx6TuKlbdR0`b337nXkZr&uiKcp&B4F6mZ3E$doRKwfKTmo>M~x*$k;+8u zZDVEp-;@=H&5~L)a92wp_*3lelW2oNa9&rJ2@@nJH;~VJhehr|z{#8HH;7_<8WW4{ zewXi8O#D`o@)oy`VSfIRJKvGBU=Q8b%4RW!bh)XSm65~U^MMVV?8knYF5kJ)8DgzG z(XQ;2Pa=?r&CynwE(DxV%LiQNMneJ>k@lo85k%te`mHlv8thwlB$)Yfl$V&W5AKB#XxTP`GF)t)za>hPlfmF zDP36_2VDj0AyofhB#?5&2W}OD-R#1yFw))Iw?W`w*MiTAfQ$tK?v|X^;-Vs3F;2rc zT*X8_IMMYpfor7b>I%g|wSbFhqPLp6);t0WM|1NnXge1ckmHXAB;h!uyxe^Vk2>`^ zLlnPx1WY6NUIjVu8(=mnuR7*`e#1c~6W-uBX5)#Vr`wLv#t~p)X_qtYKH0x%(-jdgIx>b4z~tZCZM_$V5;m9I9@`XX323gyKSe?`Bs30}YN>05r%x zi>7P|e}fS^NPNt_7;6A^CAPQHMs&vPN;= z{;6_1z0+fJUu!eV=VWIF3khN+NqnAqoF^Jm&c`hn%vO@V3A1!xt`WL9tRFzHFu?+W z&Kx;N!AsyP*`ZVT^;B{ExKo2{nJN<}foE@-N6@Sgjpa*mc7gyMlLl9|U30$9>;+ce zr4(E{j{XZB!u3aWbPz_%4FyNa6`t=>W4`0w-8gSaaP18zj{8`nZjXflpGk6qOyWnp zat()Os7^J+)ZWE1*F`OTWK}|dwRomw&`;p2oC=>5!Jw%dRVId?6uR5RBodutc-g^9IkhO8V zd33;i?7P(-+ntIuIjm{ES`Leh7Q-u-2b?cG&D!yYU424=CBTe$NGUb+tcL_QFse{< zNZB#h$@1(ZT9}(Fl7i8AgvOJpIoP*a>>xM81dg{TQmw!Uv~ybHC%XcO6f7)KktPQ# zleRWrFhWtGyz3YxpeWZz4&E*cPPNSAcR&1Gl_l&7gKQJ7VFX-QSRl(f&T93oh9w;= z%c{3Fn(_~;>YbLRuzI-N`E?Gn+KU%oMyAI~rj7>RXdS`8(F-*jGYCNFkN>=$RO)go zG7UO;Tm8oVtjk00$12tLa?(^B-X`K$MC?BNpl+Z1wk@~mJm-RQ&d?ERe}8-162>i? zpI0Qt-CL=CzVX227@6nMjB(GijJRB0|1Mx$o;=X~JD;~n;Ng|zgezm9iL zyEJdUV*R;KxRZ}Kyw+*WErq2hLm{u%w@dbV&c=A#dz{T1I{7hMb^R&S@Bsh9ME3b} zbnD2rNHzF<%ufAnN?w-Gh{pJKSdasF1&$!B*zuyKV9lw8Z5Yr#oWlia2uOE0GXstx z$pnaRspEvKy!^`R4LUwcBc`oGuB+x%F%D+LvzfedMVp<^pfc~?gb$cxE_K4s2F*H@ z1=tAzkF7p!xKi(EQ75;_=4K9XT0h*2f#0zyVFMX;-yY0=^J>Q^@LZgL_z_4(Rx_Mk zrFUrHDa4U#3CWYH-Yv>5PL_xIyMjNVdJcP=DyBC6V5|e5hc|ZKO&r|SGrh+AU8!*8 zluOITBefJl1(HMwm$^oEkmiq2?y8Kscl0^|k+H~qiN5s~JCqYBr4X-F1Ih)BFfeyC z1OL!ln(2aJXmRCJp(+lv()DqCQZ$4(n8Q-BYx}hF1p_0i&l8CcAGnm(_!UXeYH3O- z6AMc?Q8z#|{lFj#poeC<9o6aw2ob6AaaJ@q__jo<{d*w(-vV$1KMwj3fnJ3j$TZ=* z)i3}SIokj;Fw8bvPV~g?)IHwuYw>sG>B2)M*Wg6moaBD8KA2LOuTIh2mdtsZW5VUC zaq**mPl9gP{jS`YL%LB*$In_j&s*%>f1w%UqS&MMJs-dRWJy)uq{fx~IPG}z%4B`H zeY&vxZ*SfKxw)aqcPCISl*AYmzbuk;QiJTVCx zztX#fm=r1)_Gv4drOHx21AVjMvnl31I)8V09$Cw?emQ+h(b2A_pSHBL@qHsQt?iyY zt1&(2OM8=;CN59=>EiC(3)QPXRy893SI+Em@hJIXH#x?=G&KHeeV0};Jv?7=cmZwO8`1)L7 zYzv5~MZN(G1Gw?kKq*jc-0QUkj-e%#!j1!Sb+W=*N_A{gY7qVb1Q-Q3)aJvxO+&)5 znot@bX2B$9Z4hiqU>K$)49rV@Zu!zXO~1V?ZF}Uzy^lPW8-*AG*02!y6bPJUX&s}u zS#ia$yHX7ay0~~{p8cwiyWizhMiZ82EHcI-a9rWJMEU{+LdY#tY7WMtjm)Y=#)xLd zUmxuOwS83gUMB3;fWz$y@Jvs7qAW0`4$hH3UcQ;fnHera7Kve%8d8fZAG?k=*q-c0 zo7*3Lp51G^_YP+$%|GOVJl+4%TXc$2iAN!~bpGZfC2>a!ucy7__F$L|flDC@Wkp~^ ziBOr_ckKz`lNK>oMDOXVv&)97Z+NqX+2roqg7CY1Q6xcCPJS|zZv1;@#Wi;sKDege zJ^JR@#ZZgx_u_FPghA(yD>O7_3elAHxtfakoMx!J>>2k#QfK2OOtQ7e^q{IW4aD~SM#X*n!t(y`ISpa1M;(#tSD$geILGd&2*%M zLApeQ&KVmo?%7wbpfX+0D;FVN=G03Cj=#?=Kqi8IpC`wKR_D0kH{sOOSG?*_H%W2h z`yOt|0$)3Ly6g9*;2WsJCa!`cPk*^hqj+ zuxYVN74(wjA)vDjuGCmfaTcs&Y)S-BY*0KRxq^iOKp=jJ6`*a@$sn=^HEa;UsOmx6 zx0?El+yKk~qwbiDyT{=}fiT#dGn%q({b8U9C=W$T=zl9NFYSLkLn$4ET754~axx6E zn1WFEgooO$plnFnQHhAof@9AlZ_#D1{J!pUY@pZQaI!~!aW#Byi}c3$x`cqIcA*a_;I3Is|(=(aGTAWx)PXMg>8 z!hB}KNXEmj<@3S1LRGtIDvt#8s46NDSzJFq8>nCNS#Gx^!Mz0{Y4#OtWfol7ReAH+=C0U+vv@s+kU^DG> zfUOf86-@B%?(h2d);f2&JTGp-*e{K-yn;ezE7N(`5|UxAKqNr)>vQEa+wY^Q^ooY) z^n=N(whwnN0lVGm^@``foHM>2)^{M!SiU)!CA6nxyN6r}0b~Se++4M5B9szKlTa+o zzfg-&#|pj7yIf;DG%))SQDVhnVx>ArOPe8teqr(fGfjPZl(;p0L}xCE|%e26t4? zsZgVJd=-)T;}6(R`_$Y28Qm|qf0s*GYWy3{^K>_eva}Vj(THmNFr+8k3fn+`|DlI? zfXW)O=X#-F%6mQy?dU$|rS=UoHhSb`(`C=aJE9RslY<5>_jEIF-2dv(%Rgt&1#Y-C z!9ph*soooD`KEqn?LD<%e}uw%a_tI?W(-lc*)eDwGXB|P&cj!HrKMt=>oI@I7LpK6 z%{56t_dCBiuH}vSTPgd z*tWf_xBKvpmKOiV17mp>BK6HOf9>9-o)f65>|Xkw?9F=A|sU)~&R=vsTQ1EN=IVOHHVk@l=pl+=ubp*6v9yIX2Gd z%RvNOgHO1YYADEoCLL-`$>9{;X1fBQ2JrWUnu9BBvq#biF=aK=?h?+Dc;yt`B4dQ3 zf(kr;9yIXFr+rcmzj?d9!0|lL6S^JOiF^l1Hd_^>YUaXJFD!Dne~qj zWfO9qMjM^T{i>DCAiFlYT{!LXW|xV@W6U(C8QIOW)R~u_Dv-#z6xxX&`vYhQEhS6h zA&3)Edi;W(&$IoJ^-jwzdNkx41a<-gA&fDQL4sC;MyHSdS}HN@R_MJ)1~&uVFvJ^m z%nr@^FFtV>s$3rJ?(ySYjy$H9)^YiW&bdueicAMWPHJY=+AZ%{zVWUi8W+QhDj2NF&Er`gT<#A-@u)+(5>&}l?;tl6U~#F;l?%KJe%?ksC7 z!-cig5px-l`?;2!Ub}sI)KIXlo8`$?3Cljk$eT;mqRTt3vX?m4tgP z7%0E&NJ>ijC&mGeMPm^Z1xzpa7Iq}oodstAh03OIo~Tt+F&DTFw(l0Z)gctaD3aQs zy`&a9!t|n~zIx||rQ%$I*Ger7&+W)GfAG0;=jasSB16c*z@@NMgsT=AM^g&ad>2{0 zNSHb;d0zA^G*@%IT#wZ0pbYcb_1n#-yh?{$jdEJyJBX$zqYgF?BO@{&Wp(tL!3V99 zc&qTvq%1FyZk6p;11w+bcP%V$q2`!I8*Okw@I+lPzl~Z}YO9cn6n7a4%ki5a z=N(lMsP6{y4SWk;V5Jn)S*fKV3KjR!|DM_u#s59E%2ZMhr!$mP3%-zHHw}U6W(vCc z#$r5Q>y7qUcSG_f@z9fOYBob}6Q3CED=tveWZ%Wit{Tm-Pk>D}z9{2kG@brcPc43z zh-~EuF$TixrmF!N<}93R_&x>e->A8@-TIcg)&w!~cIDe(aaw{(l(|ayjze8DwB)@v z)g&5@af+GI6N6Orf`bH9^!U{k*omnRZV(H?xG!eM?(EJwA!S)U=RCGAd1Lg}iFb+< zzZE9dJbKhPTA99c-`ackgEre%5Hq^-%g47kh`2IJDm@UB-Kj~NPIyirmN6c2+O|uR zcezSHeA!v{tzGDbv?Q`LV?e-zx8e=4vwzZr>fzb!KpFu#}+71ww^p zW`kRB@6|7l+)le*5c_6bWSlVe+cL;6T+dkF*UeUJMc^g!;VDj~AGrLChh3IxCEc7^ z4~??_^?pAZ}9I2<+Sb&1I3Kp8A8y9w$T)t`$pM75}`L_qk|X^&UZ?f1)0<{_ow388~&iy zjam}v+qU~Oe6IAC@)1g z4>ee%BtQTEk@ep3RR8ZE@Ea#PjyP?|a{m$L*ib`8;%v!+DMCdS1^VL>~=36+m$A(t!PpEP+=l@HW7xSM`x- z1_;GY$%_lll0aYOj65a(zzh>osU~chW4kDop}B)72*BV$GA1Nc0U>b`642PgMRbO< zgI@U5D&ir?wp=9{v->$Bb9?V!{a+DF^1mWh80O>j(J(LsYZk~h6U~5NcnFMy7b(|= z7zJvB=u0IGO6kvU#^>wj<4M4Ri55^)mX@I@~7YXtUra#_t~& zd`(b!is-i^_^jG(IzD&^OW<|HU;a-znRF1U8KHf9ZPfDm{bqdkkkl*$sw>^|$D6`F z_UCn>{y->|5u{T-0oD0}7Ka|^wm*wXegcB|>$+)}Y?^iOns3weFl=U|2{!>HhSRbX z6iGk9WZ>!O7Eh66-v;xl*E&bg60UF=YLu0*^yJVczZe_ok+ke@*ObdE7#mO9d;+Ue%SnNn0F<5*AWq$Hbv8 z>!WEI%x3sQ!_P~!ihr9H!Ig5Qp{N{rMT*@<9~F1or~*IE<#lj-RG)VLUv=hT7t^%l zyUBWYJr=z7V@{?fWFA>NKOT^ewU}H;44ZK+lFL{PxA2>GNfbe^LlB`EEb-5?HBtl5X-yOYQObtzO4z)gLqP+U(|l<1!^B1=_r`E)Lv0 zK(YX>BFqb*qtD!es7i=^gIV-E46#y3Nk{;J1~!n*7)Z<}Y$3z9xWv=jdmJ>011~|W z9*oXffQ}HJeU?Fe{n|B{X~FBmf|f(7-mWDc2t~~pVqr1TN~;{a{YB2W3w=W zgqCUwIZA%^qK;zou#dG z%f^xa80g(mdUXy}7qm!0B;T5(l=P?$p~Yc|K*~59$j;f1(%G`hD`E#r;Rj2p%=Y9b zu{5g%)7O6IbnmG%!}cGdO8-RLvV|c^z|R|YU@K{*x-X@8D~;P+f}_-Ld&uczW9>RM zwP(|b*X&Q)DZ&|M%9*w1>7cMpF}VsiZM9an92%!=Pt9T)rwt7eN*8WPT~qh~DCZ~t)*z0zM8_1p2~&6jNONW6lqKe?{0#}z_NsK)iYv6wVB=ki@g zy2f+nsSWd`G((ApJy)CS@0$CJxIbjT5!=`y+Le3sASqfxAgV(eBObEeLtrbM@j3Z5oV>k_^oGwi zR#<2#fYEc}VPRp4;Sfxs&+`pp6n1vbEaHDaZw+=A3ElZf zx*U9A-s9F+MxZjz5%@9C{a@D`Wcu@#ypnr&%~53%Ig0I*v&qxbU>;xQY09{b;8myKPFWb&6_6DuV8L^?-G%wl_yZ z>c6jEY7MDR?c}4h#amm;udd#gyuNqE+u_(HCF^N^o2{UHdV;R&;nky=0g2H)v)1X!3C68rCE%QlAld=N8 z-DExyB2id?i-Y8IgbR(lYyGIy$bU_=tLjB4-UFh3)m6pZqqOMtphRhE|Gwd5?HaE~ z=YM$iSdP*LPqSY2amNu%nORw~Tc3sAcug$9NTX^D ztQ0`$9hnP7#<`%Dfq?;-PKb(vwKJb-qxaE)3!8z7iLAId=c%E|JkXH4y1K4kzn--K z6EsV~8mJ&-Wo^fHz+N26co^L0!un-9bpae7H-h=FfdLqH!a^8+G{3bEZ6NfPL&A3j zRlB%NG`@EEQSBOK+j401Zeck5Sy%~B5h*JE@>9$w#RWM9FqtO|0W)}*ndO4u9k_M) zC;%TI$aoya!eBm8wiHzk>8`d_z;YfO1X~IyZ{SCrnxuC_J>G2zenCKf0lf(L$Id%m zy?Pb+g^=eSeGTGoXN0o%)j@*u{JGEXoG=sbjSgLIKx@GI6qFEWRz6@ot>$rN7XRP1 zD-!g-wF?dzAUbcF;>d*{ENSV}LP|h@HJFy39$*<@N>44KXx9kvcKhpMnpn~lTNBA6 zbCGpvJF6xf|8RTK2jqO$t8L=^O!!O#QDm!easJK`^6#hw=3Mn%quU$V#cQz0&7#Q= z(dCw_UZK|zx4JAFl|rmIpA<@x5xwe#S=1-_>X=gc$RzuSjkj#IH}lFX4#Z9tKfUo* zI+_mq=eH>#eiJL7c@z6=mpavFO#>2%{k0A5#3TTrYzSMl3Azd~P6IoW3__2!GedNW`o z1Xo#YnH(7Q=zQv8_RDkvk(1$T>V)5UvnOcR+_` zGX|&vRI-$Wpuy~U$DRBMSYa@6%;mImZ@U0qJ2rI&uOZ>Zu*w!l>qElX9>3Cn+6-hB z70k8k*EMh6RLnt>ohK!YjgDqyWP}G|^wCgRpOG15WMq0JfC~+HvJ-4Kkdwf5^8Guw z_dl+>o$~A%h!=UNfiM)I#0Cm-Xj*p-T4&A<+WuV`DQRh7J%eHnVmE*P=1fyRHC?Ec zm6Y^^QUt`pJ@W^xEk4^tX(LA*gIrJi+JipLAX=%j1f(qTvl$8Q1Y|4@csSDj)5SKQ zJin5XDpKQ(mdyxOHU(>}hxzH3zz6TIGD!FM=LIFGfVb>1 zLaAp(T}3L@z3s6{+bF`P*CL}NEG+lSCfilk;c09K&eJ@edx#d_&sQ`zDisDSX%+N5 z6$u_5>I78&>ljS~LwLdvsJTFd0V1Dk*RFw-5LhCPGp!+7oR)XLK^+LWJ<@hy69B>o z#~Kh=^xg-k_lj{XOx>?3!BGSxPfN?6%gaxI>gjqXZvYOE1f3t1Hm9b=KC3kg#BIQ) zE7RqM3UBlY9Nthbz+Cq3ZE2>3%&?%Gw%3<1CNkkthXYg1GGdX>l}sB%heisp0+R$^ z;<0X!6JWmT<{WB0{`pyI6OL1|-v0inT9?a|gpl%RJObI-O;abougm=>(XnC_jPu^w z{DbKW>^HFWUS8&TeiLSfL&CsHK3$j~J_MqFO-&7GXuBL>=mGem5?e_LWCOxLEzPbi5VO zOLYqDm^lAd`;0g`NF&^n;9tu zGnrOd-RZ&*KDK1h+AE(yN`+Y?>fEW#_+~iB%`Y=EGaN%?+AL^Tl0RUEJT}$?bhszf@;O@e#$xd* z@PUtx-bLV2)%gUM|B&#=w{Nr-nOolW?;6Mar`?lTiZx$*Sk7I!q_g@hkM<}dzj(K` z`YLwt8~$FCFX6Ne-(M_x)`L%9FuL2)(be^v%LItf*+5N66xId-=#3U;t z14;3bxnP{rx4*Zy2V}-M@fFv9(BZ%a0+sct6;lLI#D;{Se*(LKnhzgbwtn@(Z(}?H zl?tpV@O^>V3-wd@zh_n;VT2;b-^`e+^neSCHp>f*1_<5}9V~Vcw^P4A75=XL$kfvWYPL8tC9H6qB zuF2#g&SF2vB7UgkKc}GAj30xihoxFHI$pnVM^0jQbvJ~D`rq17lX70b3A5nd^!D5x z!=R7RdG{WmH!+C`o&vkYyGfn`G;U;f?(*C$M~#q3nv6K%E0M<){_`JbcT>c^W%zz` zhAgiXLEU5dGbWwTxOl#hBlhR*^1>|6GO~_pk%xubuXk((1Z##{Mp)M6r^*YIzB;W7 zX8kfc3Ly==Vcv9Ag`jy8yqwBZRZiEah_zu*c>1}vD)!VrD48~FdBsaj)nRxXY3xxW z8pSfDZZ1>D%haUwomc1b9dxMXbaJ+HXsjerJx2w96DQJCHk)N#Ye{APewmpue|?)m zv3_s%Y0O;xzlk+bja&HT6%~o61Kc?4boiv7S&ddU)YJfl49dI)6OdLw=75KX2NR@%@!?SMnLXC8=(zynoC%AuN_ES$HSYF+p9;vA)Pge(6})|^*O2)B<-a{NeZuBAvyI$N|c zGcyBI32#|HPtQ*hu^spF^76o>$RQJ$TEICwWrBhmQzzWcB_+@j@kfFGHFq-H4^PIJ z=;>&Ra43Sgd%OzjbiHovn^=gSt=z5s#s@%?P?Hc86a+91sMo;h2Nw5YZC1CX{Yc&Q zD~GQ0H^_IR)re6l{_A?=2%L229gPrjJz^E$zv9MKd^6l)Z5}UwN}3_-FPAR4%Ib5^Y^B54ti?e=z_UdzVaPK zhSaGH=?g2AyAO}{bFEaK$G+z5@%=A)kV!CouTq6Yd-%32SwG_vg833DSH_>fGJX+5 z+=;1TP^hO$(!Nnj_|hDETxnnvgS6WGR1rXbQrN=G{@63f_Fl+7f2rhW9|2ukkAAD@ z6W#-L1;WMJn8KyKO8s05b-;vO94r8OD11TA`q|Xs%)%_x zocR2C8#_Bb9vE^mx# zARp21*8|^B0a0k>(tmAilowiq2n{%BH*YdAFrcsla&lPp^uVzUPQtY^@G$^sAa^o= zZIE-0ECW?gLxX@7MlnDewvo#22NEbMs6~qt+$iBj|IaVTk9NW@N%~Ad z<hWk7D7ZhDPuMh<_b zuAQZ&-u(rmm}JxT$e*UY;`s{1V&Ho~O$x<%O@8BoXHW6*h;sit#GWGALdy;Q%GTEL zx*B=oi+u*lXZ5Xx7rDHD#mhdCkYYl{=$$mBhr)$_jN_Rz8R?N=x|Q11W{R@Q1a2xU zA9?*}NX>Bmh5{dV!zQg_Rst~u+QRlD)Ahu`ab55FDnIG5QA zKMZMOeJn09cdBiJ;{`sVM;`!gq*NwTgpU!VVW3)lGXe(=V;8u5!9mkvX7A|e=;PCH z>a=x=P6Y+wj8#%8M|92UsOjl}-4X-?wzQnW2GD`$4S)fMJp%{CuVrS!(pACaLg}G1 zvfVK--@BnR^k*O*H{f4i1?E*;kd&>@)OFS`2BU6$wOynpi8|zDtMPF_q;H;NI_$3v zYnbS?1%iKS>hIlu$!b<`0e}Gk8lS)O;Ha^r1bV_5dwqNXIP2u(?9xHr%yi+xElT(Y zKtcc%iH)9#>9(E=%md+xPyv{mW6AT=qJTLY8X5{&i|p|qA?gVn92gnrGff*jhaEEU znA}<7Re)UdMD#IjXrVP|ceOatWdAu^8#?X(Qy*+KkVD=3X2k1we*vIlNJ24ZZ7-7D z=2F%M6P`lr8l%;`TjaaLCjv)h%(Q+(S4|J@l<7)HDD80*04$dvKu#VNk4CV_O%?px z?~t)zT^r2HqOf_}dkzsC$6(Kpl#%3LHi}N=9hLXQjmN8-D<%sun(>?_w5>3H$Y2yO zFVD)4I~G*vk6%d?9VArERE@0{Ff8Faqj@sW8rvlI?(LUl&*5FZw?B zHm!s)J*RGR+Ds9Ch|M|nL_n*0ST^tYUp?(a9JR(^+Qhtsl2hiverHnpRBI}&?f8vAPd3mkn6=bXm>f|#qZ~yQ= zov}jgX8A1N+8(iy=+neuVdJ`3AziG~ETS{AWvjWiE2-3;8fX`w!Wj`Nq{|^c+d~`g zc)wdW-!G3x2CFO4h6vZ~!o=4xzQMH7y4p9Q2PE}h*gFEO^U#gA^Lyn^CQOQ!M$3+G zrG(b0>rCH$u-28X+~q)P0V9DNEqu7-3$0CR9KlKex{;S9k7z^D;Pp{g_76-IAf5tX zNbsLygV>o$p3}_YcohZ)2C#(_kAV^c0qqN5S5HJQ2W#mKSK6?)fBg6n&T^-kak$54 zXLGqcLpZMYUCO@Wc6Ig!ZY}W}dL4Z1cX#?yCO0K=JkiL^<%9cv-)XhOy^2?Xv<*&R zw@ZNm2d5xFP;0xe07Wz|Ff#)*AE5-mKY$jXiJ=W$ss&eRm{r^^b?Ac@>(m@;yw>Hh zpC7nS+<*A+;iE^Nw(5c1CnyS^4%Y@}J4T8&!t?)Ct~ig71}!3ko`JmqCD!{>Zji(|#`^-Cx18loBf^ z#1qKNWl$FKPl;SMmqZQ&MXiHO*kzP`;mc}`+BjISfZ2jnRBhDst$d2=**V0@k+={kOb!pvu< z5c+#0k9{^8*3{d#ZZsVm?)*DmnYNRQSYw(=R@hrr8CP(pW1D??`3LFo$8Q}4evT_u zS#poknJx^V$W*yX`()+szttewmUd>O3k!N<<*r*VLR*)v$yBP2wjEk0AL_Izb-n4o zPK8murEkEvyrcEoi}>c%YkJYNEbLiy!CpV>DRiXZ+zuugN!2 z&(%1>>xh+86j|^+#sZulDwLTc-jHgC{Q5BRzw%-b-973dxHzGAOJpJ->!3B9E5vPMARtQBEWfTny?{5ZZ&K;H67X#(*~tuq)X1;^E;%=BjW} zL z%Y%0Su5#|~?qFj+^nP*CnpH{ic_WnN<@)2JqiJUf3|RW_7l}D6|G<;(zHw#RY)j7`?aHLZK~ z%N><(%Z=&$iJOk%Qb#MOsf;^(xvq$VA~)KhbZMZ-u;3l1dNdPHT1e5wy@hYu^WMSm z7Rr##Ukbm9t9?t7(!C&nCOHmKxZoP$bWzBj^!z;?!UR;T>a9|)cEl)F-|7x_iy;;T z`Eu;k>~XWxYKPTB9V-U^;G~!?sYi#!+UjzSuM7W=3*e6P%RQ^~5q%>;G1m@hzmFNl zC~Nz-+up9i?B&@)R;n=Ko2jGqSK#ZUjSJozv2u24w9f$CF zvx0{k50Cq4YmEg93>3c&M-yCDK?4^H zAANRaRzJ_Q{I00(dVhc=gFih^bW-hA40%pa!$P%VGd4Ls?#xg$wgTFHP{LaOfH44o z8oyfsP(ThJa`mwt3ho>IK5Gv%Zd!3}oB@+)h0v z{?BYzcIxsB0C1quWMu69{2A;M4PIAPRV{cxEEqJmi*!B7t;C%BKkXX~6XU9x#mi4- zwof*j{w@2>DbD}2FH@W?#h9=;;N7Z5U$ISerz40<3if(Qk>`sdzW0Q=m)1ZaQjE_0 z1%V;!eS*aNGNE(!M%@y{nYgSuqUH|DZZdibDxNs8v_Tz|<04uTNJ!#>S|0(jpiZb? zc^%amj*L<7Os`X%tdbI2tp74S()dT}J9f7&pot^6iJbs#%ij0l2I&^_VSLc&?5%9C zDWPoR-IoIq#D&RJXsqv*Z>)qduL*L!$&8vL+l8xXefs$h6SjcQQhuuy>cIq9Y zR++-+l*AW$QXC2_*zCwB^lnMz`*WDTLjEse#rulO9ImR8y!gEyzWKVZ42PhDT~Ax{ zUhg{_`Ps|Ac{-10305jv_iKbW{wR7z7QV}(J~8dmHzd2SS%G1~C$rcyh^k-9KFCv( zOD567yuI&uIV$C$#s2e4c<|i2NJUt3Z#?F>mH=Io zrPVe2V8r#RQHoE-#h__*;e!C8bGtR0QZ%L~PH((+U)XUg{Bf29`6Ha7)6-^P3poMhMnD;p+y+%%CoQpzr0-vEQRcU;|nmy zDzt`n9|1q3aG1dX?f?}4=oU(c!K3DEata4MtYO9Qg3}C&S-q7L_D%aR$O7G4D;WJhwkosKYzAw z)dR5t+5@Hn9MBhIAS_1>x4JM}g`d?g* zAfFQ647??vyMx09Tq4j#0J;GdF=`%12isu72yx_au|oL;jCWAMjWiu^E1~{dtjPSo z#frPM$(0m9?qEWB+Codl3@vSg(MIcR;G?E#Y|ZmklP@u}@f;Ud@$N)A{Ss&lWWj=A zFkS!#(-IF&0fUOCdKh3XxXtD4Dksj%vPtp zHEk^Wn0!}9kMMktOxH>4`wy4=@L1QGgV%Q>g^lYDaaU~CUfqm3>d*f7yKjguru*4t z5w7G`v+WzwD3&}**a`Tk{TG++WUt+c2&brKD`-bYR8EiZ|LvE1JC{Ubld}Gr%<_Tw zP2M|nA}Z|s;!8gG-f8|HF0f#$vL0lTlInjlP@B#LMlcvN3u%$ z`De6w=3#GioR)HFe;2vqwCDAe-vz3>PydN}q_5QCop*VJ-?g$F+t4>AE@3K|wY17x zdsWJgKJ97DablOR0A1vy_p0Oqa5Uxqez{sw0)&?~en6Mq)?gNF9tApAuKD%#b&yT# z>OIfMsNi|*=$H@=4jZMzKPD$ZZVnwCjNoAGR^G+rWbEeURj11hf*j=W8i@?hG%#~^K;(I=+y4letH4zKJO3O!?4!xqgjxj{61dQ z*~N2Lh6Hgu5qUCF;;6pO%}tmI1D^;|v##Z(7s74=bdbix-Q3nTCY-np_Sk7!2#_4! zjlMc1kIv7bNl9Y+9v-s+dLqwNF=b=eZ^k&+UarJZ#gFhx5{V1nNT+@drz z7#SFTZg~s||HrTlo}J4Hd%mr$E&KRy(a@rE(-i#t|4u`G{BIhfrbVf&r^g0DKTxU| zyoP%SsB`^W;BIdcVVCNH_>KKA6b!Y~FRIp@+&^r>ZSD?0;Rgfj!M|PX9wvl^fGw~+ zg>2?Zglkf*HeKlrg#2L_iUsTOtUT%*GLo#Ls7K(xq*_LSu)g3IXTn|&x6epoiH^Ul zdy^cU^j5A(Pv!fe%2~peEr(PaS$G)Pzf7~m?OuOv!khyJ6d^C{@U6?${-MIW+O1zVi z=Bs5?^dcL*Wz0pF&5zIc6t%C_ICid!ZWLL7%BV+Kl zF+}JjQz)B922=NUM&(4R3H<%}$~Tn1nyScr!-RS<^ku3&-s`5?tx5QBm*}rd={I5{ z&bXzGwG0v3Xy4y&y}2^2H-6}HcVBJVsmvx04wPCl)cMrsytk<(@SAJf^9VfpVZkcp zTN^Y@jR?PnOiw<(DudThp+Ij333@;DfNTwOs)90I`Gv98813{L;PN;Po%Z8hEE#oRm*HboGo) zOk9oK{QR=RJG;7W6@UHm4rR-VeOxqoWJ;7E+a=v(EhNLxxU=x^ zS`2##Fs1x0h=6y3@?w!!sg@fXA$s;h(4(lUzps9<>txw2dhgrr$$?$%+R;P{jqKBZ zVIg@3bDEn~jZQMs`(L|Eyr)_|6f4ls;=T=|M6g}WRJO5;OilLDyjSt*a9gKP&ESR$9qRE5M2pP!V5}8K78)%S(byz>J4wIi1^h z@EQX(<-0czLjqhbBcu++BhBmQom+C`)vUiOxOI`~aB|xY3AYJ*skOfd4@{Z)d>oK= zB2(z*&>tJVWGL;EOuNe3_1xz`VnrwBoXD|HMNqWGwopOGjT=h}$tq3qX;ojo7MvUp zcHM5GwRR^p^>&B31SXkGQF`+uJA@YvE$iog@bd<(vmNcVv(pl0v5pL_Ae6AVBi z*a+KjyuQuXtkT^fmvJkS&;CsKY=oynB+-nExo2Z`qL5ZNn75Zkz_J?7>Lf>N>u#3` zXk<@kLIc{yBT#HZ_MB)&s5yTpLzilS4njgo3U&?^qwj5`GJ2U98Pf_u5(^j$0Hh%P zg7Hnb%81K|3vZ7j!*#u3Ks?VHUx|ert%qj~G57PEZ`^hO(^gUX@3EfV{(nPm!o_V* zsOaF|!QT+Xfbho&QEb_&2Nd91UQWWI3YNTl*|w&G+~G+7i4$5}!d;@(1|^S;;xalyK z*HeC&+%bJ_C-ari&+&`*)|BklUy7#9sm-Q6vlGq9%e)jPW*A$Gi2O|-JDu#q85c^~ z!_jEc@!FchZ_Ynt4Bz&Bi%UXgVpJtZsTjzoILkgh>#Eg_`_&<&73G#8rnt5)G-W;0NqG;q+4sAOoQuhnXYTm8VxQc!eA?SV>tQQQ ze}?YC%7Dob4>cA@Q1$c}yTDZrP?0JgB6;p)9lh;=>&zF~hJ;}%0|W=~ggb+-!TBE+ zCcq{Tb#x|+ajBaKd&bnbc|F6nr_JZm{9CFT34(~e@7nnyMh3nlZYo^nFR{4fqkJXz zd-B>k;Np2aQU)%v*Z`M9JyU7(rmPI2xM9t~NVI1jz!mVg3~Q?`6Y9hckY|gB5F|-i z*_e)dFu(`LhqL%mYQhj0^z?5*Q+(FFu1oWw@xj6eR5xtU2*YbBhQopdUpn!dXF=Rh zj2XNRRfMPTh>xud8hI;T{O_Fjw)v**x#cH3m(IgK@k~@~H;~dgn!$Fnv02Qi!2@%5#RVfuaK?W;y}6du8?MiC{}Lh|#D*g6BT z4g$w5J&9Gi9jt8E2r<%&$C`Of;dSo`FX3peOTV$ z$Zl->fv2Z(1=4_n1)lZZhpx58sL^3AG?$YUY+RsIEZ4{60wolZiI%p3LgmwEGIu%LWe%Uq>P%osBJ#Va!~C(!WGasN{SoUnixen%P$Pi@N{yj00dQC9h0c4 ztPM35*!(wDR(47N`u|J^+zDWLkGRCf#K3ldX%N4xY?-ye>)TIHFCkz0o8KBVgAf9= zNleQJ#$tP_c2;9FUNeHGW#=+RFBol0B+erSIdGYcXN6qkpRA)o=0g`LgM3z)~YL9i_3}~Vk-8d z>q+y&i_-_qj~BBz#w)M+KNHy191?2lni)jMr!w1b45|_DeyyiAi9uA*xO&5n33*qz z&08$62Os%yVT?oVt|@vF7nxk1=GPEHXj`VIw_DXW?De(7jkM&o6^)dC?Q;Lfe{^*vbK zy}o_nbN~oS5sxgl?LWgne5xx0$BPg&WOQk9F0ZY*)lHm%bhH+*GOev4QK!m)7vKwV zHyA2`7n#9pSKt~sOY#;#6vinxO-xqylxQy?pr8boyv`?B6)=%0FV}v38xBBlHL4he zYy&WG27Cw>5A=hXTk0^!PgBp5^MfYS(#J<8gJEUOgM2qR$?<#ScxsaT<9tcqxq!s| z^TqDu{z~#hDw?6mspg%$J(7}AU|a(?M^yR5gz=CtxZ{JlCz|cl{`PrdB89Rx43dmS zz)hplCOaz&Dx4Ixi+XxCW4|(C!D?{=iOXmN%!i`N;aqL#BI#xCyH62G@0Pzi=+0MT>e!?zjpCC&YL^^dj%4Q( zw7KzanX(`YfB+XjDLafq< zKKpp&1}Qq@GBph{>ib5Mp-^$g!9vqWCJviDNoLTB*~E!wr$C;^lU2lt?&UcVa%7%syU|?s;4>bvW{BB%}!y+(b*WxiuIjJLvUj zm6Yi?cA;oNz5H?8aw&%#p{<$Cr80cQC?%zw$3Kubiv>M(tT0?lBb4(!#yot}{cOF4~%kCSQNla zDEu$pESu4^JUWt}H|D5xe|>Ut5=>M%3t%1_Ri0wvxd@gDY{Bhw8#DGVmpsAlK$kn0 zGrdqEO}*Y^4VVOgi-TZY zd=z=LD*dr%34y6h_e&Wg8S`MAW@piYNERYOeonbV`8wHx;_{KD4>n^<+c4DtF{N5T zE~gs!@6S61$3a3sgr+xm!csj2MgC<~9lC%_TY%IX{$bQ}D%K>h-sCrE)vRs+c> z?3xcBtkQo$;{wkIf9TOs@HqiDssR^c$`0687sPB;5@0G=0C$%9B_CPSFN3OVA>nxg z;Z8B(5JU-SBy)9C=fKGm9>>@{H@Z?(@@Hlyr)(*`kagCKUrP@>>be9W?pAPm{ds4a z)mWwuSsZp1!iAu*Y4DK;)Z~%){*+hj<=L>2xg>!^G#Lb=vq#+pm%s02SOuXke!uvP zG#hI6vt4IM{YmX98ulg#hlS~~ty>~G-!^CPeht2BXyFulwKx_+(oAbl67G)=&vlPx zwiLba$w}n^(MlYi<`IgQL^$s<&H4rq8uxHh_=ieoy;XQ9dHA`@ujlpK-IJk{-s9bq zPt{w5-cP^GChQ%_eeq)Zhi7>5!ojG@s^@-d(6Pb%@PeKjJ))&hqk{F~@sD*{h>Ns$ zpCEi`GxidHP~*mt(4PRYoal}zlg~eh$u5S(81YsxnVDhXIkj5rXFNaW#kOIABYxOW#`#*wAxsxqfi!)0F~sl-bER3o zS;J0zc_T8o*@AM^w7&^WY2(jQuRKKJ9>GiSmLTYX(pI6zGlPS)px0q=&{x{rQo}Oy z^E-h(0c2VT2Z5=-$s0aCKHxl>thKbXKw!j~646ugd0|pte?MS@V^wyhHI5yXHb6e5 zy%5_4OcnqT(+lC*pl6X_CdLJ?J6JoQEb)ib2ZZRWE_dzaMysfE-jQVfVhl4nXGerV{`@VLBY4DXCBBfXTw=C<#KRP@9iZBga+qL z$sg=1D?Y{DHi(!T9+jJRlJua`bA6XorbPsQ?NVP2W7a;?XPjn!2iYnYjo$b72V{-R zrW1_Dv1txC)#gbH509cSsxS?JX)r&nN&@9sv<5g)%eu~Wg0^A*aI6288b~(FmfrE; zG`mZK(hatII9La96~OP?U}7iD^fdP&Z70~Rn3$A}EJ4o%2Mkz{&=NDj!1?)exZA*c zTTulVq4SP`EbaH;CY%7&t9-e0fD=T;T^5~?!1Dj!8H`HcoYF776;-yBGzei=CEN># zAnUxyu=BB%mUr*w-oLREYJ@Yr87q#Ek``%Y54R6+LTp*Vx4Tj!kP~f|2`B_V2@O8k z40f*kL}jrf33dR{?6H-WbD_Ef-jgD&=Y$IUgS=l~ttZuL&JFc&FiiU6uM)7+ms2^t z%o(}NB7cQdql@Rag5C$pJ#MAyW{Ff>B7M1PsyozpnvWG9@D$%Fjz!3Lr`+^LqRLop zi>0M6;;Jk}zV6k?vbL}ft6Vojk!auCQO1(lv{-@Xgzs*FJr!6Ob2e|wHE z1&PU!+2D2%ct^kba#Htg{pn;+e@Rzv%YvYsH+<$$aeyKgGytG5ha@>(UV^~0-lW#& z-wxax1guE2M0W3eAgmd@{`8JVb?`si2i7tioY3584DqD&z-ECZlwQco%L~quk3LAI zsUIAj20(E}&O6c}0I7d45IJr0Ki{v|-}g`qFDcnwod8h;Sep$kg8C8+822}=+W0%? z%FSuP;!Xg}RUo9bYHVV3G#&$`Aduw2iwvBX%gb|09=*N|BKibOL@q61h;C-ht)sg` z!BobB4MBCc3QKkT4TNz0*KL3Jt|qp9NSqGxaR01!^Q+0fpZh7a=FKgYw5<5}G>xYJ zq|9Y#Zd@d80}nkwn6IS3ZguF>)9YQ>3N`=x&u6SsW9X}}4KR%R`=K_4PEAfO8~mlB zJHbS5ak1FyZf)5uH83qlDL_yvjdHvW7@5LV0_J=_ei#@Sum!&=E4$52rTFaMW1|1# z0)$)L1s~>&UZ8p?u?alC34s~#2ZbO%04abW4}fpW>2*TVwa4?~a3Q-{;b%be|QmpC+!EA?Loq;~i=rkoPBHjryn8RL%pAOLBU0C57c3Jl-X4}}3RSlyfyZ9!18}6HnwH(~`B+XdbI7~(=Sta`v(E)ZmZ57ALJGx2O4tBB~vf4?bS6OUY~UTYGSUv{dwif7`i4RnpKUsaCo2 zI%4eRKH6F>k89Z2c46nlA7tJU=#_XAaZHeG<$ggjkEp3Zg{PH3?0}6;Oj&AL!RNC- z+3z}!hujO-UaeTulBt;Gc#y<4+;7MxY?d&>-=ENBsWtCTpxvmOxN2MNrA1 z*4e<>tsy$x(BMFLmG_46S0lU^uld(1FL2ghH^OW!>t7g^2{jjVI)C?b8?l*;tqhkv zU+a=M5{N;&-_l_++LT46*SD)Vy_!5PAozrTF!kjE*YUyPINaUY8DvGY7Le>g9s!&N z;3z{@O!M0A1Hm-4f_IILH@RGDj6gd9&?R?D&ylZON)MJi5B1gd|J+a^0>51A=q#Xw zf$R%zsv%*BRTHMCLP4PTfw%0N5veqF@7U2w7&iFGW`j|_KOE4GHN*(mlOy2PQlJBI z9H4_Ud1Kn-3vCy;?p7M`DxkTO)lO4n1QA!*7aPU4#23Iyb;Ujee}Z0PxwdE zYf;m3yih`hD-Rhd$XLwUR1lK2(6F_ClvNT=ch~j(8p&T%#x|{KJ{d)jz7~}6Y$OZ$ zG{5Z7d@6A4njn7WG-GvaZ5M`pFskG#2p6X%hN(KJLe(#ULMpo-$3K@7-qP(-U}p5Z zOYbf0ngb>WC}tp_)4@SIAs=GGo`}L3aBv`rKyU*4L!ZFO0I%# zOE4;ev=U%1^~}TF4%2qHZ6%-M{&y=)aGsWJu&umrFrJ+#Aolk3{Ij(Wy&PvGjMK|7 z4YR5mox=h`(^5IS`@TMNMN@aYHby^j(1xSb`*<*vaX%_m&!G?nbO6p(!tq%ZEG~ql zJ^;ra>D}QBB*YHs`tnSL53r%u*F_)q7{WxjuKuyq%K1tkU%0o!9NGYFBZan)iCf zlZ1jAm9r0DZyOs*_H-UFQ_t8B=xz_;oEyRZHB+7CvFNwoG`n&5gYURxo7wm3$>D>U z45f36pEUOId>>Ym9c#MzmNgm+MBp+s&USS3i3VRp-g2w2v*t&jl*wBj~2u!X7PU5KT55&!D+o9j$mV3HpnUkcj=f6@v2YrwTc5X zsBeFA(gcv)*sgaxppw&8gToVUBTxdcfi+r6&j-L{tE*MG7-PF2>xe%J3aq)gQ?FxU zTrjeRrW;@~-=l*w>OHVM;Oc@nwxRdHmVoqaApOx2hqlcC7u8u326DeLfk>KS>MMc9 zhbWV6&ju)f6wvBJ-h1mgJ@c?{fG=%p3ve{te83k`O+X{9gEBL{?amNPg0fS5RMAf|< zY4`V%m60!P>?moURcZ>}>Sin~jBdF9l~o*neV+U2g@x7?qo4Vs+@--O@WH93Pe?-u zT)^_QRTB_-z2UR1|B9244HED4^uVzLh^>&Cyzh;~-7I33b~mH#gw*n}6|hhYH3vli zL^wv~THT$o-%Gw@0z(>b3M1nx;A=W`%+Uf#_oDLwcqpdy(1k*76!^76`sRQ4)b{_o zr=YEZzy9cx`*%SVB%+b113RnUxpq3*a-!wrd#zmg`8^Wtar0__dn|$vJc&BmlyO++ z5T$7be;l@XBzzs0gkkapK6gEp%NtzZ3uYGN z1{2wGzZkjr_fp{R?y92ut<}A!yJy6KBN&$gt^Z2O)pqz1$oGkfZFlJac{90`K~Y3efrj zk^l-Au!DwBnOmj9oCUB?pB6Zdy^9F{{Ifk|^_<7Mg8l<~-|oC&<((TOlod5aF zt2tjFVNzr0-77E<_VtwoxOuVx+@;t;!QE+S=*guvTCe%!JGPVc1ple%8ke+BOFY;< zd(RZxmDtQ_aTkn+gh3$389BCce3$i~)N?%Mhjqt&Keqjxe7(%9*PolEQph7DC|(j4 zd^UvtMWqcnfCg;!Br{}vGl5oVNs;R$)q))n%qC$-W{}y|Az2S25%z-8v?z@RfwFGE z-V-}JRLJ|sPdttIwOb#5eV0};(ifKe_2(!FODj9Md1hV<)xYchJ6AiS)9OnH(pc$l z6=%`Q2*tZixZ;1-(~~S;-V5&6NsPX2)?>9Jh?g;KB7|e8v+(BoCA>*$)y&bvYaRwq znXT|1yZP?!zBFt&j6F%)VD_E((MW2FL#6EbM`n}saQ$t*x92}*SJ#_#2F)}5HP=m$ zbFE0!2AU+zK&kXuvjdHA97$OsQ6qY!mrN*+2Rkv{$2{-IwRK-PiBR>YUvIG=8P(_SAHW_G z$UE$&Zyo8v5@$j1wCPf*&v*W5v&9wvI_*m>I;{~7zzbOi)iWwwI~F7yKX%^exnbJ{ z0>}5{FMqJqb)y=Yl-PR6Y=K0T0}*4ry=TE>0HV=>40puDYX$Ib;NO8QF#}0#mjz%@ z_$Zic3@*Mmrv+4ik}$2%12At$QQY%x1W`APvwP-&b^>)6q^80mgMs`91F#1H!!SUg zAov?fk)%PWX3EPQ9340R4r$`}Tiu1~O*Wek@}cS`ApQqpE#bTF?&2A};8D+levt$z zdfu`iahn3|P20@D!GXOvSVO}bfPUkVh>~TLl^~reFhB+VWvUR&MFyOy zGq?d@=Mk7OK^81f)2xV^} z2}z=qkr1*go9E)b@89#s^YnUk-(L5v!_oKixvuMdy+@k>lx^@Mq$3A_rP5A=D>gnJ zOkshRb3j3C^|whz9KF1tkeS)q*v$Ui@PK>_D=Wy(&`bFLj7mjCz-Lzgmlf!de-Dpu zY+U)Ks6!GTy1~&uSd#d@r>26pCH_xZYW_ zx6Ww(mFM^TB5n4ilUSw)Svq6;rzy;A)jr8x6IXk>#^c@pV^aUefTM)RuJ4xBbf>S& z-{2;SO5!NMG^DqEHru3a6)Jokx5ivqZZhaLPu%^+!QY%ha=}~w;_K(H?UbI^5h;^3 zhP82Eqa1tL>{(vrvg=y8MIA@(e7vf<>K7$Vgv602-V~A`?dkdmML1`7PHujhEv;jg zlL~{Ni0NufsZXLFw~Tvzqo?}t9gS|il}XUPxw%8*Whm(Q%4E7Kq2oIXqO0Hh!QapE z7#|+NJ8snCv&qRw{naL zLpd+hB3OXHv#K0ZR0NPykO}A@fp4w=@w`w#fVq1*06ZN4Z|3(|3D=O?%(WW<)kUgH z(-`>F*pD?fR8~UA0cL%vBbCtigC>W;thNNkfK>)WHvyuIff%^DD#T{)i+b@2mGay zHG)A|wcRx&OXI6G#3JMKd_O9ZcZv=-9xhY=G}vb z|0g$nIEdxsvIM|eVE%qi|9C3M|6rs9EPVIYA)C}T$7v!XBae}H2TC=E~E zf0!K0|Iq3SO=G^Ut^g8(JP(o%+`i5KnWmrit@GS((-xe}EeI3X%5k1Al=mQA ze?x&_0l+vv+;kyk#^P30v0uaTE;TzI0BV--q$_rXPhLcRQNiHKr*khi=tx(YMi@Qz zS|UZ1vrn9z?fN(@X3Z27n9nV2if<-9-%pp~gqWY>*RZ~quh^^Iy!o2Ny7i-??*9-5<-xCquBz3VBDtLDTMIkG^r65zVBd$(^#1hcq9SU0V2?hfIehSq!(+J!Nr7 z^9&>|W`WAyS{Q~>yAcopd3&efvgfzH)wzq!fOAfj-N=+PSW5SLa?(Hy$zeQzUP3(h zUyj3CA3)vPrB#P|Q+V*64VFNSDIEe90DU+-81&)5EkB*^0e&F>O(_6Z1ngah<{?i* zz2KT&0z94v!B|k_uH^KCS1UIiiqe_VdZp;Ca6};aFW(MvcXINo8<{LG1C~?l$z9 z(toZ=pTeTqat-*vMF<==Rq_z9@dy8u5da#YpM>n^7)~v^BW*y@0d7Hp#f=+4PCF#6 zL2f8B)%NZlu>HHI0Agg1hR*c+)cy0(3ZDRF&Y{m05b4B*gcr{1 z|A}qbb?c!IX~xkTWVPwBHZEj0`_8pzkW$6r@%2>Hw>!lQUihIABJweex@)83SnufZ zzA*eqCL=u_HpRUCCfQMSk|-sl=eFFnDAPHbt;Z9l@dzN0@%4M4fK#dn{63GX0=aAr{% zS_EyGOB|1|8Qt&8xO8iCglkp3)J%I|@{hI8c`@Eg?|W6JmKS|@d{0G{{dUgx1D6J8EtcEwdlh1z-4BvfsA^<8pG8py-LMi z(`MN=Qa%qfi+os#*g7k}z(xm-;GzYFo;Vz*az;-*-w=jC)XX^Aw|r!yd#%{p=Q5M~ zk=>XDQl#Ws?JKN{UCQhZC(G(3H-L^oH6eq4e{kCg<$+$uXM(~Aq6iZC4720V1e;_q z^w$Q%B}irFhz=>42M_o|ON)vM(D#Fi`f$U+6#%$1MEJ~qDu(kQH}nUhB18JEA!?%W z@0Yt^As`HX07MAn-$g4ONJRx0V9^h)iAv$v5}d%9H88vn#+BFBez6t?s<5m0LAVES z*I?fYu|A4|NvbeKDRG)6=ks<0!k%=f_XCtXO??JVDQr&R1U?&ttNf(eOwZKYnGw&s zWTR?-{?yHs6;BK2 z8G#UumF?Xn$lv5tK0xlc!{Fr7wF5#1n;++z`d6>uZZIulVB=(<1Xv!5!u%hwY=hiW z1@?;1zkdIY!<8TAxB-?8)&hCjdb+xRiHAUpBtU3(Bj6Sr_W>G9@CZ@jg#3@OC5Mmm zO0(Oe>r!&qfAKU#^S_biro6&||Ewu5eTChDCP$dbGq~-j;8tk+#2D@D^p`D-sO+Za z-dZyvUJrKPb?-BXYMQo=I8iwSBFxatOSX#P(Xd-Q(Je&muf*FD`23~WXBmbZe=Ne> zh;H8)2peHlekWbOo;~*Lcd$PD+yfhZQnZuzc=@@GEVirXk6MJ8QUxjZ(EOhN`pIrp z(s&4CDPV`6O=>A;yAV=c{PW`W-mNp>5=3FPDJ-!iU{*L}YJ`jErDDLp=zZgtjxO(3{u0(CFQ7rxr>Z+#G_tD+2ERHXC%lxhn6uCIu8l0mbvk^q|DZ0nw3f~tI*PkQ-nTu{c-vHXWrA%Y^ zB)r9JcJU9b8HLP+NwuGPR?~%zuCN4BVh>-ydhzc*0Ee5=It!Eh|74Vr4Z0 z23#NkkYsV`1;!AZV_q=oC-;}Z0{#UVRRDy29vRtwb43c0RNxb!D1Z3^c3U+DB?qlz zo_;Ysv~qqj5ciCMtP+U$1XnJG%VoNfl9C48^pN4mkHbg#9d2=`I?d?*fu2Ph2XTTa zJw-*ZE`qJA0K@egf52g>#cBS0Y@M&E$fuE)pp4*G+t1PqbSU-pSxemC%h>gAR}AAq za4&4t#VW8_%lASM=Et{~dDxo895>GNsw&VCV-$M(EA7r?a%+#Hp}=6qkq9Tb@!u~` z@l{8R-V>*On)+v;F;cw$;YY_2`k74aIbsTg{T=wEp>f&qm~%O2HSVYw3b6;(cgO2L zMzNXc{e1B9Mw;gOkI$hqk--|0bLYjcj!}IZ{mDraTa#b4x>F$inm{yU*e#|~)A~BL zV!;2R!)${8Td&*~RTan86oT`Ip5@)hv;R8Z*3&06qQ2cgs<(gbQyJx0HB@o! zUfVc>8E*^fmp)JMKg&n*-4xG*YG$@L7TzrJg3&eCv{lmngC`Qgc*R=K?`-~-|4(n} z`iC+xbA~CAyU%qgbUsM6zD$tLkm{__tEW~pZ8z#U`EBE4d~DMwrM?Np{kZ0fbVNEQ zETvp*co*3b(#LUrHr(a8g*gFO$Dnngzg)PD=_6B2k|HF3k;`ZI=Q?w5KUTA#`g+bn zZfqv{`*rouv;@dTXxN&21_?=N>KSl_mzKKp9w0}HeC%Lyphd@MR%v$-5-Tby3W2IV zO=AKPV7(~-&=-(&D(xP?g%2q;{QMlIe2I5OQUFd}1#B6NTP-U>ATSP2&hGX)z^SD} z0CxpEJ{W>Nz<&WBW-QxKiD62QB}_UY)#c^oO-(=%fSDe6b#T}Y(|1HcFK}qy25?r~ zhl6SbGzG-b(eZKL4180f%<1X{&TUrvC-$wgox_Eqvp@s@r(kNhL6l6?4E4^p;S0eMHU>2?SYvTyOBLP!Bb`OU5UtOU+J4<~c zEopkNL4<}~z&@CFK;}B}{l&G68ZYTR$1Cq|-dH;GT~{QVV?B~!sDM@1PA0fkif~kb z)69#-fwePzsThqI+M&GO2l=hJvxUzcjB@-kZ)&RF8dQ@DQGE46ko5CjF6+_Py!@;e zYXfEWyoQzf(owx9)Ea)C(RgHYy;jmm=k(ry^|ngIZ<>0;k&U{Uw^7X_j+Sc+$F~+E zUfWsT>j|7`Q;Y|Zg_xJQO)S1e_nnNLew5D7PVsai73V7_B3AAj;BOU!`O|hS& zLRF1ctea(#A3eIK`{#0R_1|a4O&fJxob5if9ajDW`c+P4#wYqX6sKNFWQ@JW5#+H; z-LpqjH4d?v?S$y}ZJ$JBFK+7zCf0Z&Q5h($X${ zfi|$O?|cWiI14av1^{39psv8-fn95oD*N}HoqBlcC@06q@sNv26WU@7eqS(Q18@a% zl~qL&Z+9ZO&RrwxVItVx@{RZ`o&Nif$Yhg&_L2hJtkn?!`4_1b@;desFQPHu(rc8* zAIM9K&G)>WT7^s>U|>@P!&if80~Y}C+*MVl4;J=aQ_eA*u+cOeTKZOJrI(PM%SlJ| z9~Xcd;#nqFfJOs9o>wDwhC{~`o$9{9sjsjbDSzH?ojYGUG~WOWw1=ceF|u%5fNBf` zHoCmvN)F^wh2NWA(DB}1cr~=+(}c%%pFIm*C8WXe@%jH-a#H?V&D2vI;ti84N}TLi zf4h-8d1ZFOrB|KSo%sqB=oDu^-jP0Dy>qsK|5o$($j`*|y<=m>8xS(p%xDbB6;it>>(f112aKQCDUBaIP-d8;zIUtL$B!g zv7j8~H)>H|1$$fYn26h*CozQRK8dVU^quAPCsB33u{mmn%v!&gR+D^xr*i$hpmR>R z`^27xR?KG_v(%JX9%XfMMBrElX_f>=K=tjkf4JUs&+y>eYNq&B>v3CgiY~uB5B#

    p4}PIi6Ld+v_=qt0$nI^0}(U$HIYfQm0PrXw5B^>7C{xDOOLe9G8(zu5%T@ zfd|Bgp-HgvR&*XVldOa+ZN_Em>re)YuS8GCe4-&iYQ`e#Kq4MP8vcs}JWX9P&=+Ea zVen(67Mh7rVC047?$p%mte_Ir&=8@RP6fy4$IIG}#P!J3Iu*<-9btqw&E~wIh|8eB zg6GKI=VKH4$`t!GHMuy9I$e-og~vNI^)*v_ODyMq@0SXT{%=LzCL$sTzDb1gVsISL z10{f^qoU7>)tZkRFfcTvsTmr^*;aKwCPF08fom*|kY2J9gxa|e>{w`d#x@Xy6!70u zGpZt;<5NIorEVC|f^1E|S~NkTiKQb-$WjKL2GtXf0xs(+x+uoE$JD*U3R1h)mtv| z8Nd&~@e{E28l%tTPm7nFk$Z`m1U|&0kDr-lqjm?{{^gfnLa{HF+0@^Xk0=h%YYcw$ zzTnNpV(6XhbP=PxKwe~VF_vVob%)F>0)WCT7lyDAC}^;So0EgAgxkvTCr~wY%kZ(y znii8ep+i7LHbp8KMaiGR5u)`M)j1F-oobbPb z#2+eJhYb<&ys2X0-NtdTwl{2BG#DczJvB(3O|0V|#ubUk?AhLQMkS?vy1l1t;7`CU z+XB~fWTi;C_7%zZr~)Q#five6o;?ms@jqD{SabG)z+?A4<$trB?@dXbIIr32cW6rC zvtQ(XL$g(?q`ZZkM;9*m-u$ZN#Rje*>jvhGf4SXJh2*(!C(GVcmu6XvuDf++{XXsu zLx(meats~2{?y|L`DPNUgW)pZrxGHA#Y6+pcmHiR3Ut%O@ z(y{RXPkL5b`t7Vm^j)-4(1WqLlvsf2$CwdwK;GKq&p<(Yur*yN(ouR!X#L#S+|J2% zT6^wHHPdi8g*VyrQ^uY9q!U6$OFw2TkLD^FT^Qc!+5SuDdCVE}!-w8}cyjGnadF;1 zQ7`+mdS#;5Z(v+cWcG|NXQWv7-xaudVV#YLj?b@TLzkrKPcF%~`}{l#+U=R)7s^OQ z&Yk=`QktA3DqUuYf5p;3_SW`}UF9dfmUK-OU+3N`A-P?G)H(Rv2^|2Ny%I0*(GvCi zp9=829ORPF{jqN;>nRVZd8K1!=n?$W?6Vr-7r^~_X3(#lc?IdOyg~F}T+QZN>G}x<5dVC2u&cSJoFERX znp`}W@EedGH1%sR5NFTOq>=&NfMlict8HHyR+xhZnr<0v1bL>_xj%`66G-^r_;PYZ zuDDJE!V}_a>RIcqs&kMK?%33i2m0Sdnf8B+l1m8}LtHiyVad`#GI{;|x?cR>hQ5!k zHxZvEzH(JqP-dn;l}TJBQ@gAkkpBDt+aZI>J;a0`f3jUCrgsvJ8SjoK%ln-3@c07^ zM^Efy|Cn-$9vs$rrnm$0UxrN%nrc{CoCjL|X?5#BWb9tuQ z`Bd}`%1}a3+SHFbW5re!Isl55v@DeaI_YZGG}h-1w`zcJp&9gznIMI=?txeFvqeF9 z0QxxK{*=9iEPr%{qerE#eovd*r=(M-T+1y{=M#D;`09!f;IFS z;TQuHLrm!M{Fg!Xz?Ay8{~;F%pz-{hhTp(@{=PT=$}nf>e+2lvB^G524NsAJGvf;! zt8^^exvyvz4PfEc*YSm7H0=ibD@CfRpmh= zWpFhfP@7rrAl)~t{9{=E_n$vG1z&&Op!iSKuDyOw$Af1E#lWEW06<{6|NHgpMMgF7 z#CON>A)YG{)g1Zx6O#uyP)VQGqRO{PU$^GxfwZo`yT4e{%LHF%3mmGx>((&om7GxJ z^WwKJ_Z_`K$5%FDLP7f*)*YsFGyayCWR2(^RS>ERUTIy`p@AoUnelxU$LN3B3#U(N z$y0m>D^+M_jW2)BwRw21A(d~}9y(;-H5IKCAXI4s@kjIhKvD#MATx+-O`1GC%wU%9xQwb>=kjgHl6W#(!zvH3oe}KyLjd(WSSbn zPEpB=sxF|A2Q&N+^9FH-rsC*`)q;Ltel!YF2FXy|rf#vF?^uZiPSbza;{SI*#?5C% zKWX`iM+0!(!zP(b999V^BZiHtMe69?eiL*=g7BZ}G6(mFn6t)YxR<%WmOV`ZI z-q2L}WW-RBEkMDHj9`x2AN_I^-QSqxeaq&s7BQLiL@SijR;cxjPtk+xS>_oA$iaZN z68*hb)pPneN!SgD!gdcP9WNP)kNO6MW_bI7li=}XtvMyVwt)rQ8o zb}$11qu#n?F#L7B*wnCUi90@KYLdTr4Za)xVL__~108U}6wJ;-z7w6060w>1te|4) z9YqtVwkST9`7{e`VfZCDFW?JJvpvv_SiesQ{ll=4>t`51Qvr_ue&#<;1>8!)nqa)a zk>SgHeI;t#@=Wu@x1v!HD0-bAb`kJK23d`Y!YDz9J~Z11(Kq-|P)FZBh&v5U?NsYZ za!NzrvmE?J^Y?=XjSksH{l9=D!4G6X$xD?kTfa zzl^L;+qmYcX&joFHi!Q3DE2K=5R8Duk3DqqVTs4wknj*{R4ZJO$hvmzRJ`}xY*WPS zFPDPGB`;q}?|Ei=8+m6Yb^m02w)gJW-KW0C;`K54x7@Wg4|n;j7xzmr8?)W-c`2PH z&UTlkHLuQc9qi~tPAIv&`tPzGxqk{&CIqFL6-O9qr`8?1rPNV(kI)#r_gO@(A5!A? ze&cWT;bK(mu|Of^c}#U2sVd{wkI52T2g=8GZr^h9TF?)wOGSFz1A#Rwe>*NGStV8| zDvqDzT2lmq*0{*X_f|O<0O&PWp@BjD6rInkX{Oe*G)C*5{Om;ct}kA98u}iIFJeE+ z>8GhdFX)iBrADgC73U?G#c~ku@ip@eN)Q3i`9R0Bne&s|Q968ACUMXdHk~0Wz36;I z=z>*BB3-ipOLT8ir={#>PfqI90CEj3`Ei*cFE7*bu#zn7Ed#L{nSH69{`WEMgGr>WN`Tvyp-W0&+IAWmLI>sv=BJJCo~B z_RY|Y()bFMBW67aFnTBZ+_zAar4vu(nMP^gbV2)p);*CZ4bb#tPC#3>Ef`XbvMNWt zvl_wa03lY>*J-dz5L^<%x=)W19YP__}r zJb=2Gq*%}jcp0M3hQ9e}8&bPeF@T@=O$*J6auREL@T^Tf^v)Zro^x-%dnm*Gn$oJR zJJ-;A4sO)(?Aksu<2M`;P~U_HWiiSB6he0PVXKVNz&#&35Ga%?SDIReVOH8PfI0Iq zQ36$$E05Mc+0?O`-hZpd$>`kPKw-V!?#m~OZ$*d(omjXw@lEu#OT6Vg!~DGw9bvVm zhs9Igik1ahZxYiINw`14?W^iNm3KhCEMR8T*^D>LpLJ;ZhL>2(dxh^Q3qO6>Hq`t6 z<@m-xvO;L}^OM~?OcI|zTgN|`D=3e+FLp%y2fR67IUfJ~!Gdg?Fb;(`7LOc-Ui;8F z%DG9Zt2%c|aB&5>F89w{?jSmFghb*wRO{iX^RE`bxo1{0@)8FL=U$pUstW+@0|Kk* ziDpzoP<=4t_w?jxKK7^nJo^MN_%jnbaB!s4d zDKOYl!Tj7mhT2N9QvVo&GbsU9bZMO(Yp&v)RuX zhd%O_W$h1*vI@;=nS79{*Vb-{4Yf7#EfWe5{#V?ygZp2m!%rQDa6v2BC;9V#Ku|jt z90?G{od#w`#Qj`VpGQ%MOi%g2A_<~Fa}IdJ!HkzjACGOVuyV;WT~9ffZ3GP0E&;7f ztThV*6dT;j+7IA902G)Cy_4r9=OD@sywDTe!tpmM@I()l=XHP zmf;Dk|866t$>7IkV11qNHmT!~lM_T(E*@N9PiUJYIx1yvXk&;?(UXyp(W9x+)JTd< zy7$aj6PQ_K8xp;{ayPU=B19<6q8FCQx1k1$8xX6Ez&E$uMBEeM_?a)d;A10e1h-Z3 zl?WDqbsdq$ZiR@pH5SMGh&NwRm_$OBb!aMa0mUD}s(`QpHT}0eZn&o5l^ct9$sqJd zn386XY@=bXx4DjgW5M}mHDU;X@~?%Py)U*4}EG7!oosU1OLOW4#<#U4kO-1q%0;qSa>F@N6B#t5!Y!!}P= zLMWA-A4CYzHmo&(ptc%rB`blL1BF8gz-0?>L%7zVthE{&R2~~@TswWBdwg(AWtp3I z@uM?zpXY0`rWhtygdWZ4OP;y@iFWL>89jR8X8LgvDrXJbC;0Z$r3#xjbMLCM+NznN zCv+gAK!v61FutK9Kp}#dNL9wSQR(GR?k=a9f4txwY%giOiqp?p)k6A(M^_SuLMT1< zl)|+sf1YHwiu6wbFZedETlw(~>DleB&zvM-{}uP=4jz6X|B{mgvTSscL_)H5aU1Rn zh@QZxk4Mto9eGr|K`(GCR~1RKhu3pH{b5}du7iX$jS+fOIx+9m`6n%rjNLc1g(+P` zb{zVEPfEwDOXnBFmwZsAd)$FW%l!je`$Jw)+3Ha)tF#6iZNTskp$6B*F z6zi2+2@%QyRY=#ud3*Hn1f+qQ(a0GQjkzE!wq~)mdKuR&nIdB_wDkC)j?oiaV=ajh z(<^~HMv+`n$ZEmIFhwRMq9_|%twUZHyZd2EMA_*X zotfdO9jE+tZu~g1dcP-Cz=E|aYk#HKn=2V%T$_))tIg&R4_Oou6MDbYaj`&)s`W%~ zoyz@<1%(RkquO88vh`MRC%c)G$`jh9VyG@0xz++%$?m-! zu~dr#u$xC?20ixZGz1gPUqv}+zERV6Y)unGDkN-*gzcf8=qCT=QH-V^F)b$DU0{J) z{fsZV=W);&?wrRvW_;_I*nT-km}IcIn`YD0ko0igwyb?0Lh}A^(Fy?1kR%v&89O81EAtTGm!OlJfXZnNR$$W6c<@Dy6J)4 zUQGH+=7SbTq{v~)6pTRE5saV&Dq*32ZP-hk!1LiSP0@RO#xwsUZjGR&iJWYdk^zx# z9e^L45`d4}j-`dFSvwYu7hd|-e7tGFchWd~85GW{i?GtJNbzn`qgD zZh=Z^&W92mw^wg@^#5RzJ2yLh_D(&Hm|MD=lI!qy80i2dDpA22V77g1{E;ZLBPt4|9SN|b)P*Griche5C9qAp5n4H7=^1Kj)!mVR4ekj*qA2{ zi_rkv0{bN3C^Yt=vsLv@eMrcH@NSfxg{Dq=3qC)X)re8QxUIIw4RcTTGstVceEIT% zDPA*TBXt%Xc9eif#^z*@6uzFGfR*5K(tmm|gXjyvMwHbW|7l1?aPiyi*iUgE1k#LC zwCdZ@)5Z85m`C zXrQGNf#?>rULLJXbS}M2Tqb}IQpp&)o|efyFZ~`}+vW|6nrD&^ee+zodp>^j+x_qCRngqdjmUA1A^uiq@Nu0($V20*8RGvpPCVrrygBVQ7tGPMH6Z8ikd zcj_-$)5%KkRq+HSPkrwF-+3nfzolis&(6uJkS9KAd3khum8*@3Jkh;&m@tnmrvy*}aLnY2<3VwA>nh5D zzQhy;O{mzm#F9w3@$z2=H|*slb4xeA28~Y0s_q3?Clg+bY5*II&M<%6(nW#e!G#+% zO0r+K^C$#oO0QmWxvG1RlSlF_UwU@77!vyFWYE4{4~#72QW3NiY(*f0a{7GIU{I}6uzV_ z`ov5Et<274np!9A+&py4;#6cWH&~KM#&H-e-HG>^_3qan*Kjut%7c5SHtuWPGB$km zqv&$~v6(q;FHQcXVAZ-bCm? z)b9vXZRd;89BoKBztK{FA($OkaW$g{GZzEvkYAA$eX1+}sDelobz;$-G~cx{B*9GtyMD2_oYRkgUK(n2d7Dk3 zO$>+Mi|Cjukpo@AV+$8sT;BGgoLixT)av0k&|kKM`GR0U;O#Plp&|Lgj~vYX3ccLVAt2(KNej z_*s9^e04A{RAP~~CZKpO2;*Z3Qcjs4mCc&K2$1~e;jU0?I-$q}hrnhYf6@X7Tp}J_ zav<^it?6=gIOwWe(Zj>X{vQ;w`d=u-7dpb1#8Uo51QEY-h3f-q)$u6^`$c2s0XWQa zNx~G&=&iLjQh*qsl(TKAJgP)}N$kn^#Mw-_#CLY6>>aLh3Fo&B>}O9_62%fo6Sw&Ar!qPREWkTtwv*G-&)b|9a93zLDVk5* zlulq67$Q6q7h!=agi`)LvfezL%60!Ae`wK4Xpw3aiBd@tk|ZIb5TO*Ai4vJYNGvjB zh*Bs*ltf7=Lo#n9NhKkKWKO0`nZB>J&fcHjAHQ>*>zwNhyUkk9bKmdxYg`7`G1Ak* z8x$ix`IHa2K0LLhdTRH+8sRPlUueJnxMU>D$i;mf7u zxN_P1@{mHyry`ls%uWuI((^9;tlO@Nn9#Te%kL-U9&M1w8ZAq0{+U_2?&rdv+j~cMCS7(@De#nRZQM@YcB#5Y``T8YjC$attkYgWjRYRpFnjJxaW$Di>cq1j46VXr; za|`s&p&~kp?TlW8ZMWeSM4@~hJZ_#vy&ehXRO2R&3X~4v7#FI+{ZxR?Sxob?@o6XV z`oc{u%p;}A%g!pFID(+`?lDZTsD5@UjIZq}{a-xEK&B+yzagWG*+(Nuw6l^38hLdF zIrswCp~2p8Lna)R(%>`N+uaIrcA_$+Y3P-{sE`^rNwC&gBnnn#dSV(jaL*!8L;_@7 zV`{p2tsFrWlb-E#IVlQnyWI*wp9_azUWR(@3_4ugE?vTj1cf5%W{Qiyx3<=vmBc&; z?F9l3O-zu|kkHpRQ6NA@cNRVrFZmBnmnD1xDZyEs3fH&!*h&lz^KTsmC37LxZE5i;@lgt` zc8+rVI7m|)_HVdBIt0!gyYIbY_`ARHnjP=&$Em^*q@36^imb1`41i6#+*2P<_2=!mL0ew*=xdE{EVah*Ha%2owZk{>bT?g%gD6#w{C0=e?EjS zLpp93A18j<_&>ZVa|=F`bsf$BD3GOk-;O>=`QRl}K{cdsi?qoIZ%O1g@_e$(j6e~g z*|IHurL3%qG=eGLQ(EzbAIE{0Z`RFM@s2C=4$yYr`7!hQx#iXKNlffvTsfakuEYy= zyn1e6`|uVnjX;M^-%Uz4|Jj`Gq{k-yW*cko_hM!0>#$wDLC=pY1dXPWd9=2(O2=9? zL*WsU+%RxbZ!dQ+*$*MrSQ?1ybY>I7!{%FHmcT~S^F8Q&wb+F8^hVkX_uV@Nn*#v?xvuMGDJRP^Ht*o)6;_# z6+&mijFGtj0FDo9_Aj?W=#_h%ZwbM91`q*dz5w$j7uFo{#lK<0Yv>b?t9y3JHse%l zM+ZDb_l`ZL17IH*&npUFk*WD(Y^J3J`#)BtQ%_%gIzQu83^eX(BNmtHZu}7dQd;ab z1e)ixJZ{*b^mb%=UmTR0STHfIR(AvPluumghvfzjdPNsp6Sx5}0z!m+yM{sn8UukH zE?p#s;km~nuLTDQo?W^Kd)~7M3*o2!80u8l**_)vcbD8AEUO$QGaES?xnB#R=2uiU<$(-GvkQ`)moxi9g$7TlNhW|y z1k&n9L(~AhU*80hl>i3E)!{0}B&(u>l58C`6ipxy1V5U6UUP%b$fm}x+8awcf6dGnQj{I;%@zZO@zYn$tljCg{k zxya_l<=t23Ai#WUCwZ^esPeWqZ?0c33L2m0qdth^+Ol;OK{Z@P92`{eKb|CKq;Pck z)%l~btn+f!PJRM-EA;fh8C`fa=pwr|)C#J|7>%cmp5ERF&i=dLEkMEB2Re>8saJ$5 zaLtBWM@g1)8*X5KqZ@#$EVAmX9}c~4yuf%u#qS*h76wHZ^nyBH{;sXM+vgFI+!>uL zJT&>O%aLJfSRL$NX^}?vGVP_ZmEl8ayT5i$%b!`V*Uxbx1Rtg-AtIurpg@qk zIj#<9iE-0K=~h7J5Jw}KuYQ6@1uHsCNpMq)!Ka^CcZxq^`P`CCNyl{l6i?5Y1|{O) z_r%{WaBw{rhPX^Cbq~}p#>QiEc;0Mc!4X8vs^?mjuF z2QYtbAz3(3Nf3{KlT(>^m;f2*&8?&G17gIm&Vkt*3RJ`&%f_~GG}rLC0~qgW{N2&c~K2k4;oM&mDuYz;2+zdizlbW zM9ycdtG|NCmR)@E=c{K)${F=y^&FWSrnBN^iezyrYq+udnJYhJgy!b7h?$hok6|qW zZ0sDXNzClcr6ga<{5jVCKU9%^y|B6#^78p+_jcw)E3QRNGne%BEuL4*D!;6?Y4g{g z>5M*efQg8kUo*2=uI8%Z&GS}GoA;T_NU>*Xl00f`U$QSID6@;@#`5p*Ak6wB=PjEa zE-KF)Y9QiVCwkoWa2@{>gw+?g8YtWIQrwum;FOi9N*0FA)+Do9{5^JXe+oz-Y)pBE zn$TWC-cQdiz%5wcho_V1bd8Y(h+7)vFBe?ZmQ#CD7TEC)WpA2ID&q$ogP3qT??#)-9|DZ0T{ zEudlPp+0zL)6>->VWh=_T7|O_i8y+C(^FHib=#DLfo3`v47jLAp51&4SOh)s9KV*m zy*-2#0+a_fuRBKI4)7D`o!Ad0ny{xF|A$5Qf?t$JyKenG0w0l#Xu&}y<7w7w@EIe2 zro79M5vm2%%dMlx<>w5#QiM~AM+GcONe7z6kl@9o1n<3gn0E>A{xvFHGGg&sxMm^d zb}NJt0u6DsF}v|;XX%6VN)`t6qNfK_5(vrm!pnvk(ZV6PdQLsHlDxOC!)t<(;xjI1 zns$<5QuYA8i9wn58eM8!2Wmn^2Mk(j0~5_l9$OnzY2O5N+j@Et;o*d0p|*MtN6%nR&R_AQ{YF%IXy&_^OHf*_B64Zt7z$mws}v zUUMs47$0{oGMQs05x+jPl6`CQ+5^M2Or(w9>#`U0e{Ey>>pYvywUAmU7#shkb>%;v zeu8DTLf^CXpM|mA3E!2~3^xQAHc6g^sYI{2jH6{gT)kYT<{i!BeDqoB#Kl=@H@6n7 z&)|L1AgsmRWD>?i5l{^DeYh@RDnUjyyQGgquu}yOYmI|u34(=+D{X-YqN}ZV!w_|L&oD)XhlVrEx=;X zIho#*PhnZ6Urc{;{Fwi}tm=cTfTbMMIf++M^&!ahS7-L~g}cad08{*CCk^!pq)34L zB_L=)AGf1yJWOZMqP)2>jkGBw=0k6gW1z!>T@egKL^XVZiU@JALK6|(Olpzf32{-e zv!ZqI3v+Hv3@&Q3D~1`4tvE-dO9s$CjDrR040ph+`%8Ez|WmWO^EX8 z^MCi3`v3Y*3-G~hPWS#IznL`mRY2w2VlF{Ac3uh*9Zf@fYqP~-G$J3t2gMmAQRS=n zz$6o%0i`6o?(7vPo!-MXMsb#zl;4K(0 zR=fT5-@mY*fT9Gu8BrZqXPtHu@UWi%J{d6Qjxr`io|W|AFuPZ0f)D$dQ)3@PlvQMM zjtb3bX_eKkgDu=N*NyVGlZHYEezq>fG~Cwz`JIFG8yT>D03q5|$~-!OzatO^BI?UfrIkyr_Ha%jC7;{blnUwtu}T`7w2BR}Zg?cb@!FW8CQQO!|k5=aPGn zK+E=}-*GmDnR8v2jS7Q}u1b&WB`jy;*$lXUaq=Hp?Yber=Et{CG_{-gON1v}*_PyS z$uunf%Ign$hjW>T&0Jq4q-g?N(gdY^bOn3I!)u3bJYYU|s$8u3hgLg>!v02CNl{*A z!e9QG=s)GDPOB}tu8nLlI*~iMcV_dOM9*wa-mhXSXr0S7Jv_RrIN8BWHT|m8>U|usmb;1#S+GNwJ-o0IEQj04EEF1SsL2 zLO+m%Sd==}jX?AM*RY^URAGe2Wo(j((>cru0goq}r zYCttoba9;8=iL?xrfgQ@CeVf3Zoi7ej5DslC{QVh4!+NxHL#}k{%$YCllH&W>YjI? z_J8lztbjj4l^_|av>+XNq?>lGK4Cu}XGk*E`~o9LZ_&xZ9ju=6!%+sC#A6%LTBzAE zl4YE#|L_4_SFQGWc&Fiq(-%d~h`#6td#p@#)>}e=Ol&7_rjX6Tpk5LVdHuX(wl@yy zrSo~MfHwzR@W&wTrp_9D#8XpK@E*Ygt)KuToIw~N9388hR;p-iNb*d;Qo`c_`)RXc zeHLZ&r;TfGs4l;DNOUdAZ|VE>#<)6Y@38Z^| z?8!SN{zCsJ@ch&J44?5>-TGkUV|yaunwYbUR%3Y85 zM4tJaurNuXB)wHg^eHe-W)U#skX!0Jb301zv0|(ZPm)}5V7-!{Y|XC+f)^AEb?#SX zUL~kZW?|xHrX5{F6*58x+{60tijab7#54250z}x}u%o0*L4tirfj!W#ub%Jt{MA0D zIf^%T?Wn_swr_VOhzGZ2bIm%p{Zqa?u{^h!)zp9b#PQc2665a!j*=A4m)9D`*xyp~ zsTXAJOGsE|{xQ#8=>1I65dAJ9=ej)k{EJ+sSlF=u#h{T$lzRfo6|p19@uO6b_-)A8 zwWm9Lmf&N+D$2-l(BZ)%c~%l0Pby5Pku^eS7B~bcxuCyD)VuHB`IP`rz$PA+m7bn0 z3fHHffOr)ktmq!Z8!|LaMdDfsfKfk%PRf9fCA`mb>KHjZxBRebX z6>z)>^Ke6@SP8j;NoFE2_>vOn<{1I*0FR^8duC?t_RUU$8$#HxD?quJ+D1ER91D0C zCnsISV(_xib8>refWWqMHpd{)9F@{i04<=(UdP4)M$&I|ZUNnoI(P83X!F3ft(5d} za&oVV4o*arZN7uPQt63q8on_|%&Dr|ZX*snrWUx2&ZlQx?TLo<``+<~#hINS-SO7q zQu}PC)|%;sN7K&F>RK<-x4v30c}&pH8buECmvych!(OihYaK7{hMBxUo8k|5@%)4w8`1pcE;i4+Pk|}yyQ#_R&w#%QBL0Qq+L|&N0SMG z%}13=FwL-jSP>ai>CuUbUg|O>n(*2FyNX9sa>EX7VJ@>J%hxqswjgDG9odwv zn$@YCigSW?hR?XnS~pB3WC`}Gy>&d+8NJo@Wm=K{?zeMk+l!LV-=kbVJen&0=4)-R znOSYvpXrUXvIbW(4qmEiIlH*r208yt7xjKy*E%ljOJYQK+esgwvZF-DAw>nlSKBjjb}<;8f|U|fVPn{JoPZ?S8$zns(JHTI(tKapA_l))Iq zZr9MW6do}!Km3e*oE^ZUQIc}*TpviI!9g}b9(Gpj8Wmk;2B#v0!n;BCFu-<9IjRpC zEoKCb9^=_ha>joq2WOjN31 z%9I8{I~qE;`*~%8v?2%L9!+B(`px?p&KD|D`i0Yb`5req%0A@?Q4D040}l-NVW!ubpCm z2ZXp1O~Q;sE>&=GYqQ+($lX)gonx7R|51OAFb-TaM04qN#nBzNN84Im1xT4+rkOf# zdXPI}8h?!%tnKO`eHLIfuV`A9rDHA|SC0m34sY#>&CbXy>znc(uaOdJuq;<_ zW)_$su__WDHIH+tM(=;+H25)~DeMLlnJKX3^54)=OZUH}PIt6`9pW>=mx2|shVCQd zQX){xR@Hpr6($rsJUA_j@D1V#?VDvVI?12<8Ne$bDcv+YGsV7STB|8;GZJSG*45m)=-FC#+NJ`Z44k;xL% z--vdFexOW+5J*J#VBVu+$SgFVv|jS)K=AVRhHg(^mT0orl>nbMs((O+ft@6ivRi)Po`4`l z^vqk&RW*%@Xt9FWj2(;+_vWUuA5LKq5?9%K@n0cPUo zsj7@javUx-XTdvd_6Jo?@9fNf(K^hSCs+8r$jd|gh3zX4_%M-c3y<<4AMJMQ84dT& z=L^N@*8>|1$JQy|622|x?X7o0+W)fU^+|AJ5b82sP@=S_$BMpZ-dj1pZnpiK=ZtIN zuHF|dVrSG34G!E<-@yJP%vWMFrA^Y)v|MC`57(KB(T6(MwO$<1YkL`Ta(1z~@xg-S zc7ak^peBlO&F++~s=W!}%gD;xT{g>XyT@^dJ1~$dn5M{DMe-F#MkVn*VHw42CLtyc zZ_nHD7sqzx#BTI{`*lLI^nu1&)RVK?5jngT6roN9OGDFZ^}|l%E11Ql1ATt^8Ir|W zrKZ$*^L)wv1kpVj)!J+^Lt+lw#IdO?qU+(o+Qr}YI1yUxMvA6Q=mPOpxRG;OsCjV6 zRXc?wLpl5D{2y=$3|po|6$Apejv}Eh`&peeRHDGtK=WY#c5uj~`|&Tv)gk5|L$z#t zuMFnq$+@fH-BZ)kfCq4?$#51s6t<_Q!?Cl%&wX}$D*>IMzqSxJ0xo$}0?jGtYFhc< zQlqN#-%`VJhzz=kKzto2!COb0?Q-E5#;^s8)PTz%9Rz2gIm*mG{i3jF+UWCmK72gS zr)S*?KXJNW49Rv7n5un-CddY_*74L6iS_X5H`z%;)+>A48~AOO_RB}t^*pwQB;)bs z3<45}Un}_VW_oJRjgKaSJ|*)Vv`SOW#jCqV=B`yWt++-W7aWUncX5GQ0nau^1(1n$ zd#HOvLL}q04)PzD;Y0Qlq#W1^>8%=rlb&$uYo&sRi+ltrAC7dTq|wE>k;M3TdI(jJ zasn1RFD&SE$L%wGYv0c`+|RKz~zmJ z16*!oTviN>1~Xi3PqHwCC)hOoAu7kXOi$T_7Kt8gBugQ`5akU%%$VN9Vs?U0u*(Go z8hn`b8WZuT!N&h1!dk3zL~HRqCiF33;Q@0UXpWXmw*&HdmL7jKoduuwUL3Iw*ioz2 z8H3%DuG>Y#7(Hc6@*c9`Gfu5hfeNQv#vuBCTw6^|usIbTlZ$f)HhAy0ASPTcrh7lOrPUkz4_b5C$ei9uqPac-(Dqhbyh`yVc^Or9n=nbC zymol*MZjs2tWbyVrbpRZDvGv!^*0|fk9u(Q(JmY2VzY?b$BEI83fP6d)t2i2*hF-=xQ}LAz3Ky(hd|nBF*nU~}w4=(*jr$ucZns}H3M5>+_gZXGS% z6)D7}1U{Wdg^8A)j-Ul00M<~$TzC~}wLhj7xmwtgAj`ceg!F;rPjK=7_mbp<|A(sW z-k@||KG8N7(t>BFhVa0oHmo2qQ@gPa=%xWi{!+8eyhiSZPvO}7;HF;-mtQ{vO>|OZ zYlsCMNrs3VA&qL0ATt{;AeI8g3C$fohZlcOxm@Y;`28@Taq^w%sPlT;r5uG4(zf|2*G80v*&^*DnXy2D7pMJH;zDMg}BB_O*a(zoZ1*o>Bm&im_!ool}3H8EoN>-RYh zr`-bi?Fm3#&q~5!3Ud$|X?)Tb)0n{u52$14nOeKcXFJ!gJFP|x$yh9!i5a};F1&oEqh$bo%^=jlynKy+uN5b6Ig4Q$pQ-ays`}cUBXC?34b70V8y-#SMIvbN2adiAE~sxpW{f1xKb9@-R<@mD#!j@qyiN#`SgXG9c(n2fj7As}GoMDe=I@fvwuaWe zlVpsy=y*hd`1EgM5Tl=jmCk4BYx4w1L<_0$sL&HH0RyL}<4MLjH|*wWe7Ue)wDvFE zV}KhQPF=S`@POEun;;EBCOZ>!r?6%W(kuGN00JgGGw7u$>=kfJczNN30?chrjTC}= z2~%HaC3f!0N(4s$rTgza+H>Ro-lK0%PiG$1nV;#7px3k1oW=Tp*cfxFXsx|8Z!|WI zi<@udPyDJ|zau=XtmMt#8%wdXK~UVlx~!C>m5R1=A#MW^4N$2UUI~O36j%!Gmb0%{ zGQ9sSF+Ap4q}!So{*xyxhYh?_W*VoD7uOEAxXe|pJ?Hau*1_f3GTMbF`-=&wvr*+w z6z)3oY#-%se54<8kbUC;q3u=3z`%9mF86z4cH8aX`o2pte56Bgs+4qqD?P|x?=A-c zDSpodboP2*x&$W^q=vjVkU|8|Kt6Fo&QzEOx02L`Nq0Ho=20P}O<$_*a(p3bn069C z9VlNF9STWL5BonhBXCZ1I(xM7>1pUf09@erYrFtl4i*5cA!u&KEp|QmZT2rlCS48A z9FZvGz2aj=qo3-Q%qHH@O5`#k63f-Y1Hul=th*f}F;@F2WJf*(9x?C@9iB=E2Pa@R z!6w^nGNk%@&)CBUk1dAH3Jsc6Jyo)LH;>I}9a`6Vbc;n+Ge|(NtKieya25=0Uy6-= zIhSTCd+;Fg!(SR+2i`Z`LOP__)DfF8p`6PbeU3&55~X*lEW#$o`I-Hh>Qfx{w~a6p zKbp*z2%FJ+qS7nuHeI-HX!@Ia$;|GVRoajaU9bo6OhvdcdiXQZa2?Wo4@DA`=X6O zc_Rd~R@n5eQ;nNOTGs0GN~|Ru(**Xs_6-hLCI04d-Uo8ior_mFU~&nrCeHKSob_E@ zynH%4@`Ht)O1MZtWgt^?lM^A}&m`_G<4IE3MyfK$aRgo-8>gK6C^Fsv_A;z-do>>l zL+_T4Rz~1HP-FH@q^CncR@e@iD2N{hd?Z&7Ob+AznEPR!FH&{GZnfFZghN1Gs@!@! zfQUsGq^+P%SMpx}YpsSq$fj<*09JBsD9+c~3}igf8y^v;hepiUUbjN9bVyqKm(xjf z<@pyixccck8p7eWbNBHn`E>pti!9_#I2V8kXAJ1<6|ewekpa|Ho7Tg!_#o7m}{*mSr@Lll(>EA(5q*>L+_Zbj08;G zQrayi?frVglF33|2j{|k_t#DGsy;3q(`%I_)3a1*#Uk_Hno1U3cfHzXOlB&lF)3Dj zvnX_zocX}w;o0VOC$yK3^GIp~EG}farv(gTUMnL{p0QwniL%cFI_W5bJtRP>3#VPvEA|`ryM1cmr$^ zNC%57jLybQ*kRBZv+Xv47|6}Hu8Y0G)s-F|RE)9kDTST~wlQv6N zW}Xj?-1ItPQ^e;d4yL)U3_7%eK#1TnVhpXDaM=?SR+p9;5xMi!)vI|Gha!BfW+)^60*90;CW)C#elk80EDt zjQ42xBOTSTz-ZPe!A5+|;CS%-cCD((pnsOG=pCG`4p>69HXcO5LGu*{l}8??_jK4V z)|=MMUl25QZ~S|7+3_A7fm!kK*X zXQo7oVo#|^GK*U2<%y_Lu^3Q!Bc&IVYkm0GM~1tWts2_N5VNff#ZH#chYwCR9?LO( zMZX7C*MJL-8h5!Vcew(i=elXXe*FSVqZUc_!$kruQjrOqQ-ip=8L`bMaIftd|M~Om zxpQzkA*2@+HGOB}uAczE0w{394Wudyt0TbIPC8yIsLumZZUVU$1xC^8ThTT&@dk_A z4OMElbHTC5v&bZv^~x4K5dXom2tkd|BtgM|pd4YI*Kgh+uaUmoRd zo$+DYR%IrhXz#1?OcJXi9@HqiXIzc0(mx^`AwfJDJ$PZnx_R#0{;%Fzx=^zBO*GbS zS@JZ0g2^yv^*Yav#jA1`%cr|C-We`y@L;iAE3QgrV)c`9u?{d-To))?bt!gDTBgv( zyXG1056`~~8wraw#Ukh3O#`q`JytY7rr zE4cU?GLr&*R}kl#1_#SUU$W(}tBzi!5@cp`?ib-)!IWTv;HBOoFY@@Qo&7y5b5y+| zX}!S3q6b&~(?5Qp*m-NV%d9QG|B!q6nQk8Wyy~&)hR(LuOQp8t!{!nZ=chK5<*qQT zXQI6h((V7kK|CzAEHf1q*2F$2N$Rq-R_ki#1_J2#~O*s_NW<*v&rA1BWLu)xhPQ-^#21HbwqDG+oHN&Rx`}$*HHk zZaC#p{77KQt8cGVh!d5aMIk1TkZ|jR{r8a;pt%1-7hAnf0 z+!niHuthiaeQ)ld4|kD50m)^EAuxWWD zz~%vX4|gw8-CBnc(COqfHrV(S(;6~c?DMW5101BPSj?V#kTKk{n#Fa5`{u_F;2wbY zVjsKGFSO5z^E;i~l`lrK&Qrp=_J(!sF|#a^IhnvU^+&~rcQojR)!U+pOGcs6&um1!K0g*n5w83sea8`_a%Ztb840;tzG!+aLw&>z=(nCS>iAe zxXITj+_f;#D7V){HT?A?&|W&=jXqE%)8T}trx&Tvl7hd zmuFgj{o3fk8I8XJlVu;bdmP|&=#Y4OGGeT?ya0e|F7V#6Z?pllDAEL z#%mqf6w-2bk0A~V%w4>eMkM5hj6`)X=3fnQkQKJS%RZ(D=M{D6o<1s^XQ0B{XgTWU6-8QdbPQ|80aB$O3U?m^Wh_Crw zl!Re4KPw3n{4cjF|7<)!316)1H03;fHM4PAXD+K@;DYYn>&oX04fdZ7yUhsG&uDg-4EO65wmvP^y7h_+EO{?O&*Kvm0<`42Vn+bmnXy0?wjA>2L;TQhq{iD}} zYESy5wZ(2!8G)9+=2&@;GYWex^Z2K?LqnRPi_8{e_=;1hf#!Lwwy)0M_tDOecnXmUIZeA%aw*)Uf~}`IotRM_ZHW;%}W96aVlh@3yTC zO-qN$@)o^f8lj31?Z5$q%>-8kZobGz|FbM$wzQMR)&cAqQZ?YUAaO~|N!r)x5z|>M zc1X<-Ak*=C1XZydf+5e$004T7lIqBqgF)+V;TerHmv?`9@Fqr9td%pmtmGbHubsvd zs)QsvErXHAzjP{iGgo4Bk#^_}1qaKHHJ zijC`&c6B!LpZo6YwC$f*+Q!}ZNGmR%9w|*6>R4*;*mCZH)5jZic6FqRPeh`(Vd zaDcdmR{A9i)8RFItB(heiqw6eWA=l>`^DQnpJw`gShJCihVE$Fz^g0{?Bvc0;+d3H z%8pS3Da!-BwRyR=C0ZJs(~3MlEj3$BN)3E_A)lWk^I@X0#m@TG8Ssr*48V`qPb3S| z<4AB<1|Kf(n?OjI=vv6!7?vlK%$VdSP%}jSoSogT76}{?^(yW5K@2ZGur&1)By{Js z9+Z*6zd{~IC67wKR3sZb)7R?^dS7)lMuF@j_RJwBY8A_LDgO@k(@99_e{}{RxnPX> z%gUu{{`(3wZtX$lO9_{Lf1Y-mE-D&1*xqokVb6s1_qaSW4*^Bpm1)evDB; zDqu<()Lkb`n1%VdZki{CQ_pq1Uiwo|HnKGKbhP2nll&ql|Hr$FXMS{bnS%g0wk_HU zV@{X^@irT=acGH|^#axlnkxGlrl8s$5GA3No9Tv@!skeG2G0f!eO_yU5ho#D1zRKK zhm2Nc6XYGq!c%is6YBw;=;`g^VS~GX7@U0ldql9^b{;H5;_FwBDHPuF{XT zQs1G3C|^YJnR}NxmWs1ih_g@lmQm4F0JCFZ;T1-qkA4G_D#J{k~T_eW+8%PNB7zEuX9YhtcGCD{H&&;iYS2!4 zZKzFbE~*-0d+CuaahJHX9#k=VbMK9$P5bFe$~L4{i!SM?-r+i8q!v1 zixhr%Zo9jXWVG%$7wzc9pYE(Al0}HL!)R`GBg=z37Nik_Q)P|;2ryRAvfel&;lAj% zho>vZD|h1E=9z$d!?6;V?L?V3?q*h`>cqSjV>!I#>KZ|*qsNV7rW*G63$%?^tmdH@ zDUr53AZRy-BV1H6_wvs4(5!j=%^Zy`h;5x=B9Vmy^Ek3|9NSmLP~?1Rq8@>XuTiy2Y|Tw= zKz95WsSIslvoI7E;{okmw`w{4>8udnB;>CR=^xEVj1h>Z}Dv%ER2UH<*p^0*!)Yr3l;TMDfYH41W}i;sh*Q~kb0Tu>^S(hsm4*{p1P}S z66Cr#v<>)gs3KZOoZ41+d3W*p;7UuphtbKkI>EW^B0GF`{o&-ja{NGKzQF+Id`^1@#5flN^7nUa9 zL_f>*?dtp@A7{@{1(fhzhO_uox)O>y_7Twz1hW#CQJ3APA1*|vU4+KKKl8aFZ2{B4 z?`6Xk4q0EEF|RXqJ~rdz(>L0*sk|j&+HAe!pVE^XF8St$k;|zkV&s`97iPGWuKoGq zYP0)b1-YC-sCVm$;7ZpGlLU za>b16Od6_QI&d|$V+2t^72=3ZaW24FI2z7CFwrwu7q<^?1bR5+lXTE5--agr${v_g zk-4JR2z{MRtZ>M+veMj(#FLXEbn6F1q^Lfh^^&XS4Rl)gJK19QI9)`L^gRDL1XY+s zVI4Hy#~loe6l7gSMg~Z<|2<|Ur80Qd@$AiZqIuA`X|EF;$pd$x4)3bWr|EyIcpc7;541R2d)yFg zT6nnN!yCQXQ~mO}=MqgSAGTPOxn0aZ+!YiMAUv?rx`TVZ{2Mxy5GkLY{%*pHf%+jP z6xnD^nWiyT1`RJkPSs{3oCSsK@OmM#n}-dcA@;L-$B;0DycrZuw3Yan@>JrHJ1X>< z9z8zqF6TYkS%xy-)Cn`UdDkDetTH{@^7h1C_OkBK*;D>3X=4eKVppoFG0A76MX=2I zh83&GI_g{k{#@sR#Zpd6?XS&o{9XH5(>?L+vtf}Hau+Mse7bykU)T1{wA-&cJS`{x zc&bROP)Q6(@uDm6 z*BoM8YuH85r%spBB}GL=A%g)!;QZ8hM4QjVCaa|e+dqFdna(E-pBeqLe~*>`d+dIj zJYLO|+$sm}drL~cUuiCGyWeO7Qu8CrNk9479uvY|H+g!dT)b8#Ja}$K(GYrk z^x(G7EaIef!c}B%5%+IycZBZc5~Z)A34Zr=ha{T!ool(0w(I`f)Ymwgd9)K>OL%<6 z*25G+J7$CW{Y|fEosP8~H?*>7gN2q41UPCqOxFokQ~wqv-Mc7Q*8M@%#2RG%6)|vh$t5o>hAn zlA_0T`&4GuYd5I`Zd{z(z33?+P37Ek@4ZD9J-`;$OnQl-^&Q>tZp=o4LfpY9imS~Q zufi;iT7~EydPVE!#YJyqQyEX=BjgTtk=vSK6mVZy1=KoF`?KV6u8F}Bw-Q^%R0U?Yu zD7t_Vnh!)@(at6KJa!%#JI(8}XgJnU#P!-Wb7?IL+wq+h5}Zfojyzn(_D5)%qUx9? zky&xYT4yEk&7$reZ)Sn1+RHt=pB2A+{n`^z9WE{>83~3ODWAW619b_dAdJYC0B12l zfvH1K?AlO>GGzFE|N3?Ju?MWkSy{J^ZG$fG>({j@5Jq~+C4i}JodUrDtF+ilo2T3A z|BgyG`D#4B=(cn8H}V$c_=6JHr_fH;el_OYqRu4fXcWTqadqeGlZI{6@Ah>qY-xyo z`uO9ci~KBI?PJ#+?`o5de64I>=qr9TcJY3xM&^m)gW7Rkj~)`l=A-v78~gKBv(U~T zXCi%6!o@Ay^rkt!BH3(KwfWVU-8LPP!)-6moHL3fiU1ppGEex~yD$@~;nY*qKo}W;k_ReBS6#!Aj?onWU*9Da9T(%o z`aaCGO_Sh;sZ|iA4Z-Pg+16GAM!IP50!nYQMXQ}q6ebt3AA#+6~z-TL4xOJO;P|8J|csw|0$_)5pbcGC0uG{wY^2tRHcZCZp#dfy3e|Ax3apCmg zVAps3$;lidEZ{ycD(1;%J%-C(RUVOLBLw`!n2JbunDgy7U)Ex8O;~O6 z;6s?!Ve{WA8vaD-p36)XGmjLx@P%)u&m32>hCY9*yCv22M1$$(xnl%V@6FYvZ98tf zTI0T4WmNiochy(ntWEBdWjjYFHm~eYxl!iKKT*wIf$X|6vlmzzZr9-B1xH6^hfE)q zW&;BzIIhTokT8ACFns-dwUT%hL%x;NZf_ZeTi0Fg@f{rQKwKCmXNXQ7eu7~EL$Pk! zBVBk+594V-`#_MAAXbt3`dzimG(;EV=32-0!leJ6whpGOG_rf)HeWBdk0 zQs1|$_J4uL+`+&`)FN|pb1@yCK6MJBR-`SeK7`Z^*;Kk1>wN(bS2I+~5R|=o1=s>o zR)_Cz24p}s;>bZ0Mz_pPlRudy;;nNlXM~?D8Y(ZezS+ghY!N~zieke2K9#S5in7)m zNB*}7#_sjm*;l0l^jJnszOL}tk#hDWEzzI(;H^RzR-UpfkF2sxBEWRvZ@ZcJ-<0?3 zR94pO+1?*qx$@WgTj!6ngi#1)a;k`*-SOq}ndt_sWvjn$;gz4v{ks1y>khLodlqiS zF)<(P$B3D`>CHM4MVlDZ-SR76{?Y9HKfHtaPXcVc**=DcpUB(+{}x5to%vFJ%w7Mu z#h)gfmES{0FZpdXQBVDOASLA@(nHS2N>kbC-z<_Xkxd85oNd!{%zB3?qP36<7#kSC zMF`~`Jv?v?UA>Nr8_8Rc&nD+Gal*s=Z6U0Y4|NF`VD1JN1f}pIN?hC0wV2>;a)@!C( zOWzWQ7u1fN|57mVWpmS=r=xjio-Wfr}djFi@YGg`h9W<@DYx<(rwnq2A=COSFaTDXaKD8$Qu$S1z3q+^? zSxKYPh(k2{Z%;dvBbb;3+?koQWl|bqhB6g57T;Y+t|{cquf2JdYs1?U@}G6SI5uQ{ zdzfH)sxQ3GoIUx`(8^V!Q%qYrD5}>E6IdUdn0OLO`J9c}9F%F_sOAsIiZt!I%cuG? z`GPEVv3T>8KS{hFX!!2wDihztogYTVI^NDGEQIaiS~V7uj0BzfzHX0VlT27P(P49J z8;o`~v5fi+)aKkfcC6v0Xzj@Ka%NxD28JZt#J+wGI36kY4Y?QT4XZLprsM1T_3M4^ zFtQg)N)nH4+p6{>Q;2(o|3?%n3iB`%>NfCNo|Ocd7>;~B1~$pq7R>Kn{trh<$`K9i z^H5KtN5;X%0PIdJGP369Psj1Jx95uYEcCLRjCGzg`1{$gfA5ST8`EpoiCp*IEnH%^ zj?&3xSdHZPAq4EmcS7;{Mzm+lEg*>;jWq16sB#^8jo=cf4WiT$^KK`tu>+!}TNvSl zc-XM9Lno#dIX(;T0mSMUG2s$_mAOwPG92{UUzvK>A#Ng7&rp=}i>hO^W18R6;mKEQO%0U=Aags>pc1 zfkFr~SG)O^r$luF$-tp(UY$a`JVl+a?(kS6PmF7sJMU3T>#8VLPsz^C#`405i2dHu zQjnkTKGkw=g&@L_AJ4*L(V7QA27RX#zhmiT*ZogVdNDW1PJe5jGj&5$f zlb#@f=xVf#Ox(bepe)huwIg0DwZ$%4_cfl!nzMdo$kzGrd1}HoYvABY`3oUSUtPSg ze6xsbFbnx-T*mK^=%*A#apxV4f0moni@iBFaQ^+p3RA&l9K`+WG5A&m$sg0X3&^4B)k37W!>xSP8PA`~hF3VX4GxN=ylfpt z=`OQkP753}``901{0LQ1x_+@0pCt04ln9vI5Y5{l1>#MJ8xbhoW6jymVoW@PDTq|S zNBDdQg>eN&xSs#F%A0$0bN=rwm1jePhd5OmiR5B}Lidhs2oxkUBLI5j`|#DI%cfpe zD|0-P5{tHZ?Js2s`bsQHCke=Y?mOjkKqdRmXFPC2lNf`572=CTDnjqQbFp=g&8di2 zDEiL8r8X&eLo5f0DO^`{w@(~HeS=C_tyGB1?OHLp;lHn@o=`6`8TtD4E5g;AcJAEn zb7A}G?b{s$XOQSnIHu3;EfO-)OD$64cqiyjFtJz!OQ%kRSEtZ~Y8zQJeL5$9m0z)J zl@44|_}oN1h~oLX26zhH`$(v7( zb4avpS8u-CDkpIF$;B%VVHC|;TB08^RX6QS2IRU(91|cX z3qxOK5DgozIQ6BdEu%ezUik|z^T;%~3xr!VJUc1Eh?4+Ck)Hn8CRsRvZkAMOkjmJJ z)eAhe)CRRk+@f$B=G4pYRO1#zYo!hS?mlY()C^HC{~f&a;u1{G?~gFi-CxL-(A42U z@C2gGK*~zTsgQ${XYSQ|S&tnFU0&I=rQ)o@mkno>caJnY+drS-Yi8VjRAXnuC+x;2 zMX;MkotN@NP7E+3`l90|pNLyByc=;akQQT$a(9Q)64^T!Tj`PEPED@xv*3Z)sumkB zuea?#EkJ!AqoOzQ{(Zz>pA@Ndf|;d;sK)V3kd#ZY-dY<~V9ONp8F`L8vEEQZ9m zIP5T0k(rl^=@^$rs>S#{R`}y-UwWleXKT(X1)XdwW}W-_KE)r+dPSOtwq*C7=P65b zI%KEs?8au*8FYR;#xcwMB@2&zWWjd1RfUU8JB|n9d z&Ey5eXBkSoMA_DLI{u|8A44@yX(@9$Gj*c2;~yb=FV}#?->AF)Ej7a|ZmZ5I3+9^qIQ01AC`auTX8UFwS0T zZ@bgK+ys}PzueONgy~HAI?S}l)=u!~g(rLU4OK|DQ=~Aj$&c9f?>@LClmDZXE$607 zd6k9ANl!<8)kkx(^Ae4=3uI?cM2+Z6L?XOw>hb_GC@c(zPiQvJ#_qz=Q z4*Xq=OghAqkxBgWUgr%?)wC45E&MHUpRYHn{S?2|i(T#ho0sc&&KI_ZtJpO89T!gg z@aDy5J885m7#i;6VZ${C`C{M1y~oJh!&F=~gDOOQ(U8+J;fQ^C{Txq|VV?a(dwY5B zd1S_*a1wGRHFy)=$z`? z)+{f{SoYSxMR1(iV|lmy^i$D{}`CeumwBsJiVt2N7Ge_@xkDbgUaT#!zd4J}&_JVsFeYa9S}1ihRVAMtlXXpMI0o zs`C%F2*GRPbKWo~z#e>~{&3nvxQ;jVKji0~*QI zUs(7DUA3h-WeH8%63mYW!?T;VW>tr7<&CWB31SrbHj?{Yt*7@`$^({)HEfIBi3K$@ z3}AqzP(CnY^O89qw*aUzMVxWaOwK zhz)NqD;!*ABn3NK^fKi9cR^o+Cw`K2-(wA{Nh(|U=Z5i5)w}}ZZexGCY(D+b&OD~7 z2ZKje7C<#9PV4$XcZ^J4y%gTbrZZ%B@@r*MIfO#p?z+TR1bbfcb z7IeT@{op40CXNVQ0@7JlmYpR+AY{E%y!N&}6zv#P&}K$LdWR`_odC)Yt*vSP?@3kv zeNrtbdMXasg&X8%1HH!Q{ipB_vy-gkAjHELs6RHZTG@e zA6IWA*auYxsHHC{CVFh1e%dtcw$O#DP-HfDh^|H=T)2>-zk|~4)`qH^%oa$SY;0^U zU!DSN55UpEL5wpRJOs=#c+lXdq7OqxBMN`Z(n8OQ@2ag8i#}zrE#&O+SsE#cRJvbC z6+^2-CrT$@F{xAWr;%*#-52~)b>UIdg>?#1>s%bx+_Z}ClwXHR(rm^PL$kGNWw zggjD`lRYv&4$$&2y{g~_3L49ydQJZv<+nmn!M_WMkNbZsp1cpM3b0vOZa~_(-UB;R z=HA&p3!l<)T~72fU-s6}@XMZZ(J*y?J09j|w*2kN+|x|AgO!e6&1;A&VROos_hw!P z4`r-)h`+&t4(s%j<3I&5<(=M*Fw&DxGFt3n`oUwSsm0oN!fFm^hdmMpAo6V;9iIYK zKbpB$yUb$>v7rizipLH2vN1R~INWNmX_0d11R0H8wl_+nVX4H<@l!yoK_)p?Z42>= z?)tT!*|9a|y)wT0r^lPO=&^0ed-MDJO2p^24bxX9?uy9;T+!Yj z;9g}d%Xo!I*dOa%<>Ky^(|K7>=h?+-odBw?`{!rcR`~C2h%P13IBb977pNj6S#3f*2N1V~y1n)>O*NhS>k)A$aT@I$_yzF>T0ywzFkt zz9@hgLqoJqILkpTz{01<6k3g@iN7QMOzhuFEAzTt!m4-jqP;zWiERryU_xS%UY_Xw z?(0ZmD6}5pnCP0q=sh26!I*eM}F)1ra)zONLj|N3jQTEX;?i957_hsP)!I zc7otF+5P*GAx+LP?d<5NB%u?bzrWvENO$2^QEHL`WI9yyYp6@V(OloVHi&AIqv)*e z>$DAoV^z)gR7GPw46!hL7>J;$^m`*&V{oJIO~J9F94rJ?I>Eb%3GixzHKSaeGU6}x)0I|<_~V;Kowux`-*+zM>;~fA zc+le)Onh`VEd~l?lJrHl(ib`aRH6}hR#wJHP`>{N*6YZXLT@a_xK+xX4XKWB$fHzx zq;$1Efm(UBbfnN>f6S)H8UnHEgmrmoDJT6JRu#1Sa7LHrpj-qm?%}l6Pd(HQy25Cm zMn3}bdgXbWPVXjJ|6RhnmHv)`$%-iHYdtq1&ld^c1Cbz*iookqn#S=l<(=o`%Dd&1 zSHZEYP9_vA!{}pp2|RRyp^* zHku14D067_u(O;aErDM*-B~dOgA@oj%&RqDkyAsELM8woVSvPA4?iR=BLnS9x_1+UVNM8zc`-to1xpOPVLX{!CAo=8&{!k7N0?8X4i#;0Gx z3Ems}jxJYD@SeM}h1AZv?tpl(X3RmVO6os^zXc*YXLrRtXc#$oIym|=gOT%a6L-8m zoiY!9fM}w~+e>mcwYnSEhMeZ55~C*Ah#fQ~(_Z7B4sst5R9b#AI%t1S>M^{s(T8n} z+1FH3T8AHI{XpC{3>b(mXJf#DXKPzWLADJIG3?*bS}TC|EJXWJ@|3XDkX?}11zdtv zh0qmc$1B}5MY7hwv_tqqvcCf+gd~NMofi-{M)D-r=avhx% zU19vvRYvgf+9e|2Z&cUw8MGQ)mCo?Vn2#6mvfxZv$6oxtq(XuRXB zlz^<2=0yetyZtU{W*52}Up(OJT)r;)TSy_}zu9TmY}Dca)P&j#jD0}|NDpx79rjsS z2$97fY1$JJg=`F9=!9;l$JV7~Wx)p$TbC~iuQf7pB5UXc04@Zp9Jnr&JOrf3#uy)( z!}I`_?mjLm-#s(w=jZJFERj{*KAlwWH+ka@(vO?_)ot@5diIY-emZI8*cTYA^`6V` zmrSyH_YW4&8mqMe&htqUncKXordC+bzZmYn=x<%Eld4g6qxs;2lWiXd#8_(Sg$e5S z8+TAg?g`s!6$NCJ^2B*KxXVLXFYVa6#x$VFNwSD)L&xve4+HhGXh((8{i$g>@0TqP zRNvu#+Es4BLL16-!!f+7^IO|kEA)6gh+mw@7E@o3~9n~uexfjWr?{G?wE$GAP-Fc#stkgt^B@R=XS7=tR z?n8wr?l2qy)t2Z~RsZof`}S?VJ*gJN6~@qY0)Ow)MW(+*rN_KQ6htY#JOTXZ(A7xC znlH2wq9(I%UaoVGWCn6i<%AP@_r@)+N%cg39qoFRr1W^XGdF2vAjYvkBuUPCXv}@Z zY_#&*+%$(tmv)ynQb4!fCxr;irK5e!(Ge5)uP-Gi;6nfqSW1Y-)AeDh=8Yv&B2fXi z;k_NW1edKov_T2=r;&su+JJjvXljEBoE3lw;~N6_fi4|j1*?ggiKZc7y1^>DxQ5*I zK1z*xOHa+c1|R_0%utHo%g#~3AYR2U4Mxj^2^~SDJL^BbQEcg4SNOy5^EsN4>0&Yc zNHrCl5ce#VGs}NvPgQmP z=}A277kqD9%BkbP5Jt`K&P84Dgh4#x2O+jbrY(Pn`?{*^{&Jk`g8%M9(_1H6P=&HO)cn-XZ7+G0W3=C^X=M%QkV_wJA3Ac6j z@oa?J7#adrU0Ghj5p5z)htN-4EUR8h8O`gW&g0oqjki^I1Y(@c_*-54#?&-pT&G>f8hdBeQT_!=*3zj+|^rR&TI&{^!j6_3AaBrK|3~SGkfCIn_IyzOwFA!U8Rvn z=9ZQb=yXH~`z4C!M*y@%O<Qf+qb%hH!Gb4KQumtP`e6hO}2s9pc0 z!M9U3|I=P>g0rQ>1aUfbv3v*(!O1UKU12n@X8v&T{;SAO)B$0drnCI}avCj<8nI7J z)ntBZdMUkhPBTm6n1rj|v5WGF3x_hlD9Fi`x{jWdBq7KVE)aR%Ri3V}v=q=H^5}No zxhZ6aB(L7ydp%>hPo5y#qQ>gJ-DlVh91w1aG%aO*M_*su)rN*HrW}N`DIasFd=nId zv26`QQ#jZyCE}wvv|7OHg3|o{{VXa$b14a#1N9?8e2vc2`d9n4`5ZS8j*%U|U7M2rDbw4-dkir~(eS3hEC7>|a z*unesNb&}4H$9g)?)xyAt9tkpJ(b$knE1P+eWzQ}m0g`a&8-!V*qzvjT4(aefCr`3yUw~=5`oZ7Q!vP2V2VhEQX#gkzZ8(?DualKPedn( zvj5)+fA=4&IU%6_5ot`HKhG}?DWx=?L4RdLUq!`4%2MTW#hvyvj?@(27Yln6KaXFz zuN=D&t5h=CaOg^<+nJ_NbHR0s=O>I}yXE4X)sKXs9}9pZ;$h^HppSyi;D``ZSdt`U zt>v9S*$_r6jVt?HiaDWYX{-09=X!EXu($z6OCy9Ws|?RYn#y7S|j*CMvH(qi`&Hc5p@u9}A4 zmk=P|r>Ek7$`e5)+Z>m+g?vEsUU}b;eQc9ZtMBOxAw1tUz8e3Ow$i&vmJP3Ih^0kT zX!U*aNK(_#s6r(r*``9{UPGn_a;%ARU6jVhIl(?8T zj~f|{7y*}}0D?2n|0f*{uI|IjFRbzWmRUp72)uqO`AP_W25`l%ZsEl>IsF3Fx=t;!sPoFptjiV#?6F^k~)i zQc|~4&{eg4+AlUL)_M_SDKnDXb7HH^8WfW<@d-(`9n4gI(vfN3rdP-^-W#wEc8f* z?-Q>&)aVy4V#5MzZ6IRP=_+`QAfk2&oR;MdsqRCXo7OgPrxOzsxT{zDj3HUNe-m?% zZHfE`E*(S&)sPSZ~p5M&MVbTm@$CeY7$Cs0D(le9eJzcX`~x2kHL@ zX)#Sr)&2#y>JC8wHM5YAF$^6W`Qn%231ERQ=YM1evEG^S9o&@C(E~48uhKk6*NUo} z^Q?u?fb*e<@J++7eeO;SXr!1VriiZ&gU06Oxvl3A1!~y3`bHuI4}FutDv-%vJHj6X zqde?*ln^UQ<4|();O-rdr&Y=)28&+iak88i^tJt!kRkJK^ZmA>%z*nIsjGDiFQ;oO zV-$E^ERXq@5>I6px&=2RWwhkvP$^${Ig>!*eS#`DvIg9{m%x(KR50>M7mpl~oaAc2IQUFyvs~I(Q_cd0+ zl!2FU>}7B9%#ic>!9=>=M~A$5Cob422zpH+To{@AbxupZ z<}J^#DD7&K0>;O@mWE(eb&}$QHn+}+GR`5f25X)0TcBYAhbW;F6k!C`9aX*4#*php zq@t*bkZ(#!Nnr^+sPg8|A6KjeLsOI;eyTOs7eLdf8MuU5hDE=hmBv?vhJ8qXR^ru? zjPDrF_&CD=oYHdn=ewWpt)7~2uTf?dsyTRbM`Ff*mM4$D(SOs|8<_H+Wkox)g0N5s z%eA;ecchdVh;`Tboqme{x$EVb(exuNYb59G<1GauV~gcyJyio_>8aO*buIZS1@P13 z@2_qkCt7xnS%Njy3fS^fT6%D~x9!asY;$mN#?GF5A=Kw#>z9bl6%t!UL7`TpB* z)@*ulp!aQP*7p(jWK7x7hXIit60M4OG_{W>{6X9GFIciDJ2sh8o1&Nk5qk4~o1gdv zc#iLXZxT`wV<5`ZbFH^4pvZ#|y)CC>68pa0%(c&EX7kwfdU`h%p~trU#ySdXSS`8xP82Y7QJjYW z2;yu|7t^%#rDm(O`sBDK zYY-@{@I%0a9J0!Z?W1<>dbZzLKN0ndt1V7vrQ+h_H)WGUZF8w=#})2<|Dv|M(->K^PlY4E z>V;fuJi}ABPhQ^HREC!8hV4Hs07X#`pd{C{45#yN#=uJDIQ-cMv_{`{R~`LrzW2f9 z$Jr#J()^T8!h=*nZ>|8_P2IJx$eRf^Z=L|9P=eK)j_scL`P^mK{KV_~5?lkX9HjTR z3C<{ZU{SNVi_y=ERdw{ZeDjlmb$gmLz{y#YGRPxh5)%0I;gg?r4so883`d;*$e3^W zjc{r+Geue16DLoik$z)1YEl}|8XGT!JigUZxePl{9d>p*?r1@pr1uHFITawIVC>hq;h6BJr8#JW^DJa8^O_hh27fMJ?&53&1u;_gz_e#Q~ zihR;XIzC3MKP#8CyZsl7ociqAw&G2Zr<>b}pH;N>cFN6;^Pk_ookBD$%o8=u37R2ySZ85AP`LJl+Rt_vAc z>Q~!x6>ME*&8F5U%!yW!mgn{LHi-XzU?(E-ibc8o&!WtzV1QCxzJ_QP@kuOl&*N0J zz7vfsN+w#j3zBzu&(g$~EhXC^W^oNguc+GcyRz~CKP#^4)iZ}88($3ohbpF7%E9ANy&&!RQ9=tiq zSTM-MYO`hAv&E?F?8}rGGU_X+$fWbP%6ph~4sO?zCoh@Kpd5s9q9At}XvE;);Kz?2 zVYgzBMA+Hl;@y7PYdZJq8~k^9`|0aZ`C71gpBK%}|9K3rrHA(U@B}Btq(DCTw_|%( ze(k+7U0|m3$e@a}CCI*$UA5W8G{n-r^Nev@{{$TMtJz!HEoj^z_$l4lXxkxP<^Kd? zYeH6~S8yMHW}tl`k4+LxsEWh|pxF-#li`oBhQm;%WmA zWnwC*d+0d6s10__s&hKrgE@9=2Ei3Yo!UYh0o$JteVflszeY$Mup(ON#>aK_Zdyp5 zSoP3gf4AAUF&vr6ko}a3H{?U93N{6krPuuL9YRJ9!n5qFJo@ zZB(Day(;s7U5lz=Dpnbp?Ja5j@H&8eu`Bzvx9+_aL(lp{`vzFn9#m;KW)jO!l;4hy z)xQ5D(u;IvHMK6g)da0#iQlWvO2JlvDsf-@UfM0VB+PPQ$b`WnBGm-Y@bpiI1opQ| zTt5|S3)lIjm3|cE8R!cQuvs716-vl5XLD^mxv89i&M!^ty>;Vr{tUi3Hn&rvQFULh zqb8X4019pB@6UOoG87%>ljQ?80Tr@S_#?rkrFR&Hw>UB z{qL+48uo8i5(v^o790tV(vxxNb|;}p4pw1PrKop6U=)r5!e?5$BVxYkxbFZtWjQif zA#_ZAm%(!V$EN&a7jbHuo8vyXE`%CT*q@(0gRl-JIJ|wRgN&^!&4D5V0KeW%A$5%4 zs}?ehNk@cWE0pI&elukOxL|zz$?;R~3i2Pg|2Cq@U>cJQwcR>8b2hf8?Njis8QE=% z|LIx`lz7+|+%*N^iIgS`-d~Nce(k!@ogI5My|O4&o@#l^%B+F38cs)pb_-T(?u=ov zmU6G5qhUiBvQ5Y?+@TpDa9$J?v{0VsWOp}i_0Qnk3OdSt7F?looHW zb~r8c^QFzA7wDuYd(H@a^ORzU;8fw5e!wAwg>jn;@~gj1d!k)e=#j24Jp@!gnwyap zh5sI$W&eal6bv1!aXM1k4f%JQhR{W)>SS$g?dC?7j6y~v+ER7==38K&$Hl6#H6dfa zr9%Bw_#tY_0F2u1iuM2A%<}?4SbtHft&PA&NO~ZPp;xKsS(!^&@gTeGh@d8nLRNOq z_bm5JR!H0P2)wRLnL>ad{8YzXF`>=E(5aMe`fCa+zpRQtd;r2L(C0Xw_S|^{(DCtO^i!lHi;IipZd34Xp?@8#bny>!pTq%r$uqA%ssGvDR`ShN(JJ9g zb}KZ0Y>2Oj3#-GbxGSj-GvS%yGKp`< z6FpBlEXux+ml$7`GWVE9iOJMhT}@^Dpg_bX|4`O7WE&TS$j8F_r(48ndiK87J-aiP zOy^&5)O%v`**5B-G&@d#2X;Ugk)&`-qee=b?BZfNr-`*nE1j;`7|wis?UmmHT!1f0j%Zlx^`c zbUYi#6aC<<6l62F^RTnv6OX#!U)|lt%{g<^>lssn!9+Jw^{58<|}s=TBGF5WdCP1);XDwZH!$J zPfY1k1?^;D2(S!7;^gG+a*rD}9oRMWAFUyP*`5&9XLGr9>AKc7nk$5gFf09uIPm(~ zEqHg4#ROvj&`=qmgf6B^ii*AyH5@x&58?dxwkrI4TNlz>?2O}7_28m`c3_pcFTqU9 zM&J#>hJ%L5Y-g`61=FWyd|McOX{2Uzo{C#HZV{4d2M3sYjN^>sFa^su&3G!nulKZ~sIWNpmZ|`&!k$GB z0h@Y>?*hj)zbIxD9EXnL_!EY`b|@qe({o`B@KUJ7J_XI5+i}v`Sx%S zO?xI}04TPQ4BK_a*cIPt{$tM<;_4r_>Lsh!jW733i4lJUh>MrGd#pC3>jorw88_06 zDT`K{?r3^O%bt96;HCQr$FPQA&F;$$_#BnyppXZJIKmMlrJ@ZC0Z&he+IND-hp;QL z5%vsv6^IFD77%taG>3>@hTy>|5P;C!M5Mxbdqjwu02L47=ekfy&d!G24f!xeIo*W_ z1HwIS=3J8!NQJPcl1I8ef3_m6{r5~A{yo#}$f3gr#a_BWGD44IV>Je)Ho9u6Tts~Tl-8t z-STJF{^}gsoB~X?#vqg$_q==8@UTyoj8QpJh%6`5^@6{33pjD6oTL0tOp`oG8jNEk| z^1Mj9xt)PZZv#U(Ytcciyc%srf4|a#Ku%^uKJvHloeN&WMU1Ad$B&VUc{KB2%WrQ* zI)A|21d@z!4#P$Zgw)P%ohk8mR#GGWEuZV?@2974C1m&Q%M*pK4y0C{6LAl*NY#By zOFj{)S}okshZSR2s#{Xdam1!X_xN5OfBs^4(`@#MoN3(`o1#K>H{H@40O14fao8E9 zfwi?1?i=^lt(``2e&eTyf5b;-XewUZ)N{Jk2+5$*($Xj>g(Yj-4e*%*RT)jX@20MF zcQR&V4L%#WGDa`(igb)AnAIZ6lxvq6n}ozivNbQA=Ju0Q*V5iHrJQKx(`K2!dz*CU zRAg{r(ZX!-Mh+44Q_ue-E6ODbE|&}?Tg$#TW|D5-@}xxO#SELEN8j5_QV3Xf1i}@L zqW=ZXRZ;dG5tmGhC{sEXwFJnDCyML(@7u}UsK*wGVh*gV%KWb+qee<0*v@|(7)V2e z)%D}ypdWg2paEYbDlO0aHeyq|U`Y<)+iJIq=sE0`W$ho;8#s1QEpLy&T5)&zJ+ZcH z+5Y>om|40^taXWT{mh=5edeqbsQhb}15Yx>4uWE;=(5(ZQH`f{YbSFL< z6veb0WcGb^w6a!ATP7v@xTt$A0=_H4Vp zW5JPd8Q;<`o0C~G(->hC`{E}y)t|D_c<6zW;mIf7ihN9K*H_brR>NOvmRlftN|@~s zW_D!e(FRuHi5m4xPC%h-W)x)nHT8;JAtU_7u z)8eL;z|P|Riaw`PlpYY(vE|S3pigak{YqxCwjuMeUi#7vyOgTinmGoAg<35S>`FUF zSF1Q-1d&UEj^f%8A>LRn*r)ajYl3sBZ$`#W1HS^b->nxJ258OEZDYl~v- zoPU0v3_e_x{UE(dSr6fFfyE6RHM{MrNC(ze*b(!k18OOCsA?6FPDHP5X6-{P{$RC=6 zMFkzluC8eRkmAJ4j^xD(-zA*ktJe+1=Du;=0ak9N_1rpZXgRtouGX>8-(oLoNh1^1 za>6+#zS6g~WW`;%wx1LJ%Qg8tMQd{!EABWy3@*R8Is`Igr z$Y;eAK9sF4EZ{AX(nftTwDKpP9M=0Zz4H_e?{MzY*c%Cd2aC=%KdXu^)pU)WlX|~gyqH`D7$Fz8&c2<5j?&)MOI`_O4C}P7U=oJh^(3x(;Hh}Z~ z7#l4i8-raAHVr*P7ayM`5V2?|x4aE_1SfZAAr3qkuCfX^du;+h^l0IKEvlRQxcX>td#87%NJq_FqmNxi8;g@p8{a z%U8C`f#x6|m4;VPp^dgt8)LJRCq2=n1_m_xFmU3;#&Zc6y6}L{CO`uP?E$9!EnHSy zepbY}sKK4BSzD9JN~wD|v-G+$G_ASrxcRaiiyH0^h}%1}L?)D5p7qPd+2GA=X*p&} zCd(-OxO`Wj+WsbmS?HU?r3fWO?y&2WE4Lnikp9w`Yz2wQzfG~FRzQ+_1`0Y_WvJoVSfH4 zcXxnTpnc_%6y@bjOigP@H0Z8b>JuvPEojILu3LGZyuRv5ZeCvF$?Tk!*Gl#0rxc#& zeKl<`Wb9HODr)jQ_WZww=SOYph^xOd)oNcMw=O+7hEID;`(n>a9+Y%+N^4I|^w-H; z_~K|f^ZmOpKC>sq3=L7KE5&JQYU(pP-gmz2iPmVm%9r!OX-3cfDAJ01?{A;T*!etl zKSd*l0?V)S3l4yDKg8ET7LhR5ZR>FI1rM+~Y+k_^~X%^#j> z@+n>^DH1k39@9-fZ~@qD>#c#a8O~#U8?{?7lw^~T^>nEOM^UOUjuilrIj!f2S59Bt zcD^&}Dsrx%rNXqLEBr7k0zE0i zzkff|6@Dt3i1rh}$G@;Y0l5}!fFuCBKd4W4cVNVnUKP{~z^01g$LF7s+=@U9OA<8C zC!b(H)D=eWJPM2{$FzIA#osAQp|O7gi~=?Ou`~zhD%LY~Pyz56uHvm*f=VC7N{pl& z9t_}8I3RUHwnSntZ+y;Tl!RRSz68ALD;E~X%RTWcd^_4x{DY`ies_D$UJrC2SKTLa zb$$a$z^ERPdI2(nZ}ppgppTm;`Y`ktv$L{yv@pb3<++1yg5h97UMcfps83~0-_E!U z{q`#t)8ki!$M~nuuOyq#eYYQp*T}mkP!!5=D(qg1Ynh4ol)Rs(CoyD#z1jxx<+|=5?9jlosNU zXdTFNRzSo13P;cpNz1G(OA^-N6cmEd6FDP4N^^wYLIDC(hGZ?)bxQdL!hB?7yk^Jm zI{dBX`6AFs0-JEzrx-Xza2!wQS}I$RcY$)k%%MC@LCQeyLZ?sUtH z=BCgwGL`EYW zW9(`h+N#G2>pff|UC8N{WQyqru_OMa*r^|dI9XYD-DPqMm+89&V%J_fQRTvI%$fx)%X2dHy?IJjx0xC@yK=V8{AJ$VEK?1m&rgouKk+~qpk6~h z4u0m)TAbHs63$fg40$ZWmMhwTK~TbPt^pXE6z2<=_iz+K6bnoaGNqm|0G<>XkaVIR z8w3{kOXmFf2`!N$UhTU6Lmn`i|9jp!RsWv%VZ{_RdN`;k04jP-n&hXVDAazB)7?$d z6^qAK?7b)76t8TyA0~Q#h?F~g`Pw~ibV=Ct-6sQbV*Tk0@67IH{YsqN>6T9RQ<=S^ z^PjJo^fr7Zu}(pJnw2#vpQ4ctIQTzRWMZH@yKoc;4V1uNN?p#QU09NYo@5++Iq%ds zQ@Nw$?>|h7>P@^|UAt$bVY}{5wZOMeX)A>a#iE>c-+3kqxuc@z@9%ePlhuVb662wM zv!P8K-X`)!jKZ;}<6NSlGh+_rQ}Qi0J$2I5)F!Z?{!~h33@!1-rMIb=xzIT@a*NJ* zZS-?!$xxJJN=8G=DzA*(pVAyylFvPdUI03j$;nIN@oAJDRf3%{rXS!5ND6?QsafZc zkT$bWn$uZm8sQ!v5H~S+(d4-l<#j%6wXV)7WXTLnt)~wm8FzU3cBjefe_89P9;jem!;ir!5n)(3W+-O;SH?X(HI1pi~n;N>kmAJ(seJV&h-Q8oqw zvey_^eYUOFj*QEXO}L{Mt6CD{#O^zwpe|W9Sj(|IXX79}mP$KH^>dqiRki2v@vRy9 zBS+o*gnFXQmR?sK_nFfk{Yh26Ue8ss@*SNN$AO}iYo8oSla33RBF8vEv;q8CI8_1ON4tU>ZSFhhq<{I>Auoe^aR{#L$^Nh~CkrRV#5 z9m%zh4#kp2|J6AO=E)Mm1v|8l378Rt!>&wR|BrN)pK4v+l~VRgG+Ap)kO|p?i{mSW z$uVs)uwmB}>N5?{Xgd)?Exz@RbD{>PPxTn8E~a|>5}W+KL6r|HWG>~EI-7ut1cgJa z^zxp+g?VEc1IA}3tci!M=gb$sa@ZCa3nXU*bmJBB{%OsJFm)+TC+?#1a*TPDv3&UB z)|UlG%)5U-<^4OObr1Yoq*tJ7jI((}@rJLKHu+ZY34EhyfLn&|7|d@zbk0KxtzkG|70xt`J$}NBn6%|+|Ov$j{z~}?5 zNJ~-{fXbe?J>)T58GbvtBrad3;di{?lm55V!WqLzd&$+q!#B2Znkrx7JjD zi(R5QvJE!?_Kj8_?hVIWWfyCdmis$PsV`QOI@c2J&ziSI{YW}rzl5!J{>I@So9DXu zJ`_r))Ju)f9x4mwYWeP(GxL$_&txe3P_w=L7x~$b@h_b(KVgj>TpbKwV01kzRSI5Z zK>sdFCMp0ImcVWN{{6eJI`omd&@GMJ|Bjjaj5NC*agv>2MAih|g$oI8irLeD@~l-& z>8ew>m_0>DHdJpw_g+Hbk&NA8san;N+BZ0==>^CxNFuu0zj%e8D9+iFs71R=OOLJA zT{;oAoA4Sc5ck@r98J!OMi;Y=S&_$BUd58$HkB>W+|AiFs8u?z{`sKT%(TB0f zxg;@uxy02_K<8({#dw-)oSFQwHPC3-|K87vo8^C6ye|HZIKE}$!)7Ukv9`d5Q^bdn zX~g*uwq8*}B^iY|UOP*#+nbDq;#<{&>;KDOxlt5Bp;#)*pdnWFU2 zjr}R%KC?!5MwFI<{Z?|NFRVOx+FqpXY|Gne@6$?ZEs74+k3Y;7%~KZA^*+x{f9}(u zepc5^go)$>W|2Qm3zt{6mHT#bsV@lD{2Fe~;?WSmX2)Qe}&FsDH{11GCUGJ?z|9UnbuIF-CpRG0qmfj`6W@4(L$ zjzEq?OusH$P5w_{+3xbmjc3pZopcnbX1yZeiAp^mJJ{JfSOD}HzDL1u?I3lrh zSo&_V>ha*_WLfVTYOj^=`g4<0*G_auH7fHzJ(;cGxd^hz-OHPZ9n+r{;fDY)GCP9?E_Eer!1-f+wm=n|vV3_Ns?K+dMX*|4UOYIf`WvgxurskYoUW=-S_K;qU#EL|2pg!TmL+EaxZJ&Nsv^Npd+WJcZ zOay)7kcey7A(8b&p~LyeeNBvPst6f*m%+^erih@#LuPQ-HA_YBN{*^~9J+q(K5$NU zLJ^2WH&o4Y;1UqwjI0iBK1)v@-bYVas9;7amgHpK()^c? zcw){;x?rVuVqHT-s<67gB$$ZDwUoOh1h=hM44s5(7Ae%?(E!`i!5-5)@6O81-? z@0($+`0CU!;eVI?4Ew)l-vb=P%q)ZvS{?%tXf!H%lv0||n^_&o({i`KXgM7vQ_m9smpF_2@w>fp1NTMJtb1hHamId9Z2c=M#mt)w*X~E{HsPQYljz^Ze_z z)-)OBZJ+XA9ea5-dnbV?8)Bf}#QMsny;AZ7IhgV0_TJAS=g;+%{kRB$pH{OgmYv+| z7miL?*SAOz7VdNdC*YKdaMr}T%1Ene##ZqK9g*Iyv~`*_-eFJ6@5e*JY_R9@=4 zfCESM&LF$PkS*w{6z60BLO$8FtqIjT#&L~LMG39UO)2D|l~SU%xYLd?^(<+vs$Sp$ zrE5p1(YBUhQ?p4uA)_xqRGq2Of_;C^dCs+zq-_F3Jd{6@QNyRdPR&_O$eN(+gI)k` zJ6J54UVV@vPQ;~;cv3P0|Ho6a6Ksaa&M}LnBiIwz#}}}h=gAo%HO2eBw(XuySAF#j zdENWWRcv#WPIri3-h8H3;u*`A_m%JZ=e(C`+*7S2tQ!Zvwth|uI#Ir7X@WyZJ|Tvu zZq;!PRi3l65PcPpBF38NJY~eeK>xWqvz|82usg|C13FAN&R^v(ZBowh7p^&A@`{8} zEY60fPS5bxkOu-RDFLP6H%w11C_nUmzEZN%(fXgJ9NnQjm5m;YIgdID4!Gw>+S9O7 z<7`ZQA@L@Z$u((j)T6U{FK0YP)~gHKw`MjC6b#$%eycE-RIR49jd$=Z`Et~d%W??y z^Xq<(F3tLt5}vjxAr~1tw-KkkB!+2D>e$oTX2xWE=;ojPsYeqNpUj(`?S&dr#nnmy92*cTnWNy<|O`GhC{;x#5xXT7rG5 z#Ev8{FxkU;z<)iZ_`AHyHpzJK=WeCQgj84E~k8t24Cs?JNUl$N9 zoKqww5FI!}_At?KuqUh~A@r4a>X2wjO30wHkiQdB%#WG^3!AJkY8DQ;7iL1Du3kP7 z8KxYW$JQ|j9BeU3Z@S>E;%A+!xL?yIseX3$vZm7DdzacvigvXXujTl9%6a_+FJ82z zNxYKlGtp3gPCae_@+^&XNNXP%ctV|mK(bcujLG`76!8y@Xc>jM7{VkmT?9lO#VB2x* zx$VJMr0y#`T;j$0TfQ+;^|v;qT#AS(YY+2#I@;6ybLEP(QcL3gurtyPtp)F! zk|`n8dLrolNC5x21YY_zC*pWwZF0#nn`8UKA5hX@G(HM*MhCl_aYny(JQVl9U7iZh zIOg!d7)DxXWkH-|*roI+C21}CR%B)2bAs?Bz~FbZsQoV>iV^EfESZrA?33h;L>QlP zQd5ZqtGJeJ1R|0>UJw>1<3ervsvLz>(>5>&5LeYM$+HJDKDi*l9<6mI;?>j-?`ubE z?GnsLuJ@jH)U2zI`D2&jl_nV#`ttP`CjKnRrzz_3J~Lb^-b-?spX=HthKGlB+Uphg zkgc_9)C3<8)BiyVtI5)2gGB$pz}Z(CbRR+bQg{{Nh<`MS&tFdk{Z}rCOE7#vm_Okz z9)HNsp{SOJxJMI^_I5ml|Jx4@ z$Kiw*w`bStFnvB|L9HOS-CX$}y# z-)Hy>BqJo%l9V%I6}6>V7_~V+C)@?E34y-R71(XmtYTsW;`005wy}?VEDz4a99*UG<7BuKrJRcNy1G z5!PQuS$01XLY+_9(t&Naf*6y!U-eH!Z7*Qu_@upabL=?-<#V>xvgCg1IH~46-|I7v zvmUhe4-4@XDVjDBlIM)s$TxpgIKpk`Y;+gzJH4{2 zM{e&3RpwHAtc&J3%Y*~o8=0o>_PlT6rSg|37?jJ{drrzgWc0iLuEO;NPGbol&d|&q zo~Zj8{`%{;obwMA?Ptf9HLd5)lotCu@JKr^k>6a!W$v|uo8Iep;L}G7jGZpapB*LJ z6Dm|2or@*i+VAZO4V0j*k#Zdc8Gx8-=!$pRB)9F5yL(_NeEV_P^$tTJxu2Kh7Wp@a z0J;|9RHg4Ig7Stsb`O@C2tPnJ6S98}2~rUeSwASTozQgjg6fuwR!zef7s|Q@Jrvoa zt^83=b2Jmf`Iph@J;Q7!->2#74{_tAo^;>1E|T!y)#j{_q(%5gPFUSfzp;*R-1X~E zDC7udw%yX@;N(#MdLxnHyXM@NEqYCgS3jlq4y03aNQ@O7l}Uw%&Fmv}dmuawg4c8n zZ}k@&nRyJDK?`)X_E-P#^-Z(L9A7qbnK-fEm$59T44= zOv~OJeKEPig8a!&>F}M<6*-z7{v)Suo-nATxgdAqenshdzYmg3orQK6-xSTK*0)=Z zmX8Jr()pd1SUVnw_zq}|aBDeYLHbwq8y)2fv*FJ}Zvb>>&= z`oT4<3&l9pHE~)nLQv(CN{fL@^3kn${mMT)a~4_0aWd(G_>Hwhl+#5?t?io}?{|&b zepC-)t#wy4pIuTcmQ32gR2>vRg-=|>SGAO&%`Li~6OPW(Ne;WLz8hUQR4w&!^t#lh z-?~@WJG)EzWtpm_616)E0T2Q#sjpu*t&v0?XX4tt?Iu(3=7_h>)4x}K@ATdkeU^b> z{i{M4JN8#D#_ETd4T67TI5e%Y%&QW2_@YuDA}1tIS3$#9wxUWm)ZDplC@yDyv?yxs zL!$9sxrO#mURQo-e(#7~@*AzRdulf0(>~L)a(884lgImlF}Io*92|^!tZN{ciqpMm zrKbPWol7QMUnkLZx7~K%7WGUYa=cH^9chni!>?O18lClJ9;F-X7(Ve__1aC^@CU?3 zwlE%!SEk86e(x{G`RzFILw3)F^U+&|+LwJ5e9tkIT z)M}Lt=+b zt1aKpfB+$dJokKo#177Ae)^mG2UyBJR0~_>wJ*e$|pNnl_%fES(6$ zNECdf@QZ>sL9-ra9O&srkJdGvsTO|gnH=`o3ElQDjyIh)*`OW;=&n^GU5R^b<>c^k z<^1QYFp~AQ7CXoh=9cXhFS?b2VU2GHwtOg>-8o{^V3U3`jJt3@*ZJ(pclIw&*hzo8 zlXl^vwZqoApf`GDr?TU22;F%sXRYlP_Xv)vCN}gz6Xs^SjMShzZSUjDN^#w9;rEGR8a9=`mNW2NDHO@(yvH8wJPXRciBuGpLo-+eK0 z9T%5m&X*k9a#=6MQ>@6t_s=gS9Z#>eCocnwMmK1D54RhM5JgKlr$pAd+Gaq|G@Xt_ru&j+_xjg;W(0eU29$IT5Fx> zsXeMaHCiDX^7qv~?duZ!Wucu@+xLMHbiFjfGIS+3809{o(K9~=Bl{ld`IFL;`Egeo zahVf((e8J41Q5;u6h#L>i~cgiU)e3B$>XIq1fWyvOEvfBSfK@)vwo4}NgpI~J(dax zqQ-@k$JZ1~T&tV{A~^B4yzDB?0olFB;9!t%;82jI{^HiQ&ow*zGo!;(EKmDh<&t4R zT8f{Y_2}w%>A4O+<$ObW{|@Mp#oHDiJC|+$;&6{A$p8XVbA)LI;53)Nb0Cm?85R)< z`piS5*UF~lBfY;xzq}3iJkH3zT_Tc7Np97G|5% zZtCdE1v98$`DAAT)-Y3u#&UFX`l{^4cii-pE6o0*aDg2Of*R_c%?Q3Gq6*`Kti5#bZ4#$Ix zgz{EgTI0u2tM!t%no>s5m~i=JaaUIrv})&&QrF^A4MKxfA4y+Bid8eRQ)Gi&%alez zmz*BtY9t$hB95zu$X2*W%QQ!!cyq5|k#!+hF5#ZK3&IJyGD+x^LPspor_Q3|6|Yfj$Qi@&PVh#RGs^ zWvkQm{8>m8?kxex0NQCf9aa2>!1Qd=0p1`^QMWHZb08*2y$5HE94-{$jDs&%C~aae zPiL3U_nX(NGG3zLvwn2HnnBZpj>48ALZ%&TMkx9=?F!bYY?Mksx1QQgu~q5=TgMQp zsSun?OWA}I4pFuOff^$-h~|3MOR=EJkr-C3T}fzq=hRTl3?5#v2=T5j=Zaqx9aq-_ ztW{6ZK%#9id|hL30e>sc)nwvjN>b|zN+DH3&6V(KvczpM6Si>rpQEvP{1ICGwvt;N zoI;L309*eHTX+&Y_5k>+>)t$2P_zU5#bBr(@FpYb2t0EiKq$`u>XFJJ8Yl$VXm;Y@vRRtL&RiP+vb- z)eML*j%GZ3NHUXA*?q{>*lFE5LdRC}xRx36@pn~U>c)J$H;S|or_t|F``FLq@5e|e zBg9bpPJ-;D*#8vMcV)*PZS`Hg(&Oub+;W2r#^j-~Twn>Qt?L5T)__e1^MZrJW9SuCfAx?V! zgpY2XgGPkdG?*#-IA2^rl+CQ%OT@kC6>n3TYU${WfPdtP+C`FQQJ zAjr+^@+tX%p;h6%WYSYTmwijil|DOnVUwOqIn0@89<=}_M_VJgm-~V2WN#E8E4CRm z?QgasifVNMt3vVRD)u%Hs%&Vsx!zZp_nVzv=kV4Rb-i}b%0_ET+Fv|~!J6&SIBbD? z*(atFRc_vFk1zi9Tg4Oc>ZmS>YRfSw(!gs|Ji6mmpGcSI+8eAt5>|BmwnnGlRN&PusbJ->2OG_OFhmA9VENT3aL_4*&pxZt#x zAmd2Kkrs%i;*3`HKK|P7Xt|MlB`Ke{{KVQ6sh8dZY{(9~1Xz|81A`O~fF8X{I;8RN zPoqrl!LW(&3`ewaur0E!{+L#l$6yM?7?6!MKZckPM|`JX&Zs6fI|ZmcY85U!*DRw< zz>(V6sftrG^&H}%waV9=bkb1Rm{WvTTR{5%!vzp)C=GAicBEU z658s87&9RGG45f8VA1yG-A^5j7wJ3sMz#(lk-*^otv>Ya3zMrT;1pz?sVIWwxty6^&~IDEUK|9RkoFCzqc-%OG<`&)8K7M^Ly<)i*U_1?K>^efehNm7~%ZIt-sJs zWh1m;QK_7i)e~e~Ef}0^8a?N@bFHc6=BK+2vcV(?TDNSi;r`qxKVQ3c%=C$fT7HM9cwv0 zJt9u6_I`mz*r@@Cdsyq^?-a>+&8)G}wt8L2I6LJs^5RNMif!xRpA=Q{`uml+q9PB7 zNy$hK&Y|VPXm3;iJf7xxqCopm(!(d2+Ni9n4bW$vgM1H|4$5wt=+^{m)jJ1qob_w+ zob^VY&g++Cprh`soYtLx>%E0q}R069n(6<6jaW?9ffN^ZC+>{oPw^o zrdK>WKT?_yxksKARRWkJ|zS5 zJRrd{IVSD%MxZ^u_(C<$$?nG+#7GTv>JL7{r=g#Ox^q;f^!H;qgZ!DqXl2(Ub;ANg zh^u@vDlqlnqRL)xFxj7<+aOaLR59bzZ*@VS^=bl z6VA6Q1(TY>OPG_bkzI=S0udX(C)5Pel)vjZ_${;;hzL(sLe;Y|{7AYeH!|YH5#RQf zuhYkuBiemg&rgsiKu(sGlm>$TeH+SIuy0JR2O}=|4#UQ_46UptA{ootgxD;vh%*MT1vyzb%F7nRh4(TtXZT~8SZZXgNNU{HU-p;`u?MGV}=qd)-=~PaCJufqJ z)f{eUdMbCd<+-tg9Zs`)>NyVpbSoH90Xb}Mgkpim4^ZOB5zcH<%TX<-2B_Z2%~joN zfv#nm{>uEAc5^2+v__nSAKp- z*DmADZ_Yx4?Cb^|Q9qKs>5%?Ck7RY6H^B$*?#;@dz}2#+QS#OM$e6yidM2x4mkmB%>Gy zi|3LRq&%BeYXdXG+_?$yiurixU1T%u)h{|`(e0zO9kMuf^F3>OuzUDvUB%oqT|kt5 zob&>yPt6QA!0ugqFp{`_ACjY_f=V;G7_da7Ec9j>9Y%9f zFTP|o(AU^pqnLHdt)zN6Ct3OjRi5lV6S(~?-6)QjtAv$}AdrYbpbP0xH@&u#W6VT( z*WvAT=-y+nV59FUF?3i>I_x;3fZV)l>3_Us<&xr;R3(&(s4UBgAy zmKBIMg-YuVoq2XMd~)!fwMwqmR+<4Ic`S>B6L{}8f`Zwe#)9nEp(grEF}lP3iIz4I z2{BzE97{lVn-|h#Z%{nkwq|m;P;-njS$p%JygM&^m!uK>Q8~ulCLc}i(tKSXEZ+We zR9rq+Vd(HAD_2?k18LC_uPjz1Ego}NprQGp;a&a$R~f&sPX6xOxs4P2P%`@SHmN_h zA4e-}ITXMijrZtRR%CNHKsg{}qznV*wU65a6d!;jZFL$Q)-7^w!ZTC%u)zlMFwER; z=mI@)zAU;EjB9D=!YQ6VzPNX~>W(ETV;ymqmD@AU)0)MKsY$$7D@d{Xx9k?x)<~}k zxpQ=4O`>4+uJE^!o9YwwCu36AX1UL}*jp8rk}*dOFh32Tdh0^rIVT{C84Gm4v%?Vw zTgwTvsHic{YXvlC@nv~16*&#oeOVHJwD{A;O?{_hxMrKBp&hI+M_*h15 zh5n3KGrJs5TpkXig~2`BZ>Z&0-5uMoSzq=~Cc`2{yI}bT1PA0~=A0h~7FIp{@OH^S zo8xTxI;JmWBq|oC38X=5!~+rW6GAWNw2fF+?ae{*gQF_$A)pSi6w|NF^k~BTThv4j z0B|FtM>&dTqbHU*6yQB9ug8!#r*n$^mGye69B)mHshIJuE&TlIOH)J94b1nM2LgIu zYy7*< zKwh${khT@mrgH@DwvW@Z?qc<}x&tnce7x%jyPN`v1hI0pkXXvAf!(qT{%5;P4gEb6i)+^A+d%axA@`TM_L40$bKhfY|)5@@hL z4Qpqm?`W^8kiyZsQ{hEpkU8j1Ur&47rtAB|HSz0|3d3ebwx@9*f@S^n;PV%UNhu>5 zIgFMt3!b@Ozfi%kt76t0opse#;2s=DnJo*Qcs{jP8^R%=IVCx&eNnjI zdVlMQk8FYKE~b!g9A|9V8hf)GPy*qs64MYc?1R&sz1!;7Ko`v= zLrl~TgVE?6@@S{GIV*8BS1#RKpanw4BV}#|rR~N;Hy)<;$LYD8h)$)Nd81h^6ydt8 z@DC;)w|I_;<0eNQB`i2Kz;wRKPsIw~aGxd2?cTCrn-wK~S_}!3nwPyLnB+l;2d62I z()OZN(*2JgU6|F`zlc20|68;%6bHweKQD3_7tc^WB(<0z4#1T4U%i0qOZ?71 zDl~W7?b$GSWY?Ri7PniM)W-}8&OYPhTH`s=R-bu*NnU;L%R;1&#VQ7=RpCbs2v3|` zSuv*(rA}|}Pw408Dk`3ZID-mifrc@7^zpJwBJAxp4cAz*8m~^`34YlBiBQd-_YwMa z0%{;%hYVm;fFB$nMgeM9-8%6Fl`8pbz6XRL)xf*lE*h1JNR)+Cc6a|ZC$fD%tyEds z`p8h}kaH1hNjk!tVb=}7WW6yOvmN)BhDt#5M_pYlWh+76AV4NQIdR&J^a)h>k`q$z zeVCu}tQsIS&}lCkv!C6&c;s=Kt3jz^L4P*#22qkW??@YgDKi)>AK~1K-$sLdMgN)o zmX{bqR&>~S6kDt^m1!qT=B?kayJK_T-uBafPV@a_lj7+O@z_I&WOl3Sk?hltn~Rc% z^X8@7zKp2T(op$p<))W!fC~*ooOCE~ay72VUeM+R@Akk#jAneo?eh$#+oh!XiedaA z3|c}!@ud+|Xf5Fo-{Xg`NwV7$YYMvL%EsE;D!c3)0SXWurNjE;?i1moR#ypIm!0PqSG zC9K&9FOVOcY1`e*rpvK=<5P_pW`5X^M)Mb8h?1?akZ@+$-Zt78AoKyEEpheWHqr17 zXLq`e&1V|wM|P%0L?x?~deTn)I!}^P&~V(6FwE^=rXw+YiFmk-MzhPrrsQKb3NiN<@KWJb9yU&&P)EJ^nli=b!+mjl2Ufs zDoP|J0?-_f;kCxa{>+sPjWgn7M6WJhhkxK&FLhcx9=YWx$_R8^tu4kRO(3d^rL|KQ z(we5L)g#nyp2F%^qj9kTL!J@@Le^+9yT{!#yir@ldK9z1Bsp<JhCMu%G}1ZV%p_cf;eEU?gO4pH+dTqpPG)D*pRp6HS01tQoIrtsxiNuUcAH;`?dwqrQV9@w$yFr z62--Ih=@x}a(6QKx4URNjfT6a^&P?_Kux&=TeP^9!H~vhTZRwm;_%qae8hu;O~W zNxwE3_*yHc&Q^{rKT+6!C(Rdw}5_>uK`vtEs9T&54P)SCG*(tR^@GL82|_oNw;}ypjM~EeDN;% zDQCmx*TmD*E(cTc&DxF2P$4o#hjQWN<5>R+Vf5%p+tsCXrKj(_2~OW887TzTO-e@S{TNh znLJi<=Q3}?MNDF*Or2FQgt9mpSZ( zD5mF2SUo91AL3U1xxY~n^|=NrcA#dFP*nu|V88HSB3n zjL6Aj5KXDXM9VcvcGddcJIV7+Q^N{h{fKh5aj*g)BVpramHdsIK-9SkHe6 z3ig-vUfLK?G_~D;zst0GseE>0vt`y%)k+J@EP&sEM0z=&V7ZrkDt2}h zjZU>L@b`SrTZ!K#}0`Mq9_51QPVX+=_dS<3s&qe1PXn9pwCAis@ zH(Uh3^8|pej1i0s3u2g!0Cb*WE4t5Z)GILE3}i=NPt`mNzRn-W!}~AyU(iQjDEXVZ zRyS)c$bN$q@3EQF*g{Y8u!~@vD0tInn4O8;Yux)mwo%Mi;ZXSb0dQ7dwvs*Qnqojf zem|&vp}4|g)F@1M&)UsqNB{_yV?^7mr+;%`UTUj%

    To create an animation you need to use the record function. In summary, we instantiated a Scene inside a Figure. Next, we created and animated observables in the scene, on a frame by frame basis. Now, we record the scene by passing the figure fig, the file path of the resulting video, and the range of frame numbers to the record function. The frame is incremented by record and the frame number is passed to the function write to animate the observables. Once the frame number reaches the total number of animation frames, recording is finished and a video file is saved on the hard drive at the file path: gallery/planethopf.mp4.

        GLMakie.record(fig, joinpath("gallery", "$modelname.mp4"), 1:frames_number) do frame
             animate(frame)
    -    end
    + end diff --git a/dev/index.html b/dev/index.html index 0dc1d04..2a397fd 100644 --- a/dev/index.html +++ b/dev/index.html @@ -1,2 +1,2 @@ -Home · Porta.jl

    Geometrize the quantum!

    This project is inspired by Eric Weinstein's Graph-Wall-Tome (GWT) project. Watch visual models on the YouTube channel.

    Requirements

    • CSV v0.10.13
    • DataFrames v1.6.1
    • FileIO v1.16.3
    • GLMakie v0.9.9

    Installation

    You can install Porta by running this (in the REPL):

    ]add Porta

    or,

    Pkg.add("Porta")

    or get the latest experimental code.

    ]add https://github.com/iamazadi/Porta.jl.git

    Usage

    For client-side code read the tests, and for examples on how to build, please check out the models directory. See planethopf.jl as an example.

    Status

    • Logic [Doing]
    • Set Theory [TODO]
    • Topology [TODO]
    • Topological Manifolds [TODO]
    • Differentiable Manifolds [TODO]
    • Bundles [TODO]
    • Geometry: Symplectic, Metric [TODO]
    • Documentation [TODO]
    • Geometric Unity [TODO]

    References

    +Home · Porta.jl

    Geometrize the quantum!

    This project is inspired by Eric Weinstein's Graph-Wall-Tome (GWT) project. Watch visual models on the YouTube channel.

    Requirements

    • CSV v0.10.13
    • DataFrames v1.6.1
    • FileIO v1.16.3
    • GLMakie v0.9.9

    Installation

    You can install Porta by running this (in the REPL):

    ]add Porta

    or,

    Pkg.add("Porta")

    or get the latest experimental code.

    ]add https://github.com/iamazadi/Porta.jl.git

    Usage

    For client-side code read the tests, and for examples on how to build, please check out the models directory. See planethopf.jl as an example.

    Status

    • Logic [Doing]
    • Set Theory [TODO]
    • Topology [TODO]
    • Topological Manifolds [TODO]
    • Differentiable Manifolds [TODO]
    • Bundles [TODO]
    • Geometry: Symplectic, Metric [TODO]
    • Documentation [TODO]
    • Geometric Unity [TODO]

    References

    diff --git a/dev/newsreport.html b/dev/newsreport.html index e4489dc..0d96fbf 100644 --- a/dev/newsreport.html +++ b/dev/newsreport.html @@ -59,4 +59,13 @@ axis = normalize(ℝ³(vec(p)[2:4])) M = mat4(Quaternion(progress * 4π, axis)) ο_transformed = M * Quaternion(vec(ο)) -ι_transformed = M * Quaternion(vec(ι))

    innerproductspositivechina

    For example, the Standard Model is formulated on 4-dimensional Minkowski spacetime, over which all fiber bundles can be trivialized and spinors have a simple explicit description. For the Symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In theoretical physics, Lie groups like the Lorentz and Poincaré groups, which are related to spacetime symmetries, and gauge groups, defining internal symmetries, are important cornerstones. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group. The Lie algebra $SL(2,\mathbb{C})$ plays a special role in physics, because as a real Lie algebra it is isomorphic to the Lie algebra of the Lorentz group of 4-dimensional spacetime. At least locally, fields in physics can be described by maps on spacetime with values in vector spaces.

    The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. As we will discuss in Sect. 6.8.2 in more detail, the group $SL(2,\mathbb{C})$ is the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity component of the Lorentz group of 4-dimensional spacetime. The fundamental geometric opbject in a gauge theory is a principal bundle over spacetime with structure group given by the gauge group. The fibers of a principal bundle are sometimes thought of as an internal space at every spacetime point, not belonging to spacetime itself. Fiber bundles are indispensible in gauge theory and physics in the situation where spacetime, the base manifold, has a non-trivial topology.

    It also happens if we compactify (Euclidean) spacetime $\mathbb{R}^4$ to the 4-sphere $S^4$. In these situations, fields on spacetime often cannot be described simply by a map to a fixed vector space, but rather as sections of a non-trivial vector bundle. We will see that this is similar to the difference in special relativity between Minkowski spacetime and the choice of an inertial system. This can be compared, in special relativity, to the choice of an inertial system for Minkowski spacetime $M$, which defines an identification on $M \cong \mathbb{R}^4$. Of course, different choices of gauges are possible, leading to different trivializations of the principal bundle, just as different choices of inertial systems lead to different identifications of spacetime with $\mathbb{R}^4$.

    Note that, if we consider principal bundles over Minkowski spacetime $\mathbb{R}^4$, it does not matter for this discussion that principal bundles over Euclidean spaces are always trivial by Corollary 4.2.9. This is very similar to special relativity, where spacetime is trivial, i.e. isomorphic to $\mathbb{R}^4$ with a Minkowski metric, but what matters is the independence of the actual trivialization, i.e. the choice of inertial system. Table 4.2 Comparison between notions for special relativity and gauge theory

    ManifoldTrivializationTransformations and invariance
    Special relativitySpacetime $M$$M \cong \mathbb{R}^4$ via inertial systemLorentz
    Gauge theoryPrincipal bundle $P \to M$$P \cong M \times G$ via choice of gaugeGauge

    It follows that, given a local gauge of the gauge bundle $P$, the section in $E$ corresponds to a unique local map from spacetime into the vector space $V$. In particular, we can describe matter fields on a spacetime diffeomorphic to $\mathbb{R}^4$ by unique maps from $\mathbb{R}^4$ into a vector space, once a global gauge for the principal bundle has been chosen. At least locally (after a choice of local gauge) we can interpret connection 1-forms as fields on spacetime (the base manifold) with values in the Lie algebra of the gauge group. Notice that connections are not unique (if $dim M, dim G \ge 1$), not even in the case of trivial principal bundles (all connections that appear in the Standard Model over Minkowski spacetime, for example, are defined on trivial principal bundles). The diffeomorphism group $Diff(M)$ of spacetime $M$ plays a comparable role in general relativity.

    This is related to the fact that gauge theories describe local interactions (the interactions occur in single spacetime points). The local connection 1-form is thus defined on an open subset in the base manifold $M$ and can be considered as a "field on spacetime" in the usual sense. Generalized Electric and Magnetic Fields on Minkowski Spacetime of Dimension 4 In quantum field theory, the gauge field $A_{\mu}$ is a function on spacetime with values in the operators on the Hilbert state space $V$ (if we ignore for the moment questions of whether this operator is well-defined and issues of regularization). By Corollary 5.13.5 this difference can be identified with a 1-form on spacetime $M$ with values in $Ad(P)$.

    In physics this fact is expressed by saying that gauge bosons, the differences $A_{\mu}-A_{\mu}^0$, are fields on spacetime that transform in the adjoint representation of $G$ under gauge transformations. In the case of Minkowski spacetime, rotations correspond to Lorentz transformations. The pseudo-Riemannian case, like the case of Minkowski spacetime, is discussed less often, even though it is very important for physics (a notable exception is the thorough discussion in Helga Baun's book [13]). $\mathbb{R}^{s,1}$ and $\mathbb{R}^{1,t}$ are the two versions of Minkowski spacetime (both versions are used in physics). This includes the particular case of the Lorentz group of Minkowski spacetime.

    However, as mentioned above, depending on the convention, 4-dimensional Minkowski spacetime in quantum field theory can have signature $(+,-,-,-)$, so that time carries the plus sign. Example 6.1.20 For applications concerning the Standard Model, the most important of these groups is the proper orthochronous Lorentz group $SO^+(1,3) \cong SO^+(3,1)$ of 4-dimensional Minkoeski spacetime. They are physical gamma matrices for $Cl(1,3)$, i.e. for the Clifford algebra of Minkowski spacetime with signature $(+,-,-,-)$, in the so-called Weyl representation or chiral representation. Example 6.3.18 Let $\Gamma_a$ and $\gamma_a = i \Gamma_a$ be the physical and mathematical gamma matrices for $Cl(1,3)$ considered in Example 6.3.17. If we set $\Gamma_a^\prime = \gamma_a$, $\gamma_a^\prime = i \Gamma_a^\prime = -\Gamma_a$, then these are physical and Mathematical gamma matrices for $Cl(1,3)$ of Minkowski spacetime with signature $(-,+,+,+)$. Example 6.3.24 For Minkowski spacetime of dimension 4 we have Table 6.1 Complex Clifford algebras

    $n$$Cl(n)$$Cl^0(n)$$N$
    Evan$End(\mathbb{C}^N)$$End(\mathbb{C}^{N/2}) \oplus End(\mathbb{C}^{N/2})$$2^{n/2}$
    Odd$End(\mathbb{C}^N) \oplus End(\mathbb{C}^N)$$End(\mathbb{C}^N)$$2^{(n-1)/2}$

    Table 6.2 Real Clifford algebras

    $\rho \ mod \ 8$$Cl(s,t)$$N$
    $0$$End(\mathbb{R}^N)$$2^{n/2}$
    $1$$End(\mathbb{C}^N)$$2^{(n-1)/2}$
    $2$$End(\mathbb{H}^N)$$2^{(n-2)/2}$
    $3$$End(\mathbb{H}^N) \oplus End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $4$$End(\mathbb{H}^N)$$2^{(n-2)/2}$
    $5$$End(\mathbb{C}^N)$$2^{(n-1)/2}$
    $6$$End(\mathbb{R})$$2^{n/2}$
    $7$$End(\mathbb{R}^N) \oplus End(\mathbb{R}^N)$$2^{(n-1)/2}$

    Table 6.3 Even part of real Clifford algebras

    $\rho \ mod \ 8$$Cl^0(s,t)$$N$
    $0$$End(\mathbb{R}^N) \oplus End(\mathbb{R}^N)$$2^{(n-2)/2}$
    $1$$End(\mathbb{R}^N)$$2^{(n-1)/2}$
    $2$$End(\mathbb{C}^N)$$2^{(n-2)/2}$
    $3$$End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $4$$End(\mathbb{H}^N) \oplus End(\mathbb{H}^N)$$2^{(n-4)/2}$
    $5$$End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $6$$End(\mathbb{C^N})$$2^{(n-2)/2}$
    $7$$End(\mathbb{R}^N)$$2^{(n-1)/2}$

    $Cl(1,3) \cong End(\mathbb{R}^4)$

    $Cl(3,1) \cong End(\mathbb{H}^2)$

    $Cl^0(1,3) \cong Cl^0(3,1) \cong End(\mathbb{C}^2)$

    Example 6.6.7 For Minkowski spacetime $\mathbb{R}^{n-1,1}$ of dimension $n$ we have $n = \rho + 2$.

    We see that in Minkowski spacetime of dimension 4 there exist both Majorana and Weyl spinors of real dimension 4, but not Majorana-Weyl spinors. In quantum field theory, spinors become fields of operators on spacetime acting on a Hilbert space. Explicit formulas for Minkowski Spacetime of Dimension 4 We collect some explicit formulas concerning Clifford algebras and spinors for the case of 4-dimensional Minkowski spacetime. In Minkowski spacetime of dimension 4 and signature $(+,-,-,-)$ (usually used in quantum field theory) there exist both Weyl and Majorana spinors, but not Majorana-Weyl spinors. Our aim in this subsection is to prove that the orthochronous spin group $Spin^+(1,3)$ of 4-dimensional Minkowski spacetime is isomorphic to the 6-dimensional Lie group $SL(2,\mathbb{C})$.

    The Story

    Who

    With the discovery of a new particle, announced on 4 July 2012 at CERN, whose properties are "consistent with the long-sought Higgs boson" [31], the final elementary particle predicted by the classical Standard Model of particle physics has been found. Interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs bosons), determined by the Lagrangian. The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. The fact that there are 8 gluons, 3 weak gauge bosons, and 1 photon is related to the dimensions of the Lie groups $SU(3)$ and $SU(2) \times U(1)$. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group.

    The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. The gauge bosons corresponding to these gauge groups are described by the adjoint representation that we discuss in Sect. 2.1.5. The representation $Ad_H$ describes the representation of the gauge boson fields in the Standard Model. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]).

    Connections on principal bundles, that we discuss in Chap. 5, correspond to gauge fields whose particle excitations in the associated quantum field theory are the gauge bosons that transmit interactions. These fields are often called gauge fields and correspond in the associated quatum field theory to gauge bosons. This implies a direct interaction between gauge bosons (the gluons in QCD) that does not occur in abelian gauge theories like quantum electrodynamics (QED). The difficulties that are still present nowadays in trying to understand the quantum version of non-abelian gauge theories, like quantum chromodynamics, can ultimately be traced back to this interaction between gauge bosons. The real-valued fields $A_\mu^a \in C^\infty(U,\mathbb{R})$ and the corresponding real-valued 1-forms $A_s \in \Omega^1(U)$ are called (local) gauge boson fields.

    In physics, the quadratic term $[A_\mu, A_\nu]$ in the expression for $F_{\mu\nu}$ (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field $A_\mu$. This explains why gluons, the gauge bosons of QCD, interact directly with each other, while photons, the gauge bosons of QED, do not. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by $A_\mu$ and the particles described by the field $\phi$. We then get a better understanding of why gauge bosons in physics are said to transform under the adjoint representation.

    Strictly speaking, gauge bosons, the excitations of the gauge field, should then be described classically by the difference $A - A^0$, where $A$ is some other connection 1-form and not by the field $A$ itself. In physics this fact is expressed by saying that gauge bosons, the differences $A_\mu - A_\mu^0$, are fields on spacetime that transform in the adjoint represntation of $G$ under gauge transformations. Gauge fields correspond to gauge bosons (spin 1 particles) and are described by 1-forms or, dually, vector fields. Even though spinors are elementary objects, some of their properties (like the periodicity modulo 8, real and quaternionic structures, or bilinear and Hamiltonian scalar products) are not at all obvious, already on the level of linear algebra, and do not have a direct analogue in the bosonic world of vectors and tensors. The existence of gauge symmetries is particularly important: it can be shown that a quantum field theory involving massless spin 1 bosons can be consistent (i.e. unitary, see Sect. 7.1.3) only if it is gauge invariant [125,143].

    Graph

    graph

    What

    The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. Spin groups such as the universal covering of the Lorentz group and its higher dimesnional analogues, are also important in physics, because they are involved in the mathematical description of fermions. Counting in this way, the Standard Model thus contains at the most elementary level 90 fermions (particles and antiparticles). The complex vector space $V$ of fermions, which carries a representation of $G$, has dimension 45 (plus the same number of corresponding antiparticles) and is the direct sum of the two G-invariant subspaces (sectors): a lepton sector of dimension 9 (where we do not include the hypothetical right-handed neutrinos) and a quark sector of dimension 36. Matter fields in the Standard Model, like quarks and leptons, or sacalar fields, like the Higgs field, correspond to sections of vector bundles associated to the principal bundle (and twisted by spinor bundles in the case of fermions).

    For example, in the Standard Model, one generation of fermions is described by associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for right-handed fermions, associated to representations of the gauge group $SU(3) \times SU(2) \times U(1)$. Matter fields in physics are described by smooth sections of vector bundles $E$ associated to principal bundles $P$ via the representations of the gauge group $G$ on a vector space $V$ (in the case of fermions the associated bundle $E$ is twisted in addition with a spinor bundle $S$, i.e. the bundle is $S \otimes E$). Additional matter fields, like fermions or scalars, can be introduced using associated vector bundles. These particles are fermions (spin $\frac{1}{2}$ particles) and are described by spinor fields (spinors). Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly neutrinos) and, together with the Dirac operator, the kinetic term and the interaction term; see Sect. 7.6. This is related to the fact that the weak interaction in the Standard Model is not invariant under parity inversion that exchanges left-handed with right-handed fermions.

    Perspective

    How

    Hence, by the uniqueness of integral curves (which is a theorem about the uniqueness of solutions to odrinary differential equations) we have $\phi_X(s) \cdot \phi_X(t) = \phi_X(s + t) \ \forall t \in I \cap (t_{min} - s, t_{max} - s)$. This implies the claim by uniqueness of solutions of ordinary differential equations. The unique solution of this differential equation for $\gamma(t)$ is $\gamma(t) = e^{tr(X)t}$. Then $e^D = \begin{bmatrix} e^{d_1} & 0 & 0 \\ 0 & e^{d_2} & 0 \\ & \ddots & \\ 0 & 0 & e^{d_n} \end{bmatrix}$ and the equation $det(e^D) = e^{d_1} ... e^{d_n} = e^{d_1 + ... + d_n} = e^{tr(D)}$ is trivially satisfied. Then we can calculate: $(R^*_gs)_p(X,Y) = \ <L_{(pg)^{-1}*}R_{g*}(X), L_{(pg)^{-1}*}R_{g*}(Y)> \ = \ <Ad_{g^{-1}} \circ L_{p^{-1}*}(X), Ad_{g^{-1}} \circ L_{p^{-1}*}(Y)>$ and $s_p(X,Y) \ = \ <L_{p^{-1}*}(X), L_{p^{-1}*}(Y)>$, where in both equations we used that $s$ is left invariant.

    Lemma 3.3.3 For $A \in Mat(m \times m, \mathbb{H})$ and $v \in \mathbb{H}^m$ the following equation holds: $det\begin{bmatrix}1 & v \\ 0 & A\end{bmatrix} = det(A)$. Lemma 4.1.13 (Cocycle Conditions) The transition functions $\{\phi_{ij}\}_{i,j \in I}$ satisfy the following equations:

    • $\phi_{ii}(x) = Id_F \ for \ x \in U_i$,
    • $\phi_{ij}(x) \circ \phi_{ji}(x) = Id_F \ for \ x \in U_i \cap U_j$,
    • $\phi_{ik}(x) \circ \phi_{kj}(x) \circ \phi_{ji}(x) = Id_F \ for \ x \in U_i \cap U_j \cap U_k$.

    The third equation is called the cycycle condition.

    5.5.2 The structure equation Theorem 5.5.4 (Structure Equation) The curvature form $F$ of a connection form $A$ satisfies $F = dA + \frac{1}{2}[A,A]$.

    Proof We check the formula by inserting $X,Y \in T_pP$ on both sides of the equation, where we distinguish the following three cases:

    1. Both $X$ and $Y$ are vertical: Then $X$ and $Y$ are fundamental vectors, $X = \tilde{V}_p, \ Y = \tilde{W}_p$ for certain elements $V,W \in g$. We get $F(X,Y) = dA(\pi_H(X), \pi_H(Y)) = 0$. On the other hand we have $\frac{1}{2}[A,A](X,Y) = [A(X),A(Y)] = [V,W]$. The differential $dA$ of a 1-form $A$ is given according to Proposition A.2.22 by $dA(X,Y) = L_X(A(Y))-L_Y(A(X))-A([X,Y])$, where we extend the vectors $X$ and $Y$ to vector fields in a neighbourhood of $p$. If we choose the extension by fundamental vector fields $\tilde{V}$ and $\tilde{W}$, then $dA(X,Y) = L_X(W) - L_Y(V) - [V,W] = -[V,W]$ since $V$ and $W$ are constant maps from $P$ to $g$ and we used that $[\tilde{V},\tilde{W}] = \tilde{[V,W]}$ according to Proposition 3.4.4. This implies the claim.
    2. Both $X$ and $Y$ are horizontal: Then $F(X,Y) = dA(X,Y)$ and $\frac{1}{2}[A,A](X,Y) = [A(X), A(Y)] = [0,0]=0$. This implies the claim.
    3. $X$ is vertical and $Y$ is horizontal: Then $X = \tilde{V}_p$ for some $V \in g$. We have $F(X,Y) = dA(\pi_H(X),\pi_H(Y)) = dA(0, Y) = 0$ and $\frac{1}{2}[A,A](X,Y) = [A(X),A(Y)] - [V,0] = 0$. Furthermore, $dA(X,Y) = L_{\tilde{V}}(A(Y)) - L_Y(V) - A([\tilde{V},Y]) = -A([\tilde{V},Y]) = 0$ since $[\tilde{V},Y]$ is horizontal by Lemma 5.5.5. This implies the claim.

    The structure equation is very useful when we want to calculate the curvature of a given connection.

    By the structure equation we have $F = dA + \frac{1}{2} [A, A]$ so that $dF = \frac{1}{2} d[A, A]$.

    Proposition 5.6.2 (Local Structure Equation) The local field strength can be calculated as $F_s = dA_s + \frac{1}{2}[A_s,A_s]$ and $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$.

    It remains to check that $F_M$ is closed. In a local gauge $s$ we have according to the local structure equation $F_s = dA_s + \frac{1}{2}[A_s,A_s]$.

    Proposition 5.6.8 For the connection on the Hopf bundle the following equation holds: $\frac{1}{2\pi i} \int_{S^2} F_{S^2} = 1$.

    We write $A_\mu = A_s(\partial_\mu), F_{\mu\nu} = F_s(\partial_\mu, \partial_\nu)$ and we have the local structure equation $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$.

    We will determine $g(t)$ as the solution of a differential equation.

    Proof Properties 1-3 follow from the theory of ordinary differential equations. (Parallel transport)

    These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories.

    Recall that for the proof of Theorem 5.8.2 concerning the existence of a horizontal lift $\gamma^*$ of a curve $\gamma:[0,1] \to M$ where $\gamma^*(0) = p \in P_{\gamma(0)}$, we had to solve the differential equation $\dot{g}(t) = -R_{g(t)*} A(\dot{\delta}(t))$, with $g(0) = e$, where $\delta$ is some lift of $\gamma$ and $g:[0,1] \to G$ is a map with $\gamma^*(t) = \delta(t) \cdot g(t)$.

    Then the differential equation can be written as $\frac{dg(t)}{dt} = -A_s(\dot{\gamma}(t)) \cdot g(t)$.

    Path-ordered exponentials are useful, because they define solutions to the ordinary differential equation we are interested in.

    Then uniqueness of the solution to ordinary differential equations show that $g \equiv h$, hence $g$ takes values in $G$.

    The solution to this differential equation is

    $g(t) = P exp(- \int_0^t \sum_{\mu=1}^n A_{s\mu}(\gamma(s))\frac{dx^\mu}{ds}ds) = P exp(- \int_{\gamma(0)}^{\gamma(t)} \sum_{\mu=1}^n A_{s\mu} (x^\mu) dx^\mu) = P exp(- \int_{\gamma_t} A_s)$, where $\gamma_t$ denotes the restriction of the curve $\gamma$ to $[0,t]$.

    What is the interpretation of the structure equation?

    Taking the determinant of both sides of this equation shows that:

    Lemma 6.1.7 Matrices $A \in O(s,t)$ satisfy $detA = \pm 1$.

    $A^T \begin{bmatrix} I_s & 0 \\ 0 & -I_t \end{bmatrix} A = \begin{bmatrix} I_s & 0 \\ 0 & -I_t \end{bmatrix}$.

    Remark 6.2.5 We can think of the linear map $\gamma$ as a linear square root of the symmetric bilinear form $-Q$: in the definition of Clifford algebras, it suffices to demand that $\gamma(v)^2 = -Q(v,v) \cdot 1 \ \forall \ v, w \in V$, because, considering this equation for vectors $v, w, v + w$, the equation $\{\gamma(v), \gamma(w\} = -2Q(v, w) \cdot 1 \ \forall \ v, w \in V$ follows.

    Lemma 6.3.6 Every chirality element $\omega$ satisfies

    • $\{\omega,e_a\} = 0$
    • $[\omega,e_a \cdot e_b] = 0 \ \forall \ 1 \le a, b \le n$.

    Proof The first equation follows from $e_a \cdot \omega = \lambda e_a \cdot e_1 ... e_n = (-1)^{a - 1} \lambda e_1 ... e_a \cdot e_a ... e_n$

    $\omega \cdot e_a = \lambda e_1 ... e_n \cdot e_a = (-1)^{n - a} \lambda e_1 ... e_a \cdot e_a ... e_n = -e_a \cdot \omega$,

    since $n$ is even. The second equation is a consequence of the first.

    Let $\Gamma_1, ..., \Gamma_n$ be physical gamma matrices. We set

    $\Gamma_a = \eta^{ac} \Gamma_c$,

    $\Gamma^{bc} = \frac{1}{2} [\Gamma^b, \Gamma^c] = \frac{1}{2} (\Gamma^b \Gamma^c - \Gamma^c \Gamma^b)$,

    $\Gamma^{n + 1} = -i^{k + t} \Gamma^1 ... \Gamma^n$

    and similarly for the mathematical $\gamma$-matrices (in the first equation there is an implicit sum over $c$; this is an instance of the Einstein summation convention). These matrices satisfy by Lemma 6.3.6

    $\{\Gamma^{n + 1}, \Gamma^a\} = 0$,

    $[\Gamma^{n + 1}, \Gamma^{bc}] = 0$,

    $\gamma^{bc} = -\Gamma^{bc}$.

    In the following examples we use the Pauli matrices

    $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

    It is easy to check that they satisfy the identities

    $\sigma^2 = I_2 \ \ j = 1, 2, 3$,

    $\sigma_j \sigma_{j + 1} = -\sigma_{j + 1} \sigma_{j} = i \sigma_{j + 2} \ \ j = 1, 2, 3$,

    where in the second equation ${j + 1}$ and $j + 2$ are taken $mod 3$.

    $(\psi, \phi) = \psi^T C \phi$

    Furthermore property 1. and 2. in Definition 6.7.1 are equivalent to

    1. $\gamma_a^T = \mu C \gamma_a C^{-1} \ \ for \ all \ a = 1, ..., s + t$.
    2. $C^T = \nu C$.

    The first equation also holds with the physical Clifford matrices $\Gamma_a$ instead of the mathematical matrices $\gamma_a$.

    There is an equivalent equation to the first one with physical Clifford matrices $\Gamma_a : 1 \cdot \Gamma^\dagger_a = -\delta A \Gamma_a A^{-1} \ \ for \ all \ a = 1, ..., s + t$.

    Furthermore, property 1. and 2. in Definition 6.7.8 are equivalent to:

    1. $\gamma_a^{\dagger} = \delta A \gamma_a A^{-1} \ \ for \ all \ a = 1, ..., s + t$.
    2. $A^{\dagger} = A$.

    Given a spin structure on a pseudo-Riemannian manifold and the spinor bundle $S$, we would like to have a covariant derivative on $S$ so that we can define field equations involving derivatives of spinors.

    The Iconic Wall

    corrected-wall

    Tome

    tome

    Wrap Up

    Why

    The following three chapters discuss applications in physics: the Lagrangians and interactions in the Standard Model, spontaneous symmetry breaking, the Higgs mechanism of mass generation, and some more advanced and modern topics like neutrino masses and CP violation. Depending on the time, the interests and the prior knowledge of the reader, he or she can take a shortcut and immediately start at the chapters on connections, spinors or Lagrangians, and then go back if more detailed mathematical knowledge is required at some point. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians.

    Symmetries of Lagrangians interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs boson), determined by the Lagrangian. For the symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In the following chapter we will study some associated concepts, like representations (which are used to define the actions of Lie groups on fields) and invariant matrices (which are important in the construction of the gauge invariant Yang-Mills Lagrangian). We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields.

    The existence of positive definite Ad-invariant scalar products on the Lie algebra of compact Lie groups is very important in gauge theory, in particular, for the construction of the gauge-invariant Yang-Mills Lagrangian; see Sect. 7.3.1. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]). In a gauge-invariant Lagrangian this results in terms of order higher than two in the matter and gauge fields, which are interpreted as interactions between the corresponding particles. In non-abelian gauge theories, like quantum chromodynamics (QCD), there are also terms in the Lagrangian of order higher than two in the gauge fields themselves, coming from a quadratic term in the curvature that appears in the Yang-Mills Lagrangian.

    In physics, the quadratic term $[A_\mu, A_\nu]$ in the expression for $F_{\mu\nu}$ (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field $A_\mu$. These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by $A_\mu$ and the particles described by the field $\phi$.

    feynmandiagrams

    Figure 5.2 shows the Feynman diagrams for the cubic and quartic terms which appear in the Klein-Gordon Lagrangian in Eq. (7.3), representing the interaction between a gauge field $A$ and a charged scalar field described locally by a map $\phi$ with values in $V$. Fig 5.2 Feynman diagrams for interaction between gauge field and charged scalar

    Hermitian scalar products are particularly important, because we need them in Chap. 7 to define Lorentz invariant Lagrangians involving spinors.

    $<\psi, \phi> \ = \ \overline{\psi} \phi$,

    $\overline{\psi} = \psi^\dagger A$.

    Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly the neutrinos) and, together with the Dirac operator the kinetic term and the interaction term; see Sect. 7.6.

    Porta.jl

    References

    1. Mark J.D. Hamilton, Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics, Springer Cham, DOI, published: 10 January 2018.

    2. Sir Roger Penrose, The Road to Reality, (2004).

    3. Roger Penrose, Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).

    4. Richard M. Murray and Zexiang Li, A Mathematical Introduction to Robotic Manipulation, 1st Edition, 1994, CRC Press, read, buy.

    5. Edward Witten, Physics and Geometry, (1987).

    6. The iconic Wall of Stony Brook University.

    +ι_transformed = M * Quaternion(vec(ι))

    innerproductspositivechina

    ζ = Complex(_κ + _ω)
    +_τ = SpinVector(ζ, timesign)
    +ζ′ = Complex(_κ′ + _ω′)
    +_τ′ = SpinVector(ζ′, timesign)
    +gauge1 = -imag(dot(_κ, _ω))
    +gauge2 = -imag(dot(_κ, _τ))
    +gauge3 = float(π)
    +@assert(isapprox(dot(_τ, _ι), vec(_τ)[1]), "The second component of the spin vector $_τ  is not equal to minus the inner product of $_τ and $_ι.")
    +@assert(isapprox(dot(_τ, _ο), -vec(_τ)[2]), "The second component of the spin vector $_τ is not equal to minus the inner product of $_τ and $_ο.")

    The geometry of "spin-vector addition" is shown. The spin-vectors exist in a spin-space that is equipped with three operations: scalar multiplication, inner product and addition. The addition of spin-vectors κ and ω results in another spin-vector κ + ω in the spin-space, which has its own flagpole and flag plane. Taking κ and ω as null vectors in the sphere of future null directions, the flagpole of κ is represented by a point (complex number) and the null flag of κ is represented as a point sufficiently close to κ that is used to assign a direction tangent to the sphere at κ.

    addition02

    The tails of the flagpoles of κ, ω and κ + ω are in a circle in the sphere of future null directions. The circumcircle of the triangle made by joining the tails of the three spin-vectors makes angles with the flagpoles and null planes. Meaning, the distance between κ and the center of the circle is equal to the distance between ω and the center. Also, the distance of the addition of κ and ω and the circle center is the same as the distance between κ and the center. For the circumcircle, we have three collinear points in the Argand complex plane. However, lines in the Argand plane become circles in sections of the three-dimensional sphere. The angle that the flagpoles of κ and ω make with the circle should be twice the argument of the inner product of the two spin-vectors (modulus 2π with a possible addition of π).

    addition08

    w = (Complex(κ + ω) - Complex(κ)) / (Complex(ω) - Complex(κ))
    +@assert(imag(w) ≤ 0 || isapprox(imag(w), 0.0), "The flagpoles are not collinear: $(Complex(κ)), $(Complex(ω)), $(Complex(κ + ω))")

    In an interesting way, the argument (phase) of the inner product of κ and ω is equal to half of the sum of the angles that the spin-vectors make with the circle, which is in turn equal to the angle that U and V make with each other minus π (also see the geometric descriptions of the inner product to construct U and V). In the case of spin-vector addition, the angles that the flag planes of κ, ω and κ + ω, each make with the circle are equal. But, be careful with determining the signs of the flag planes and the possible addition of π to the flag plane of κ + ω. For determining flag plane signs, see also Figure 1-21 in page 64 of Roger Penrose and Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).

    addition09

    For example, the Standard Model is formulated on 4-dimensional Minkowski spacetime, over which all fiber bundles can be trivialized and spinors have a simple explicit description. For the Symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In theoretical physics, Lie groups like the Lorentz and Poincaré groups, which are related to spacetime symmetries, and gauge groups, defining internal symmetries, are important cornerstones. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group. The Lie algebra $SL(2,\mathbb{C})$ plays a special role in physics, because as a real Lie algebra it is isomorphic to the Lie algebra of the Lorentz group of 4-dimensional spacetime. At least locally, fields in physics can be described by maps on spacetime with values in vector spaces.

    The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. As we will discuss in Sect. 6.8.2 in more detail, the group $SL(2,\mathbb{C})$ is the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity component of the Lorentz group of 4-dimensional spacetime. The fundamental geometric opbject in a gauge theory is a principal bundle over spacetime with structure group given by the gauge group. The fibers of a principal bundle are sometimes thought of as an internal space at every spacetime point, not belonging to spacetime itself. Fiber bundles are indispensible in gauge theory and physics in the situation where spacetime, the base manifold, has a non-trivial topology.

    It also happens if we compactify (Euclidean) spacetime $\mathbb{R}^4$ to the 4-sphere $S^4$. In these situations, fields on spacetime often cannot be described simply by a map to a fixed vector space, but rather as sections of a non-trivial vector bundle. We will see that this is similar to the difference in special relativity between Minkowski spacetime and the choice of an inertial system. This can be compared, in special relativity, to the choice of an inertial system for Minkowski spacetime $M$, which defines an identification on $M \cong \mathbb{R}^4$. Of course, different choices of gauges are possible, leading to different trivializations of the principal bundle, just as different choices of inertial systems lead to different identifications of spacetime with $\mathbb{R}^4$.

    Note that, if we consider principal bundles over Minkowski spacetime $\mathbb{R}^4$, it does not matter for this discussion that principal bundles over Euclidean spaces are always trivial by Corollary 4.2.9. This is very similar to special relativity, where spacetime is trivial, i.e. isomorphic to $\mathbb{R}^4$ with a Minkowski metric, but what matters is the independence of the actual trivialization, i.e. the choice of inertial system. Table 4.2 Comparison between notions for special relativity and gauge theory

    ManifoldTrivializationTransformations and invariance
    Special relativitySpacetime $M$$M \cong \mathbb{R}^4$ via inertial systemLorentz
    Gauge theoryPrincipal bundle $P \to M$$P \cong M \times G$ via choice of gaugeGauge

    It follows that, given a local gauge of the gauge bundle $P$, the section in $E$ corresponds to a unique local map from spacetime into the vector space $V$. In particular, we can describe matter fields on a spacetime diffeomorphic to $\mathbb{R}^4$ by unique maps from $\mathbb{R}^4$ into a vector space, once a global gauge for the principal bundle has been chosen. At least locally (after a choice of local gauge) we can interpret connection 1-forms as fields on spacetime (the base manifold) with values in the Lie algebra of the gauge group. Notice that connections are not unique (if $dim M, dim G \ge 1$), not even in the case of trivial principal bundles (all connections that appear in the Standard Model over Minkowski spacetime, for example, are defined on trivial principal bundles). The diffeomorphism group $Diff(M)$ of spacetime $M$ plays a comparable role in general relativity.

    This is related to the fact that gauge theories describe local interactions (the interactions occur in single spacetime points). The local connection 1-form is thus defined on an open subset in the base manifold $M$ and can be considered as a "field on spacetime" in the usual sense. Generalized Electric and Magnetic Fields on Minkowski Spacetime of Dimension 4 In quantum field theory, the gauge field $A_{\mu}$ is a function on spacetime with values in the operators on the Hilbert state space $V$ (if we ignore for the moment questions of whether this operator is well-defined and issues of regularization). By Corollary 5.13.5 this difference can be identified with a 1-form on spacetime $M$ with values in $Ad(P)$.

    In physics this fact is expressed by saying that gauge bosons, the differences $A_{\mu}-A_{\mu}^0$, are fields on spacetime that transform in the adjoint representation of $G$ under gauge transformations. In the case of Minkowski spacetime, rotations correspond to Lorentz transformations. The pseudo-Riemannian case, like the case of Minkowski spacetime, is discussed less often, even though it is very important for physics (a notable exception is the thorough discussion in Helga Baun's book [13]). $\mathbb{R}^{s,1}$ and $\mathbb{R}^{1,t}$ are the two versions of Minkowski spacetime (both versions are used in physics). This includes the particular case of the Lorentz group of Minkowski spacetime.

    However, as mentioned above, depending on the convention, 4-dimensional Minkowski spacetime in quantum field theory can have signature $(+,-,-,-)$, so that time carries the plus sign. Example 6.1.20 For applications concerning the Standard Model, the most important of these groups is the proper orthochronous Lorentz group $SO^+(1,3) \cong SO^+(3,1)$ of 4-dimensional Minkoeski spacetime. They are physical gamma matrices for $Cl(1,3)$, i.e. for the Clifford algebra of Minkowski spacetime with signature $(+,-,-,-)$, in the so-called Weyl representation or chiral representation. Example 6.3.18 Let $\Gamma_a$ and $\gamma_a = i \Gamma_a$ be the physical and mathematical gamma matrices for $Cl(1,3)$ considered in Example 6.3.17. If we set $\Gamma_a^\prime = \gamma_a$, $\gamma_a^\prime = i \Gamma_a^\prime = -\Gamma_a$, then these are physical and Mathematical gamma matrices for $Cl(1,3)$ of Minkowski spacetime with signature $(-,+,+,+)$. Example 6.3.24 For Minkowski spacetime of dimension 4 we have Table 6.1 Complex Clifford algebras

    $n$$Cl(n)$$Cl^0(n)$$N$
    Evan$End(\mathbb{C}^N)$$End(\mathbb{C}^{N/2}) \oplus End(\mathbb{C}^{N/2})$$2^{n/2}$
    Odd$End(\mathbb{C}^N) \oplus End(\mathbb{C}^N)$$End(\mathbb{C}^N)$$2^{(n-1)/2}$

    Table 6.2 Real Clifford algebras

    $\rho \ mod \ 8$$Cl(s,t)$$N$
    $0$$End(\mathbb{R}^N)$$2^{n/2}$
    $1$$End(\mathbb{C}^N)$$2^{(n-1)/2}$
    $2$$End(\mathbb{H}^N)$$2^{(n-2)/2}$
    $3$$End(\mathbb{H}^N) \oplus End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $4$$End(\mathbb{H}^N)$$2^{(n-2)/2}$
    $5$$End(\mathbb{C}^N)$$2^{(n-1)/2}$
    $6$$End(\mathbb{R})$$2^{n/2}$
    $7$$End(\mathbb{R}^N) \oplus End(\mathbb{R}^N)$$2^{(n-1)/2}$

    Table 6.3 Even part of real Clifford algebras

    $\rho \ mod \ 8$$Cl^0(s,t)$$N$
    $0$$End(\mathbb{R}^N) \oplus End(\mathbb{R}^N)$$2^{(n-2)/2}$
    $1$$End(\mathbb{R}^N)$$2^{(n-1)/2}$
    $2$$End(\mathbb{C}^N)$$2^{(n-2)/2}$
    $3$$End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $4$$End(\mathbb{H}^N) \oplus End(\mathbb{H}^N)$$2^{(n-4)/2}$
    $5$$End(\mathbb{H}^N)$$2^{(n-3)/2}$
    $6$$End(\mathbb{C^N})$$2^{(n-2)/2}$
    $7$$End(\mathbb{R}^N)$$2^{(n-1)/2}$

    $Cl(1,3) \cong End(\mathbb{R}^4)$

    $Cl(3,1) \cong End(\mathbb{H}^2)$

    $Cl^0(1,3) \cong Cl^0(3,1) \cong End(\mathbb{C}^2)$

    Example 6.6.7 For Minkowski spacetime $\mathbb{R}^{n-1,1}$ of dimension $n$ we have $n = \rho + 2$.

    We see that in Minkowski spacetime of dimension 4 there exist both Majorana and Weyl spinors of real dimension 4, but not Majorana-Weyl spinors. In quantum field theory, spinors become fields of operators on spacetime acting on a Hilbert space. Explicit formulas for Minkowski Spacetime of Dimension 4 We collect some explicit formulas concerning Clifford algebras and spinors for the case of 4-dimensional Minkowski spacetime. In Minkowski spacetime of dimension 4 and signature $(+,-,-,-)$ (usually used in quantum field theory) there exist both Weyl and Majorana spinors, but not Majorana-Weyl spinors. Our aim in this subsection is to prove that the orthochronous spin group $Spin^+(1,3)$ of 4-dimensional Minkowski spacetime is isomorphic to the 6-dimensional Lie group $SL(2,\mathbb{C})$.

    The Story

    Who

    With the discovery of a new particle, announced on 4 July 2012 at CERN, whose properties are "consistent with the long-sought Higgs boson" [31], the final elementary particle predicted by the classical Standard Model of particle physics has been found. Interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs bosons), determined by the Lagrangian. The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. The fact that there are 8 gluons, 3 weak gauge bosons, and 1 photon is related to the dimensions of the Lie groups $SU(3)$ and $SU(2) \times U(1)$. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group.

    The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. The gauge bosons corresponding to these gauge groups are described by the adjoint representation that we discuss in Sect. 2.1.5. The representation $Ad_H$ describes the representation of the gauge boson fields in the Standard Model. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]).

    Connections on principal bundles, that we discuss in Chap. 5, correspond to gauge fields whose particle excitations in the associated quantum field theory are the gauge bosons that transmit interactions. These fields are often called gauge fields and correspond in the associated quatum field theory to gauge bosons. This implies a direct interaction between gauge bosons (the gluons in QCD) that does not occur in abelian gauge theories like quantum electrodynamics (QED). The difficulties that are still present nowadays in trying to understand the quantum version of non-abelian gauge theories, like quantum chromodynamics, can ultimately be traced back to this interaction between gauge bosons. The real-valued fields $A_\mu^a \in C^\infty(U,\mathbb{R})$ and the corresponding real-valued 1-forms $A_s \in \Omega^1(U)$ are called (local) gauge boson fields.

    In physics, the quadratic term $[A_\mu, A_\nu]$ in the expression for $F_{\mu\nu}$ (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field $A_\mu$. This explains why gluons, the gauge bosons of QCD, interact directly with each other, while photons, the gauge bosons of QED, do not. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by $A_\mu$ and the particles described by the field $\phi$. We then get a better understanding of why gauge bosons in physics are said to transform under the adjoint representation.

    Strictly speaking, gauge bosons, the excitations of the gauge field, should then be described classically by the difference $A - A^0$, where $A$ is some other connection 1-form and not by the field $A$ itself. In physics this fact is expressed by saying that gauge bosons, the differences $A_\mu - A_\mu^0$, are fields on spacetime that transform in the adjoint represntation of $G$ under gauge transformations. Gauge fields correspond to gauge bosons (spin 1 particles) and are described by 1-forms or, dually, vector fields. Even though spinors are elementary objects, some of their properties (like the periodicity modulo 8, real and quaternionic structures, or bilinear and Hamiltonian scalar products) are not at all obvious, already on the level of linear algebra, and do not have a direct analogue in the bosonic world of vectors and tensors. The existence of gauge symmetries is particularly important: it can be shown that a quantum field theory involving massless spin 1 bosons can be consistent (i.e. unitary, see Sect. 7.1.3) only if it is gauge invariant [125,143].

    Graph

    graph

    What

    The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. Spin groups such as the universal covering of the Lorentz group and its higher dimesnional analogues, are also important in physics, because they are involved in the mathematical description of fermions. Counting in this way, the Standard Model thus contains at the most elementary level 90 fermions (particles and antiparticles). The complex vector space $V$ of fermions, which carries a representation of $G$, has dimension 45 (plus the same number of corresponding antiparticles) and is the direct sum of the two G-invariant subspaces (sectors): a lepton sector of dimension 9 (where we do not include the hypothetical right-handed neutrinos) and a quark sector of dimension 36. Matter fields in the Standard Model, like quarks and leptons, or sacalar fields, like the Higgs field, correspond to sections of vector bundles associated to the principal bundle (and twisted by spinor bundles in the case of fermions).

    For example, in the Standard Model, one generation of fermions is described by associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for right-handed fermions, associated to representations of the gauge group $SU(3) \times SU(2) \times U(1)$. Matter fields in physics are described by smooth sections of vector bundles $E$ associated to principal bundles $P$ via the representations of the gauge group $G$ on a vector space $V$ (in the case of fermions the associated bundle $E$ is twisted in addition with a spinor bundle $S$, i.e. the bundle is $S \otimes E$). Additional matter fields, like fermions or scalars, can be introduced using associated vector bundles. These particles are fermions (spin $\frac{1}{2}$ particles) and are described by spinor fields (spinors). Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly neutrinos) and, together with the Dirac operator, the kinetic term and the interaction term; see Sect. 7.6. This is related to the fact that the weak interaction in the Standard Model is not invariant under parity inversion that exchanges left-handed with right-handed fermions.

    Perspective

    How

    Hence, by the uniqueness of integral curves (which is a theorem about the uniqueness of solutions to odrinary differential equations) we have $\phi_X(s) \cdot \phi_X(t) = \phi_X(s + t) \ \forall t \in I \cap (t_{min} - s, t_{max} - s)$. This implies the claim by uniqueness of solutions of ordinary differential equations. The unique solution of this differential equation for $\gamma(t)$ is $\gamma(t) = e^{tr(X)t}$. Then $e^D = \begin{bmatrix} e^{d_1} & 0 & 0 \\ 0 & e^{d_2} & 0 \\ & \ddots & \\ 0 & 0 & e^{d_n} \end{bmatrix}$ and the equation $det(e^D) = e^{d_1} ... e^{d_n} = e^{d_1 + ... + d_n} = e^{tr(D)}$ is trivially satisfied. Then we can calculate: $(R^*_gs)_p(X,Y) = \ <L_{(pg)^{-1}*}R_{g*}(X), L_{(pg)^{-1}*}R_{g*}(Y)> \ = \ <Ad_{g^{-1}} \circ L_{p^{-1}*}(X), Ad_{g^{-1}} \circ L_{p^{-1}*}(Y)>$ and $s_p(X,Y) \ = \ <L_{p^{-1}*}(X), L_{p^{-1}*}(Y)>$, where in both equations we used that $s$ is left invariant.

    Lemma 3.3.3 For $A \in Mat(m \times m, \mathbb{H})$ and $v \in \mathbb{H}^m$ the following equation holds: $det\begin{bmatrix}1 & v \\ 0 & A\end{bmatrix} = det(A)$. Lemma 4.1.13 (Cocycle Conditions) The transition functions $\{\phi_{ij}\}_{i,j \in I}$ satisfy the following equations:

    • $\phi_{ii}(x) = Id_F \ for \ x \in U_i$,
    • $\phi_{ij}(x) \circ \phi_{ji}(x) = Id_F \ for \ x \in U_i \cap U_j$,
    • $\phi_{ik}(x) \circ \phi_{kj}(x) \circ \phi_{ji}(x) = Id_F \ for \ x \in U_i \cap U_j \cap U_k$.

    The third equation is called the cycycle condition.

    5.5.2 The structure equation Theorem 5.5.4 (Structure Equation) The curvature form $F$ of a connection form $A$ satisfies $F = dA + \frac{1}{2}[A,A]$.

    Proof We check the formula by inserting $X,Y \in T_pP$ on both sides of the equation, where we distinguish the following three cases:

    1. Both $X$ and $Y$ are vertical: Then $X$ and $Y$ are fundamental vectors, $X = \tilde{V}_p, \ Y = \tilde{W}_p$ for certain elements $V,W \in g$. We get $F(X,Y) = dA(\pi_H(X), \pi_H(Y)) = 0$. On the other hand we have $\frac{1}{2}[A,A](X,Y) = [A(X),A(Y)] = [V,W]$. The differential $dA$ of a 1-form $A$ is given according to Proposition A.2.22 by $dA(X,Y) = L_X(A(Y))-L_Y(A(X))-A([X,Y])$, where we extend the vectors $X$ and $Y$ to vector fields in a neighbourhood of $p$. If we choose the extension by fundamental vector fields $\tilde{V}$ and $\tilde{W}$, then $dA(X,Y) = L_X(W) - L_Y(V) - [V,W] = -[V,W]$ since $V$ and $W$ are constant maps from $P$ to $g$ and we used that $[\tilde{V},\tilde{W}] = \tilde{[V,W]}$ according to Proposition 3.4.4. This implies the claim.
    2. Both $X$ and $Y$ are horizontal: Then $F(X,Y) = dA(X,Y)$ and $\frac{1}{2}[A,A](X,Y) = [A(X), A(Y)] = [0,0]=0$. This implies the claim.
    3. $X$ is vertical and $Y$ is horizontal: Then $X = \tilde{V}_p$ for some $V \in g$. We have $F(X,Y) = dA(\pi_H(X),\pi_H(Y)) = dA(0, Y) = 0$ and $\frac{1}{2}[A,A](X,Y) = [A(X),A(Y)] - [V,0] = 0$. Furthermore, $dA(X,Y) = L_{\tilde{V}}(A(Y)) - L_Y(V) - A([\tilde{V},Y]) = -A([\tilde{V},Y]) = 0$ since $[\tilde{V},Y]$ is horizontal by Lemma 5.5.5. This implies the claim.

    The structure equation is very useful when we want to calculate the curvature of a given connection.

    By the structure equation we have $F = dA + \frac{1}{2} [A, A]$ so that $dF = \frac{1}{2} d[A, A]$.

    Proposition 5.6.2 (Local Structure Equation) The local field strength can be calculated as $F_s = dA_s + \frac{1}{2}[A_s,A_s]$ and $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$.

    It remains to check that $F_M$ is closed. In a local gauge $s$ we have according to the local structure equation $F_s = dA_s + \frac{1}{2}[A_s,A_s]$.

    Proposition 5.6.8 For the connection on the Hopf bundle the following equation holds: $\frac{1}{2\pi i} \int_{S^2} F_{S^2} = 1$.

    We write $A_\mu = A_s(\partial_\mu), F_{\mu\nu} = F_s(\partial_\mu, \partial_\nu)$ and we have the local structure equation $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$.

    We will determine $g(t)$ as the solution of a differential equation.

    Proof Properties 1-3 follow from the theory of ordinary differential equations. (Parallel transport)

    These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories.

    Recall that for the proof of Theorem 5.8.2 concerning the existence of a horizontal lift $\gamma^*$ of a curve $\gamma:[0,1] \to M$ where $\gamma^*(0) = p \in P_{\gamma(0)}$, we had to solve the differential equation $\dot{g}(t) = -R_{g(t)*} A(\dot{\delta}(t))$, with $g(0) = e$, where $\delta$ is some lift of $\gamma$ and $g:[0,1] \to G$ is a map with $\gamma^*(t) = \delta(t) \cdot g(t)$.

    Then the differential equation can be written as $\frac{dg(t)}{dt} = -A_s(\dot{\gamma}(t)) \cdot g(t)$.

    Path-ordered exponentials are useful, because they define solutions to the ordinary differential equation we are interested in.

    Then uniqueness of the solution to ordinary differential equations show that $g \equiv h$, hence $g$ takes values in $G$.

    The solution to this differential equation is

    $g(t) = P exp(- \int_0^t \sum_{\mu=1}^n A_{s\mu}(\gamma(s))\frac{dx^\mu}{ds}ds) = P exp(- \int_{\gamma(0)}^{\gamma(t)} \sum_{\mu=1}^n A_{s\mu} (x^\mu) dx^\mu) = P exp(- \int_{\gamma_t} A_s)$, where $\gamma_t$ denotes the restriction of the curve $\gamma$ to $[0,t]$.

    What is the interpretation of the structure equation?

    Taking the determinant of both sides of this equation shows that:

    Lemma 6.1.7 Matrices $A \in O(s,t)$ satisfy $detA = \pm 1$.

    $A^T \begin{bmatrix} I_s & 0 \\ 0 & -I_t \end{bmatrix} A = \begin{bmatrix} I_s & 0 \\ 0 & -I_t \end{bmatrix}$.

    Remark 6.2.5 We can think of the linear map $\gamma$ as a linear square root of the symmetric bilinear form $-Q$: in the definition of Clifford algebras, it suffices to demand that $\gamma(v)^2 = -Q(v,v) \cdot 1 \ \forall \ v, w \in V$, because, considering this equation for vectors $v, w, v + w$, the equation $\{\gamma(v), \gamma(w\} = -2Q(v, w) \cdot 1 \ \forall \ v, w \in V$ follows.

    Lemma 6.3.6 Every chirality element $\omega$ satisfies

    • $\{\omega,e_a\} = 0$
    • $[\omega,e_a \cdot e_b] = 0 \ \forall \ 1 \le a, b \le n$.

    Proof The first equation follows from $e_a \cdot \omega = \lambda e_a \cdot e_1 ... e_n = (-1)^{a - 1} \lambda e_1 ... e_a \cdot e_a ... e_n$

    $\omega \cdot e_a = \lambda e_1 ... e_n \cdot e_a = (-1)^{n - a} \lambda e_1 ... e_a \cdot e_a ... e_n = -e_a \cdot \omega$,

    since $n$ is even. The second equation is a consequence of the first.

    Let $\Gamma_1, ..., \Gamma_n$ be physical gamma matrices. We set

    $\Gamma_a = \eta^{ac} \Gamma_c$,

    $\Gamma^{bc} = \frac{1}{2} [\Gamma^b, \Gamma^c] = \frac{1}{2} (\Gamma^b \Gamma^c - \Gamma^c \Gamma^b)$,

    $\Gamma^{n + 1} = -i^{k + t} \Gamma^1 ... \Gamma^n$

    and similarly for the mathematical $\gamma$-matrices (in the first equation there is an implicit sum over $c$; this is an instance of the Einstein summation convention). These matrices satisfy by Lemma 6.3.6

    $\{\Gamma^{n + 1}, \Gamma^a\} = 0$,

    $[\Gamma^{n + 1}, \Gamma^{bc}] = 0$,

    $\gamma^{bc} = -\Gamma^{bc}$.

    In the following examples we use the Pauli matrices

    $\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

    It is easy to check that they satisfy the identities

    $\sigma^2 = I_2 \ \ j = 1, 2, 3$,

    $\sigma_j \sigma_{j + 1} = -\sigma_{j + 1} \sigma_{j} = i \sigma_{j + 2} \ \ j = 1, 2, 3$,

    where in the second equation ${j + 1}$ and $j + 2$ are taken $mod 3$.

    $(\psi, \phi) = \psi^T C \phi$

    Furthermore property 1. and 2. in Definition 6.7.1 are equivalent to

    1. $\gamma_a^T = \mu C \gamma_a C^{-1} \ \ for \ all \ a = 1, ..., s + t$.
    2. $C^T = \nu C$.

    The first equation also holds with the physical Clifford matrices $\Gamma_a$ instead of the mathematical matrices $\gamma_a$.

    There is an equivalent equation to the first one with physical Clifford matrices $\Gamma_a : 1 \cdot \Gamma^\dagger_a = -\delta A \Gamma_a A^{-1} \ \ for \ all \ a = 1, ..., s + t$.

    Furthermore, property 1. and 2. in Definition 6.7.8 are equivalent to:

    1. $\gamma_a^{\dagger} = \delta A \gamma_a A^{-1} \ \ for \ all \ a = 1, ..., s + t$.
    2. $A^{\dagger} = A$.

    Given a spin structure on a pseudo-Riemannian manifold and the spinor bundle $S$, we would like to have a covariant derivative on $S$ so that we can define field equations involving derivatives of spinors.

    The Iconic Wall

    corrected-wall

    Tome

    tome

    Wrap Up

    Why

    The following three chapters discuss applications in physics: the Lagrangians and interactions in the Standard Model, spontaneous symmetry breaking, the Higgs mechanism of mass generation, and some more advanced and modern topics like neutrino masses and CP violation. Depending on the time, the interests and the prior knowledge of the reader, he or she can take a shortcut and immediately start at the chapters on connections, spinors or Lagrangians, and then go back if more detailed mathematical knowledge is required at some point. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians.

    Symmetries of Lagrangians interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs boson), determined by the Lagrangian. For the symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In the following chapter we will study some associated concepts, like representations (which are used to define the actions of Lie groups on fields) and invariant matrices (which are important in the construction of the gauge invariant Yang-Mills Lagrangian). We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields.

    The existence of positive definite Ad-invariant scalar products on the Lie algebra of compact Lie groups is very important in gauge theory, in particular, for the construction of the gauge-invariant Yang-Mills Lagrangian; see Sect. 7.3.1. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]). In a gauge-invariant Lagrangian this results in terms of order higher than two in the matter and gauge fields, which are interpreted as interactions between the corresponding particles. In non-abelian gauge theories, like quantum chromodynamics (QCD), there are also terms in the Lagrangian of order higher than two in the gauge fields themselves, coming from a quadratic term in the curvature that appears in the Yang-Mills Lagrangian.

    In physics, the quadratic term $[A_\mu, A_\nu]$ in the expression for $F_{\mu\nu}$ (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field $A_\mu$. These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by $A_\mu$ and the particles described by the field $\phi$.

    feynmandiagrams

    Figure 5.2 shows the Feynman diagrams for the cubic and quartic terms which appear in the Klein-Gordon Lagrangian in Eq. (7.3), representing the interaction between a gauge field $A$ and a charged scalar field described locally by a map $\phi$ with values in $V$. Fig 5.2 Feynman diagrams for interaction between gauge field and charged scalar

    Hermitian scalar products are particularly important, because we need them in Chap. 7 to define Lorentz invariant Lagrangians involving spinors.

    $<\psi, \phi> \ = \ \overline{\psi} \phi$,

    $\overline{\psi} = \psi^\dagger A$.

    Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly the neutrinos) and, together with the Dirac operator the kinetic term and the interaction term; see Sect. 7.6.

    Porta.jl

    References

    1. Mark J.D. Hamilton, Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics, Springer Cham, DOI, published: 10 January 2018.

    2. Sir Roger Penrose, The Road to Reality, (2004).

    3. Roger Penrose, Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).

    4. Richard M. Murray and Zexiang Li, A Mathematical Introduction to Robotic Manipulation, 1st Edition, 1994, CRC Press, read, buy.

    5. Edward Witten, Physics and Geometry, (1987).

    6. The iconic Wall of Stony Brook University.

    diff --git a/dev/reactionwheelunicycle.html b/dev/reactionwheelunicycle.html index e8f2218..ca9277c 100644 --- a/dev/reactionwheelunicycle.html +++ b/dev/reactionwheelunicycle.html @@ -1,2 +1,2 @@ -Reaction Wheel Unicycle · Porta.jl

    The Reaction Wheel Unicycle

    $V_{cnt} = \begin{bmatrix} \dot{x} - r_w \dot{\theta} cos(\delta) \newline \dot{y} - r_w \dot{\theta} sin(\delta) \newline \dot{z} \end{bmatrix} = \begin{bmatrix} 0 \newline 0 \newline 0 \end{bmatrix}$

    $\dot{x} = r_w \dot{\theta} cos(\delta)$

    $\dot{y} = r_w \dot{\theta} sin(\delta)$

    $\dot{z} = 0$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = Q_i + \sum_{k=1}^n {\lambda}_k a_{ki}$

    $i = 1, \ldots, m$

    $L = T_{total} - P_{total}$

    ${}_{w2}^{cp}T = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\alpha) & -sin(\alpha) & 0 \newline 0 & sin(\alpha) & cos(\alpha) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & r_w \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\alpha) & -sin(\alpha) & -r_w sin(\alpha) \newline 0 & sin(\alpha) & cos(\alpha) & r_w cos(\alpha) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_{cp}^{g}T = \begin{bmatrix} cos(\delta) & -sin(\delta) & 0 & x \newline sin(\delta) & cos(\delta) & 0 & y \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_{w2}^{g}T = {}_{cp}^{g}T \times {}_{w2}^{cp}T = \begin{bmatrix} cos(\delta) & -sin(\delta) cos(\alpha) & sin(\delta) sin(\alpha) & x + r_w sin(\delta) sin(\alpha) \newline sin(\delta) & cos(\delta) cos(\alpha) & -cos(\delta) sin(\alpha) & y - r_w cos(\delta) sin(\alpha) \newline 0 & sin(\alpha) & cos(\alpha) & r_w cos(\alpha) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}^{w2}P_w = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_w = {}_{w2}^gT \times {}^{w2}P_w = \begin{bmatrix} x + r_w sin(\alpha) sin(\delta) \newline y - r_w sin(\alpha) cos(\delta) \newline r_w cos(\alpha) \newline 1 \end{bmatrix}$

    ${}_c^{w2}T = \begin{bmatrix} cos(\beta) & 0 & sin(\beta) & 0 \newline 0 & 1 & 0 & 0 \newline -sin(\beta) & 0 & cos(\beta) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & l_c \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} cos(\beta) & 0 & sin(\beta) & l_c sin(\beta) \newline 0 & 1 & 0 & 0 \newline -sin(\beta) & 0 & cos(\beta) & l_c cos(\beta) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_c^gT = {}_{w2}^gT \times {}_c^{w2}T = \begin{bmatrix} {}_c^gt_{11} & -sin(\delta) cos(\alpha) & {}_c^gt_{13} & {}_c^gt_{14} \newline {}_c^gt_{21} & cos(\delta) cos(\alpha) & {}_c^gt_{23} & {}_c^gt_{24} \newline -cos(\alpha) sin(\beta) & sin(\alpha) & cos(\alpha) cos(\beta) & {}_c^gt_{34} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_c^gt_{11} = cos(\beta) cos(\delta) - sin(\alpha) sin(beta) sin(\delta)$

    ${}_c^gt_{13} = sin(\beta) cos(\delta) + sin(\alpha) cos(\beta) sin(\delta)$

    ${}_c^gt_{14} = x + r_w sin(\delta) sin(\alpha) + l_c sin(\beta) cos(\delta) + l_c sin(\alpha) cos(\beta) sin(\delta)$

    ${}_c^gt_{21} = cos(\beta) sin(\delta) + sin(\alpha) sin(\beta) cos(\delta)$

    ${}_c^gt_{23} = sin(\beta) sin(\delta) - sin(\alpha) cos(\beta) cos(\delta)$

    ${}_c^gt_{24} = y - r_w cos(\delta) sin(\alpha) + l_c sin(\beta) sin(\delta) - l_c sin(\alpha) cos(\beta) cos(\delta)$

    ${}_c^gt_{34} = r_w cos(\alpha) + l_c cos(\alpha) cos(\beta)$

    ${}^cP_c = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_c = {}_c^gT \times {}^cP_c = \begin{bmatrix} {}^gp_{c1} \newline {}^gp_{c2} \newline {}^gp_{c3} \newline 1 \end{bmatrix}$

    ${}^gp_{c1} = x + r_w sin(\alpha) sin(\delta) + l_c cos(\beta) sin(\alpha) sin(\delta) + l_c sin(\beta) cos(\delta)$

    ${}^gp_{c2} = y - r_w sin(\alpha) cos(\delta) - l_c cos(\beta) sin(\alpha) cos(\delta) + l_c sin(\beta) sin(\delta)$

    ${}^gp_{c3} = r_w cos(\alpha) + l_c cos(\beta) cos(\alpha)$

    ${}_r^cT = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & l_{cr} \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\gamma) & -sin(\gamma) & 0 \newline 0 & sin(\gamma) & cos(\gamma) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\gamma) & -sin(\gamma) & 0 \newline 0 & sin(\gamma) & cos(\gamma) & l_{cr} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_r^gT = {}_c^gT \times {}_r^cT = \begin{bmatrix} {}_r^gt_{11} & {}_r^gt_{12} & {}_r^gt_{13} & {}_r^gt_{14} \newline {}_r^gt_{21} & {}_r^gt_{22} & {}_r^gt_{23} & {}_r^gt_{24} \newline -cos(\alpha) sin(\beta) & {}_r^gt_{32} & {}_r^gt_{33} & {}_r^gt_{34} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_r^gt_{11} = cos(\beta) cos(\delta) - sin(\alpha) sin(\beta) sin(\delta)$

    ${}_r^gt_{12} = -sin(\delta) cos(\alpha) cos(\gamma) + cos(\delta) sin(\beta) sin(\gamma) + sin(\delta) sin(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{13} = sin(\delta) cos(\alpha) sin(\gamma) + cos(\delta) sin(\beta) cos(\gamma) + sin(\delta) sin(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{14} = 0 + l_{cr} (cos(\delta) sin(\beta) + sin(\delta) sin(\alpha) cos(\beta)) + l_c sin(\beta) cos(\delta) + l_c cos(\beta) sin(\delta) sin(\alpha) + x + r_w sin(\delta) sin(\alpha)$

    ${}_r^gt_{21} = cos(\beta) sin(\delta) + sin(\alpha) sin(\beta) cos(\delta)$

    ${}_r^gt_{22} = cos(\delta) cos(\alpha) cos(\gamma) + sin(\delta) sin(\beta) sin(\gamma) - cos(\delta) sin(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{23} = -cos(\delta) cos(\alpha) sin(\gamma) + sin(\delta) sin(\beta) cos(\gamma) - cos(\delta) sin(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{24} = l_{cr} (sin(\delta) sin(\beta) - cos(\delta) sin(\alpha) cos(\beta)) + l_c sin(\beta) sin(\delta) - l_c cos(\beta) cos(\delta) sin(\alpha) + y - r_w cos(\delta) sin(\alpha)$

    ${}_r^gt_{32} = sin(\alpha) cos(\gamma) + cos(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{33} = -sin(\alpha) sin(\gamma) + cos(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{34} = l_{cr} cos(\alpha) cos(\beta) + l_c cos(\beta) cos(\alpha) + r_w cos(\alpha)$

    ${}^rP_r = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_r = {}_r^gT \times {}^rP_r = \begin{bmatrix} {}^gp_{r1} \newline {}^gp_{r2} \newline {}^gp_{r3} \newline 1 \end{bmatrix}$

    ${}^gp_{r1} = x + r_w sin(\alpha) sin(\delta) + (l_c + l_{cr}) cos(\beta) sin(\alpha) sin(\delta) + (l_c + l_{cr}) sin(\beta) cos(\delta)$

    ${}^gp_{r2} = y - r_w sin(\alpha) cos(\delta) - (l_c + l_{cr}) cos(\beta) sin(\alpha) cos(\delta) + (l_c + l_{cr}) sin(\beta) sin(\delta)$

    ${}^gp_{r3} = r_w cos(\alpha) + (l_c + l_{cr}) cos(\beta) cos(\alpha)$

    $V_w = \frac{dP_w}{dt}$

    $V_c = \frac{dP_c}{dt}$

    $V_r = \frac{dP_r}{dt}$

    ${\Omega}_w = \begin{bmatrix} 0 \newline \dot{\theta} \newline 0 \newline 0 \end{bmatrix} + \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^{w2}T \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} 0 \newline \dot{\theta} \newline 0 \newline 0 \end{bmatrix} + \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\alpha} \newline \dot{\theta} + \dot{\delta} sin(\alpha) \newline \dot{\delta} cos(\alpha) \end{bmatrix}$

    ${\Omega}_c = \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^cT \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^cT \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_c^{w2}T^{-1} \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_c^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\alpha} cos(\beta) - \dot{\delta} cos(\alpha) sin(\beta) \newline \dot{\beta} + \dot{\delta} sin(\alpha) \newline \dot{\alpha} sin(\beta) + \dot{\delta} cos(\alpha) cos(\beta) \newline 0 \end{bmatrix}$

    ${}_r^{w2}T = {}_{w2}^gT^{-1} \times {}_r^gT$

    ${\Omega}_r = \begin{bmatrix} \dot{\gamma} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_c^rT \times \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^rT \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^rT \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\gamma} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_r^cT^{-1} \times \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_r^{w2}T^{-1} \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_r^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\gamma} + \dot{\alpha} cos(\beta) - \dot{\delta} cos(\alpha) sin(\beta) \newline {\omega}_{r2} \newline {\omega}_{r3} \newline 0 \end{bmatrix}$

    ${\omega}_{r2} = \dot{\beta} cos(\gamma) + \dot{\alpha} sin(\beta) sin(\gamma) + \dot{\delta} sin(\alpha) cos(\gamma) + \dot{\delta} cos(\alpha) cos(\beta) sin(\gamma)$

    ${\omega}_{r3} = -\dot{\beta} sin(\gamma) + \dot{\alpha} sin(\beta) cos(\gamma) - \dot{\delta} sin(\alpha) sin(\gamma) + \dot{\delta} cos(\alpha) cos(\beta) cos(\gamma)$

    $T_w = \frac{1}{2} m_w V_w^T V_w + \frac{1}{2} {\Omega}_w^T I_w {\Omega}_w$

    $P_w = m_w g P_w(3)$

    $T_c = \frac{1}{2} m_c V_c^T V_c + \frac{1}{2} {\Omega}_c^T I_c {\Omega}_c$

    $P_c = m_c g P_c(3)$

    $T_r = \frac{1}{2} m_r V_r^T V_r + \frac{1}{2} {\Omega}_r^T I_r {\Omega}_r$

    $P_r = m_r g P_r(3)$

    $T_{total} = T_w + T_c + T_r$

    $P_{total} = P_w + P_c + P_r$

    $m = 7, \ n = 2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}}) - \frac{\partial L}{\partial x} = {\lambda}_1$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{y}}) - \frac{\partial L}{\partial y} = {\lambda}_2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) - \frac{\partial L}{\partial \theta} = {\tau}_w - r_w cos(\delta) {\lambda}_1 - r_w sin(\delta) {\lambda}_2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\beta}}) - \frac{\partial L}{\partial \beta} = -{\tau}_w$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\alpha}}) - \frac{\partial L}{\partial \alpha} = 0$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\gamma}}) - \frac{\partial L}{\partial \gamma} = {\tau}_r$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\delta}}) - \frac{\partial L}{\partial \delta} = 0$

    Wheel dynamics:

    $m_{11} \ddot{\beta} + m_{12} \ddot{\gamma} + m_{13} \ddot{\delta} + m_{14} \ddot{\theta} + c_{11} \dot{\beta}^2 + c_{12} \dot{\gamma}^2 + c_{13} \dot{\delta}^2 + c_{14} \dot{\alpha} \dot{\delta} + c_{15} \dot{\beta} \dot{\gamma} + c_{16} \dot{\beta} \dot{\delta} + c_{17} \dot{\gamma} \dot{\delta} = {\tau}_w$

    Chassis longitudinal dynamics:

    $m_{21} \ddot{\alpha} + m_{22} \ddot{\beta} + m_{23} \ddot{\delta} + m_{24} \ddot{\theta} + c_{21} \dot{\alpha}^2 + c_{22} \dot{\delta}^2 + c_{23} \dot{\alpha} \dot{\gamma} + c_{24} \dot{\alpha} \dot{\delta} + c_{25} \dot{\beta} \dot{\gamma} + c_{26} \dot{\gamma} \dot{\delta} + c_{27} \dot{\delta} \dot{\theta} + g_{21} = -{\tau}_w$

    Chassis lateral dynamics:

    $m_{31} \ddot{\alpha} + m_{32} \ddot{\beta} + m_{33} \ddot{\gamma} + m_{34} \ddot{\delta} + c_{31} \dot{\beta}^2 + c_{32} \dot{\gamma}^2 + c_{33} \dot{\delta}^2 + c_{34} \dot{\alpha} \dot{\beta} + c_{35} \dot{\alpha} \dot{\gamma} + c_{36} \dot{\beta} \dot{\gamma} + c_{37} \dot{\beta} \dot{\delta} + c_{38} \dot{\gamma} \dot{\delta} + c_{39} \dot{\delta} \dot{\theta} = 0$

    Reaction wheel dynamics:

    $m_{41} \ddot{\alpha} + m_{42} \ddot{\gamma} + m_{43} \ddot{\delta} + m_{44} \ddot{\theta} + c_{41} \dot{\alpha}^2 + c_{42} \dot{\beta}^2 + c_{43} \dot{\delta}^2 + c_{44} \dot{\alpha} \dot{\beta} + c_{45} \dot{\alpha} \dot{\delta} + c_{46} \dot{\beta} \dot{\delta} + c_{47} \dot{\delta} \dot{\theta} + g_{41} = {\tau}_r$

    Turning dynamics:

    $m_{51} \ddot{\alpha} + m_{52} \ddot{\beta} + m_{53} \ddot{\gamma} + m_{54} \ddot{\delta} + m_{55} \ddot{\theta} + c_{51} \dot{\alpha}^2 + c_{52} \dot{\beta}^2 + c_{53} \dot{\gamma}^2 + c_{54} \dot{\alpha} \dot{\beta} + c_{55} \dot{\alpha} \dot{\gamma} + c_{56} \dot{\alpha} \dot{\delta} + c_{57} \dot{\alpha} \dot{\theta} + c_{58} \dot{\beta} \dot{\gamma} + c_{59} \dot{\beta} \dot{\delta} + c_{510} \dot{\gamma} \dot{\delta} + c_{511} \dot{\delta} \dot{\theta} = 0$

    $\frac{\mathrm{d} x\left( t \right)}{\mathrm{d}t} = r_{w} \cos\left( \delta\left( t \right) \right) \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \newline \frac{\mathrm{d} y\left( t \right)}{\mathrm{d}t} = r_{w} \sin\left( \delta\left( t \right) \right) \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \newline \frac{\mathrm{d} z\left( t \right)}{\mathrm{d}t} = 0 \newline I_{w} = \left[ \begin{array}{cccc} I_{w1} & 0 & 0 & 0 \newline 0 & I_{w2} & 0 & 0 \newline 0 & 0 & I_{w3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline I_{c} = \left[ \begin{array}{cccc} I_{c1} & 0 & 0 & 0 \newline 0 & I_{c2} & 0 & 0 \newline 0 & 0 & I_{c3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline I_{r} = \left[ \begin{array}{cccc} I_{r1} & 0 & 0 & 0 \newline 0 & I_{r2} & 0 & 0 \newline 0 & 0 & I_{r3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline \mathrm{w2cpT}\left( t \right) = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \newline 0 & \cos\left( \alpha\left( t \right) \right) & - \sin\left( \alpha\left( t \right) \right) & - r_{w} \sin\left( \alpha\left( t \right) \right) \newline 0 & \sin\left( \alpha\left( t \right) \right) & \cos\left( \alpha\left( t \right) \right) & r_{w} \cos\left( \alpha\left( t \right) \right) \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{cpgT}\left( t \right) = \left[ \begin{array}{cccc} \cos\left( \delta\left( t \right) \right) & - \sin\left( \delta\left( t \right) \right) & 0 & x\left( t \right) \newline \sin\left( \delta\left( t \right) \right) & \cos\left( \delta\left( t \right) \right) & 0 & y\left( t \right) \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{w2gT}\left( t \right) = \mathrm{cpgT}\left( t \right) \mathrm{w2cpT}\left( t \right) \newline w2P_{w} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{w}\left( t \right) = \mathrm{w2gT}\left( t \right) w2P_{w} \newline \mathrm{cw2T}\left( t \right) = \left[ \begin{array}{cccc} \cos\left( \beta\left( t \right) \right) & 0 & \sin\left( \beta\left( t \right) \right) & l_{c} \sin\left( \beta\left( t \right) \right) \newline 0 & 1 & 0 & 0 \newline -\sin\left( \beta\left( t \right) \right) & 0 & \cos\left( \beta\left( t \right) \right) & l_{c} \cos\left( \beta\left( t \right) \right) \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{cgT}\left( t \right) = \mathrm{w2gT}\left( t \right) \mathrm{cw2T}\left( t \right) \newline cP_{c} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{c}\left( t \right) = \mathrm{cgT}\left( t \right) cP_{c} \newline \mathrm{rcT}\left( t \right) = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \newline 0 & \cos\left( \gamma\left( t \right) \right) & - \sin\left( \gamma\left( t \right) \right) & 0 \newline 0 & \sin\left( \gamma\left( t \right) \right) & \cos\left( \gamma\left( t \right) \right) & l_{cr} \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{rgT}\left( t \right) = \mathrm{cgT}\left( t \right) \mathrm{rcT}\left( t \right) \newline rP_{r} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{r}\left( t \right) = \mathrm{rgT}\left( t \right) rP_{r} \newline \mathrm{rw2T}\left( t \right) = \mathrm{inv}\left( \mathrm{w2gT}\left( t \right) \right) \mathrm{rgT}\left( t \right) \newline V_{w}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{w}\left( t \right) \right) \newline V_{c}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{c}\left( t \right) \right) \newline V_{r}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{r}\left( t \right) \right) \newline \Omega_{w}\left( t \right) = \mathrm{broadcast}\left( +, \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline _{derivative}\left( \theta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{w2gT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline \Omega_{c}\left( t \right) = \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \left[ \begin{array}{c} 0 \newline _{derivative}\left( \beta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{cw2T}\left( t \right) \right) \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{cgT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline \Omega_{r}\left( t \right) = \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \left[ \begin{array}{c} _{derivative}\left( \gamma\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{rcT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline _{derivative}\left( \beta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{rw2T}\left( t \right) \right) \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{rgT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline T_{w}\left( t \right) = \mathrm{adjoint}\left( V_{w}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{w}\left( t \right), \mathrm{Ref}\left( 0.5 m_{w} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{w}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{w} \Omega_{w}\left( t \right), 0.5 \right)_{1} \newline P_{w}\left( t \right) = g \mathrm{gP}_{w}\left( t \right)_{3} m_{w} \newline T_{c}\left( t \right) = \mathrm{adjoint}\left( V_{c}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{c}\left( t \right), \mathrm{Ref}\left( 0.5 m_{c} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{c}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{c} \Omega_{c}\left( t \right), 0.5 \right)_{1} \newline P_{c}\left( t \right) = g \mathrm{gP}_{c}\left( t \right)_{3} m_{c} \newline T_{r}\left( t \right) = \mathrm{adjoint}\left( V_{r}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{r}\left( t \right), \mathrm{Ref}\left( 0.5 m_{r} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{r}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{r} \Omega_{r}\left( t \right), 0.5 \right)_{1} \newline P_{r}\left( t \right) = g \mathrm{gP}_{r}\left( t \right)_{3} m_{r} \newline T_{total}\left( t \right) = T_{r}\left( t \right) + T_{c}\left( t \right) + T_{w}\left( t \right) \newline P_{total}\left( t \right) = P_{w}\left( t \right) + P_{c}\left( t \right) + P_{r}\left( t \right) \newline L\left( t \right) = T_{total}\left( t \right) - P_{total}\left( t \right) \newline$

    $L = 0.5 \left( \left( \frac{\frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t} \cos\left( \beta\left( t \right) \right)}{\sin^{2}\left( \beta\left( t \right) \right) + \cos^{2}\left( \beta\left( t \right) \right)} + \frac{\left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( - \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c1} + \left( \frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} + \frac{\left( - \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \left( - \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c2} + \left( \frac{\sin\left( \beta\left( t \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\sin^{2}\left( \beta\left( t \right) \right) + \cos^{2}\left( \beta\left( t \right) \right)} + \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c3} \right) + 0.5 \left( \left( \frac{\mathrm{d} \gamma\left( t \right)}{\mathrm{d}t} + \frac{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} \right)^{2} I_{r1} + \left( \frac{\left( - \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) - \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( - \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} + \frac{\frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} \cos\left( \gamma\left( t \right) \right)}{\sin^{2}\left( \gamma\left( t \right) \right) + \cos^{2}\left( \gamma\left( t \right) \right)} \right)^{2} I_{r2} + \left( \frac{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} + \frac{ - \frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} \sin\left( \gamma\left( t \right) \right)}{\sin^{2}\left( \gamma\left( t \right) \right) + \cos^{2}\left( \gamma\left( t \right) \right)} \right)^{2} I_{r3} \right) + 0.5 \left( \frac{\left( \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t} \right)^{2} \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right)^{2} I_{w3}}{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \right)^{2}} + \left( \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t} \right)^{2} I_{w1} + \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \right)^{2} I_{w2} \right) + 0.5 m_{c} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + l_{c} \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{c} \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) + l_{c} \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) - l_{c} \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} \right) + 0.5 m_{r} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + l_{c} \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{c} \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{cr} \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) + l_{c} \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) - l_{c} \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{cr} \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + l_{cr} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \right)^{2} \right) + 0.5 m_{w} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} r_{w} \cos\left( \alpha\left( t \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} \right) - g m_{w} r_{w} \cos\left( \alpha\left( t \right) \right) - g \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) m_{c} - g \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + l_{cr} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) m_{r}$

    $\left[ \begin{array}{c} _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline \end{array} \right] = \left[ \begin{array}{c} \lambda_1 \newline \lambda_2 \newline \tau_{w} - r_{w} \sin\left( \delta\left( t \right) \right) \lambda_2 - r_{w} \cos\left( \delta\left( t \right) \right) \lambda_1 \newline -\tau_{w} \newline 0 \newline \tau_{p} \newline 0 \newline \end{array} \right]$

    +Reaction Wheel Unicycle · Porta.jl

    The Reaction Wheel Unicycle

    $V_{cnt} = \begin{bmatrix} \dot{x} - r_w \dot{\theta} cos(\delta) \newline \dot{y} - r_w \dot{\theta} sin(\delta) \newline \dot{z} \end{bmatrix} = \begin{bmatrix} 0 \newline 0 \newline 0 \end{bmatrix}$

    $\dot{x} = r_w \dot{\theta} cos(\delta)$

    $\dot{y} = r_w \dot{\theta} sin(\delta)$

    $\dot{z} = 0$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{q}_i}) - \frac{\partial L}{\partial q_i} = Q_i + \sum_{k=1}^n {\lambda}_k a_{ki}$

    $i = 1, \ldots, m$

    $L = T_{total} - P_{total}$

    ${}_{w2}^{cp}T = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\alpha) & -sin(\alpha) & 0 \newline 0 & sin(\alpha) & cos(\alpha) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & r_w \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\alpha) & -sin(\alpha) & -r_w sin(\alpha) \newline 0 & sin(\alpha) & cos(\alpha) & r_w cos(\alpha) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_{cp}^{g}T = \begin{bmatrix} cos(\delta) & -sin(\delta) & 0 & x \newline sin(\delta) & cos(\delta) & 0 & y \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_{w2}^{g}T = {}_{cp}^{g}T \times {}_{w2}^{cp}T = \begin{bmatrix} cos(\delta) & -sin(\delta) cos(\alpha) & sin(\delta) sin(\alpha) & x + r_w sin(\delta) sin(\alpha) \newline sin(\delta) & cos(\delta) cos(\alpha) & -cos(\delta) sin(\alpha) & y - r_w cos(\delta) sin(\alpha) \newline 0 & sin(\alpha) & cos(\alpha) & r_w cos(\alpha) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}^{w2}P_w = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_w = {}_{w2}^gT \times {}^{w2}P_w = \begin{bmatrix} x + r_w sin(\alpha) sin(\delta) \newline y - r_w sin(\alpha) cos(\delta) \newline r_w cos(\alpha) \newline 1 \end{bmatrix}$

    ${}_c^{w2}T = \begin{bmatrix} cos(\beta) & 0 & sin(\beta) & 0 \newline 0 & 1 & 0 & 0 \newline -sin(\beta) & 0 & cos(\beta) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & l_c \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} cos(\beta) & 0 & sin(\beta) & l_c sin(\beta) \newline 0 & 1 & 0 & 0 \newline -sin(\beta) & 0 & cos(\beta) & l_c cos(\beta) \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_c^gT = {}_{w2}^gT \times {}_c^{w2}T = \begin{bmatrix} {}_c^gt_{11} & -sin(\delta) cos(\alpha) & {}_c^gt_{13} & {}_c^gt_{14} \newline {}_c^gt_{21} & cos(\delta) cos(\alpha) & {}_c^gt_{23} & {}_c^gt_{24} \newline -cos(\alpha) sin(\beta) & sin(\alpha) & cos(\alpha) cos(\beta) & {}_c^gt_{34} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_c^gt_{11} = cos(\beta) cos(\delta) - sin(\alpha) sin(beta) sin(\delta)$

    ${}_c^gt_{13} = sin(\beta) cos(\delta) + sin(\alpha) cos(\beta) sin(\delta)$

    ${}_c^gt_{14} = x + r_w sin(\delta) sin(\alpha) + l_c sin(\beta) cos(\delta) + l_c sin(\alpha) cos(\beta) sin(\delta)$

    ${}_c^gt_{21} = cos(\beta) sin(\delta) + sin(\alpha) sin(\beta) cos(\delta)$

    ${}_c^gt_{23} = sin(\beta) sin(\delta) - sin(\alpha) cos(\beta) cos(\delta)$

    ${}_c^gt_{24} = y - r_w cos(\delta) sin(\alpha) + l_c sin(\beta) sin(\delta) - l_c sin(\alpha) cos(\beta) cos(\delta)$

    ${}_c^gt_{34} = r_w cos(\alpha) + l_c cos(\alpha) cos(\beta)$

    ${}^cP_c = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_c = {}_c^gT \times {}^cP_c = \begin{bmatrix} {}^gp_{c1} \newline {}^gp_{c2} \newline {}^gp_{c3} \newline 1 \end{bmatrix}$

    ${}^gp_{c1} = x + r_w sin(\alpha) sin(\delta) + l_c cos(\beta) sin(\alpha) sin(\delta) + l_c sin(\beta) cos(\delta)$

    ${}^gp_{c2} = y - r_w sin(\alpha) cos(\delta) - l_c cos(\beta) sin(\alpha) cos(\delta) + l_c sin(\beta) sin(\delta)$

    ${}^gp_{c3} = r_w cos(\alpha) + l_c cos(\beta) cos(\alpha)$

    ${}_r^cT = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & l_{cr} \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\gamma) & -sin(\gamma) & 0 \newline 0 & sin(\gamma) & cos(\gamma) & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & 1 & 0 & 0 \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \newline 0 & cos(\gamma) & -sin(\gamma) & 0 \newline 0 & sin(\gamma) & cos(\gamma) & l_{cr} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_r^gT = {}_c^gT \times {}_r^cT = \begin{bmatrix} {}_r^gt_{11} & {}_r^gt_{12} & {}_r^gt_{13} & {}_r^gt_{14} \newline {}_r^gt_{21} & {}_r^gt_{22} & {}_r^gt_{23} & {}_r^gt_{24} \newline -cos(\alpha) sin(\beta) & {}_r^gt_{32} & {}_r^gt_{33} & {}_r^gt_{34} \newline 0 & 0 & 0 & 1 \end{bmatrix}$

    ${}_r^gt_{11} = cos(\beta) cos(\delta) - sin(\alpha) sin(\beta) sin(\delta)$

    ${}_r^gt_{12} = -sin(\delta) cos(\alpha) cos(\gamma) + cos(\delta) sin(\beta) sin(\gamma) + sin(\delta) sin(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{13} = sin(\delta) cos(\alpha) sin(\gamma) + cos(\delta) sin(\beta) cos(\gamma) + sin(\delta) sin(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{14} = 0 + l_{cr} (cos(\delta) sin(\beta) + sin(\delta) sin(\alpha) cos(\beta)) + l_c sin(\beta) cos(\delta) + l_c cos(\beta) sin(\delta) sin(\alpha) + x + r_w sin(\delta) sin(\alpha)$

    ${}_r^gt_{21} = cos(\beta) sin(\delta) + sin(\alpha) sin(\beta) cos(\delta)$

    ${}_r^gt_{22} = cos(\delta) cos(\alpha) cos(\gamma) + sin(\delta) sin(\beta) sin(\gamma) - cos(\delta) sin(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{23} = -cos(\delta) cos(\alpha) sin(\gamma) + sin(\delta) sin(\beta) cos(\gamma) - cos(\delta) sin(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{24} = l_{cr} (sin(\delta) sin(\beta) - cos(\delta) sin(\alpha) cos(\beta)) + l_c sin(\beta) sin(\delta) - l_c cos(\beta) cos(\delta) sin(\alpha) + y - r_w cos(\delta) sin(\alpha)$

    ${}_r^gt_{32} = sin(\alpha) cos(\gamma) + cos(\alpha) cos(\beta) sin(\gamma)$

    ${}_r^gt_{33} = -sin(\alpha) sin(\gamma) + cos(\alpha) cos(\beta) cos(\gamma)$

    ${}_r^gt_{34} = l_{cr} cos(\alpha) cos(\beta) + l_c cos(\beta) cos(\alpha) + r_w cos(\alpha)$

    ${}^rP_r = \begin{bmatrix} 0 \newline 0 \newline 0 \newline 1 \end{bmatrix}$

    ${}^gP_r = {}_r^gT \times {}^rP_r = \begin{bmatrix} {}^gp_{r1} \newline {}^gp_{r2} \newline {}^gp_{r3} \newline 1 \end{bmatrix}$

    ${}^gp_{r1} = x + r_w sin(\alpha) sin(\delta) + (l_c + l_{cr}) cos(\beta) sin(\alpha) sin(\delta) + (l_c + l_{cr}) sin(\beta) cos(\delta)$

    ${}^gp_{r2} = y - r_w sin(\alpha) cos(\delta) - (l_c + l_{cr}) cos(\beta) sin(\alpha) cos(\delta) + (l_c + l_{cr}) sin(\beta) sin(\delta)$

    ${}^gp_{r3} = r_w cos(\alpha) + (l_c + l_{cr}) cos(\beta) cos(\alpha)$

    $V_w = \frac{dP_w}{dt}$

    $V_c = \frac{dP_c}{dt}$

    $V_r = \frac{dP_r}{dt}$

    ${\Omega}_w = \begin{bmatrix} 0 \newline \dot{\theta} \newline 0 \newline 0 \end{bmatrix} + \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^{w2}T \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} 0 \newline \dot{\theta} \newline 0 \newline 0 \end{bmatrix} + \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\alpha} \newline \dot{\theta} + \dot{\delta} sin(\alpha) \newline \dot{\delta} cos(\alpha) \end{bmatrix}$

    ${\Omega}_c = \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^cT \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^cT \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_c^{w2}T^{-1} \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_c^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\alpha} cos(\beta) - \dot{\delta} cos(\alpha) sin(\beta) \newline \dot{\beta} + \dot{\delta} sin(\alpha) \newline \dot{\alpha} sin(\beta) + \dot{\delta} cos(\alpha) cos(\beta) \newline 0 \end{bmatrix}$

    ${}_r^{w2}T = {}_{w2}^gT^{-1} \times {}_r^gT$

    ${\Omega}_r = \begin{bmatrix} \dot{\gamma} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_c^rT \times \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_{w2}^rT \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_g^rT \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\gamma} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_r^cT^{-1} \times \begin{bmatrix} 0 \newline \dot{\beta} \newline 0 \newline 0 \end{bmatrix} + {}_r^{w2}T^{-1} \times \begin{bmatrix} \dot{\alpha} \newline 0 \newline 0 \newline 0 \end{bmatrix} + {}_r^gT^{-1} \times \begin{bmatrix} 0 \newline 0 \newline \dot{\delta} \newline 0 \end{bmatrix} = \begin{bmatrix} \dot{\gamma} + \dot{\alpha} cos(\beta) - \dot{\delta} cos(\alpha) sin(\beta) \newline {\omega}_{r2} \newline {\omega}_{r3} \newline 0 \end{bmatrix}$

    ${\omega}_{r2} = \dot{\beta} cos(\gamma) + \dot{\alpha} sin(\beta) sin(\gamma) + \dot{\delta} sin(\alpha) cos(\gamma) + \dot{\delta} cos(\alpha) cos(\beta) sin(\gamma)$

    ${\omega}_{r3} = -\dot{\beta} sin(\gamma) + \dot{\alpha} sin(\beta) cos(\gamma) - \dot{\delta} sin(\alpha) sin(\gamma) + \dot{\delta} cos(\alpha) cos(\beta) cos(\gamma)$

    $T_w = \frac{1}{2} m_w V_w^T V_w + \frac{1}{2} {\Omega}_w^T I_w {\Omega}_w$

    $P_w = m_w g P_w(3)$

    $T_c = \frac{1}{2} m_c V_c^T V_c + \frac{1}{2} {\Omega}_c^T I_c {\Omega}_c$

    $P_c = m_c g P_c(3)$

    $T_r = \frac{1}{2} m_r V_r^T V_r + \frac{1}{2} {\Omega}_r^T I_r {\Omega}_r$

    $P_r = m_r g P_r(3)$

    $T_{total} = T_w + T_c + T_r$

    $P_{total} = P_w + P_c + P_r$

    $m = 7, \ n = 2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{x}}) - \frac{\partial L}{\partial x} = {\lambda}_1$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{y}}) - \frac{\partial L}{\partial y} = {\lambda}_2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\theta}}) - \frac{\partial L}{\partial \theta} = {\tau}_w - r_w cos(\delta) {\lambda}_1 - r_w sin(\delta) {\lambda}_2$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\beta}}) - \frac{\partial L}{\partial \beta} = -{\tau}_w$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\alpha}}) - \frac{\partial L}{\partial \alpha} = 0$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\gamma}}) - \frac{\partial L}{\partial \gamma} = {\tau}_r$

    $\frac{d}{dt}(\frac{\partial L}{\partial \dot{\delta}}) - \frac{\partial L}{\partial \delta} = 0$

    Wheel dynamics:

    $m_{11} \ddot{\beta} + m_{12} \ddot{\gamma} + m_{13} \ddot{\delta} + m_{14} \ddot{\theta} + c_{11} \dot{\beta}^2 + c_{12} \dot{\gamma}^2 + c_{13} \dot{\delta}^2 + c_{14} \dot{\alpha} \dot{\delta} + c_{15} \dot{\beta} \dot{\gamma} + c_{16} \dot{\beta} \dot{\delta} + c_{17} \dot{\gamma} \dot{\delta} = {\tau}_w$

    Chassis longitudinal dynamics:

    $m_{21} \ddot{\alpha} + m_{22} \ddot{\beta} + m_{23} \ddot{\delta} + m_{24} \ddot{\theta} + c_{21} \dot{\alpha}^2 + c_{22} \dot{\delta}^2 + c_{23} \dot{\alpha} \dot{\gamma} + c_{24} \dot{\alpha} \dot{\delta} + c_{25} \dot{\beta} \dot{\gamma} + c_{26} \dot{\gamma} \dot{\delta} + c_{27} \dot{\delta} \dot{\theta} + g_{21} = -{\tau}_w$

    Chassis lateral dynamics:

    $m_{31} \ddot{\alpha} + m_{32} \ddot{\beta} + m_{33} \ddot{\gamma} + m_{34} \ddot{\delta} + c_{31} \dot{\beta}^2 + c_{32} \dot{\gamma}^2 + c_{33} \dot{\delta}^2 + c_{34} \dot{\alpha} \dot{\beta} + c_{35} \dot{\alpha} \dot{\gamma} + c_{36} \dot{\beta} \dot{\gamma} + c_{37} \dot{\beta} \dot{\delta} + c_{38} \dot{\gamma} \dot{\delta} + c_{39} \dot{\delta} \dot{\theta} = 0$

    Reaction wheel dynamics:

    $m_{41} \ddot{\alpha} + m_{42} \ddot{\gamma} + m_{43} \ddot{\delta} + m_{44} \ddot{\theta} + c_{41} \dot{\alpha}^2 + c_{42} \dot{\beta}^2 + c_{43} \dot{\delta}^2 + c_{44} \dot{\alpha} \dot{\beta} + c_{45} \dot{\alpha} \dot{\delta} + c_{46} \dot{\beta} \dot{\delta} + c_{47} \dot{\delta} \dot{\theta} + g_{41} = {\tau}_r$

    Turning dynamics:

    $m_{51} \ddot{\alpha} + m_{52} \ddot{\beta} + m_{53} \ddot{\gamma} + m_{54} \ddot{\delta} + m_{55} \ddot{\theta} + c_{51} \dot{\alpha}^2 + c_{52} \dot{\beta}^2 + c_{53} \dot{\gamma}^2 + c_{54} \dot{\alpha} \dot{\beta} + c_{55} \dot{\alpha} \dot{\gamma} + c_{56} \dot{\alpha} \dot{\delta} + c_{57} \dot{\alpha} \dot{\theta} + c_{58} \dot{\beta} \dot{\gamma} + c_{59} \dot{\beta} \dot{\delta} + c_{510} \dot{\gamma} \dot{\delta} + c_{511} \dot{\delta} \dot{\theta} = 0$

    $\frac{\mathrm{d} x\left( t \right)}{\mathrm{d}t} = r_{w} \cos\left( \delta\left( t \right) \right) \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \newline \frac{\mathrm{d} y\left( t \right)}{\mathrm{d}t} = r_{w} \sin\left( \delta\left( t \right) \right) \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \newline \frac{\mathrm{d} z\left( t \right)}{\mathrm{d}t} = 0 \newline I_{w} = \left[ \begin{array}{cccc} I_{w1} & 0 & 0 & 0 \newline 0 & I_{w2} & 0 & 0 \newline 0 & 0 & I_{w3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline I_{c} = \left[ \begin{array}{cccc} I_{c1} & 0 & 0 & 0 \newline 0 & I_{c2} & 0 & 0 \newline 0 & 0 & I_{c3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline I_{r} = \left[ \begin{array}{cccc} I_{r1} & 0 & 0 & 0 \newline 0 & I_{r2} & 0 & 0 \newline 0 & 0 & I_{r3} & 0 \newline 0 & 0 & 0 & 0 \newline \end{array} \right] \newline \mathrm{w2cpT}\left( t \right) = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \newline 0 & \cos\left( \alpha\left( t \right) \right) & - \sin\left( \alpha\left( t \right) \right) & - r_{w} \sin\left( \alpha\left( t \right) \right) \newline 0 & \sin\left( \alpha\left( t \right) \right) & \cos\left( \alpha\left( t \right) \right) & r_{w} \cos\left( \alpha\left( t \right) \right) \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{cpgT}\left( t \right) = \left[ \begin{array}{cccc} \cos\left( \delta\left( t \right) \right) & - \sin\left( \delta\left( t \right) \right) & 0 & x\left( t \right) \newline \sin\left( \delta\left( t \right) \right) & \cos\left( \delta\left( t \right) \right) & 0 & y\left( t \right) \newline 0 & 0 & 1 & 0 \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{w2gT}\left( t \right) = \mathrm{cpgT}\left( t \right) \mathrm{w2cpT}\left( t \right) \newline w2P_{w} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{w}\left( t \right) = \mathrm{w2gT}\left( t \right) w2P_{w} \newline \mathrm{cw2T}\left( t \right) = \left[ \begin{array}{cccc} \cos\left( \beta\left( t \right) \right) & 0 & \sin\left( \beta\left( t \right) \right) & l_{c} \sin\left( \beta\left( t \right) \right) \newline 0 & 1 & 0 & 0 \newline -\sin\left( \beta\left( t \right) \right) & 0 & \cos\left( \beta\left( t \right) \right) & l_{c} \cos\left( \beta\left( t \right) \right) \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{cgT}\left( t \right) = \mathrm{w2gT}\left( t \right) \mathrm{cw2T}\left( t \right) \newline cP_{c} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{c}\left( t \right) = \mathrm{cgT}\left( t \right) cP_{c} \newline \mathrm{rcT}\left( t \right) = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \newline 0 & \cos\left( \gamma\left( t \right) \right) & - \sin\left( \gamma\left( t \right) \right) & 0 \newline 0 & \sin\left( \gamma\left( t \right) \right) & \cos\left( \gamma\left( t \right) \right) & l_{cr} \newline 0 & 0 & 0 & 1 \newline \end{array} \right] \newline \mathrm{rgT}\left( t \right) = \mathrm{cgT}\left( t \right) \mathrm{rcT}\left( t \right) \newline rP_{r} = \left[ \begin{array}{c} 0 \newline 0 \newline 0 \newline 1 \newline \end{array} \right] \newline \mathrm{gP}_{r}\left( t \right) = \mathrm{rgT}\left( t \right) rP_{r} \newline \mathrm{rw2T}\left( t \right) = \mathrm{inv}\left( \mathrm{w2gT}\left( t \right) \right) \mathrm{rgT}\left( t \right) \newline V_{w}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{w}\left( t \right) \right) \newline V_{c}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{c}\left( t \right) \right) \newline V_{r}\left( t \right) = \mathrm{broadcast}\left( D, \mathrm{gP}_{r}\left( t \right) \right) \newline \Omega_{w}\left( t \right) = \mathrm{broadcast}\left( +, \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline _{derivative}\left( \theta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{w2gT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline \Omega_{c}\left( t \right) = \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \left[ \begin{array}{c} 0 \newline _{derivative}\left( \beta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{cw2T}\left( t \right) \right) \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{cgT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline \Omega_{r}\left( t \right) = \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \mathrm{broadcast}\left( +, \left[ \begin{array}{c} _{derivative}\left( \gamma\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right], \mathrm{inv}\left( \mathrm{rcT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline _{derivative}\left( \beta\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{rw2T}\left( t \right) \right) \left[ \begin{array}{c} _{derivative}\left( \alpha\left( t \right), t, 1 \right) \newline 0 \newline 0 \newline 0 \newline \end{array} \right] \right), \mathrm{inv}\left( \mathrm{rgT}\left( t \right) \right) \left[ \begin{array}{c} 0 \newline 0 \newline _{derivative}\left( \delta\left( t \right), t, 1 \right) \newline 0 \newline \end{array} \right] \right) \newline T_{w}\left( t \right) = \mathrm{adjoint}\left( V_{w}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{w}\left( t \right), \mathrm{Ref}\left( 0.5 m_{w} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{w}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{w} \Omega_{w}\left( t \right), 0.5 \right)_{1} \newline P_{w}\left( t \right) = g \mathrm{gP}_{w}\left( t \right)_{3} m_{w} \newline T_{c}\left( t \right) = \mathrm{adjoint}\left( V_{c}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{c}\left( t \right), \mathrm{Ref}\left( 0.5 m_{c} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{c}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{c} \Omega_{c}\left( t \right), 0.5 \right)_{1} \newline P_{c}\left( t \right) = g \mathrm{gP}_{c}\left( t \right)_{3} m_{c} \newline T_{r}\left( t \right) = \mathrm{adjoint}\left( V_{r}\left( t \right) \right) \mathrm{broadcast}\left( *, V_{r}\left( t \right), \mathrm{Ref}\left( 0.5 m_{r} \right) \right)_{1} + \mathrm{adjoint}\left( \Omega_{r}\left( t \right) \right) \mathrm{broadcast}\left( *, I_{r} \Omega_{r}\left( t \right), 0.5 \right)_{1} \newline P_{r}\left( t \right) = g \mathrm{gP}_{r}\left( t \right)_{3} m_{r} \newline T_{total}\left( t \right) = T_{r}\left( t \right) + T_{c}\left( t \right) + T_{w}\left( t \right) \newline P_{total}\left( t \right) = P_{w}\left( t \right) + P_{c}\left( t \right) + P_{r}\left( t \right) \newline L\left( t \right) = T_{total}\left( t \right) - P_{total}\left( t \right) \newline$

    $L = 0.5 \left( \left( \frac{\frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t} \cos\left( \beta\left( t \right) \right)}{\sin^{2}\left( \beta\left( t \right) \right) + \cos^{2}\left( \beta\left( t \right) \right)} + \frac{\left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( - \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c1} + \left( \frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} + \frac{\left( - \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \left( - \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c2} + \left( \frac{\sin\left( \beta\left( t \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\sin^{2}\left( \beta\left( t \right) \right) + \cos^{2}\left( \beta\left( t \right) \right)} + \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \beta\left( t \right) \right) \right) + \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) + \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right) \right)} \right)^{2} I_{c3} \right) + 0.5 \left( \left( \frac{\mathrm{d} \gamma\left( t \right)}{\mathrm{d}t} + \frac{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} \right)^{2} I_{r1} + \left( \frac{\left( - \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) - \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( - \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} + \frac{\frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} \cos\left( \gamma\left( t \right) \right)}{\sin^{2}\left( \gamma\left( t \right) \right) + \cos^{2}\left( \gamma\left( t \right) \right)} \right)^{2} I_{r2} + \left( \frac{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t}}{\left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{ - \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \left( \frac{ - \sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\cos\left( \alpha\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) + \left( \frac{\sin\left( \delta\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \cos\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \left( \frac{\sin\left( \delta\left( t \right) \right) \left( - \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{ - \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right) \right) \left( \frac{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin\left( \delta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right)}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} \right)} + \frac{\left( \left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\left( \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) - \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \sin\left( \gamma\left( t \right) \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \sin\left( \beta\left( t \right) \right) \left( \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \cos\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( - \sin\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) + \left( \sin\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) + \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \cos\left( \gamma\left( t \right) \right) \right) \left( \left( \cos\left( \gamma\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos\left( \alpha\left( t \right) \right) \sin\left( \gamma\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \left( \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) - \cos\left( \alpha\left( t \right) \right) \left( - \cos\left( \alpha\left( t \right) \right) \cos\left( \gamma\left( t \right) \right) \cos\left( \delta\left( t \right) \right) - \sin\left( \gamma\left( t \right) \right) \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \sin\left( \beta\left( t \right) \right) \right)} + \frac{ - \frac{\mathrm{d} \beta\left( t \right)}{\mathrm{d}t} \sin\left( \gamma\left( t \right) \right)}{\sin^{2}\left( \gamma\left( t \right) \right) + \cos^{2}\left( \gamma\left( t \right) \right)} \right)^{2} I_{r3} \right) + 0.5 \left( \frac{\left( \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t} \right)^{2} \left( \sin^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \cos\left( \alpha\left( t \right) \right) \right)^{2} I_{w3}}{\left( \cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right) \right)^{2}} + \left( \frac{\mathrm{d} \alpha\left( t \right)}{\mathrm{d}t} \right)^{2} I_{w1} + \left( \frac{\left( \sin^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + \cos^{2}\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \frac{\mathrm{d} \delta\left( t \right)}{\mathrm{d}t}}{\cos^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \sin^{2}\left( \delta\left( t \right) \right) + \left( \cos^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin^{2}\left( \alpha\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \right) \cos\left( \delta\left( t \right) \right)} + \frac{\mathrm{d} \theta\left( t \right)}{\mathrm{d}t} \right)^{2} I_{w2} \right) + 0.5 m_{c} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + l_{c} \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{c} \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) + l_{c} \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) - l_{c} \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} \right) + 0.5 m_{r} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + l_{c} \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{c} \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{cr} \left( \sin\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) + \sin\left( \delta\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) + l_{c} \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) - l_{c} \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) + l_{cr} \left( \sin\left( \delta\left( t \right) \right) \sin\left( \beta\left( t \right) \right) - \cos\left( \beta\left( t \right) \right) \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + l_{cr} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) \right)^{2} \right) + 0.5 m_{w} \left( \left( \frac{\mathrm{d}}{\mathrm{d}t} r_{w} \cos\left( \alpha\left( t \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( y\left( t \right) - r_{w} \cos\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} \left( x\left( t \right) + r_{w} \sin\left( \delta\left( t \right) \right) \sin\left( \alpha\left( t \right) \right) \right) \right)^{2} + \left( \frac{\mathrm{d}}{\mathrm{d}t} 1 \right)^{2} \right) - g m_{w} r_{w} \cos\left( \alpha\left( t \right) \right) - g \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) m_{c} - g \left( r_{w} \cos\left( \alpha\left( t \right) \right) + l_{c} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) + l_{cr} \cos\left( \alpha\left( t \right) \right) \cos\left( \beta\left( t \right) \right) \right) m_{r}$

    $\left[ \begin{array}{c} _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline _{derivative}\left( 0, t, 1 \right) \newline \end{array} \right] = \left[ \begin{array}{c} \lambda_1 \newline \lambda_2 \newline \tau_{w} - r_{w} \sin\left( \delta\left( t \right) \right) \lambda_2 - r_{w} \cos\left( \delta\left( t \right) \right) \lambda_1 \newline -\tau_{w} \newline 0 \newline \tau_{p} \newline 0 \newline \end{array} \right]$

    diff --git a/dev/search_index.js b/dev/search_index.js index 9f65a21..b50eca2 100644 --- a/dev/search_index.js +++ b/dev/search_index.js @@ -1,3 +1,3 @@ var documenterSearchIndex = {"docs": -[{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Description = \"How the Hopf fibration works.\"","category":"page"},{"location":"hopffibration.html#The-Hopf-Fibration","page":"Hopf Fibration","title":"The Hopf Fibration","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf fibration is a fiber bundle with a two-dimensional sphere as the base space and circles as the fiber space. It is the geometrical shape that relates Einstein's spacetime to quantum fields. In this model, we visualize the Hopf fibration by first computing its points via a bundle atlas and then rendering the points in 3D space via stereographic projection. The projection step is necessary because the Hopf fibration is embedded in a four-space. Yet, it has only three degrees of freedom as a three-dimensional shape. The idea that makes this model more special and interesting than a typical visualization is the idea of Planet Hopf, due to Dror Bar-Natan (2010). The basic idea is that since the Hopf map takes the three-dimensional sphere into the two-dimensional sphere, we can pull the skin of the globe back to the three-sphere and visualize it.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Into the bargain, the Earth rotates about its axis every 24 hours. That spinning transformation of the Earth, together with the non-trivial product space of the Hopf bundle, can be encoded naturally into a monolithic visualization. It also makes sense to visualize differential operators in the Minkowski space-time as vectors in a cross-section of the Hopf bundle and then study the properties of spin-transformations. The choice of a gauge transformation (or trivialization) along with Lorentz transformations of Minkowski spacetime should not have any effect on physical laws. It is therefore a great model to understand these transformations and walk the road to reality. The following explains how the source code for generating animations of the Hopf fibration works (alternative views of Planet Hopf). We follow the beginning of chapter 4 of Mark J.D. Hamilton (2018) for a formal definition of the Hopf fibration as a fiber bundle. The book Mathematical Gauge Theory explains the Standard Model to students of both mathematics and physics, covers both the specific gauge theory of the Standard Model and generalizations, and is highly accessible and self-contained. Then, the definitions are going to be used to explain the source code in terms of computational methods and types.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image1) (Image: board2) (Image: image2)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"First, let E and M be smooth manifolds. Then, pi E to M is a surjective and differentiable map between smooth manifolds. Meaning, every element in M has some corresponding element in E via the map pi. Now, let x in M be a point. A fiber of pi over point x is called E_x and defined as a non-empty subset of E as follows: E_x = pi^-1(x) = pi^-1(x) subset E. The singleton of x is taken to the manifold E by the inverse of the map pi. However, to have a set of more than one point let U be a subset of M, U subset M. Then, we have E_U = pi^-1(U) subset E. In this case, E_U is the part of E above the subset U.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image3) (Image: board3) (Image: image4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, define a global section of the map pi like this: s M to E. Considering the definition of pi E to M, the definition of the global section implies that the composition of pi and s is the identity map pi o s = Id_M over M. A section such as s can be a local one if we take a subset of M in the domain, U subset M. Then, a local section is defined as s U to E. In a similar way the definition of the local section implies that its composition with pi is the idenity map over the subset: pi o s = Id_U. For all points x in subset U, the section s(x) is in the fiber E_x of pi above x, if and only if s is a local section of pi. In this pointwise case, the map pi is restricted to subset U. In other words pi E to U, where U subset M.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image5) (Image: board4) (Image: image6)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In general, for two points x not = y in M that are not equal, the fibers E_x and E_y of pi over x and y may not be embedded submanifolds of E, or even be diffeomorphic. That means, there may not be a differentiable and invertible map that takes fiber E_x into fiber E_y, and the tangent spaces of E_x and E_y over points x and y may not be naturally linear subspaces of the tangent space of E. But, it is different in the special instance where manifold E = M times F is the product of M and the general fiber F and pi as a map is the projection onto the first factor pi M times F to M. If that is the case, then fibers E_x E_y in F of pi over the two distinct points x not = y in M are embedded submanifolds of E and diffeomorphic. To explain it more clearly, given that condition, there exists an invertible and smooth map taking one fiber to the other, and the tangent spaces of the fibers are directly summed with their respective dual subspaces at points in the fibers to span the whole tangent space of manifold E at points of pi over x and y. Therefore, fiber bundles are the generalization of products E = M times F as twisted products.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image7) (Image: board5) (Image: image8)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Before we define the Hopf action, first describe a scalar multiplication rule between vectors and numbers. Let R denote real numbers, Complex complex numbers, and mathbbH quaternionic numbers. On top of that, take a subset of these sets of numbers such that zero is not allowed to be in them, and denote the subsets as R^*, Complex^*, and mathbbH^* respectively. Now, define the linear right action by scalar multiplication for mathbbK = mathbbR mathbbC mathbbH as the following: mathbbK^n+1setminus0 times mathbbK^* to mathbbK^n+1setminus0. For example, 5 in mathbbR^* is a non-zero scalar number, whereas 1 0 0^T in mathbbR^3setminus0 is a non-zero vector quantity. Per our definition, 5 acts on 1 0 0^T on the right and yields 5 0 0 in mathbbR^3setminus0 as another vector. This rule works the same for fields mathbbK even when the vectorial numbers are represented by matrices.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image9) (Image: board6) (Image: image10)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The linear right action by multiplication is called a free action, because for x in mathbbK^n+1setminus0 and y in mathbbk^* the multiplication x times y yields x if and only if y = Id, as the identity element. For example, if we let x = 0 1 0^T y = 1, then the result of the scalar multiplication is 0 1 0^T times 1 = 0 1 0^T.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image11) (Image: board7) (Image: image12)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In addition, we define the unit n-sphere, for the Hopf action works on spheres. So, the unit sphere of dimension n is defined as: S^n(w_1 w_2 w_n+1) in mathbbR^n+1 sum_substack1 leq i leq n+1w_i^2 = 1. As an example, the unit circle S^1 in mathbbC is a one-dimensional sphere with n = 1, and w_1^2 + w_2^2 = 1, where w_1 and w_2 are the horizontal and vertical axes in the complex plane, respectively.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image13) (Image: board8) (Image: image14)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Now, Hopf actions are defined as free actions:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"S^n times S^0 to S^n \nS^2n+1 times S^1 to S^2n+1 \nS^4n+3 times S^3 to S^4n+3 ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"given by (x lambda) mapsto xlambda.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image15) (Image: board9) (Image: image16)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"An example of a Hopf action is the multiplication of the three-sphere S^3 cong SU(2) subset mathbbC^2 on the right by the unit circle S^1 cong U(1) subset mathbbC. Define the Hopf action as the map Phi S^3 times S^1 to S^3 given by (v w lambda) mapsto (v w) sdot lambda = (vlambda wlambda), for all points in the unit 3-sphere (v w) in S^3 and the unit 1-sphere lambda in S^1. What's more, the Hopf action has two properties:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(v w) sdot (lambda sdot mu) = ((v w) sdot lambda) sdot mu\n(v w) sdot 1 = (v w)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"forall (v w) in S^3 lambda mu in S^1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image17) (Image: board10) (Image: image18)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The next idea is about the orbit of a point in the 3-sphere S^3 under the Hopf action. The orbit map is defined as phi S^1 to S^3 given by lambda mapsto (v_0 w_0) sdot lambda, forall (v_0 w_0) in S^3. The orbit map phi is injective and free, meaning that a point in S^3 can not have many points in S^1 and also there exists an identity element such that the action stabalizes a point in S^3 such as (v_0 w_0). Furthermore, the Hopf action Phi S^1 to Diff(S^3) is a homomorphism. It preserves S^3. The Hopf action being a free action implies that the orbit of every point (v_0 w_0) in S^3 is an embedded circle S^1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image19) (Image: board11) (Image: image20)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Back to the topic of fiber bundles, we recall that the part of manifold E over subset U equals: E_U = pi^-1(U) subset E, where U subset M. Here, there is an equivalence relation in the fiber E_x of pi over x, since the orbit of a point in fiber E_x by phi collapses onto a single point x in U via the projection map pi S^3 to S^3texttextasciitilde. After the collapse of every fiber in manifold E, the quotient space S^3S^1 is seen to be the projective complex line mathbbCP^1 cong S^2. The projective complex line is the ratio of two complex numbers. To see how the space of S^3 is connected compared to S^1, note that every closed loop in S^3 is shrinkable to a single point in a continuous way, tracing a local section. However, a closed loop in S^1 is not shrinkable to a single point. This fact makes S^3 a simply-connected space and S^1 a not simply-connected space.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image21) (Image: board12) (Image: image22)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We are now almost equipped with the tools to define a fiber bundle in a formal way. Let E F M be manifolds. The projection map pi E to M is a surjective and differentiable map (Every element in M has some element in E). Then, (E pi M F) is called a fiber bundle, (or a locally trivial fibration, or a locally trivial bundle) if for every x in M there exists an open neighborhood U subset M around the point x such that the map pi restricted to E_U can be trivialized as a cross product. Remember that E_U is the part of E of pi over U. In other words, (E pi M F) is called a fiber bundle if there exists a diffeomorphism phi_U E_U to U times F such that pr_1 o phi_U = pi, meaning the projection onto the first factor of the trivialization map phi_U is the same as the map pi. Also, a fiber bundle is denoted by F to E xrightarrowpi M. In this notation, E denotes the total space, M the base manifold, F the general fiber, pi the projection, and (U phi_U) a local trivialization or bundle chart.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image23) (Image: board13) (Image: image24)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Using a local trivialization (U phi_U) E_x = pi^-1(x) we find that the fiber E_x is an embedded submanifold of the total space E for every point x in M. Meaning, the tangent space of fiber E_x is a linear subsapce of the tangent space of E. The direct sum of the tangent subspace of the general fiber and the tangent subspace of the base manifold equals the tangent space of the total space: T_xE = V_xE bigoplus H_xE.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image25) (Image: board14) (Image: image26)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The composition of the local trivialization with the projection onto the second factor gives us yet another useful map between fibers E_x over x and the general fiber F. It is a differentiable and invertible map (diffeomorphism) and equals phi_U = pr_2 o phi_U _E_x E_x to F. Given that the local trivialization phi_U E_U to U times F is a diffeomorphism (invertible and smooth), the projection pr_1 U times F to U onto the first factor of phi_U is a submersion. That is to say the differntial of pr_1 is surjective. D pr_1 T(U times F) to TU takes vectors from the tangent space of U times F into vectors in the tangent space of U, such that every element of TU has some element in T(U times F). As a result, the map pi E to M is also a submersion, which means D pi TE to TM is surjective. Every tangent vector in the codomain TM has some tangent vector in the domain TE.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image27) (Image: board15) (Image: image28)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"So far, we have established that the bundle projection map, taking points from the total space into points in the base space pi E to M, is a submersion. For that reason, the tangent space of the base manifold M is a linear subset of the tangnet space of the total space manifold E. Now, we can use the regular value theorem for shining a light on the submersion of pi. Let a point x in M be a regular value of the smooth map pi E to M, and let the fiber E_x = pi^-1(x) be the preimage of the point x. Then, the map pi^-1 is an embedded submanifold of E of dimension dim E_x = dim E - dim M. Meaning, the tangent space of fiber E_x is a linear subspace of the tangent space of E. We can verify the result of the theorem for the Hopf bundle F to E xrightarrowpi M where dim E = 3 and dim M = 2. The regular value theorem implies that the Hopf fiber is one-dimensional, dim E_x = 3 - 2 = 1, as an embedded submanifold of the total space E. With that formal introduction we are going to sketch a visual 3D model next.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image29) (Image: board16) (Image: image30) (Image: image31)","category":"page"},{"location":"hopffibration.html#Import-the-Required-Packages","page":"Hopf Fibration","title":"Import the Required Packages","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Begin by importing a few software packages for doing algebraic operations, working with files and graphics processing units. Besides Porta, we need to use three packages: FileIO, GLMakie and LinearAlgebra. First, FileIO is the main package for IO and loading all different kind of files, including images and Comma-Separated Value (CSV) files. Second, interactive data visualizations and plotting in Julia are done with GLMakie. Finally, LinearAlgebra, as a module of the Julia programming language, provides array arithmetic, matrix factorizations and other linear algebra related functionality. However, through years of working with geometrical structures and shapes we have encapsulated certain mathematical computations and transformations into custom types and interfaces, which make up most of the functionalities of project Porta. In addition, we wrapped complicated computer graphics workflows inside custom types in order to increase the interoperability of our types with those of external packages such as GLMakie.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" import FileIO\n import GLMakie\n import LinearAlgebra\n using Porta","category":"page"},{"location":"hopffibration.html#Set-Hyperparameters","page":"Hopf Fibration","title":"Set Hyperparameters","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"There are essential hyperparameters that determine the complexity of graphics rendering as well as the position and orientation of a camera, through which we render a scene. Since the output of the model is an animation video, we need to set the figure size to 1920 by 1080 to have a full high definition window, in which the scene is located. Most of the shapes and objects that we put inside of the scene are two-dimensional surfaces. Therefore, the segmentation of most shapes requires two integer values for determining how much compute power and resolution we are willing to spend on the animation. Furthermore, the shape of a circle is the most common in our scenes because of the magic of complex numbers. It is known that using 30 segments results in smooth low-polygon circles. So for a two-dimensional sphere a 30 by 30 segmented two-surface should look good. Set the segments equal to 30, and less curvy shapes will look even better in consequence. But, an animation extends through time frame by frame and so we need to set the total number of frames. In this way, specifying the number of frames determines the length of the video. For example, 1440 frames make a one-minute video at 24 frames per second.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" figuresize = (1920, 1080)\n segments = 30\n frames_number = 1440","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A model means a complicated geometrical shape contained inside a graphical scene. Every model has a name to use as the file name of the output video. Here, we choose the name planethopf as we construct an alternative view of the Planet Hopf by Dror Bar-Natan (2010). Heinz Hopf in 1931 discovered a way to join circles over the skin of the globe. The discovery defines a fiber bundle where the base space is the spherical Earth and the fibers are circles. But, the circles are all mutually parallel and linked. Moreover, the Earth goes through a full rotation about the axis that connect the poles every 24 hours. So it is not surprising that the picture of a non-trivial bundle and the spinning of the base space coordinates (longitudes) makes for a ridiculous geometric shape. But, the surprising fact is that all of it is visualizable as a 3D object. Then, we use a dictionary that maps indices to names in order to keep track of boundary data on the globe and the name of each boundary as a sovereign country.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" modelname = \"planethopf\"\n indices = Dict()","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf fibration, as a fiber bundle, has an inner product space. The inner product space is symmetric, linear and positive semidefinite. The last property means that the product of a point in the bundle with itself is always non-negative, and it is zero if and only if the point is the zero vector. The abstract inner product space allows us to talk about the length of vectors, the distance between two points and the idea of orthogonality between two vectors. A pair of vectors are orthogonal when they make a right angle with each other and as a consequence their product is equal to zero. For all u v v_1 v_2 in V and alpha beta in R the following are the properties of the abstract inner product space:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Symmetric: u v = v u\nLinear: u alpha v_1 + beta v_2 = alpha u v_1 + beta u v_2\nPositive semidefinite: u u geq 0 for all u in V with u u = 0 if and only if u = 0","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Now, in order to skin the horizontal cross-sections of the bundle for visualization we need to start with a base point, which is denoted by x. At the tangent space of the base point q, the inner product space (characterized by a connection one-form) splits the tangent space of the bundle E at x into two linear subspaces: horizontal and vertical.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"T_q E = V_q E bigoplus H_q E","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In terms of the connection, the two subspcaes are orthogonal. A chart is a four-tuple of real numbers to be used as a pair of closed intervals in the horizontal subspace. Then, using the exponential map one can travel in both horizontal and vertical directions and cover the whole bundle within the lengths of the chart intervals. Within the boundary of the chart and with an additional vertical coordinate (a gauge) we can define a tubular neighborhood of the base point q. The first two elements of the four-tuple chart give the interval along the first basis vector and the last two elements give the interval along the second basis vector. As for the third basis vector of the tangent space (the vertical subspace) we use a beginning and an ending gauge.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"For the purpose of the construction of the Hopf fibration we define the bundle atlas of a general fiber bundle F to E xrightarrowpi M as an open covering U_i_i in I of the base manifold M together with bundle charts phi_i E_U_i to U_i times F. Putting the open covering with bundle charts a bundle atlas is denoted by U_i phi_i_i in I. The index i suggests that a bundle atlas should have more than one bundle chart whenever it is a non-trivial bundle (a twisted product rather than a Cartesian product). In order to cover the Hopf bundle we use the exponential matrix function supplied with linear combinations of elements from the Lie algebra so(4), which produces elements in the Lie group SO(4) that push a base point around the 3-sphere. As a side note, a Lie algebra is a vector space V that is equipped with the Lie bracket map sdot sdot V times V to V, with sdot sdot having three properties: bilinear, antisymmetric and satisfies the Jacobi identity. We choose a base point in the 3-sphere q in S^3 and then use Lie algebra elements before exponentiation in order to rotate the 3-sphere to cover every other point in the total space S^3 over the chart.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" q = Quaternion(ℝ⁴(0.0, 0.0, 1.0, 0.0))\n chart = (-π / 4, π / 4, -π / 4, π / 4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we define five scalars in the Lie algebra of so(2), identified with imathbbR, in order to provide different gauge transformations for pullbacks by the Hopf fibration (whirls and base maps). The exponential function takes the gauge values to the unit circle S^1 = U(1) cong SO(2) given by exp(im * gauge). For creating a clearer view we are going to slice up the Hopf fibers (orbits) and set different values for their respective alpha channels. The names gauge1, gauge2, gauge3, gauge4 and gauge5 are used to provide the Hopf actions when we construct and update the shapes. 0.0 means the trivial action whereas 2π means the full orbit around a Hopf fiber. Looking at the values of these names we can see that a Hopf fiber will be cut into four quarters. We can make some quarters opaque and others see-through for better visibility.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" gauge1 = 0.0\n gauge2 = π / 2\n gauge3 = float(π)\n gauge4 = 3π / 2\n gauge5 = 2π","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The fundamental physics is based on the gauge symmetry of the product SU(3) times SU(2) times U(1) and the symmetry of spacetime as a Riemannian manifold M that is equipped with a metric. Therefore, physical laws in nature must be the same under two sets of choices: the choice of gauge transformations and the choice of an inertial reference frame in spacetime. In this model, we understand the choice of the guage symmetry by studying the Hopf action and the choice of an inertial frame in Minkowski space-time by a change-of-basis transformation on the Hopf bundle. The change-of-basis transformation is denoted by matrix M and is applied to the total space of the Hopf bundle via a matrix-vector product. Here, we initialize the matrix M with the idenity.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" M = I(4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In order to get the essence of these different choices and integrate them into a visual model we first note that Lorentz transformations of null vectors in the tangent space of spacetime is the same as transforming any other timelike (non-null) vectors. Second, The Hopf bundle of the 3-sphere has a representation in the Lie group S^3 = SU(2) and the Hopf action is represented by actions of S^1 = U(1) as a linear scalar multiplication on the right. But, null vectors have length zero in terms of the Lorentzian metric, whereas the Hopf bundle is made of vectors of unit length in terms of the Euclidean metric. Fortunately, these vectors coincide as unit quaternions and so their transformations can be unified into a single visual model. If we coordinatize a null vector in spacetime as u = 𝕍(T, X, Y, Z) then the corresponding quaternion q = Quaternion(T, X, Y, Z) takes the same coordinates. We assert that u is null and q is of unit norm, with an approximate equality check. The precision of the assertion is given by the name tolerance, which equals 1e-3.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" T, X, Y, Z = vec(normalize(ℝ⁴(1.0, 0.0, 1.0, 0.0)))\n u = 𝕍(T, X, Y, Z)\n q = Quaternion(T, X, Y, Z)\n tolerance = 1e-3\n @assert(isnull(u, atol = tolerance), \"u in not a null vector, $u.\")\n @assert(isapprox(norm(q), 1, atol = tolerance), \"q in not a unit quaternion, $(norm(q)).\")","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The camera is a viewport trough which we see the scene. It is a three-dimensional camera and much like a drone it has six features to help position and orient itself in the scene. Accordingly, a three-vector in the Euclidean 3-space E^3 determins its position in the scene, another 3-vector specifies the point at which it looks, and a third vector controls the up direction of the camera. The third 3-vector is needed because the camera can rotate through 360 degrees about the axis that connects its own position to the position of the subject. Using these three 3-vectors we control how far away we are from the subject, and how upright the subject is. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" eyeposition = normalize(ℝ³(1.0, 1.0, 1.0)) * π * 0.8\n lookat = ℝ³(0.0, 0.0, 0.0)\n up = normalize(ℝ³(1.0, 0.0, 0.0))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Each of the eyeposition, lookat and up vectors are in the three-real-dimensional vector space ℝ³. The structure of the abstract vector space of ℝ³ includes: associativity of addition, commutativity of addition, the zero vector, the inverse element, distributivity Ι, distributivity ΙΙ, associativity of scalar multiplication, and the unit scalar 1. Also, the product space associated with ℝ³ is symmetric, linear and positive semidefinite (see real3_tests.jl). The same goes for the structure of 4-vectors in ℝ⁴ as we are going to encounter in this model. An abstract vector space (V mathbbK + ) consists of four things:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A set of vector-like objects V = u v \nA field mathbbK of scalar numbers, complex numbers, quaternions, or octonions (any one of the division algebras)\nAn addition operation + for elements of V that dictates how to add vectors: u + v\nA scalar multiplication operator for scaling a vector by an element of the field","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"An abstract vector space satisfies eight axioms. For all vectors u v w in V and for all scalars alpha beta in mathbbK the following properties are true:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Associativity of addition: u + (v + w) = (u + v) + w\nCommutativity of addition: u + v = v + u\nThere exists a zero vector 0 in V such that u + 0 = 0 + u = u\nFor every u there exists an inverse element -u such that u + (-u) = u - u = 0\nDistributivity I: alpha (u + v) = alpha u + alpha v\nDistributivity II: (alpha + beta) u = alpha u + beta u\nAssociativity of scalar multiplication: alpha (beta u) = (alpha beta) u\nThere exists a unit scalar 1 such that 1u = u","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Interestingly, if the field mathbbK is an Octonian number then the axiom of the commutativity of addition becomes false. The plan is to first load a geographic data set, then construct a few shapes, and animate a four-stage transformation of the shapes. Model versioning can be applied here using different stages. The transformations are subgroups of the Lorentz transformation in the Minkowski vector space 𝕍, which is a tetrad and origin point away from the Minkowski space-time 𝕄. Both 𝕍 and 𝕄 inherit the properties of the abstract vector space. See minkowskivectorspace_tests.jl and minkowskispacetime_tests.jl for use cases.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" totalstages = 4","category":"page"},{"location":"hopffibration.html#Load-the-Natural-Earth-Data","page":"Hopf Fibration","title":"Load the Natural Earth Data","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we need to load two image files: an image to be used as a color reference, and another one to be used as surface texture for sections of the Hopf bundle. This is the first example of using FileIO to load image files from hard drive memory. Both images are made with a software called QGIS, which is a geographic information system software that is free and open-source. But, the data comes from Natural Earth Data. Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software. We downloaded the Admin 0 - Countries data file from the 1:10m Cultural Vectors link of the Downloads page. It is a large-scale map that contains geometry nodes and attributes.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" reference = FileIO.load(\"data/basemap_color.png\")\n mask = FileIO.load(\"data/basemap_mask.png\")","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"As for the image files, we paint the boundaries using the gemometry nodes, and add a grid to be able to visualize distortions of the Euclidean metric of the underlying surface. Therefore, the reference is the clean image from which we pick colors, whereas the mask has a grid and transparency for visualization purposes.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" attributespath = \"data/naturalearth/geometry-attributes.csv\"\n nodespath = \"data/naturalearth/geometry-nodes.csv\"\n countries = loadcountries(attributespath, nodespath)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The geometry nodes of the data set consist of latitudes and longitudes of boundaries. But, geometry attributes feature various geographical, cultural, economical and geopolitical values. Of these features we only need the names and geographic coordinates. To not limit the use cases of this model, the generic function loadcountries loads all of the data features by supplying it with the file paths of attributes and nodes. Data versioning can be applied here using different file versions. The attributes and nodes files are comma-separated values.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"At a high level of description, the process of loading boundary data is as follows: First, we use FileIO to open the attributes file. Second, we put the data in a DataFrames object to have in-memory tabular data. Third, sort the data according to shape identification. Fourth, open the nodes file in a DataFrame. Fifth, group the attributes by the name of each sovereign country. Sixth, determine the number of attribute groups by calling the generic function length. Seventh, define a constant ϵ = 5e-3 to limit the distance between nodes so that the computational complexity becomes more reasonable. Eighth, define a dictionary that has the keys: shapeid, name, gdpmd, gdpyear, economy, partid, and nodes. Finally, for each group of the attributes we extract the data corresponding to the dictionary keys and push them into array values.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Part of the difficulty with the data loading process is that each sovereign country may have more than one connected component (closed boundary). That is why we store part identifications as one of the dictionary keys. In this process, the part with the greatest number of nodes is chosen as the main part and is pushed into the corresponding array value. All of the array values are ordered and have the same length so that indexing over the values of more than one key becomes easier. Once the part ID of each country name is determined, we make a subset of the data frame related to the part ID and then extract the geographic coordinates in terms of latitudes and longitudes. In fact, we make a histogram of each unique part ID and count the number of coordinates. The part ID with the greatest number of coordinates is selected for creating the subset of the data frame. Next, the coordinates are transformed into the Cartesian coordinate system from the Geographic one.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Finally, we decimate a curve containing a sequence of coordinates by removing points from the curve that are farther from each other than the given threshold ϵ. It is a step to make sure that the boundary data has superb quality while managing the size of data for computation complexity. The generic function decimate implements the Ramer–Douglas–Peucker algorithm. It is an iterative end-point fit algorithm suggested by Dror Bar-Natan (2010) for this model. Since a boundary is modelled as a curve of line segments, we set a segmentation limit. But, the decimation process finds a curve that is similar in shape, yet has fewer number of points with the given threshold ϵ. In short, decimate recursively simplifies the segmented curve of a closed boundary if the maximum distance between a pair of consecutive points is greater than ϵ. The distance between two abstract vectors is given by d(u v) equiv u - v = sqrt(u - v) (u - v).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" boundary_names = [\"United States of America\", \"Antarctica\", \"Australia\", \"Iran\", \"Canada\", \"Turkey\", \"New Zealand\", \"Mexico\", \"Pakistan\", \"Russia\"]\n boundary_nodes = Vector{Vector{ℝ³}}()\n for i in eachindex(countries[\"name\"])\n for name in boundary_names\n if countries[\"name\"][i] == name\n push!(boundary_nodes, countries[\"nodes\"][i])\n println(name)\n indices[name] = length(boundary_nodes)\n end\n end\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"As the boundary data is massive in number (248 countries) we need to select a subset for visualization. 10 countries selected from a linear space of alphabetically sroted names should be representative of the whole Earth. Then again, using only three distinct points in the 2-sphere one can infer the transformations from the sphere into itself. Also, Antarctica should be added due to its special coordinates at the south pole, to give the user a better sense of how bundle sections are expanded and distorted. As soon as we have the names of the selection, we can proceed with populating the dictionary of indices that relates the name of each country with the corresponding index in boundary data. Using the dictionary we can read the attributes of countries by giving just the name as argument.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" points = Vector{Quaternion}[]\n for i in eachindex(boundary_nodes)\n _points = Quaternion[]\n for node in boundary_nodes[i]\n r, θ, ϕ = convert_to_geographic(node)\n push!(_points, q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))))\n end\n push!(points, _points)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We instantiate a vector of a vector of type Quaternion to store boundary data. The outermost vector contains elements of different countries. But, the innermost vector contains the pullback of the geographic nodes by the Hopf map in the 3-sphere. After conversion to the Geographic coordinate system from the Cartesian coordinates, the points are pulled back by pi using the statement q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))). It is a right multiplication of the base point q by the exponential function, supplied with the geographic coordinates θ and ϕ. Now that we have the points we can make a 3D scene.","category":"page"},{"location":"hopffibration.html#Make-a-Computer-Graphical-Scene","page":"Hopf Fibration","title":"Make a Computer Graphical Scene","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Scenes are fundamental building blocks of GLMakie figures. In this model, the layout of the Figure (graphical window) is a single Scene, because we have been able to directly plot all of the information about the bundle geometry and topology inside the same scene. The figure is supplied with the hyperparameter figuresize that we defined earlier. Then, we set a black theme to have black background around the window at the margins. Next, we instantiate a gray point light and a lighter gray ambient light. The lights together with the figure are then passed to LScene to construct our scene. We pass the symbol :white as the argument to the background keyword as it makes for the most visible scene.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" makefigure() = GLMakie.Figure(size = figuresize)\n fig = GLMakie.with_theme(makefigure, GLMakie.theme_black())\n pl = GLMakie.PointLight(GLMakie.Point3f(0), GLMakie.RGBf(0.0862, 0.0862, 0.0862))\n al = GLMakie.AmbientLight(GLMakie.RGBf(0.9, 0.9, 0.9))\n lscene = GLMakie.LScene(fig[1, 1], show_axis=false, scenekw = (lights = [pl, al], clear=true, backgroundcolor = :white))","category":"page"},{"location":"hopffibration.html#Construct-Base-Maps","page":"Hopf Fibration","title":"Construct Base Maps","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The base map is the pullback of the skin of the globe U subset S^2 by the Hopf map pi S^3 to S^2, representing a local horizontal cross-section of the bundle. The pushforward of horizontal vectors by the Hopf map leaves them unchanged. However, vectors in the vertical subsapce of the tangent space of the Hopf bundle are in the kernel of the Hopf map (they are sent to zero).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We use a 64-bit floating point number to parameterize an element of the Lie algebra so(2), before exponentiating it into an element of the Lie group SO(2) to be used for the orbit map phi S^1 to S^3, because a local horizontal cross-section uses the same scalar number for the entirety of subset U subset S^2. The subset U is bounded with a two-dimensional chart. A chart can be thought of as a rectangle whose sides are at most π in length. But, the length of a great circle of the three-dimensional sphere is 2π and the maximum length of chart sides is limited, unless we want to cover S^3 twice. To keep things simple, we use one bundle chart and cover a subset U of side length π. The Hopf bundle does not admit a global section. After exponentiating the base point q in horizontal directions for a magnitude beyond π, the orientation of the surface reverses and a sharp twist of the surface happens.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf bundle is embedded in ℝ⁴, the real-four-dimensional space. The coordinates are defined as unit quaternions where the basis vectors are represented by the symmetry group of the rotations of an orthogonal tetrad, namely SO(4). vectors u and v are orthogonal if and only if their inner product equals zero u v = 0. When we talk about Hopf actions and bundle charts, we talk about values that are used to linearly combine elements of the Lie algebra of so(4), vectors in the tangent space of the bundle at point x. Then, we use the matrix exponential map for computing Lie group values in SO(4). Given a fixed gauge, a point in the Lie group stemming from base point x is reconstructed from a Lie algebra element by executing the statement x * Quaternion(exp(θ * K(1) + -ϕ * K(2)) * exp(gauge * K(3))), where scalars θ and ϕ denote the latitude and longitude components in the bundle chart, respectively. K(1) and K(2) denote 4x4 matrices with real elements as basis vectors of the Lie algebra so(4). The tangent space of the bundle at point x spans horizontally with the exponential map of a linear combination of basis vectors K(1) and K(2), whereas it spans vertically in the K(3) direction. This way we get a strictly horizontal section of the bundle in terms of elements of the Lie group SO(4), given a gauge. The elements of SO(4) go on to push the base point x around and end up as observables to be rendered graphically.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" lspaceθ = range(chart[1], stop = chart[2], length = segments)\n lspaceϕ = range(chart[3], stop = chart[4], length = segments)\n [project(normalize(M * (x * Quaternion(exp(θ * K(1) + -ϕ * K(2)) * exp(gauge * K(3)))))) for ϕ in lspaceϕ, θ in lspaceθ]","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Using the eigendecomposition method LinearAlgebra.eigen, we can compute the matrix M to change the basis of the bundle while keeping the coordinates invariant. So the change-of-basis is the final step of the construction of the observables after using the geographic coordinates and the gauge. Observables.jl allows us to define the points that are to be rendered in the scene, in a way that they can listen to changes dynamically. Later, when we apply transformations to the bundle, including the change-of-basis, the idea is to only change the top-level observables and avoid reconstructing the scene entirely. The change of basis is a bilinear transformation of the tetrad (of Minkowski space-time 𝕄) in ℝ⁴ as a matrix-vector product (M * x for example). Here we denote the transformation as matrix M, which takes a Quaternion number as input and spits out a new number of the same type. The input and output bases must be orthonormal as the numbers must remain unit quaternions after the transformation. Constructing a base map requires a few arguments: the scene object, the base point q, the gauge, the change-of-basis transformation M, the chart, the number of segments of the lattice of observables, the tuxture of the surface and the optional transparency setting. Construct four base maps in order to visualize a more complete picture of the Hopf fibration using four different sections. But, the sections are going to be distinguished from one another and updated with gauge transformations later when we animate them.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" basemap1 = Basemap(lscene, q, gauge1, M, chart, segments, mask, transparency = true)\n basemap2 = Basemap(lscene, q, gauge2, M, chart, segments, mask, transparency = true)\n basemap3 = Basemap(lscene, q, gauge3, M, chart, segments, mask, transparency = true)\n basemap4 = Basemap(lscene, q, gauge4, M, chart, segments, mask, transparency = true)","category":"page"},{"location":"hopffibration.html#Construct-Whirls","page":"Hopf Fibration","title":"Construct Whirls","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A Whirl is the shape of a closed boundary in the map of the Earth that is pulled back by the Hopf map pi S^3 to S^2. As a reminder, boundaries on the map of the Earth are specified by two real values: latitude θ and longitude ϕ. The boundary of each country in boundary_names is lifted up from the base manifold using the following statement: q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))). The pullback operation is realized by pushing the base point q in a horizontal direction given by coordinates on the surface of the Earth. Then, a gauge transformation is applied by executing the statement x * Quaternion(exp(K(3) * gauge)), with the given scalar gauge in the direction K(3) of the tangent space at point x of the bundle. By varying gauge in a linear space of floating point values, a Whirl (a pullback by the Hopf map) takes a three-dimensional volume. In the special case where gauge is a range of values, starting at zero and stopping at 2π, the Whirl makes a Hopf band. The degree of the twist in the band is directly proportional to the value of gauge. Multiplying x on the right by the exponentiation of K(3) * gauge pushes x in the vertical subspace of the bundle and makes an orbit. Therefore, the orbit map phi S^1 to S^3 is given by x[i] * Quaternion(exp(K(3) * gauge).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" lspacegauge = range(gauge1, stop = gauge2, length = segments)\n [project(normalize(M * (x[i] * Quaternion(exp(K(3) * gauge))))) for i in 1:length(x), gauge in lspacegauge]","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"There are four sets of whirls: some whirls are more solid and some whirls are more transparent. This separation is done to highlight the antipodal points of the three-dimensional sphere S^3, given by x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1, where x_1 x_2 x_3 x_4^T in R^4. It also helps to visualize the direction of the null plane under transformations of the bundle. Since every pair of points that are infinitestimally close to each other in a horizontal cross-section, defines a differential operator. And Hopf actions, transformations from the bundle into itself change the direction of the operator as it twists. The operator is also called a spin-vector in Minkowski vector space 𝕍. Therefore it can be visualized directly how the operator changes sign by comparing a pullback into S^3 at antipodal points of an orbit.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" whirls1 = []\n whirls2 = []\n whirls3 = []\n whirls4 = []\n for i in eachindex(boundary_nodes)\n color1 = getcolor(boundary_nodes[i], reference, 0.1)\n color2 = getcolor(boundary_nodes[i], reference, 0.2)\n color3 = getcolor(boundary_nodes[i], reference, 0.3)\n color4 = getcolor(boundary_nodes[i], reference, 0.4)\n whirl1 = Whirl(lscene, points[i], gauge1, gauge2, M, segments, color1, transparency = true)\n whirl2 = Whirl(lscene, points[i], gauge2, gauge3, M, segments, color2, transparency = true)\n whirl3 = Whirl(lscene, points[i], gauge3, gauge4, M, segments, color3, transparency = true)\n whirl4 = Whirl(lscene, points[i], gauge4, gauge5, M, segments, color4, transparency = true)\n push!(whirls1, whirl1)\n push!(whirls2, whirl2)\n push!(whirls3, whirl3)\n push!(whirls4, whirl4)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The color of a Whirl should match the color of the inside of its own boundary at every horizontal section, also known as a base map. The generic function getcolor finds the correct color to set for the Whirl. It takes as input a closed boundary (a vector of Cartesian points), a color reference image and an alpha channel value to produce an RGBA 4-color. getcolor finds a color according to the following steps: First, it determines the number of points in the given boundary. Second, gets the size of the reference color image as height and width in pixels. Third, converts all of the boundary points to Geographic coordinates. Fourth, finds the minimum and maximum values of the latitudes and longitudes of the boundary. Fifth, creates a two-dimensional linear space (a flat grid or lattice) that ranges within the upper and lower bounds of the latitudes and longitudes. Sixth, finds the Cartesian two-dimensional coordinates of the points in the image space by normalizing the geographic coordinates and multiplying them by the image size. Seventh, picks the color of each grid point with the Cartesian two-dimensional coordinates in the image space as the index. Eighth, Makes a histogram of the colors by counting the number of each color. Finally, sorts the histogram and picks the color with the greatest number of occurance. (See earth.jl from the src directory for implementation.)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"However, step seven makes sure that the coordinates in the linear 2-space are inside the closed boundary, otherwise it skips the index and continues with the next index in the grid. In this way we don't pick colors from the boundaries of neighboring countries over the globe. The generic function isinside is used by getcolor to determine whether the given point is inside the given boundary or not. But first, the boundary needs to become a polygon in the Euclidean 2-space of coordinates in terms of latitude and longitude. This is the same as geographic coordinates with the radius of Earth set equal to 1 identically, hence the spherical Earth model of the ancient Greeks. After we make a polygon out of the boundary, the generic function rayintersectseg determines whther a ray cast from a point of the linear grid intersects an edge with the given point p and edge. Here, p is a two-dimensional point and edge is a tuple of such points, representing a line segment. Eventhough this algorithm should work in theory, some boundaries are too small to yield a definite color via getcolor and the color inference algorithm returns a false negative in those cases. So the default color may be white for a limited number of cases out of 248 countries. Once we have the color of the whirls, we can proceed to construct the whirls by supplying the generic function Whirl with the following arguments: the scene object, the boundary points lifetd via an arbitrary section, the first fiber action value (gauge), the second action value, the change-of-basis function M, the number of surface segments, the color and the optional transparency setting.","category":"page"},{"location":"hopffibration.html#Compute-a-Four-Screw","page":"Hopf Fibration","title":"Compute a Four-Screw","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We are going to execute a motion around a closed loop in the Lie group SL(2 mathbbC), and then multiply every point in the Hopf bundle by an element of the loop. A four-screw is a subset of the Lie group SL(n mathbbK) = A in Mat(n times n mathbbK) det(A) = 1, square matrices of Complex numbers whose volume form (determinant) equals 1. Here, the number n = 2 and the field mathbbK = mathbbC. A four-screw is a kind of restricted Lorentz transformation where a z-boost and a proper rotation of the celestial sphere are applied. The transformation lives in a four-complex dimensional space and it has six degrees of freedom (the same number of dimensions as SO(4)). By parameterizing a four-screw one can control how much boost and rotation a transformation shuld have. Here, w as a positive scalar controls the amount of boost, whereas angle ψ controls the rotation component of the transform. But, the parameterization accepts rapidity as input for the boost. So we take the natural logarithm of w (log(w) = phi) in order to supply the transformer with the required rapidity argument. First, we set w equal to one in order to preserve the scale of the Argand plane and animate the angle ψ through zero to 2π for rotation. The name progress denotes a scalar from zero to one for instantiating a different transformation at each frame of the animation.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 1 # roation\n w = 1.0\n ϕ = log(w) # rapidity\n ψ = progress * 2π\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In the second case, we fix the rotation angle ψ by setting it to zero, and this time animate the rapidity by changing the value of ϕ at each time step.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 2 # boost\n w = max(1e-4, abs(cos(progress * 2π)))\n ϕ = log(w) # rapidity\n ψ = 0.0\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Third, in order to get a complete picture of a four-screw we animate both rapidity ϕ and rotation ψ, at the same time.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 3 # four-screw\n w = max(1e-4, abs(cos(progress * 2π)))\n ϕ = log(w) # rapidity\n ψ = progress * 2π\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A four-real-dimensional vector in the Minkowski vector space 𝕍 is null if and only if its Lorentz norm is equal to zero. The length or norm of an abstract vector u in V is equivalent to the square root of the inner product of the vector with itself: u u equiv sqrtu u in R. The inner product of vectors u and v in an abstract vector space is given by u^T * g_munu * v, where g_munu denotes the metric 2-tensor. However, as an instantiation in Minkowski vector space 𝕍 with signature (+, -, -, -), the matrix g_munu is a diagonal of the form: g_munu = beginbmatrix 1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 endbmatrix.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Furthermore, a vector in 𝕍 is in the tangent space at some point in Einstein's spacetime, where the metric g_munu will not be diagonal in general. Since a Lorentz transformation of null vectors has the same effect on vectors that are not null, it makes the visualization easier to study transformations on null vectors only. On the other hand, in the Euclidean 4-space E^4 the metric g_munu is replaced by identity matrix of dimension four. The null vectors that we use here in the Minkowski vector space have length zero in terms of the Lorentz norm, but have Euclidean norm equal to one, and so they can be regarded as elements of unit Quaternion. Therefore, what we are animating here is the transformation of unit quaternions that represent null vectors. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The change-of-basis transformations that we have used to instantiate Whirl and Basemap types above, can accomodate the effects of a Lorentz transformation. Then, by setting ψ and ϕ we can define a generic function transform to take Quaternion numbers as input and to give us the transformed number as output.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" transform(x::Quaternion) = begin\n T, X, Y, Z = vec(x)\n X̃ = X * cos(ψ) - Y * sin(ψ)\n Ỹ = X * sin(ψ) + Y * cos(ψ)\n Z̃ = Z * cosh(ϕ) + T * sinh(ϕ)\n T̃ = Z * sinh(ϕ) + T * cosh(ϕ)\n Quaternion(T̃, X̃, Ỹ, Z̃)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Every transformation in an abstract vector space such as the Minkowski vector space 𝕍 has a matrix representation. For constructing the matrix of the transform we just need to compute it four times with basis vectors. The transformation of the basis vectors of unit quaternions by transform are denoted by r₁, r₂, r₃ and r₄. The matrix _M is a four by four real matrix whose rows are r₁ through r₄. _M is the matrix representation of the transformation that is induced by transform.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" r₁ = transform(Quaternion(1.0, 0.0, 0.0, 0.0))\n r₂ = transform(Quaternion(0.0, 1.0, 0.0, 0.0))\n r₃ = transform(Quaternion(0.0, 0.0, 1.0, 0.0))\n r₄ = transform(Quaternion(0.0, 0.0, 0.0, 1.0))\n _M = reshape([vec(r₁); vec(r₂); vec(r₃); vec(r₄)], (4, 4))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"But, _M doesn't necessarily take unit quaternions to unit quaternions. By decomposing _M into eigenvalues and eigenvectors we can manipulate the transformation so that it takes unit quaternions to unit quaternions without modifying its effect on the geometrical structure of Argand plane. Despite the fact that _M is a matrix of real numbers, it has complex eigenvalues, as it involves a rotation. By constructing a four-complex-dimensional vector off of the eigenvalues we can normalize _M by normalizing the vector of eigenvalues, before reconstructing a unimodular, unitary transformation (a normal matrix). The reconstructed matrix is called M.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" decomposition = LinearAlgebra.eigen(_M)\n λ = LinearAlgebra.normalize(decomposition.values) # normalize eigenvalues for a unimodular transformation\n Λ = [λ[1] 0.0 0.0 0.0; 0.0 λ[2] 0.0 0.0; 0.0 0.0 λ[3] 0.0; 0.0 0.0 0.0 λ[4]]\n M = real.(decomposition.vectors * Λ * LinearAlgebra.inv(decomposition.vectors))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We can assert that the transformation that is induced by M takes null vectors to null vectors in Minkowski vector space 𝕍. If that is the case, then the reconstructed transformation M is a faithful representation and it only scales the extent of null vectors rather than null directions, compared to _M. A representation f is called a faithful representation when for different numbers g and q, f(g) and f(q) are equal if and only if g = q.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A spin-vector is based on the space of future or past null directions in Minkowski space-time. The field ζ of a SpinVector represents points in Argand plane. Therefore, if v is obtained with the transformation of u by M, then the respective spin-vectors s and s′ should tell us how M changes Argand plane. To be precise, three different points in Argand plane, namely u₁, u₂, u₃, are needed to characterize the transformation. We assert that the transformation by M induced on Argand plane is correct, because it extends the Argand plane ζ = w * exp(im * ψ) * s.ζ by magnitude w and rotates it through angle ψ. So, we established the fact that normalizing the vector of eigenvalues of the transformation _M and reconstructing it to get M leaves the effect on Argand plane invariant.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" u₁ = 𝕍(1.0, 1.0, 0.0, 0.0)\n u₂ = 𝕍(1.0, 0.0, 1.0, 0.0)\n u₃ = 𝕍(1.0, 0.0, 0.0, 1.0)\n for u in [u₁, u₂, u₃]\n v = 𝕍(vec(M * Quaternion(u.a)))\n @assert(isnull(v, atol = tolerance), \"v ∈ 𝕍 in not null, $v.\")\n s = SpinVector(u)\n s′ = SpinVector(v)\n if s.ζ == Inf # A Float64 number (the point at infinity)\n ζ = s.ζ\n else # A Complex number\n ζ = w * exp(im * ψ) * s.ζ\n end\n ζ′ = s′.ζ\n if ζ′ == Inf\n ζ = real(ζ)\n end\n @assert(isapprox(ζ, ζ′, atol = tolerance), \"The transformation induced on Argand plane is not correct, $ζ != $ζ′.\")\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A distinction between coordinates in Argand plane becomes relevant when we want to assert the properties of M on a test variable ζ, without applying M on a control variable ζ′. In the special case where the null direction ζ is the point at infinity, the north pole, we expect for the transformation induced by M to be inconsequential. Because ζ is a union of complex numbers and the singleton of infinity (of type Union{Complex, ComplexF64, Float64}). For an inhomogeneous coordinate system we treat the point at infinity in a different way. For example, for all values of w, if ζ equals infinity then the rotation component of a four-screw should not have any effect on the north pole. But, multiplying positive infinity by a complex number of negative magnitude makes ζ equal to negative infinity, which is not in Argand plane. In that case, we first check the edge case to leave ζ unchanged whenever its value is infinity, ζ = s.ζ. No amount of z-boost and rotation about the z-axis should transform the north pole. Else, ζ transforms as expected: ζ = w * exp(im * ψ) * s.ζ.","category":"page"},{"location":"hopffibration.html#Compute-a-Null-Rotation","page":"Hopf Fibration","title":"Compute a Null Rotation","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"To understand a null rotation, imagine that you are an astronaut in empty space, far away from any celestial object. Looking at the space around you from every direction, you can see your surrounding environment through a spherical viewport. This view is called the celestial sphere of past null directions, as the light from the stars in the past reach your eyes. A null rotation translates Argand plane such that just one null direction is invariant, the point at infinity (the north pole of the celestial sphere). We control the animation of a null rotation by defining a real number a.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" a = sin(progress * 2π)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Whenever T is positive, we talk about the sphere of future-pointing null directions. At this stage of the animation, the transformation transform defines a null rotation such that the invariant null vector is the direction t + z, the north pole of the sphere of future-pointing null directions, where ζ equals infinity. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" transform(x::Quaternion) = begin\n T, X, Y, Z = vec(x)\n X̃ = X \n Ỹ = Y + a * (T - Z)\n Z̃ = Z + a * Y + 0.5 * a^2 * (T - Z)\n T̃ = T + a * Y + 0.5 * a^2 * (T - Z)\n Quaternion(T̃, X̃, Ỹ, Z̃)\n end\n\n r₁ = transform(Quaternion(1.0, 0.0, 0.0, 0.0))\n r₂ = transform(Quaternion(0.0, 1.0, 0.0, 0.0))\n r₃ = transform(Quaternion(0.0, 0.0, 1.0, 0.0))\n r₄ = transform(Quaternion(0.0, 0.0, 0.0, 1.0))\n _M = reshape([vec(r₁); vec(r₂); vec(r₃); vec(r₄)], (4, 4))\n decomposition = LinearAlgebra.eigen(_M)\n λ = decomposition.values\n Λ = [λ[1] 0.0 0.0 0.0; 0.0 λ[2] 0.0 0.0; 0.0 0.0 λ[3] 0.0; 0.0 0.0 0.0 λ[4]]\n M = real.(decomposition.vectors * Λ * LinearAlgebra.inv(decomposition.vectors))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we instantiate another spin-vector using M * u = v in order to examine the effect of the transformation M on Argand plane. Specifically, the point ζ from the Argand plane of u transforms into α * s.ζ + β, where α determines the extension of Argand plane and β the translation. The scalar a controls the translation of the plane because β is defined as β = Complex(im * a). We assert that the transformation induced on Argand plane is correct by comparing the approximate equality of the Argand plane of v and the Argand plane of u. Similar to previous animation stages, the induced transformation on Argand plane by M is completely characterized using three different points: u₁, u₂, u₃. After transforming u by M we assert that the result v is still a null vector.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" u₁ = 𝕍(1.0, 1.0, 0.0, 0.0)\n u₂ = 𝕍(1.0, 0.0, 1.0, 0.0)\n u₃ = 𝕍(1.0, 0.0, 0.0, 1.0)\n for u in [u₁, u₂, u₃]\n v = 𝕍(vec(M * Quaternion(u.a)))\n @assert(isnull(v, atol = tolerance), \"v ∈ 𝕍 in not a null vector, $v.\")\n s = SpinVector(u) # TODO: visualize the spin-vectors as frames on S⁺\n s′ = SpinVector(v)\n β = Complex(im * a)\n α = 1.0\n ζ = α * s.ζ + β\n ζ′ = s′.ζ\n if ζ′ == Inf\n ζ = real(ζ)\n end\n @assert(isapprox(ζ, ζ′, atol = tolerance), \"The transformation induced on Argand plane is not correct, $ζ != $ζ′.\")\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Finally, we also assert that the null direction z + t is invariant under the transformation M because it is a null rotation with a fixed null direction at the north pole. The animation of a null rotation is correct if all of the assertions evaluate true.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" v₁ = 𝕍(normalize(ℝ⁴(1.0, 0.0, 0.0, 1.0)))\n v₂ = 𝕍(vec(M * Quaternion(vec(v₁))))\n @assert(isnull(v₁, atol = tolerance), \"vector t + z in not null, $v₁.\")\n @assert(isapprox(v₁, v₂, atol = tolerance), \"The null vector t + z is not invariant under the null rotation, $v₁ != $v₂.\")","category":"page"},{"location":"hopffibration.html#Update-the-Camera","page":"Hopf Fibration","title":"Update the Camera","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The 3D camera of the scene requires the eye position, look at, and up vectors for positioning and orientation. The function update_cam! takes the scene object along with the three required vectors as arguments and updates the camera. But, our camera position and orientation vectors are of type ℝ³, and not Vec3f. To match the argument type we need to use the generic function vec and the splat operator in order to instantiate objects of type Vec3f, because update_cam! is going to match the given type with its own signature.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" GLMakie.update_cam!(lscene.scene, GLMakie.Vec3f(vec(eyeposition)...), GLMakie.Vec3f(vec(lookat)...), GLMakie.Vec3f(vec(up)...))","category":"page"},{"location":"hopffibration.html#Record-an-Animation","page":"Hopf Fibration","title":"Record an Animation","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Updating the base maps requires a base point in the section denoted by q and the transformation M. Then, we use M to update base maps 1, 2, 3 and 4. For we want to have different choices of an inertial reference frame in the tangent space of some point in spacetime. The generic function update! updates base maps by changing the structurally embedded observables, and then the graphical shapes take different forms accordingly.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Although we are talking about points in the bundle, embedded in ℝ⁴ and of type Quaternion, the generic function project converts them to points in ℝ³. The one method of project takes the given point q ∈ S³ ⊂ ℂ² and turns it into a point in the Euclidean space E³ ⊂ ℝ³ using stereographic projection. We identify mathbbR^4 to mathbbC^2 given by (x_1 x_2 x_3 x_4) mapsto (x_1 + i x_2 x_3 + i x_4). Then, the stereographic projection is given by: project S^3 setminus (1 0) to mathbbR^3 given by (x_1 x_2 x_3 x_4) mapsto fracx_2 x_3 x_4^T1 - x_1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Whenever we call the update! function with an object like basemap1, giving transformation M, two things happn under the hood for deforming the graphics (update!(basemap1, q, gauge1, M)). First, a matrix of type ℝ³ is made, Matrix{ℝ³}. That is the job of one of the methods of the generic function make. The correct dispatch is selected automatically for the job, based on the argument signature (whether the first argument is of type Whirl or Basemap for example). The selected method makes a 2-surface (lattice) of the horizontal section at base point q after transforming by M, with the given segments number, gauge and chart. A chart and a gauge play the role of a choice of local trivialization of the Hopf bundle, as an atlas, for the purpose of constructing a pullback of the Earth's surface.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Second, the matrix of ℝ³ along with the given basemap's observables are passed to the function updatesurface! for updating the observables. For each coordinate component x, y and z in the Euclidean 3-space E^3, there is a corresponding matrix of real numbers, of the same size: (segments by segments). In the type structure of a Basemap or a Whirl there is a tuple whose elements are of type Observable. Each element of the three-tuple in turn contains a matrix of components x, y or z. Reshaping a matrix of 3-vectors into three matrices of scalars is done because when we implicitly instantiated a GLMakie surface in the beginning, we supplied it with three observables representing x, y and z coordinates separately. The generic function buildsurface from the source file surface.jl builds a surface with the given scene, value, color and transparency. Here, the value argument is of type Matrix{ℝ³}. The interface between the construction of our base maps (or whirls) and the graphics engine is essentially a reshaping and type conversion. See surface_tests.jl for use cases.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Every time we update the observables of a Whirl under transformation by M, we need to access the coordinates of the boundary data (update!(whirls1[i], points[i], gauge1, gauge2, M)). But the coordinates are not changed, and instead the change-of-basis is taken care of by the map M. The coordinate component ϕ is divided by a factor of four since in geographic coordinates longitudes range from -π to +π, whereas latitudes range from -π / 2 to +π / 2 (exp(ϕ / 4 * K(1) + θ / 2 * K(2)))). This division rescales the longitude component of coordinates and allows us to have a square bundle chart, compared to coordinate components θ. Rescaling θ and ϕ aligns the boundaries of horizontal and vertical subspaces. We finish the animation of one time-step after updating the last Whirl.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The function animate takes as input an integer called frame and updates the scene observables according to the stages that we described earlier. First, it calculates the progress of the animation frames, dividing frame by frames_number. For different properties of Lorentz transformations we have four stages, each stage having its own progress. The signature of the four-screw animator function is compute_fourscrew(progress::Float64, status::Int). For example, stage one animates a proper rotation of Argand plane by calling the function compute_fourscrew with status equal to 1. Stage 2 animates a pure z-boost. Then, stage 3 animates a four-screw. Finally, stage 4 animates a null rotation by calling the function compute_nullrotation. After calling each stage function, we update the camera by calling the function updatecamera.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" animate(frame::Int) = begin\n progress = frame / frames_number\n stage = min(totalstages - 1, Int(floor(totalstages * progress))) + 1\n stageprogress = totalstages * (progress - (stage - 1) * 1.0 / totalstages)\n println(\"Frame: $frame, Stage: $stage, Total Stages: $totalstages, Progress: $stageprogress\")\n if stage == 1\n M = compute_fourscrew(stageprogress, 1)\n elseif stage == 2\n M = compute_fourscrew(stageprogress, 2)\n elseif stage == 3\n M = compute_fourscrew(stageprogress, 3)\n elseif stage == 4\n M = compute_nullrotation(stageprogress)\n end\n update!(basemap1, q, gauge1, M)\n update!(basemap2, q, gauge2, M)\n update!(basemap3, q, gauge3, M)\n update!(basemap4, q, gauge4, M)\n for i in eachindex(whirls1)\n update!(whirls1[i], points[i], gauge1, gauge2, M)\n update!(whirls2[i], points[i], gauge2, gauge3, M)\n update!(whirls3[i], points[i], gauge3, gauge4, M)\n update!(whirls4[i], points[i], gauge4, gauge5, M)\n end\n updatecamera()\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"To create an animation you need to use the record function. In summary, we instantiated a Scene inside a Figure. Next, we created and animated observables in the scene, on a frame by frame basis. Now, we record the scene by passing the figure fig, the file path of the resulting video, and the range of frame numbers to the record function. The frame is incremented by record and the frame number is passed to the function write to animate the observables. Once the frame number reaches the total number of animation frames, recording is finished and a video file is saved on the hard drive at the file path: gallery/planethopf.mp4.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" GLMakie.record(fig, joinpath(\"gallery\", \"$modelname.mp4\"), 1:frames_number) do frame\n animate(frame)\n end","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Description = \"News Report\"","category":"page"},{"location":"newsreport.html#Lede","page":"News Report","title":"Lede","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Show a small piece of the story.","category":"page"},{"location":"newsreport.html#Context","page":"News Report","title":"Context","text":"","category":"section"},{"location":"newsreport.html#Where,-Who,-What,-How-and-Why","page":"News Report","title":"Where, Who, What, How and Why","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Tell us the facts of the story.","category":"page"},{"location":"newsreport.html#Where","page":"News Report","title":"Where","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew1)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"What is the relation between a spin-frame and a Minkowski tetrad? The spin-frame is denoted by omicron (black) and iota (silver). Omicron and iota serve as two flag poles, where we also show their respective flags. In order to see the flags, find the arcs in the x direction that move with omicron and iota during a series of transformations. The spin-frame is in a vector space over complex numbers. The spin space has the axioms of an abstract vector space. But, we have defined a special inner product for 2-spinors, such that the product of omicron and iota equals unity, whereas the product of iota and omicron equals minus unity. In other words, the inner product eats a pair of spin-vectors in the Hopf bundle and spits out a complex number (a scalar).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The axes t (red), x (green), y (blue), and z (orange) are parts of a Minkowski tetrad in Minkowski spacetime. Choosing the default Minkowski tetrad, the tetrad aligns with the Cartesian axes of real dimension four. But, when we apply a spin-transformation, the tetrad no longer aligns with Cartesian coordinates, and with it the spin-frame bases omicron and iota change as well. The kinds of spin transformation that we apply are four-screws and null rotations, and so they are restricted transformations. Restricted transformations do not alter the sign of time. Here, the time sign is negative one, which is the same as the wall clock time.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew3)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"If you look closely, there are two spheres in the middle that change hue over time. One of them is the past null cone and the other is the sphere S^{-1}. You will recognize the null cone as soon as it turns into a cone momentarily. If a spin-vector is in S^{-1}, then under restricted spin-transformations it does not leave the sphere S^{-1} to S^{+1}. The past null cone is the directions of light that reach our eyes from the past. But, the sphere S^{-1} is the light that we can observe around us in the present moment (assume we’re in deep space and away from heavenly objects). Under spin-transformations the null cone and the sphere S^{-1} change too, because they are embedded in Minkowski spacetime of dimension 4.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: nullrotation)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"timesign = -1\nο = SpinVector([Complex(1.0); Complex(0.0)], timesign)\nι = SpinVector([Complex(0.0); Complex(1.0)], timesign)\n@assert(isapprox(dot(ο, ι), 1.0), \"The inner product of spin vectors $ι and $ο is not unity.\")\n@assert(isapprox(dot(ι, ο), -1.0), \"The inner product of spin vectors $ι and $ο is not unity.\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"generate() = 2rand() - 1 + im * (2rand() - 1)\nκ = SpinVector(generate(), generate(), timesign)\nϵ = 0.01\nζ = Complex(κ)\nζ′ = ζ - 1.0 / √2 * ϵ / κ.a[2]\nκ = SpinVector(ζ, timesign)\nκ′ = SpinVector(ζ′, timesign)\nω = SpinVector(generate(), generate(), timesign)\nζ = Complex(ω)\nζ′ = ζ - 1.0 / √2 * ϵ / ω.a[2]\nω = SpinVector(ζ, timesign)\nω′ = SpinVector(ζ′, timesign)\n@assert(isapprox(dot(κ, ι), vec(κ)[1]), \"The first component of the spin vector $κ is not equal to the inner product of $κ and $ι.\")\n@assert(isapprox(dot(κ, ο), -vec(κ)[2]), \"The second component of the spin vector $κ is not equal to minus the inner product of $κ and $ο.\")\n@assert(isapprox(dot(ω, ι), vec(ω)[1]), \"The first component of the spin vector $ω is not equal to the inner product of $ω and $ι.\")\n@assert(isapprox(dot(ω, ο), -vec(ω)[2]), \"The second component of the spin vector $ω is not equal to minus the inner product of $ω and $ο.\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"t = 𝕍(1.0, 0.0, 0.0, 0.0)\nx = 𝕍(0.0, 1.0, 0.0, 0.0)\ny = 𝕍(0.0, 0.0, 1.0, 0.0)\nz = 𝕍(0.0, 0.0, 0.0, 1.0)\nο = √2 * (t + z)\nι = √2 * (t - z)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct360)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The phase of the inner product of spin-vectors is shown as a prism arc. In a Minkowski tetrad with bases t, x, y and z, (with signature (+,-,-,-)) there are a pair of basis vectors for spin-vectors: omicron and iota. For example, the spin-vectors kappa and omega, each are linear combinations of omicron and iota. The product of kappa and omega is a complex number that has a magnitude and a phase. Being spin-vectors, the arrows of omicron, iota, kappa and omega represent the flagpoles, and the flag planes are attached to the flagpoles as arcs.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct720)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In order to find the inner product of kappa and omega we make use of both flagpoles and flag planes. First, note that the flagpoles span a 2-plane in the Minkowski vector space. Then, we perform the Gram-Schmidt orthogonalization method to find the orthogonal complement of the 2-plane. Next, find the intersection of the flag planes and the orthogonal complement 2-plane from the previous step. By this step, the flag plane of kappa results in vector U, whereas the flag plane of omega projects to arrow V. Then, we normalize U and V. Finally, the angle that U and V make with each other measure pi plus two times the argument of the inner product of kappa and omega.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct1080)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore, the arrow that is denoted by p bisects the angle between U and V, and measures the phase angle minus pi half (modulus two pi). Also, a spatial rotation about the axis p is done for animating the Minkowski vector space so that all of the components of the inner product are visible from a 720-degree view.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct1440)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"A spin-vector is named kappa and another spin-vector is named omega. The extra piece of information that makes spinors special is the flagpoles of spin-vectors. Using a differential operator in the plane of complex numbers, starting with zeta complex, the spin counterpart of the spin vector zeta prime equals zeta minus one over the square root of two times a constant named epsilon, over eta (the second component of the spin-vector). Except for this transformation of zeta to zeta prime, which is parameterized by epsilon, the spin-vectors kappa and kappa prime have the same features such as time sign. The same transformation produces the names omega and omega prime. With iota and omicron as the basis vectors of the spin-space G dot, we assert the following propositions:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The first component of the spin vector κ is equal to the inner product of κ and ι.\nThe second component of the spin vector κ is equal to minus the inner product of κ and ο.\nThe first component of the spin vector ω is equal to the inner product of ω and ι.\nThe second component of the spin vector ω is equal to minus the inner product of ω and ο.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"κ = 𝕍(κ)\nκ′ = 𝕍(κ′)\nω = 𝕍(ω)\nω′ = 𝕍(ω′)\nzero = 𝕍(0.0, 0.0, 0.0, 0.0)\nB = stack([vec(κ), vec(ω), vec(zero), vec(zero)])\nN = LinearAlgebra.nullspace(B)\na = 𝕍(N[begin:end, 1])\nb = 𝕍(N[begin:end, 2])\na = 𝕍(LinearAlgebra.normalize(vec(a - κ - ω)))\nb = 𝕍(LinearAlgebra.normalize(vec(b - κ - ω)))","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"When we stack the Minkowski vector space representation of kappa and omega and fill the rest with zero to get a square matrix B, the null space of B is where the piece of information about spinors exist. By performing a Gram-Schmidt procedure we find the set of orthonormal basis vectors for the inner product of kappa and omega. In the following lines, the spin-vectors an and b are bases of the null space of matrix B.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"v₁ = κ.a\nv₂ = ω.a\nv₃ = a.a\nv₄ = b.a\n\ne₁ = v₁\nê₁ = normalize(e₁)\ne₂ = v₂ - dot(ê₁, v₂) * ê₁\nê₂ = normalize(e₂)\ne₃ = v₃ - dot(ê₁, v₃) * ê₁ - dot(ê₂, v₃) * ê₂\nê₃ = normalize(e₃)\ne₄ = v₄ - dot(ê₁, v₄) * ê₁ - dot(ê₂, v₄) * ê₂ - dot(ê₃, v₄) * ê₃\nê₄ = normalize(e₄)\n\nê₁ = 𝕍(ê₁)\nê₂ = 𝕍(ê₂)\nê₃ = 𝕍(ê₃)\nê₄ = 𝕍(ê₄)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproductspositiveus)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The flag planes of kappa and omega are obtained by subtracting kappa from kappa prime and omega from omega prime, respectively. Projecting the flag plane of kappa onto the 2-plane spanned by subspace bases of ê₃ and ê₄ gives you vector U. The same subspace gives you V for the flag plane of omega. The inner product eats two spin-vectors such as kappa and omega, and spits out a complex number that has a magnitude and a phase angle. The angle that U and V make with each other determines the phase of the inner product times two plus pi. This 2-plane is the orthogonal complement of the 2-plane that contains kappa and omega (and is spanned by ê₁ and ê₂). The camera looks at the sum of the vectors kappa and omega.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"κflagplanedirection = 𝕍(LinearAlgebra.normalize(vec(κ′ - κ)))\nωflagplanedirection = 𝕍(LinearAlgebra.normalize(vec(ω′ - ω)))\nglobal u = LinearAlgebra.normalize(vec((-dot(ê₃, κflagplanedirection) * ê₃ + -dot(ê₄, κflagplanedirection) * ê₄)))\nglobal v = LinearAlgebra.normalize(vec((-dot(ê₃, ωflagplanedirection) * ê₃ + -dot(ê₄, ωflagplanedirection) * ê₄)))\np = 𝕍(LinearAlgebra.normalize(u + v))\nglobal p = -dot(ê₃, p) * ê₃ + -dot(ê₄, p) * ê₄\naxis = normalize(ℝ³(vec(p)[2:4]))\nM = mat4(Quaternion(progress * 4π, axis))\nο_transformed = M * Quaternion(vec(ο))\nι_transformed = M * Quaternion(vec(ι))","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproductspositivechina)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"For example, the Standard Model is formulated on 4-dimensional Minkowski spacetime, over which all fiber bundles can be trivialized and spinors have a simple explicit description. For the Symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In theoretical physics, Lie groups like the Lorentz and Poincaré groups, which are related to spacetime symmetries, and gauge groups, defining internal symmetries, are important cornerstones. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group. The Lie algebra SL(2mathbbC) plays a special role in physics, because as a real Lie algebra it is isomorphic to the Lie algebra of the Lorentz group of 4-dimensional spacetime. At least locally, fields in physics can be described by maps on spacetime with values in vector spaces.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. As we will discuss in Sect. 6.8.2 in more detail, the group SL(2mathbbC) is the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity component of the Lorentz group of 4-dimensional spacetime. The fundamental geometric opbject in a gauge theory is a principal bundle over spacetime with structure group given by the gauge group. The fibers of a principal bundle are sometimes thought of as an internal space at every spacetime point, not belonging to spacetime itself. Fiber bundles are indispensible in gauge theory and physics in the situation where spacetime, the base manifold, has a non-trivial topology.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It also happens if we compactify (Euclidean) spacetime mathbbR^4 to the 4-sphere S^4. In these situations, fields on spacetime often cannot be described simply by a map to a fixed vector space, but rather as sections of a non-trivial vector bundle. We will see that this is similar to the difference in special relativity between Minkowski spacetime and the choice of an inertial system. This can be compared, in special relativity, to the choice of an inertial system for Minkowski spacetime M, which defines an identification on M cong mathbbR^4. Of course, different choices of gauges are possible, leading to different trivializations of the principal bundle, just as different choices of inertial systems lead to different identifications of spacetime with mathbbR^4.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Note that, if we consider principal bundles over Minkowski spacetime mathbbR^4, it does not matter for this discussion that principal bundles over Euclidean spaces are always trivial by Corollary 4.2.9. This is very similar to special relativity, where spacetime is trivial, i.e. isomorphic to mathbbR^4 with a Minkowski metric, but what matters is the independence of the actual trivialization, i.e. the choice of inertial system. Table 4.2 Comparison between notions for special relativity and gauge theory","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":" Manifold Trivialization Transformations and invariance\nSpecial relativity Spacetime M M cong mathbbR^4 via inertial system Lorentz\nGauge theory Principal bundle P to M P cong M times G via choice of gauge Gauge","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It follows that, given a local gauge of the gauge bundle P, the section in E corresponds to a unique local map from spacetime into the vector space V. In particular, we can describe matter fields on a spacetime diffeomorphic to mathbbR^4 by unique maps from mathbbR^4 into a vector space, once a global gauge for the principal bundle has been chosen. At least locally (after a choice of local gauge) we can interpret connection 1-forms as fields on spacetime (the base manifold) with values in the Lie algebra of the gauge group. Notice that connections are not unique (if dim M dim G ge 1), not even in the case of trivial principal bundles (all connections that appear in the Standard Model over Minkowski spacetime, for example, are defined on trivial principal bundles). The diffeomorphism group Diff(M) of spacetime M plays a comparable role in general relativity.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"This is related to the fact that gauge theories describe local interactions (the interactions occur in single spacetime points). The local connection 1-form is thus defined on an open subset in the base manifold M and can be considered as a \"field on spacetime\" in the usual sense. Generalized Electric and Magnetic Fields on Minkowski Spacetime of Dimension 4 In quantum field theory, the gauge field A_mu is a function on spacetime with values in the operators on the Hilbert state space V (if we ignore for the moment questions of whether this operator is well-defined and issues of regularization). By Corollary 5.13.5 this difference can be identified with a 1-form on spacetime M with values in Ad(P).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics this fact is expressed by saying that gauge bosons, the differences A_mu-A_mu^0, are fields on spacetime that transform in the adjoint representation of G under gauge transformations. In the case of Minkowski spacetime, rotations correspond to Lorentz transformations. The pseudo-Riemannian case, like the case of Minkowski spacetime, is discussed less often, even though it is very important for physics (a notable exception is the thorough discussion in Helga Baun's book [13]). mathbbR^s1 and mathbbR^1t are the two versions of Minkowski spacetime (both versions are used in physics). This includes the particular case of the Lorentz group of Minkowski spacetime.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"However, as mentioned above, depending on the convention, 4-dimensional Minkowski spacetime in quantum field theory can have signature (+---), so that time carries the plus sign. Example 6.1.20 For applications concerning the Standard Model, the most important of these groups is the proper orthochronous Lorentz group SO^+(13) cong SO^+(31) of 4-dimensional Minkoeski spacetime. They are physical gamma matrices for Cl(13), i.e. for the Clifford algebra of Minkowski spacetime with signature (+---), in the so-called Weyl representation or chiral representation. Example 6.3.18 Let Gamma_a and gamma_a = i Gamma_a be the physical and mathematical gamma matrices for Cl(13) considered in Example 6.3.17. If we set Gamma_a^prime = gamma_a, gamma_a^prime = i Gamma_a^prime = -Gamma_a, then these are physical and Mathematical gamma matrices for Cl(13) of Minkowski spacetime with signature (-+++). Example 6.3.24 For Minkowski spacetime of dimension 4 we have Table 6.1 Complex Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"n Cl(n) Cl^0(n) N\nEvan End(mathbbC^N) End(mathbbC^N2) oplus End(mathbbC^N2) 2^n2\nOdd End(mathbbC^N) oplus End(mathbbC^N) End(mathbbC^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Table 6.2 Real Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"rho mod 8 Cl(st) N\n0 End(mathbbR^N) 2^n2\n1 End(mathbbC^N) 2^(n-1)2\n2 End(mathbbH^N) 2^(n-2)2\n3 End(mathbbH^N) oplus End(mathbbH^N) 2^(n-3)2\n4 End(mathbbH^N) 2^(n-2)2\n5 End(mathbbC^N) 2^(n-1)2\n6 End(mathbbR) 2^n2\n7 End(mathbbR^N) oplus End(mathbbR^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Table 6.3 Even part of real Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"rho mod 8 Cl^0(st) N\n0 End(mathbbR^N) oplus End(mathbbR^N) 2^(n-2)2\n1 End(mathbbR^N) 2^(n-1)2\n2 End(mathbbC^N) 2^(n-2)2\n3 End(mathbbH^N) 2^(n-3)2\n4 End(mathbbH^N) oplus End(mathbbH^N) 2^(n-4)2\n5 End(mathbbH^N) 2^(n-3)2\n6 End(mathbbC^N) 2^(n-2)2\n7 End(mathbbR^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl(13) cong End(mathbbR^4)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl(31) cong End(mathbbH^2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl^0(13) cong Cl^0(31) cong End(mathbbC^2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Example 6.6.7 For Minkowski spacetime mathbbR^n-11 of dimension n we have n = rho + 2.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We see that in Minkowski spacetime of dimension 4 there exist both Majorana and Weyl spinors of real dimension 4, but not Majorana-Weyl spinors. In quantum field theory, spinors become fields of operators on spacetime acting on a Hilbert space. Explicit formulas for Minkowski Spacetime of Dimension 4 We collect some explicit formulas concerning Clifford algebras and spinors for the case of 4-dimensional Minkowski spacetime. In Minkowski spacetime of dimension 4 and signature (+---) (usually used in quantum field theory) there exist both Weyl and Majorana spinors, but not Majorana-Weyl spinors. Our aim in this subsection is to prove that the orthochronous spin group Spin^+(13) of 4-dimensional Minkowski spacetime is isomorphic to the 6-dimensional Lie group SL(2mathbbC).","category":"page"},{"location":"newsreport.html#The-Story","page":"News Report","title":"The Story","text":"","category":"section"},{"location":"newsreport.html#Who","page":"News Report","title":"Who","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"With the discovery of a new particle, announced on 4 July 2012 at CERN, whose properties are \"consistent with the long-sought Higgs boson\" [31], the final elementary particle predicted by the classical Standard Model of particle physics has been found. Interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs bosons), determined by the Lagrangian. The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. The fact that there are 8 gluons, 3 weak gauge bosons, and 1 photon is related to the dimensions of the Lie groups SU(3) and SU(2) times U(1). Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. The gauge bosons corresponding to these gauge groups are described by the adjoint representation that we discuss in Sect. 2.1.5. The representation Ad_H describes the representation of the gauge boson fields in the Standard Model. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Connections on principal bundles, that we discuss in Chap. 5, correspond to gauge fields whose particle excitations in the associated quantum field theory are the gauge bosons that transmit interactions. These fields are often called gauge fields and correspond in the associated quatum field theory to gauge bosons. This implies a direct interaction between gauge bosons (the gluons in QCD) that does not occur in abelian gauge theories like quantum electrodynamics (QED). The difficulties that are still present nowadays in trying to understand the quantum version of non-abelian gauge theories, like quantum chromodynamics, can ultimately be traced back to this interaction between gauge bosons. The real-valued fields A_mu^a in C^infty(UmathbbR) and the corresponding real-valued 1-forms A_s in Omega^1(U) are called (local) gauge boson fields.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics, the quadratic term A_mu A_nu in the expression for F_munu (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field A_mu. This explains why gluons, the gauge bosons of QCD, interact directly with each other, while photons, the gauge bosons of QED, do not. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by A_mu and the particles described by the field phi. We then get a better understanding of why gauge bosons in physics are said to transform under the adjoint representation.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Strictly speaking, gauge bosons, the excitations of the gauge field, should then be described classically by the difference A - A^0, where A is some other connection 1-form and not by the field A itself. In physics this fact is expressed by saying that gauge bosons, the differences A_mu - A_mu^0, are fields on spacetime that transform in the adjoint represntation of G under gauge transformations. Gauge fields correspond to gauge bosons (spin 1 particles) and are described by 1-forms or, dually, vector fields. Even though spinors are elementary objects, some of their properties (like the periodicity modulo 8, real and quaternionic structures, or bilinear and Hamiltonian scalar products) are not at all obvious, already on the level of linear algebra, and do not have a direct analogue in the bosonic world of vectors and tensors. The existence of gauge symmetries is particularly important: it can be shown that a quantum field theory involving massless spin 1 bosons can be consistent (i.e. unitary, see Sect. 7.1.3) only if it is gauge invariant [125,143].","category":"page"},{"location":"newsreport.html#Graph","page":"News Report","title":"Graph","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: graph)","category":"page"},{"location":"newsreport.html#What","page":"News Report","title":"What","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. Spin groups such as the universal covering of the Lorentz group and its higher dimesnional analogues, are also important in physics, because they are involved in the mathematical description of fermions. Counting in this way, the Standard Model thus contains at the most elementary level 90 fermions (particles and antiparticles). The complex vector space V of fermions, which carries a representation of G, has dimension 45 (plus the same number of corresponding antiparticles) and is the direct sum of the two G-invariant subspaces (sectors): a lepton sector of dimension 9 (where we do not include the hypothetical right-handed neutrinos) and a quark sector of dimension 36. Matter fields in the Standard Model, like quarks and leptons, or sacalar fields, like the Higgs field, correspond to sections of vector bundles associated to the principal bundle (and twisted by spinor bundles in the case of fermions).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"For example, in the Standard Model, one generation of fermions is described by associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for right-handed fermions, associated to representations of the gauge group SU(3) times SU(2) times U(1). Matter fields in physics are described by smooth sections of vector bundles E associated to principal bundles P via the representations of the gauge group G on a vector space V (in the case of fermions the associated bundle E is twisted in addition with a spinor bundle S, i.e. the bundle is S otimes E). Additional matter fields, like fermions or scalars, can be introduced using associated vector bundles. These particles are fermions (spin frac12 particles) and are described by spinor fields (spinors). Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly neutrinos) and, together with the Dirac operator, the kinetic term and the interaction term; see Sect. 7.6. This is related to the fact that the weak interaction in the Standard Model is not invariant under parity inversion that exchanges left-handed with right-handed fermions.","category":"page"},{"location":"newsreport.html#Perspective","page":"News Report","title":"Perspective","text":"","category":"section"},{"location":"newsreport.html#How","page":"News Report","title":"How","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Hence, by the uniqueness of integral curves (which is a theorem about the uniqueness of solutions to odrinary differential equations) we have phi_X(s) cdot phi_X(t) = phi_X(s + t) forall t in I cap (t_min - s t_max - s). This implies the claim by uniqueness of solutions of ordinary differential equations. The unique solution of this differential equation for gamma(t) is gamma(t) = e^tr(X)t. Then e^D = beginbmatrix e^d_1 0 0 0 e^d_2 0 ddots 0 0 e^d_n endbmatrix and the equation det(e^D) = e^d_1 e^d_n = e^d_1 + + d_n = e^tr(D) is trivially satisfied. Then we can calculate: (R^*_gs)_p(XY) = L_(pg)^-1*R_g*(X) L_(pg)^-1*R_g*(Y) = Ad_g^-1 circ L_p^-1*(X) Ad_g^-1 circ L_p^-1*(Y) and s_p(XY) = L_p^-1*(X) L_p^-1*(Y), where in both equations we used that s is left invariant.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 3.3.3 For A in Mat(m times m mathbbH) and v in mathbbH^m the following equation holds: detbeginbmatrix1 v 0 Aendbmatrix = det(A). Lemma 4.1.13 (Cocycle Conditions) The transition functions phi_ij_ij in I satisfy the following equations:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"phi_ii(x) = Id_F for x in U_i,\nphi_ij(x) circ phi_ji(x) = Id_F for x in U_i cap U_j,\nphi_ik(x) circ phi_kj(x) circ phi_ji(x) = Id_F for x in U_i cap U_j cap U_k.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The third equation is called the cycycle condition.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"5.5.2 The structure equation Theorem 5.5.4 (Structure Equation) The curvature form F of a connection form A satisfies F = dA + frac12AA.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof We check the formula by inserting XY in T_pP on both sides of the equation, where we distinguish the following three cases:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Both X and Y are vertical: Then X and Y are fundamental vectors, X = tildeV_p Y = tildeW_p for certain elements VW in g. We get F(XY) = dA(pi_H(X) pi_H(Y)) = 0. On the other hand we have frac12AA(XY) = A(X)A(Y) = VW. The differential dA of a 1-form A is given according to Proposition A.2.22 by dA(XY) = L_X(A(Y))-L_Y(A(X))-A(XY), where we extend the vectors X and Y to vector fields in a neighbourhood of p. If we choose the extension by fundamental vector fields tildeV and tildeW, then dA(XY) = L_X(W) - L_Y(V) - VW = -VW since V and W are constant maps from P to g and we used that tildeVtildeW = tildeVW according to Proposition 3.4.4. This implies the claim.\nBoth X and Y are horizontal: Then F(XY) = dA(XY) and frac12AA(XY) = A(X) A(Y) = 00=0. This implies the claim.\nX is vertical and Y is horizontal: Then X = tildeV_p for some V in g. We have F(XY) = dA(pi_H(X)pi_H(Y)) = dA(0 Y) = 0 and frac12AA(XY) = A(X)A(Y) - V0 = 0. Furthermore, dA(XY) = L_tildeV(A(Y)) - L_Y(V) - A(tildeVY) = -A(tildeVY) = 0 since tildeVY is horizontal by Lemma 5.5.5. This implies the claim.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The structure equation is very useful when we want to calculate the curvature of a given connection.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"By the structure equation we have F = dA + frac12 A A so that dF = frac12 dA A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proposition 5.6.2 (Local Structure Equation) The local field strength can be calculated as F_s = dA_s + frac12A_sA_s and F_munu = partial_mu A_nu - partial_nu A_mu + A_mu A_nu.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It remains to check that F_M is closed. In a local gauge s we have according to the local structure equation F_s = dA_s + frac12A_sA_s.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proposition 5.6.8 For the connection on the Hopf bundle the following equation holds: frac12pi i int_S^2 F_S^2 = 1.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We write A_mu = A_s(partial_mu) F_munu = F_s(partial_mu partial_nu) and we have the local structure equation F_munu = partial_mu A_nu - partial_nu A_mu + A_mu A_nu.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We will determine g(t) as the solution of a differential equation.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof Properties 1-3 follow from the theory of ordinary differential equations. (Parallel transport)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Recall that for the proof of Theorem 5.8.2 concerning the existence of a horizontal lift gamma^* of a curve gamma01 to M where gamma^*(0) = p in P_gamma(0), we had to solve the differential equation dotg(t) = -R_g(t)* A(dotdelta(t)), with g(0) = e, where delta is some lift of gamma and g01 to G is a map with gamma^*(t) = delta(t) cdot g(t).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Then the differential equation can be written as fracdg(t)dt = -A_s(dotgamma(t)) cdot g(t).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Path-ordered exponentials are useful, because they define solutions to the ordinary differential equation we are interested in.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Then uniqueness of the solution to ordinary differential equations show that g equiv h, hence g takes values in G.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The solution to this differential equation is","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"g(t) = P exp(- int_0^t sum_mu=1^n A_smu(gamma(s))fracdx^mudsds) = P exp(- int_gamma(0)^gamma(t) sum_mu=1^n A_smu (x^mu) dx^mu) = P exp(- int_gamma_t A_s), where gamma_t denotes the restriction of the curve gamma to 0t.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"What is the interpretation of the structure equation?","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Taking the determinant of both sides of this equation shows that:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 6.1.7 Matrices A in O(st) satisfy detA = pm 1.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"A^T beginbmatrix I_s 0 0 -I_t endbmatrix A = beginbmatrix I_s 0 0 -I_t endbmatrix.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Remark 6.2.5 We can think of the linear map gamma as a linear square root of the symmetric bilinear form -Q: in the definition of Clifford algebras, it suffices to demand that gamma(v)^2 = -Q(vv) cdot 1 forall v w in V, because, considering this equation for vectors v w v + w, the equation gamma(v) gamma(w = -2Q(v w) cdot 1 forall v w in V follows.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 6.3.6 Every chirality element omega satisfies","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"omegae_a = 0\nomegae_a cdot e_b = 0 forall 1 le a b le n.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof The first equation follows from e_a cdot omega = lambda e_a cdot e_1 e_n = (-1)^a - 1 lambda e_1 e_a cdot e_a e_n","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"omega cdot e_a = lambda e_1 e_n cdot e_a = (-1)^n - a lambda e_1 e_a cdot e_a e_n = -e_a cdot omega,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"since n is even. The second equation is a consequence of the first.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Let Gamma_1 Gamma_n be physical gamma matrices. We set","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma_a = eta^ac Gamma_c,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^bc = frac12 Gamma^b Gamma^c = frac12 (Gamma^b Gamma^c - Gamma^c Gamma^b),","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 = -i^k + t Gamma^1 Gamma^n","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"and similarly for the mathematical gamma-matrices (in the first equation there is an implicit sum over c; this is an instance of the Einstein summation convention). These matrices satisfy by Lemma 6.3.6","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 Gamma^a = 0,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 Gamma^bc = 0,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma^bc = -Gamma^bc.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In the following examples we use the Pauli matrices","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma_1 = beginbmatrix 0 1 1 0 endbmatrix, sigma_2 = beginbmatrix 0 -i i 0 endbmatrix, sigma_3 = beginbmatrix 1 0 0 -1 endbmatrix.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It is easy to check that they satisfy the identities","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma^2 = I_2 j = 1 2 3,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma_j sigma_j + 1 = -sigma_j + 1 sigma_j = i sigma_j + 2 j = 1 2 3,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"where in the second equation j + 1 and j + 2 are taken mod 3.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(psi phi) = psi^T C phi","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore property 1. and 2. in Definition 6.7.1 are equivalent to","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma_a^T = mu C gamma_a C^-1 for all a = 1 s + t.\nC^T = nu C.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The first equation also holds with the physical Clifford matrices Gamma_a instead of the mathematical matrices gamma_a.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"There is an equivalent equation to the first one with physical Clifford matrices Gamma_a 1 cdot Gamma^dagger_a = -delta A Gamma_a A^-1 for all a = 1 s + t.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore, property 1. and 2. in Definition 6.7.8 are equivalent to:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma_a^dagger = delta A gamma_a A^-1 for all a = 1 s + t.\nA^dagger = A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Given a spin structure on a pseudo-Riemannian manifold and the spinor bundle S, we would like to have a covariant derivative on S so that we can define field equations involving derivatives of spinors.","category":"page"},{"location":"newsreport.html#The-Iconic-Wall","page":"News Report","title":"The Iconic Wall","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: corrected-wall)","category":"page"},{"location":"newsreport.html#Tome","page":"News Report","title":"Tome","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: tome)","category":"page"},{"location":"newsreport.html#Wrap-Up","page":"News Report","title":"Wrap Up","text":"","category":"section"},{"location":"newsreport.html#Why","page":"News Report","title":"Why","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The following three chapters discuss applications in physics: the Lagrangians and interactions in the Standard Model, spontaneous symmetry breaking, the Higgs mechanism of mass generation, and some more advanced and modern topics like neutrino masses and CP violation. Depending on the time, the interests and the prior knowledge of the reader, he or she can take a shortcut and immediately start at the chapters on connections, spinors or Lagrangians, and then go back if more detailed mathematical knowledge is required at some point. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Symmetries of Lagrangians interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs boson), determined by the Lagrangian. For the symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In the following chapter we will study some associated concepts, like representations (which are used to define the actions of Lie groups on fields) and invariant matrices (which are important in the construction of the gauge invariant Yang-Mills Lagrangian). We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The existence of positive definite Ad-invariant scalar products on the Lie algebra of compact Lie groups is very important in gauge theory, in particular, for the construction of the gauge-invariant Yang-Mills Lagrangian; see Sect. 7.3.1. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]). In a gauge-invariant Lagrangian this results in terms of order higher than two in the matter and gauge fields, which are interpreted as interactions between the corresponding particles. In non-abelian gauge theories, like quantum chromodynamics (QCD), there are also terms in the Lagrangian of order higher than two in the gauge fields themselves, coming from a quadratic term in the curvature that appears in the Yang-Mills Lagrangian.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics, the quadratic term A_mu A_nu in the expression for F_munu (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field A_mu. These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by A_mu and the particles described by the field phi.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: feynmandiagrams)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Figure 5.2 shows the Feynman diagrams for the cubic and quartic terms which appear in the Klein-Gordon Lagrangian in Eq. (7.3), representing the interaction between a gauge field A and a charged scalar field described locally by a map phi with values in V. Fig 5.2 Feynman diagrams for interaction between gauge field and charged scalar","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Hermitian scalar products are particularly important, because we need them in Chap. 7 to define Lorentz invariant Lagrangians involving spinors.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"psi phi = overlinepsi phi,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"overlinepsi = psi^dagger A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly the neutrinos) and, together with the Dirac operator the kinetic term and the interaction term; see Sect. 7.6.","category":"page"},{"location":"newsreport.html#Porta.jl","page":"News Report","title":"Porta.jl","text":"","category":"section"},{"location":"newsreport.html#References","page":"News Report","title":"References","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Mark J.D. Hamilton, Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics, Springer Cham, DOI, published: 10 January 2018.\nSir Roger Penrose, The Road to Reality, (2004).\nRoger Penrose, Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).\nRichard M. Murray and Zexiang Li, A Mathematical Introduction to Robotic Manipulation, 1st Edition, 1994, CRC Press, read, buy.\nEdward Witten, Physics and Geometry, (1987).\nThe iconic Wall of Stony Brook University.","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Description = \"How the reaction wheel unicycle works.\"","category":"page"},{"location":"reactionwheelunicycle.html#The-Reaction-Wheel-Unicycle","page":"Reaction Wheel Unicycle","title":"The Reaction Wheel Unicycle","text":"","category":"section"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_cnt = beginbmatrix dotx - r_w dottheta cos(delta) newline doty - r_w dottheta sin(delta) newline dotz endbmatrix = beginbmatrix 0 newline 0 newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"dotx = r_w dottheta cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"doty = r_w dottheta sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"dotz = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotq_i) - fracpartial Lpartial q_i = Q_i + sum_k=1^n lambda_k a_ki","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"i = 1 ldots m","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"L = T_total - P_total","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_w2^cpT = beginbmatrix 1 0 0 0 newline 0 cos(alpha) -sin(alpha) 0 newline 0 sin(alpha) cos(alpha) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 r_w newline 0 0 0 1 endbmatrix = beginbmatrix 1 0 0 0 newline 0 cos(alpha) -sin(alpha) -r_w sin(alpha) newline 0 sin(alpha) cos(alpha) r_w cos(alpha) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_cp^gT = beginbmatrix cos(delta) -sin(delta) 0 x newline sin(delta) cos(delta) 0 y newline 0 0 1 0 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_w2^gT = _cp^gT times _w2^cpT = beginbmatrix cos(delta) -sin(delta) cos(alpha) sin(delta) sin(alpha) x + r_w sin(delta) sin(alpha) newline sin(delta) cos(delta) cos(alpha) -cos(delta) sin(alpha) y - r_w cos(delta) sin(alpha) newline 0 sin(alpha) cos(alpha) r_w cos(alpha) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^w2P_w = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_w = _w2^gT times ^w2P_w = beginbmatrix x + r_w sin(alpha) sin(delta) newline y - r_w sin(alpha) cos(delta) newline r_w cos(alpha) newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^w2T = beginbmatrix cos(beta) 0 sin(beta) 0 newline 0 1 0 0 newline -sin(beta) 0 cos(beta) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 l_c newline 0 0 0 1 endbmatrix = beginbmatrix cos(beta) 0 sin(beta) l_c sin(beta) newline 0 1 0 0 newline -sin(beta) 0 cos(beta) l_c cos(beta) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gT = _w2^gT times _c^w2T = beginbmatrix _c^gt_11 -sin(delta) cos(alpha) _c^gt_13 _c^gt_14 newline _c^gt_21 cos(delta) cos(alpha) _c^gt_23 _c^gt_24 newline -cos(alpha) sin(beta) sin(alpha) cos(alpha) cos(beta) _c^gt_34 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_11 = cos(beta) cos(delta) - sin(alpha) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_13 = sin(beta) cos(delta) + sin(alpha) cos(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_14 = x + r_w sin(delta) sin(alpha) + l_c sin(beta) cos(delta) + l_c sin(alpha) cos(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_21 = cos(beta) sin(delta) + sin(alpha) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_23 = sin(beta) sin(delta) - sin(alpha) cos(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_24 = y - r_w cos(delta) sin(alpha) + l_c sin(beta) sin(delta) - l_c sin(alpha) cos(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_34 = r_w cos(alpha) + l_c cos(alpha) cos(beta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^cP_c = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_c = _c^gT times ^cP_c = beginbmatrix ^gp_c1 newline ^gp_c2 newline ^gp_c3 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c1 = x + r_w sin(alpha) sin(delta) + l_c cos(beta) sin(alpha) sin(delta) + l_c sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c2 = y - r_w sin(alpha) cos(delta) - l_c cos(beta) sin(alpha) cos(delta) + l_c sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c3 = r_w cos(alpha) + l_c cos(beta) cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^cT = beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 l_cr newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 cos(gamma) -sin(gamma) 0 newline 0 sin(gamma) cos(gamma) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 0 newline 0 0 0 1 endbmatrix = beginbmatrix 1 0 0 0 newline 0 cos(gamma) -sin(gamma) 0 newline 0 sin(gamma) cos(gamma) l_cr newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gT = _c^gT times _r^cT = beginbmatrix _r^gt_11 _r^gt_12 _r^gt_13 _r^gt_14 newline _r^gt_21 _r^gt_22 _r^gt_23 _r^gt_24 newline -cos(alpha) sin(beta) _r^gt_32 _r^gt_33 _r^gt_34 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_11 = cos(beta) cos(delta) - sin(alpha) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_12 = -sin(delta) cos(alpha) cos(gamma) + cos(delta) sin(beta) sin(gamma) + sin(delta) sin(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_13 = sin(delta) cos(alpha) sin(gamma) + cos(delta) sin(beta) cos(gamma) + sin(delta) sin(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_14 = 0 + l_cr (cos(delta) sin(beta) + sin(delta) sin(alpha) cos(beta)) + l_c sin(beta) cos(delta) + l_c cos(beta) sin(delta) sin(alpha) + x + r_w sin(delta) sin(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_21 = cos(beta) sin(delta) + sin(alpha) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_22 = cos(delta) cos(alpha) cos(gamma) + sin(delta) sin(beta) sin(gamma) - cos(delta) sin(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_23 = -cos(delta) cos(alpha) sin(gamma) + sin(delta) sin(beta) cos(gamma) - cos(delta) sin(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_24 = l_cr (sin(delta) sin(beta) - cos(delta) sin(alpha) cos(beta)) + l_c sin(beta) sin(delta) - l_c cos(beta) cos(delta) sin(alpha) + y - r_w cos(delta) sin(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_32 = sin(alpha) cos(gamma) + cos(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_33 = -sin(alpha) sin(gamma) + cos(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_34 = l_cr cos(alpha) cos(beta) + l_c cos(beta) cos(alpha) + r_w cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^rP_r = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_r = _r^gT times ^rP_r = beginbmatrix ^gp_r1 newline ^gp_r2 newline ^gp_r3 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r1 = x + r_w sin(alpha) sin(delta) + (l_c + l_cr) cos(beta) sin(alpha) sin(delta) + (l_c + l_cr) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r2 = y - r_w sin(alpha) cos(delta) - (l_c + l_cr) cos(beta) sin(alpha) cos(delta) + (l_c + l_cr) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r3 = r_w cos(alpha) + (l_c + l_cr) cos(beta) cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_w = fracdP_wdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_c = fracdP_cdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_r = fracdP_rdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_w = beginbmatrix 0 newline dottheta newline 0 newline 0 endbmatrix + beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^w2T times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix 0 newline dottheta newline 0 newline 0 endbmatrix + beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _w2^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotalpha newline dottheta + dotdelta sin(alpha) newline dotdelta cos(alpha) endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_c = beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _w2^cT times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^cT times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _c^w2T^-1 times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _c^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotalpha cos(beta) - dotdelta cos(alpha) sin(beta) newline dotbeta + dotdelta sin(alpha) newline dotalpha sin(beta) + dotdelta cos(alpha) cos(beta) newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^w2T = _w2^gT^-1 times _r^gT","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_r = beginbmatrix dotgamma newline 0 newline 0 newline 0 endbmatrix + _c^rT times beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _w2^rT times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^rT times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotgamma newline 0 newline 0 newline 0 endbmatrix + _r^cT^-1 times beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _r^w2T^-1 times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _r^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotgamma + dotalpha cos(beta) - dotdelta cos(alpha) sin(beta) newline omega_r2 newline omega_r3 newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"omega_r2 = dotbeta cos(gamma) + dotalpha sin(beta) sin(gamma) + dotdelta sin(alpha) cos(gamma) + dotdelta cos(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"omega_r3 = -dotbeta sin(gamma) + dotalpha sin(beta) cos(gamma) - dotdelta sin(alpha) sin(gamma) + dotdelta cos(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_w = frac12 m_w V_w^T V_w + frac12 Omega_w^T I_w Omega_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_w = m_w g P_w(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_c = frac12 m_c V_c^T V_c + frac12 Omega_c^T I_c Omega_c","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_c = m_c g P_c(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_r = frac12 m_r V_r^T V_r + frac12 Omega_r^T I_r Omega_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_r = m_r g P_r(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_total = T_w + T_c + T_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_total = P_w + P_c + P_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m = 7 n = 2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotx) - fracpartial Lpartial x = lambda_1","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial doty) - fracpartial Lpartial y = lambda_2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dottheta) - fracpartial Lpartial theta = tau_w - r_w cos(delta) lambda_1 - r_w sin(delta) lambda_2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotbeta) - fracpartial Lpartial beta = -tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotalpha) - fracpartial Lpartial alpha = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotgamma) - fracpartial Lpartial gamma = tau_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotdelta) - fracpartial Lpartial delta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Wheel dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_11 ddotbeta + m_12 ddotgamma + m_13 ddotdelta + m_14 ddottheta + c_11 dotbeta^2 + c_12 dotgamma^2 + c_13 dotdelta^2 + c_14 dotalpha dotdelta + c_15 dotbeta dotgamma + c_16 dotbeta dotdelta + c_17 dotgamma dotdelta = tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Chassis longitudinal dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_21 ddotalpha + m_22 ddotbeta + m_23 ddotdelta + m_24 ddottheta + c_21 dotalpha^2 + c_22 dotdelta^2 + c_23 dotalpha dotgamma + c_24 dotalpha dotdelta + c_25 dotbeta dotgamma + c_26 dotgamma dotdelta + c_27 dotdelta dottheta + g_21 = -tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Chassis lateral dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_31 ddotalpha + m_32 ddotbeta + m_33 ddotgamma + m_34 ddotdelta + c_31 dotbeta^2 + c_32 dotgamma^2 + c_33 dotdelta^2 + c_34 dotalpha dotbeta + c_35 dotalpha dotgamma + c_36 dotbeta dotgamma + c_37 dotbeta dotdelta + c_38 dotgamma dotdelta + c_39 dotdelta dottheta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Reaction wheel dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_41 ddotalpha + m_42 ddotgamma + m_43 ddotdelta + m_44 ddottheta + c_41 dotalpha^2 + c_42 dotbeta^2 + c_43 dotdelta^2 + c_44 dotalpha dotbeta + c_45 dotalpha dotdelta + c_46 dotbeta dotdelta + c_47 dotdelta dottheta + g_41 = tau_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Turning dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_51 ddotalpha + m_52 ddotbeta + m_53 ddotgamma + m_54 ddotdelta + m_55 ddottheta + c_51 dotalpha^2 + c_52 dotbeta^2 + c_53 dotgamma^2 + c_54 dotalpha dotbeta + c_55 dotalpha dotgamma + c_56 dotalpha dotdelta + c_57 dotalpha dottheta + c_58 dotbeta dotgamma + c_59 dotbeta dotdelta + c_510 dotgamma dotdelta + c_511 dotdelta dottheta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracmathrmd xleft( t right)mathrmdt = r_w cosleft( deltaleft( t right) right) fracmathrmd thetaleft( t right)mathrmdt newline fracmathrmd yleft( t right)mathrmdt = r_w sinleft( deltaleft( t right) right) fracmathrmd thetaleft( t right)mathrmdt newline fracmathrmd zleft( t right)mathrmdt = 0 newline I_w = left beginarraycccc I_w1 0 0 0 newline 0 I_w2 0 0 newline 0 0 I_w3 0 newline 0 0 0 0 newline endarray right newline I_c = left beginarraycccc I_c1 0 0 0 newline 0 I_c2 0 0 newline 0 0 I_c3 0 newline 0 0 0 0 newline endarray right newline I_r = left beginarraycccc I_r1 0 0 0 newline 0 I_r2 0 0 newline 0 0 I_r3 0 newline 0 0 0 0 newline endarray right newline mathrmw2cpTleft( t right) = left beginarraycccc 1 0 0 0 newline 0 cosleft( alphaleft( t right) right) - sinleft( alphaleft( t right) right) - r_w sinleft( alphaleft( t right) right) newline 0 sinleft( alphaleft( t right) right) cosleft( alphaleft( t right) right) r_w cosleft( alphaleft( t right) right) newline 0 0 0 1 newline endarray right newline mathrmcpgTleft( t right) = left beginarraycccc cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) 0 xleft( t right) newline sinleft( deltaleft( t right) right) cosleft( deltaleft( t right) right) 0 yleft( t right) newline 0 0 1 0 newline 0 0 0 1 newline endarray right newline mathrmw2gTleft( t right) = mathrmcpgTleft( t right) mathrmw2cpTleft( t right) newline w2P_w = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_wleft( t right) = mathrmw2gTleft( t right) w2P_w newline mathrmcw2Tleft( t right) = left beginarraycccc cosleft( betaleft( t right) right) 0 sinleft( betaleft( t right) right) l_c sinleft( betaleft( t right) right) newline 0 1 0 0 newline -sinleft( betaleft( t right) right) 0 cosleft( betaleft( t right) right) l_c cosleft( betaleft( t right) right) newline 0 0 0 1 newline endarray right newline mathrmcgTleft( t right) = mathrmw2gTleft( t right) mathrmcw2Tleft( t right) newline cP_c = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_cleft( t right) = mathrmcgTleft( t right) cP_c newline mathrmrcTleft( t right) = left beginarraycccc 1 0 0 0 newline 0 cosleft( gammaleft( t right) right) - sinleft( gammaleft( t right) right) 0 newline 0 sinleft( gammaleft( t right) right) cosleft( gammaleft( t right) right) l_cr newline 0 0 0 1 newline endarray right newline mathrmrgTleft( t right) = mathrmcgTleft( t right) mathrmrcTleft( t right) newline rP_r = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_rleft( t right) = mathrmrgTleft( t right) rP_r newline mathrmrw2Tleft( t right) = mathrminvleft( mathrmw2gTleft( t right) right) mathrmrgTleft( t right) newline V_wleft( t right) = mathrmbroadcastleft( D mathrmgP_wleft( t right) right) newline V_cleft( t right) = mathrmbroadcastleft( D mathrmgP_cleft( t right) right) newline V_rleft( t right) = mathrmbroadcastleft( D mathrmgP_rleft( t right) right) newline Omega_wleft( t right) = mathrmbroadcastleft( + left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline _derivativeleft( thetaleft( t right) t 1 right) newline 0 newline 0 newline endarray right mathrminvleft( mathrmw2gTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline Omega_cleft( t right) = mathrmbroadcastleft( + mathrmbroadcastleft( + left beginarrayc 0 newline _derivativeleft( betaleft( t right) t 1 right) newline 0 newline 0 newline endarray right mathrminvleft( mathrmcw2Tleft( t right) right) left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmcgTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline Omega_rleft( t right) = mathrmbroadcastleft( + mathrmbroadcastleft( + mathrmbroadcastleft( + left beginarrayc _derivativeleft( gammaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right mathrminvleft( mathrmrcTleft( t right) right) left beginarrayc 0 newline _derivativeleft( betaleft( t right) t 1 right) newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmrw2Tleft( t right) right) left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmrgTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline T_wleft( t right) = mathrmadjointleft( V_wleft( t right) right) mathrmbroadcastleft( * V_wleft( t right) mathrmRefleft( 05 m_w right) right)_1 + mathrmadjointleft( Omega_wleft( t right) right) mathrmbroadcastleft( * I_w Omega_wleft( t right) 05 right)_1 newline P_wleft( t right) = g mathrmgP_wleft( t right)_3 m_w newline T_cleft( t right) = mathrmadjointleft( V_cleft( t right) right) mathrmbroadcastleft( * V_cleft( t right) mathrmRefleft( 05 m_c right) right)_1 + mathrmadjointleft( Omega_cleft( t right) right) mathrmbroadcastleft( * I_c Omega_cleft( t right) 05 right)_1 newline P_cleft( t right) = g mathrmgP_cleft( t right)_3 m_c newline T_rleft( t right) = mathrmadjointleft( V_rleft( t right) right) mathrmbroadcastleft( * V_rleft( t right) mathrmRefleft( 05 m_r right) right)_1 + mathrmadjointleft( Omega_rleft( t right) right) mathrmbroadcastleft( * I_r Omega_rleft( t right) 05 right)_1 newline P_rleft( t right) = g mathrmgP_rleft( t right)_3 m_r newline T_totalleft( t right) = T_rleft( t right) + T_cleft( t right) + T_wleft( t right) newline P_totalleft( t right) = P_wleft( t right) + P_cleft( t right) + P_rleft( t right) newline Lleft( t right) = T_totalleft( t right) - P_totalleft( t right) newline","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"L = 05 left( left( fracfracmathrmd alphaleft( t right)mathrmdt cosleft( betaleft( t right) right)sin^2left( betaleft( t right) right) + cos^2left( betaleft( t right) right) + fracleft( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + left( - sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c1 + left( fracmathrmd betaleft( t right)mathrmdt + fracleft( - left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - left( - sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c2 + left( fracsinleft( betaleft( t right) right) fracmathrmd alphaleft( t right)mathrmdtsin^2left( betaleft( t right) right) + cos^2left( betaleft( t right) right) + fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c3 right) + 05 left( left( fracmathrmd gammaleft( t right)mathrmdt + fracleft( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) right)^2 I_r1 + left( fracleft( - left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) - left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( - left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) + fracfracmathrmd betaleft( t right)mathrmdt cosleft( gammaleft( t right) right)sin^2left( gammaleft( t right) right) + cos^2left( gammaleft( t right) right) right)^2 I_r2 + left( fracleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) + frac - fracmathrmd betaleft( t right)mathrmdt sinleft( gammaleft( t right) right)sin^2left( gammaleft( t right) right) + cos^2left( gammaleft( t right) right) right)^2 I_r3 right) + 05 left( fracleft( fracmathrmd deltaleft( t right)mathrmdt right)^2 left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right)^2 I_w3left( cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right)^2 + left( fracmathrmd alphaleft( t right)mathrmdt right)^2 I_w1 + left( fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtcos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracmathrmd thetaleft( t right)mathrmdt right)^2 I_w2 right) + 05 m_c left( left( fracmathrmdmathrmdt left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt left( xleft( t right) + l_c sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_c sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) + l_c sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) - l_c cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 right) + 05 m_r left( left( fracmathrmdmathrmdt left( xleft( t right) + l_c sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_c sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) + l_cr left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) + l_c sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) - l_c cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_cr left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 + left( fracmathrmdmathrmdt left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) + l_cr cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) right)^2 right) + 05 m_w left( left( fracmathrmdmathrmdt r_w cosleft( alphaleft( t right) right) right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt left( xleft( t right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 right) - g m_w r_w cosleft( alphaleft( t right) right) - g left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) m_c - g left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) + l_cr cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) m_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"left beginarrayc _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline endarray right = left beginarrayc lambda_1 newline lambda_2 newline tau_w - r_w sinleft( deltaleft( t right) right) lambda_2 - r_w cosleft( deltaleft( t right) right) lambda_1 newline -tau_w newline 0 newline tau_p newline 0 newline endarray right","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"Description = \"Read the documentation of the Porta.jl project.\"","category":"page"},{"location":"index.html#Geometrize-the-quantum!","page":"Home","title":"Geometrize the quantum!","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"This project is inspired by Eric Weinstein's Graph-Wall-Tome (GWT) project. Watch visual models on the YouTube channel.","category":"page"},{"location":"index.html#Requirements","page":"Home","title":"Requirements","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"CSV v0.10.13\nDataFrames v1.6.1\nFileIO v1.16.3\nGLMakie v0.9.9","category":"page"},{"location":"index.html#Installation","page":"Home","title":"Installation","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"You can install Porta by running this (in the REPL):","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"]add Porta","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"or,","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"Pkg.add(\"Porta\")","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"or get the latest experimental code.","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"]add https://github.com/iamazadi/Porta.jl.git","category":"page"},{"location":"index.html#Usage","page":"Home","title":"Usage","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"For client-side code read the tests, and for examples on how to build, please check out the models directory. See planethopf.jl as an example.","category":"page"},{"location":"index.html#Status","page":"Home","title":"Status","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"Logic [Doing]\nSet Theory [TODO]\nTopology [TODO]\nTopological Manifolds [TODO]\nDifferentiable Manifolds [TODO]\nBundles [TODO]\nGeometry: Symplectic, Metric [TODO]\nDocumentation [TODO]\nGeometric Unity [TODO]","category":"page"},{"location":"index.html#References","page":"Home","title":"References","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"Physics and Geometry, Edward Witten, (1987)\nThe iconic Wall of Stony Brook University\nThe Road to Reality, Sir Roger Penrose, (2004)\nA Portal Special Presentation- Geometric Unity: A First Look\nPlanet Hopf, Dror Bar-Natan, (2010)\nSPINORS AND SPACE-TIME, Volume 1: Two-spinor calculus and relativistic fields, Roger Penrose, Wolfgang Rindler, (1984)\nA Young Person's Guide to the Hopf Fibration, Zachary Treisman, (2009)\nMathematical Gauge Theory, with Applications to the Standard Model of Particle Physics, Mark J.D. Hamilton, (2018)\nDynamics in the Hopf bundle, the geometric phase and implications for dynamical systems, Rupert Way, (2008)","category":"page"}] +[{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Description = \"How the Hopf fibration works.\"","category":"page"},{"location":"hopffibration.html#The-Hopf-Fibration","page":"Hopf Fibration","title":"The Hopf Fibration","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf fibration is a fiber bundle with a two-dimensional sphere as the base space and circles as the fiber space. It is the geometrical shape that relates Einstein's spacetime to quantum fields. In this model, we visualize the Hopf fibration by first computing its points via a bundle atlas and then rendering the points in 3D space via stereographic projection. The projection step is necessary because the Hopf fibration is embedded in a four-space. Yet, it has only three degrees of freedom as a three-dimensional shape. The idea that makes this model more special and interesting than a typical visualization is the idea of Planet Hopf, due to Dror Bar-Natan (2010). The basic idea is that since the Hopf map takes the three-dimensional sphere into the two-dimensional sphere, we can pull the skin of the globe back to the three-sphere and visualize it.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Into the bargain, the Earth rotates about its axis every 24 hours. That spinning transformation of the Earth, together with the non-trivial product space of the Hopf bundle, can be encoded naturally into a monolithic visualization. It also makes sense to visualize differential operators in the Minkowski space-time as vectors in a cross-section of the Hopf bundle and then study the properties of spin-transformations. The choice of a gauge transformation (or trivialization) along with Lorentz transformations of Minkowski spacetime should not have any effect on physical laws. It is therefore a great model to understand these transformations and walk the road to reality. The following explains how the source code for generating animations of the Hopf fibration works (alternative views of Planet Hopf). We follow the beginning of chapter 4 of Mark J.D. Hamilton (2018) for a formal definition of the Hopf fibration as a fiber bundle. The book Mathematical Gauge Theory explains the Standard Model to students of both mathematics and physics, covers both the specific gauge theory of the Standard Model and generalizations, and is highly accessible and self-contained. Then, the definitions are going to be used to explain the source code in terms of computational methods and types.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image1) (Image: board2) (Image: image2)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"First, let E and M be smooth manifolds. Then, pi E to M is a surjective and differentiable map between smooth manifolds. Meaning, every element in M has some corresponding element in E via the map pi. Now, let x in M be a point. A fiber of pi over point x is called E_x and defined as a non-empty subset of E as follows: E_x = pi^-1(x) = pi^-1(x) subset E. The singleton of x is taken to the manifold E by the inverse of the map pi. However, to have a set of more than one point let U be a subset of M, U subset M. Then, we have E_U = pi^-1(U) subset E. In this case, E_U is the part of E above the subset U.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image3) (Image: board3) (Image: image4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, define a global section of the map pi like this: s M to E. Considering the definition of pi E to M, the definition of the global section implies that the composition of pi and s is the identity map pi o s = Id_M over M. A section such as s can be a local one if we take a subset of M in the domain, U subset M. Then, a local section is defined as s U to E. In a similar way the definition of the local section implies that its composition with pi is the idenity map over the subset: pi o s = Id_U. For all points x in subset U, the section s(x) is in the fiber E_x of pi above x, if and only if s is a local section of pi. In this pointwise case, the map pi is restricted to subset U. In other words pi E to U, where U subset M.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image5) (Image: board4) (Image: image6)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In general, for two points x not = y in M that are not equal, the fibers E_x and E_y of pi over x and y may not be embedded submanifolds of E, or even be diffeomorphic. That means, there may not be a differentiable and invertible map that takes fiber E_x into fiber E_y, and the tangent spaces of E_x and E_y over points x and y may not be naturally linear subspaces of the tangent space of E. But, it is different in the special instance where manifold E = M times F is the product of M and the general fiber F and pi as a map is the projection onto the first factor pi M times F to M. If that is the case, then fibers E_x E_y in F of pi over the two distinct points x not = y in M are embedded submanifolds of E and diffeomorphic. To explain it more clearly, given that condition, there exists an invertible and smooth map taking one fiber to the other, and the tangent spaces of the fibers are directly summed with their respective dual subspaces at points in the fibers to span the whole tangent space of manifold E at points of pi over x and y. Therefore, fiber bundles are the generalization of products E = M times F as twisted products.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image7) (Image: board5) (Image: image8)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Before we define the Hopf action, first describe a scalar multiplication rule between vectors and numbers. Let R denote real numbers, Complex complex numbers, and mathbbH quaternionic numbers. On top of that, take a subset of these sets of numbers such that zero is not allowed to be in them, and denote the subsets as R^*, Complex^*, and mathbbH^* respectively. Now, define the linear right action by scalar multiplication for mathbbK = mathbbR mathbbC mathbbH as the following: mathbbK^n+1setminus0 times mathbbK^* to mathbbK^n+1setminus0. For example, 5 in mathbbR^* is a non-zero scalar number, whereas 1 0 0^T in mathbbR^3setminus0 is a non-zero vector quantity. Per our definition, 5 acts on 1 0 0^T on the right and yields 5 0 0 in mathbbR^3setminus0 as another vector. This rule works the same for fields mathbbK even when the vectorial numbers are represented by matrices.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image9) (Image: board6) (Image: image10)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The linear right action by multiplication is called a free action, because for x in mathbbK^n+1setminus0 and y in mathbbk^* the multiplication x times y yields x if and only if y = Id, as the identity element. For example, if we let x = 0 1 0^T y = 1, then the result of the scalar multiplication is 0 1 0^T times 1 = 0 1 0^T.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image11) (Image: board7) (Image: image12)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In addition, we define the unit n-sphere, for the Hopf action works on spheres. So, the unit sphere of dimension n is defined as: S^n(w_1 w_2 w_n+1) in mathbbR^n+1 sum_substack1 leq i leq n+1w_i^2 = 1. As an example, the unit circle S^1 in mathbbC is a one-dimensional sphere with n = 1, and w_1^2 + w_2^2 = 1, where w_1 and w_2 are the horizontal and vertical axes in the complex plane, respectively.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image13) (Image: board8) (Image: image14)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Now, Hopf actions are defined as free actions:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"S^n times S^0 to S^n \nS^2n+1 times S^1 to S^2n+1 \nS^4n+3 times S^3 to S^4n+3 ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"given by (x lambda) mapsto xlambda.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image15) (Image: board9) (Image: image16)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"An example of a Hopf action is the multiplication of the three-sphere S^3 cong SU(2) subset mathbbC^2 on the right by the unit circle S^1 cong U(1) subset mathbbC. Define the Hopf action as the map Phi S^3 times S^1 to S^3 given by (v w lambda) mapsto (v w) sdot lambda = (vlambda wlambda), for all points in the unit 3-sphere (v w) in S^3 and the unit 1-sphere lambda in S^1. What's more, the Hopf action has two properties:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(v w) sdot (lambda sdot mu) = ((v w) sdot lambda) sdot mu\n(v w) sdot 1 = (v w)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"forall (v w) in S^3 lambda mu in S^1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image17) (Image: board10) (Image: image18)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The next idea is about the orbit of a point in the 3-sphere S^3 under the Hopf action. The orbit map is defined as phi S^1 to S^3 given by lambda mapsto (v_0 w_0) sdot lambda, forall (v_0 w_0) in S^3. The orbit map phi is injective and free, meaning that a point in S^3 can not have many points in S^1 and also there exists an identity element such that the action stabalizes a point in S^3 such as (v_0 w_0). Furthermore, the Hopf action Phi S^1 to Diff(S^3) is a homomorphism. It preserves S^3. The Hopf action being a free action implies that the orbit of every point (v_0 w_0) in S^3 is an embedded circle S^1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image19) (Image: board11) (Image: image20)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Back to the topic of fiber bundles, we recall that the part of manifold E over subset U equals: E_U = pi^-1(U) subset E, where U subset M. Here, there is an equivalence relation in the fiber E_x of pi over x, since the orbit of a point in fiber E_x by phi collapses onto a single point x in U via the projection map pi S^3 to S^3texttextasciitilde. After the collapse of every fiber in manifold E, the quotient space S^3S^1 is seen to be the projective complex line mathbbCP^1 cong S^2. The projective complex line is the ratio of two complex numbers. To see how the space of S^3 is connected compared to S^1, note that every closed loop in S^3 is shrinkable to a single point in a continuous way, tracing a local section. However, a closed loop in S^1 is not shrinkable to a single point. This fact makes S^3 a simply-connected space and S^1 a not simply-connected space.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image21) (Image: board12) (Image: image22)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We are now almost equipped with the tools to define a fiber bundle in a formal way. Let E F M be manifolds. The projection map pi E to M is a surjective and differentiable map (Every element in M has some element in E). Then, (E pi M F) is called a fiber bundle, (or a locally trivial fibration, or a locally trivial bundle) if for every x in M there exists an open neighborhood U subset M around the point x such that the map pi restricted to E_U can be trivialized as a cross product. Remember that E_U is the part of E of pi over U. In other words, (E pi M F) is called a fiber bundle if there exists a diffeomorphism phi_U E_U to U times F such that pr_1 o phi_U = pi, meaning the projection onto the first factor of the trivialization map phi_U is the same as the map pi. Also, a fiber bundle is denoted by F to E xrightarrowpi M. In this notation, E denotes the total space, M the base manifold, F the general fiber, pi the projection, and (U phi_U) a local trivialization or bundle chart.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image23) (Image: board13) (Image: image24)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Using a local trivialization (U phi_U) E_x = pi^-1(x) we find that the fiber E_x is an embedded submanifold of the total space E for every point x in M. Meaning, the tangent space of fiber E_x is a linear subsapce of the tangent space of E. The direct sum of the tangent subspace of the general fiber and the tangent subspace of the base manifold equals the tangent space of the total space: T_xE = V_xE bigoplus H_xE.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image25) (Image: board14) (Image: image26)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The composition of the local trivialization with the projection onto the second factor gives us yet another useful map between fibers E_x over x and the general fiber F. It is a differentiable and invertible map (diffeomorphism) and equals phi_U = pr_2 o phi_U _E_x E_x to F. Given that the local trivialization phi_U E_U to U times F is a diffeomorphism (invertible and smooth), the projection pr_1 U times F to U onto the first factor of phi_U is a submersion. That is to say the differntial of pr_1 is surjective. D pr_1 T(U times F) to TU takes vectors from the tangent space of U times F into vectors in the tangent space of U, such that every element of TU has some element in T(U times F). As a result, the map pi E to M is also a submersion, which means D pi TE to TM is surjective. Every tangent vector in the codomain TM has some tangent vector in the domain TE.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image27) (Image: board15) (Image: image28)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"So far, we have established that the bundle projection map, taking points from the total space into points in the base space pi E to M, is a submersion. For that reason, the tangent space of the base manifold M is a linear subset of the tangnet space of the total space manifold E. Now, we can use the regular value theorem for shining a light on the submersion of pi. Let a point x in M be a regular value of the smooth map pi E to M, and let the fiber E_x = pi^-1(x) be the preimage of the point x. Then, the map pi^-1 is an embedded submanifold of E of dimension dim E_x = dim E - dim M. Meaning, the tangent space of fiber E_x is a linear subspace of the tangent space of E. We can verify the result of the theorem for the Hopf bundle F to E xrightarrowpi M where dim E = 3 and dim M = 2. The regular value theorem implies that the Hopf fiber is one-dimensional, dim E_x = 3 - 2 = 1, as an embedded submanifold of the total space E. With that formal introduction we are going to sketch a visual 3D model next.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"(Image: image29) (Image: board16) (Image: image30) (Image: image31)","category":"page"},{"location":"hopffibration.html#Import-the-Required-Packages","page":"Hopf Fibration","title":"Import the Required Packages","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Begin by importing a few software packages for doing algebraic operations, working with files and graphics processing units. Besides Porta, we need to use three packages: FileIO, GLMakie and LinearAlgebra. First, FileIO is the main package for IO and loading all different kind of files, including images and Comma-Separated Value (CSV) files. Second, interactive data visualizations and plotting in Julia are done with GLMakie. Finally, LinearAlgebra, as a module of the Julia programming language, provides array arithmetic, matrix factorizations and other linear algebra related functionality. However, through years of working with geometrical structures and shapes we have encapsulated certain mathematical computations and transformations into custom types and interfaces, which make up most of the functionalities of project Porta. In addition, we wrapped complicated computer graphics workflows inside custom types in order to increase the interoperability of our types with those of external packages such as GLMakie.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" import FileIO\n import GLMakie\n import LinearAlgebra\n using Porta","category":"page"},{"location":"hopffibration.html#Set-Hyperparameters","page":"Hopf Fibration","title":"Set Hyperparameters","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"There are essential hyperparameters that determine the complexity of graphics rendering as well as the position and orientation of a camera, through which we render a scene. Since the output of the model is an animation video, we need to set the figure size to 1920 by 1080 to have a full high definition window, in which the scene is located. Most of the shapes and objects that we put inside of the scene are two-dimensional surfaces. Therefore, the segmentation of most shapes requires two integer values for determining how much compute power and resolution we are willing to spend on the animation. Furthermore, the shape of a circle is the most common in our scenes because of the magic of complex numbers. It is known that using 30 segments results in smooth low-polygon circles. So for a two-dimensional sphere a 30 by 30 segmented two-surface should look good. Set the segments equal to 30, and less curvy shapes will look even better in consequence. But, an animation extends through time frame by frame and so we need to set the total number of frames. In this way, specifying the number of frames determines the length of the video. For example, 1440 frames make a one-minute video at 24 frames per second.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" figuresize = (1920, 1080)\n segments = 30\n frames_number = 1440","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A model means a complicated geometrical shape contained inside a graphical scene. Every model has a name to use as the file name of the output video. Here, we choose the name planethopf as we construct an alternative view of the Planet Hopf by Dror Bar-Natan (2010). Heinz Hopf in 1931 discovered a way to join circles over the skin of the globe. The discovery defines a fiber bundle where the base space is the spherical Earth and the fibers are circles. But, the circles are all mutually parallel and linked. Moreover, the Earth goes through a full rotation about the axis that connect the poles every 24 hours. So it is not surprising that the picture of a non-trivial bundle and the spinning of the base space coordinates (longitudes) makes for a ridiculous geometric shape. But, the surprising fact is that all of it is visualizable as a 3D object. Then, we use a dictionary that maps indices to names in order to keep track of boundary data on the globe and the name of each boundary as a sovereign country.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" modelname = \"planethopf\"\n indices = Dict()","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf fibration, as a fiber bundle, has an inner product space. The inner product space is symmetric, linear and positive semidefinite. The last property means that the product of a point in the bundle with itself is always non-negative, and it is zero if and only if the point is the zero vector. The abstract inner product space allows us to talk about the length of vectors, the distance between two points and the idea of orthogonality between two vectors. A pair of vectors are orthogonal when they make a right angle with each other and as a consequence their product is equal to zero. For all u v v_1 v_2 in V and alpha beta in R the following are the properties of the abstract inner product space:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Symmetric: u v = v u\nLinear: u alpha v_1 + beta v_2 = alpha u v_1 + beta u v_2\nPositive semidefinite: u u geq 0 for all u in V with u u = 0 if and only if u = 0","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Now, in order to skin the horizontal cross-sections of the bundle for visualization we need to start with a base point, which is denoted by x. At the tangent space of the base point q, the inner product space (characterized by a connection one-form) splits the tangent space of the bundle E at x into two linear subspaces: horizontal and vertical.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"T_q E = V_q E bigoplus H_q E","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In terms of the connection, the two subspcaes are orthogonal. A chart is a four-tuple of real numbers to be used as a pair of closed intervals in the horizontal subspace. Then, using the exponential map one can travel in both horizontal and vertical directions and cover the whole bundle within the lengths of the chart intervals. Within the boundary of the chart and with an additional vertical coordinate (a gauge) we can define a tubular neighborhood of the base point q. The first two elements of the four-tuple chart give the interval along the first basis vector and the last two elements give the interval along the second basis vector. As for the third basis vector of the tangent space (the vertical subspace) we use a beginning and an ending gauge.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"For the purpose of the construction of the Hopf fibration we define the bundle atlas of a general fiber bundle F to E xrightarrowpi M as an open covering U_i_i in I of the base manifold M together with bundle charts phi_i E_U_i to U_i times F. Putting the open covering with bundle charts a bundle atlas is denoted by U_i phi_i_i in I. The index i suggests that a bundle atlas should have more than one bundle chart whenever it is a non-trivial bundle (a twisted product rather than a Cartesian product). In order to cover the Hopf bundle we use the exponential matrix function supplied with linear combinations of elements from the Lie algebra so(4), which produces elements in the Lie group SO(4) that push a base point around the 3-sphere. As a side note, a Lie algebra is a vector space V that is equipped with the Lie bracket map sdot sdot V times V to V, with sdot sdot having three properties: bilinear, antisymmetric and satisfies the Jacobi identity. We choose a base point in the 3-sphere q in S^3 and then use Lie algebra elements before exponentiation in order to rotate the 3-sphere to cover every other point in the total space S^3 over the chart.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" q = Quaternion(ℝ⁴(0.0, 0.0, 1.0, 0.0))\n chart = (-π / 4, π / 4, -π / 4, π / 4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we define five scalars in the Lie algebra of so(2), identified with imathbbR, in order to provide different gauge transformations for pullbacks by the Hopf fibration (whirls and base maps). The exponential function takes the gauge values to the unit circle S^1 = U(1) cong SO(2) given by exp(im * gauge). For creating a clearer view we are going to slice up the Hopf fibers (orbits) and set different values for their respective alpha channels. The names gauge1, gauge2, gauge3, gauge4 and gauge5 are used to provide the Hopf actions when we construct and update the shapes. 0.0 means the trivial action whereas 2π means the full orbit around a Hopf fiber. Looking at the values of these names we can see that a Hopf fiber will be cut into four quarters. We can make some quarters opaque and others see-through for better visibility.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" gauge1 = 0.0\n gauge2 = π / 2\n gauge3 = float(π)\n gauge4 = 3π / 2\n gauge5 = 2π","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The fundamental physics is based on the gauge symmetry of the product SU(3) times SU(2) times U(1) and the symmetry of spacetime as a Riemannian manifold M that is equipped with a metric. Therefore, physical laws in nature must be the same under two sets of choices: the choice of gauge transformations and the choice of an inertial reference frame in spacetime. In this model, we understand the choice of the guage symmetry by studying the Hopf action and the choice of an inertial frame in Minkowski space-time by a change-of-basis transformation on the Hopf bundle. The change-of-basis transformation is denoted by matrix M and is applied to the total space of the Hopf bundle via a matrix-vector product. Here, we initialize the matrix M with the idenity.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" M = I(4)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In order to get the essence of these different choices and integrate them into a visual model we first note that Lorentz transformations of null vectors in the tangent space of spacetime is the same as transforming any other timelike (non-null) vectors. Second, The Hopf bundle of the 3-sphere has a representation in the Lie group S^3 = SU(2) and the Hopf action is represented by actions of S^1 = U(1) as a linear scalar multiplication on the right. But, null vectors have length zero in terms of the Lorentzian metric, whereas the Hopf bundle is made of vectors of unit length in terms of the Euclidean metric. Fortunately, these vectors coincide as unit quaternions and so their transformations can be unified into a single visual model. If we coordinatize a null vector in spacetime as u = 𝕍(T, X, Y, Z) then the corresponding quaternion q = Quaternion(T, X, Y, Z) takes the same coordinates. We assert that u is null and q is of unit norm, with an approximate equality check. The precision of the assertion is given by the name tolerance, which equals 1e-3.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" T, X, Y, Z = vec(normalize(ℝ⁴(1.0, 0.0, 1.0, 0.0)))\n u = 𝕍(T, X, Y, Z)\n q = Quaternion(T, X, Y, Z)\n tolerance = 1e-3\n @assert(isnull(u, atol = tolerance), \"u in not a null vector, $u.\")\n @assert(isapprox(norm(q), 1, atol = tolerance), \"q in not a unit quaternion, $(norm(q)).\")","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The camera is a viewport trough which we see the scene. It is a three-dimensional camera and much like a drone it has six features to help position and orient itself in the scene. Accordingly, a three-vector in the Euclidean 3-space E^3 determins its position in the scene, another 3-vector specifies the point at which it looks, and a third vector controls the up direction of the camera. The third 3-vector is needed because the camera can rotate through 360 degrees about the axis that connects its own position to the position of the subject. Using these three 3-vectors we control how far away we are from the subject, and how upright the subject is. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" eyeposition = normalize(ℝ³(1.0, 1.0, 1.0)) * π * 0.8\n lookat = ℝ³(0.0, 0.0, 0.0)\n up = normalize(ℝ³(1.0, 0.0, 0.0))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Each of the eyeposition, lookat and up vectors are in the three-real-dimensional vector space ℝ³. The structure of the abstract vector space of ℝ³ includes: associativity of addition, commutativity of addition, the zero vector, the inverse element, distributivity Ι, distributivity ΙΙ, associativity of scalar multiplication, and the unit scalar 1. Also, the product space associated with ℝ³ is symmetric, linear and positive semidefinite (see real3_tests.jl). The same goes for the structure of 4-vectors in ℝ⁴ as we are going to encounter in this model. An abstract vector space (V mathbbK + ) consists of four things:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A set of vector-like objects V = u v \nA field mathbbK of scalar numbers, complex numbers, quaternions, or octonions (any one of the division algebras)\nAn addition operation + for elements of V that dictates how to add vectors: u + v\nA scalar multiplication operator for scaling a vector by an element of the field","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"An abstract vector space satisfies eight axioms. For all vectors u v w in V and for all scalars alpha beta in mathbbK the following properties are true:","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Associativity of addition: u + (v + w) = (u + v) + w\nCommutativity of addition: u + v = v + u\nThere exists a zero vector 0 in V such that u + 0 = 0 + u = u\nFor every u there exists an inverse element -u such that u + (-u) = u - u = 0\nDistributivity I: alpha (u + v) = alpha u + alpha v\nDistributivity II: (alpha + beta) u = alpha u + beta u\nAssociativity of scalar multiplication: alpha (beta u) = (alpha beta) u\nThere exists a unit scalar 1 such that 1u = u","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Interestingly, if the field mathbbK is an Octonian number then the axiom of the commutativity of addition becomes false. The plan is to first load a geographic data set, then construct a few shapes, and animate a four-stage transformation of the shapes. Model versioning can be applied here using different stages. The transformations are subgroups of the Lorentz transformation in the Minkowski vector space 𝕍, which is a tetrad and origin point away from the Minkowski space-time 𝕄. Both 𝕍 and 𝕄 inherit the properties of the abstract vector space. See minkowskivectorspace_tests.jl and minkowskispacetime_tests.jl for use cases.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" totalstages = 4","category":"page"},{"location":"hopffibration.html#Load-the-Natural-Earth-Data","page":"Hopf Fibration","title":"Load the Natural Earth Data","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we need to load two image files: an image to be used as a color reference, and another one to be used as surface texture for sections of the Hopf bundle. This is the first example of using FileIO to load image files from hard drive memory. Both images are made with a software called QGIS, which is a geographic information system software that is free and open-source. But, the data comes from Natural Earth Data. Natural Earth is a public domain map dataset available at 1:10m, 1:50m, and 1:110 million scales. Featuring tightly integrated vector and raster data, with Natural Earth you can make a variety of visually pleasing, well-crafted maps with cartography or GIS software. We downloaded the Admin 0 - Countries data file from the 1:10m Cultural Vectors link of the Downloads page. It is a large-scale map that contains geometry nodes and attributes.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" reference = FileIO.load(\"data/basemap_color.png\")\n mask = FileIO.load(\"data/basemap_mask.png\")","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"As for the image files, we paint the boundaries using the gemometry nodes, and add a grid to be able to visualize distortions of the Euclidean metric of the underlying surface. Therefore, the reference is the clean image from which we pick colors, whereas the mask has a grid and transparency for visualization purposes.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" attributespath = \"data/naturalearth/geometry-attributes.csv\"\n nodespath = \"data/naturalearth/geometry-nodes.csv\"\n countries = loadcountries(attributespath, nodespath)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The geometry nodes of the data set consist of latitudes and longitudes of boundaries. But, geometry attributes feature various geographical, cultural, economical and geopolitical values. Of these features we only need the names and geographic coordinates. To not limit the use cases of this model, the generic function loadcountries loads all of the data features by supplying it with the file paths of attributes and nodes. Data versioning can be applied here using different file versions. The attributes and nodes files are comma-separated values.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"At a high level of description, the process of loading boundary data is as follows: First, we use FileIO to open the attributes file. Second, we put the data in a DataFrames object to have in-memory tabular data. Third, sort the data according to shape identification. Fourth, open the nodes file in a DataFrame. Fifth, group the attributes by the name of each sovereign country. Sixth, determine the number of attribute groups by calling the generic function length. Seventh, define a constant ϵ = 5e-3 to limit the distance between nodes so that the computational complexity becomes more reasonable. Eighth, define a dictionary that has the keys: shapeid, name, gdpmd, gdpyear, economy, partid, and nodes. Finally, for each group of the attributes we extract the data corresponding to the dictionary keys and push them into array values.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Part of the difficulty with the data loading process is that each sovereign country may have more than one connected component (closed boundary). That is why we store part identifications as one of the dictionary keys. In this process, the part with the greatest number of nodes is chosen as the main part and is pushed into the corresponding array value. All of the array values are ordered and have the same length so that indexing over the values of more than one key becomes easier. Once the part ID of each country name is determined, we make a subset of the data frame related to the part ID and then extract the geographic coordinates in terms of latitudes and longitudes. In fact, we make a histogram of each unique part ID and count the number of coordinates. The part ID with the greatest number of coordinates is selected for creating the subset of the data frame. Next, the coordinates are transformed into the Cartesian coordinate system from the Geographic one.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Finally, we decimate a curve containing a sequence of coordinates by removing points from the curve that are farther from each other than the given threshold ϵ. It is a step to make sure that the boundary data has superb quality while managing the size of data for computation complexity. The generic function decimate implements the Ramer–Douglas–Peucker algorithm. It is an iterative end-point fit algorithm suggested by Dror Bar-Natan (2010) for this model. Since a boundary is modelled as a curve of line segments, we set a segmentation limit. But, the decimation process finds a curve that is similar in shape, yet has fewer number of points with the given threshold ϵ. In short, decimate recursively simplifies the segmented curve of a closed boundary if the maximum distance between a pair of consecutive points is greater than ϵ. The distance between two abstract vectors is given by d(u v) equiv u - v = sqrt(u - v) (u - v).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" boundary_names = [\"United States of America\", \"Antarctica\", \"Australia\", \"Iran\", \"Canada\", \"Turkey\", \"New Zealand\", \"Mexico\", \"Pakistan\", \"Russia\"]\n boundary_nodes = Vector{Vector{ℝ³}}()\n for i in eachindex(countries[\"name\"])\n for name in boundary_names\n if countries[\"name\"][i] == name\n push!(boundary_nodes, countries[\"nodes\"][i])\n println(name)\n indices[name] = length(boundary_nodes)\n end\n end\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"As the boundary data is massive in number (248 countries) we need to select a subset for visualization. 10 countries selected from a linear space of alphabetically sroted names should be representative of the whole Earth. Then again, using only three distinct points in the 2-sphere one can infer the transformations from the sphere into itself. Also, Antarctica should be added due to its special coordinates at the south pole, to give the user a better sense of how bundle sections are expanded and distorted. As soon as we have the names of the selection, we can proceed with populating the dictionary of indices that relates the name of each country with the corresponding index in boundary data. Using the dictionary we can read the attributes of countries by giving just the name as argument.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" points = Vector{Quaternion}[]\n for i in eachindex(boundary_nodes)\n _points = Quaternion[]\n for node in boundary_nodes[i]\n r, θ, ϕ = convert_to_geographic(node)\n push!(_points, q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))))\n end\n push!(points, _points)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We instantiate a vector of a vector of type Quaternion to store boundary data. The outermost vector contains elements of different countries. But, the innermost vector contains the pullback of the geographic nodes by the Hopf map in the 3-sphere. After conversion to the Geographic coordinate system from the Cartesian coordinates, the points are pulled back by pi using the statement q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))). It is a right multiplication of the base point q by the exponential function, supplied with the geographic coordinates θ and ϕ. Now that we have the points we can make a 3D scene.","category":"page"},{"location":"hopffibration.html#Make-a-Computer-Graphical-Scene","page":"Hopf Fibration","title":"Make a Computer Graphical Scene","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Scenes are fundamental building blocks of GLMakie figures. In this model, the layout of the Figure (graphical window) is a single Scene, because we have been able to directly plot all of the information about the bundle geometry and topology inside the same scene. The figure is supplied with the hyperparameter figuresize that we defined earlier. Then, we set a black theme to have black background around the window at the margins. Next, we instantiate a gray point light and a lighter gray ambient light. The lights together with the figure are then passed to LScene to construct our scene. We pass the symbol :white as the argument to the background keyword as it makes for the most visible scene.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" makefigure() = GLMakie.Figure(size = figuresize)\n fig = GLMakie.with_theme(makefigure, GLMakie.theme_black())\n pl = GLMakie.PointLight(GLMakie.Point3f(0), GLMakie.RGBf(0.0862, 0.0862, 0.0862))\n al = GLMakie.AmbientLight(GLMakie.RGBf(0.9, 0.9, 0.9))\n lscene = GLMakie.LScene(fig[1, 1], show_axis=false, scenekw = (lights = [pl, al], clear=true, backgroundcolor = :white))","category":"page"},{"location":"hopffibration.html#Construct-Base-Maps","page":"Hopf Fibration","title":"Construct Base Maps","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The base map is the pullback of the skin of the globe U subset S^2 by the Hopf map pi S^3 to S^2, representing a local horizontal cross-section of the bundle. The pushforward of horizontal vectors by the Hopf map leaves them unchanged. However, vectors in the vertical subsapce of the tangent space of the Hopf bundle are in the kernel of the Hopf map (they are sent to zero).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We use a 64-bit floating point number to parameterize an element of the Lie algebra so(2), before exponentiating it into an element of the Lie group SO(2) to be used for the orbit map phi S^1 to S^3, because a local horizontal cross-section uses the same scalar number for the entirety of subset U subset S^2. The subset U is bounded with a two-dimensional chart. A chart can be thought of as a rectangle whose sides are at most π in length. But, the length of a great circle of the three-dimensional sphere is 2π and the maximum length of chart sides is limited, unless we want to cover S^3 twice. To keep things simple, we use one bundle chart and cover a subset U of side length π. The Hopf bundle does not admit a global section. After exponentiating the base point q in horizontal directions for a magnitude beyond π, the orientation of the surface reverses and a sharp twist of the surface happens.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The Hopf bundle is embedded in ℝ⁴, the real-four-dimensional space. The coordinates are defined as unit quaternions where the basis vectors are represented by the symmetry group of the rotations of an orthogonal tetrad, namely SO(4). vectors u and v are orthogonal if and only if their inner product equals zero u v = 0. When we talk about Hopf actions and bundle charts, we talk about values that are used to linearly combine elements of the Lie algebra of so(4), vectors in the tangent space of the bundle at point x. Then, we use the matrix exponential map for computing Lie group values in SO(4). Given a fixed gauge, a point in the Lie group stemming from base point x is reconstructed from a Lie algebra element by executing the statement x * Quaternion(exp(θ * K(1) + -ϕ * K(2)) * exp(gauge * K(3))), where scalars θ and ϕ denote the latitude and longitude components in the bundle chart, respectively. K(1) and K(2) denote 4x4 matrices with real elements as basis vectors of the Lie algebra so(4). The tangent space of the bundle at point x spans horizontally with the exponential map of a linear combination of basis vectors K(1) and K(2), whereas it spans vertically in the K(3) direction. This way we get a strictly horizontal section of the bundle in terms of elements of the Lie group SO(4), given a gauge. The elements of SO(4) go on to push the base point x around and end up as observables to be rendered graphically.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" lspaceθ = range(chart[1], stop = chart[2], length = segments)\n lspaceϕ = range(chart[3], stop = chart[4], length = segments)\n [project(normalize(M * (x * Quaternion(exp(θ * K(1) + -ϕ * K(2)) * exp(gauge * K(3)))))) for ϕ in lspaceϕ, θ in lspaceθ]","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Using the eigendecomposition method LinearAlgebra.eigen, we can compute the matrix M to change the basis of the bundle while keeping the coordinates invariant. So the change-of-basis is the final step of the construction of the observables after using the geographic coordinates and the gauge. Observables.jl allows us to define the points that are to be rendered in the scene, in a way that they can listen to changes dynamically. Later, when we apply transformations to the bundle, including the change-of-basis, the idea is to only change the top-level observables and avoid reconstructing the scene entirely. The change of basis is a bilinear transformation of the tetrad (of Minkowski space-time 𝕄) in ℝ⁴ as a matrix-vector product (M * x for example). Here we denote the transformation as matrix M, which takes a Quaternion number as input and spits out a new number of the same type. The input and output bases must be orthonormal as the numbers must remain unit quaternions after the transformation. Constructing a base map requires a few arguments: the scene object, the base point q, the gauge, the change-of-basis transformation M, the chart, the number of segments of the lattice of observables, the tuxture of the surface and the optional transparency setting. Construct four base maps in order to visualize a more complete picture of the Hopf fibration using four different sections. But, the sections are going to be distinguished from one another and updated with gauge transformations later when we animate them.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" basemap1 = Basemap(lscene, q, gauge1, M, chart, segments, mask, transparency = true)\n basemap2 = Basemap(lscene, q, gauge2, M, chart, segments, mask, transparency = true)\n basemap3 = Basemap(lscene, q, gauge3, M, chart, segments, mask, transparency = true)\n basemap4 = Basemap(lscene, q, gauge4, M, chart, segments, mask, transparency = true)","category":"page"},{"location":"hopffibration.html#Construct-Whirls","page":"Hopf Fibration","title":"Construct Whirls","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A Whirl is the shape of a closed boundary in the map of the Earth that is pulled back by the Hopf map pi S^3 to S^2. As a reminder, boundaries on the map of the Earth are specified by two real values: latitude θ and longitude ϕ. The boundary of each country in boundary_names is lifted up from the base manifold using the following statement: q * Quaternion(exp(ϕ / 4 * K(1) + θ / 2 * K(2))). The pullback operation is realized by pushing the base point q in a horizontal direction given by coordinates on the surface of the Earth. Then, a gauge transformation is applied by executing the statement x * Quaternion(exp(K(3) * gauge)), with the given scalar gauge in the direction K(3) of the tangent space at point x of the bundle. By varying gauge in a linear space of floating point values, a Whirl (a pullback by the Hopf map) takes a three-dimensional volume. In the special case where gauge is a range of values, starting at zero and stopping at 2π, the Whirl makes a Hopf band. The degree of the twist in the band is directly proportional to the value of gauge. Multiplying x on the right by the exponentiation of K(3) * gauge pushes x in the vertical subspace of the bundle and makes an orbit. Therefore, the orbit map phi S^1 to S^3 is given by x[i] * Quaternion(exp(K(3) * gauge).","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" lspacegauge = range(gauge1, stop = gauge2, length = segments)\n [project(normalize(M * (x[i] * Quaternion(exp(K(3) * gauge))))) for i in 1:length(x), gauge in lspacegauge]","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"There are four sets of whirls: some whirls are more solid and some whirls are more transparent. This separation is done to highlight the antipodal points of the three-dimensional sphere S^3, given by x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1, where x_1 x_2 x_3 x_4^T in R^4. It also helps to visualize the direction of the null plane under transformations of the bundle. Since every pair of points that are infinitestimally close to each other in a horizontal cross-section, defines a differential operator. And Hopf actions, transformations from the bundle into itself change the direction of the operator as it twists. The operator is also called a spin-vector in Minkowski vector space 𝕍. Therefore it can be visualized directly how the operator changes sign by comparing a pullback into S^3 at antipodal points of an orbit.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" whirls1 = []\n whirls2 = []\n whirls3 = []\n whirls4 = []\n for i in eachindex(boundary_nodes)\n color1 = getcolor(boundary_nodes[i], reference, 0.1)\n color2 = getcolor(boundary_nodes[i], reference, 0.2)\n color3 = getcolor(boundary_nodes[i], reference, 0.3)\n color4 = getcolor(boundary_nodes[i], reference, 0.4)\n whirl1 = Whirl(lscene, points[i], gauge1, gauge2, M, segments, color1, transparency = true)\n whirl2 = Whirl(lscene, points[i], gauge2, gauge3, M, segments, color2, transparency = true)\n whirl3 = Whirl(lscene, points[i], gauge3, gauge4, M, segments, color3, transparency = true)\n whirl4 = Whirl(lscene, points[i], gauge4, gauge5, M, segments, color4, transparency = true)\n push!(whirls1, whirl1)\n push!(whirls2, whirl2)\n push!(whirls3, whirl3)\n push!(whirls4, whirl4)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The color of a Whirl should match the color of the inside of its own boundary at every horizontal section, also known as a base map. The generic function getcolor finds the correct color to set for the Whirl. It takes as input a closed boundary (a vector of Cartesian points), a color reference image and an alpha channel value to produce an RGBA 4-color. getcolor finds a color according to the following steps: First, it determines the number of points in the given boundary. Second, gets the size of the reference color image as height and width in pixels. Third, converts all of the boundary points to Geographic coordinates. Fourth, finds the minimum and maximum values of the latitudes and longitudes of the boundary. Fifth, creates a two-dimensional linear space (a flat grid or lattice) that ranges within the upper and lower bounds of the latitudes and longitudes. Sixth, finds the Cartesian two-dimensional coordinates of the points in the image space by normalizing the geographic coordinates and multiplying them by the image size. Seventh, picks the color of each grid point with the Cartesian two-dimensional coordinates in the image space as the index. Eighth, Makes a histogram of the colors by counting the number of each color. Finally, sorts the histogram and picks the color with the greatest number of occurance. (See earth.jl from the src directory for implementation.)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"However, step seven makes sure that the coordinates in the linear 2-space are inside the closed boundary, otherwise it skips the index and continues with the next index in the grid. In this way we don't pick colors from the boundaries of neighboring countries over the globe. The generic function isinside is used by getcolor to determine whether the given point is inside the given boundary or not. But first, the boundary needs to become a polygon in the Euclidean 2-space of coordinates in terms of latitude and longitude. This is the same as geographic coordinates with the radius of Earth set equal to 1 identically, hence the spherical Earth model of the ancient Greeks. After we make a polygon out of the boundary, the generic function rayintersectseg determines whther a ray cast from a point of the linear grid intersects an edge with the given point p and edge. Here, p is a two-dimensional point and edge is a tuple of such points, representing a line segment. Eventhough this algorithm should work in theory, some boundaries are too small to yield a definite color via getcolor and the color inference algorithm returns a false negative in those cases. So the default color may be white for a limited number of cases out of 248 countries. Once we have the color of the whirls, we can proceed to construct the whirls by supplying the generic function Whirl with the following arguments: the scene object, the boundary points lifetd via an arbitrary section, the first fiber action value (gauge), the second action value, the change-of-basis function M, the number of surface segments, the color and the optional transparency setting.","category":"page"},{"location":"hopffibration.html#Compute-a-Four-Screw","page":"Hopf Fibration","title":"Compute a Four-Screw","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We are going to execute a motion around a closed loop in the Lie group SL(2 mathbbC), and then multiply every point in the Hopf bundle by an element of the loop. A four-screw is a subset of the Lie group SL(n mathbbK) = A in Mat(n times n mathbbK) det(A) = 1, square matrices of Complex numbers whose volume form (determinant) equals 1. Here, the number n = 2 and the field mathbbK = mathbbC. A four-screw is a kind of restricted Lorentz transformation where a z-boost and a proper rotation of the celestial sphere are applied. The transformation lives in a four-complex dimensional space and it has six degrees of freedom (the same number of dimensions as SO(4)). By parameterizing a four-screw one can control how much boost and rotation a transformation shuld have. Here, w as a positive scalar controls the amount of boost, whereas angle ψ controls the rotation component of the transform. But, the parameterization accepts rapidity as input for the boost. So we take the natural logarithm of w (log(w) = phi) in order to supply the transformer with the required rapidity argument. First, we set w equal to one in order to preserve the scale of the Argand plane and animate the angle ψ through zero to 2π for rotation. The name progress denotes a scalar from zero to one for instantiating a different transformation at each frame of the animation.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 1 # roation\n w = 1.0\n ϕ = log(w) # rapidity\n ψ = progress * 2π\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"In the second case, we fix the rotation angle ψ by setting it to zero, and this time animate the rapidity by changing the value of ϕ at each time step.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 2 # boost\n w = max(1e-4, abs(cos(progress * 2π)))\n ϕ = log(w) # rapidity\n ψ = 0.0\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Third, in order to get a complete picture of a four-screw we animate both rapidity ϕ and rotation ψ, at the same time.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" if status == 3 # four-screw\n w = max(1e-4, abs(cos(progress * 2π)))\n ϕ = log(w) # rapidity\n ψ = progress * 2π\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A four-real-dimensional vector in the Minkowski vector space 𝕍 is null if and only if its Lorentz norm is equal to zero. The length or norm of an abstract vector u in V is equivalent to the square root of the inner product of the vector with itself: u u equiv sqrtu u in R. The inner product of vectors u and v in an abstract vector space is given by u^T * g_munu * v, where g_munu denotes the metric 2-tensor. However, as an instantiation in Minkowski vector space 𝕍 with signature (+, -, -, -), the matrix g_munu is a diagonal of the form: g_munu = beginbmatrix 1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 endbmatrix.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Furthermore, a vector in 𝕍 is in the tangent space at some point in Einstein's spacetime, where the metric g_munu will not be diagonal in general. Since a Lorentz transformation of null vectors has the same effect on vectors that are not null, it makes the visualization easier to study transformations on null vectors only. On the other hand, in the Euclidean 4-space E^4 the metric g_munu is replaced by identity matrix of dimension four. The null vectors that we use here in the Minkowski vector space have length zero in terms of the Lorentz norm, but have Euclidean norm equal to one, and so they can be regarded as elements of unit Quaternion. Therefore, what we are animating here is the transformation of unit quaternions that represent null vectors. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The change-of-basis transformations that we have used to instantiate Whirl and Basemap types above, can accomodate the effects of a Lorentz transformation. Then, by setting ψ and ϕ we can define a generic function transform to take Quaternion numbers as input and to give us the transformed number as output.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" transform(x::Quaternion) = begin\n T, X, Y, Z = vec(x)\n X̃ = X * cos(ψ) - Y * sin(ψ)\n Ỹ = X * sin(ψ) + Y * cos(ψ)\n Z̃ = Z * cosh(ϕ) + T * sinh(ϕ)\n T̃ = Z * sinh(ϕ) + T * cosh(ϕ)\n Quaternion(T̃, X̃, Ỹ, Z̃)\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Every transformation in an abstract vector space such as the Minkowski vector space 𝕍 has a matrix representation. For constructing the matrix of the transform we just need to compute it four times with basis vectors. The transformation of the basis vectors of unit quaternions by transform are denoted by r₁, r₂, r₃ and r₄. The matrix _M is a four by four real matrix whose rows are r₁ through r₄. _M is the matrix representation of the transformation that is induced by transform.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" r₁ = transform(Quaternion(1.0, 0.0, 0.0, 0.0))\n r₂ = transform(Quaternion(0.0, 1.0, 0.0, 0.0))\n r₃ = transform(Quaternion(0.0, 0.0, 1.0, 0.0))\n r₄ = transform(Quaternion(0.0, 0.0, 0.0, 1.0))\n _M = reshape([vec(r₁); vec(r₂); vec(r₃); vec(r₄)], (4, 4))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"But, _M doesn't necessarily take unit quaternions to unit quaternions. By decomposing _M into eigenvalues and eigenvectors we can manipulate the transformation so that it takes unit quaternions to unit quaternions without modifying its effect on the geometrical structure of Argand plane. Despite the fact that _M is a matrix of real numbers, it has complex eigenvalues, as it involves a rotation. By constructing a four-complex-dimensional vector off of the eigenvalues we can normalize _M by normalizing the vector of eigenvalues, before reconstructing a unimodular, unitary transformation (a normal matrix). The reconstructed matrix is called M.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" decomposition = LinearAlgebra.eigen(_M)\n λ = LinearAlgebra.normalize(decomposition.values) # normalize eigenvalues for a unimodular transformation\n Λ = [λ[1] 0.0 0.0 0.0; 0.0 λ[2] 0.0 0.0; 0.0 0.0 λ[3] 0.0; 0.0 0.0 0.0 λ[4]]\n M = real.(decomposition.vectors * Λ * LinearAlgebra.inv(decomposition.vectors))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"We can assert that the transformation that is induced by M takes null vectors to null vectors in Minkowski vector space 𝕍. If that is the case, then the reconstructed transformation M is a faithful representation and it only scales the extent of null vectors rather than null directions, compared to _M. A representation f is called a faithful representation when for different numbers g and q, f(g) and f(q) are equal if and only if g = q.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A spin-vector is based on the space of future or past null directions in Minkowski space-time. The field ζ of a SpinVector represents points in Argand plane. Therefore, if v is obtained with the transformation of u by M, then the respective spin-vectors s and s′ should tell us how M changes Argand plane. To be precise, three different points in Argand plane, namely u₁, u₂, u₃, are needed to characterize the transformation. We assert that the transformation by M induced on Argand plane is correct, because it extends the Argand plane ζ = w * exp(im * ψ) * s.ζ by magnitude w and rotates it through angle ψ. So, we established the fact that normalizing the vector of eigenvalues of the transformation _M and reconstructing it to get M leaves the effect on Argand plane invariant.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" u₁ = 𝕍(1.0, 1.0, 0.0, 0.0)\n u₂ = 𝕍(1.0, 0.0, 1.0, 0.0)\n u₃ = 𝕍(1.0, 0.0, 0.0, 1.0)\n for u in [u₁, u₂, u₃]\n v = 𝕍(vec(M * Quaternion(u.a)))\n @assert(isnull(v, atol = tolerance), \"v ∈ 𝕍 in not null, $v.\")\n s = SpinVector(u)\n s′ = SpinVector(v)\n if s.ζ == Inf # A Float64 number (the point at infinity)\n ζ = s.ζ\n else # A Complex number\n ζ = w * exp(im * ψ) * s.ζ\n end\n ζ′ = s′.ζ\n if ζ′ == Inf\n ζ = real(ζ)\n end\n @assert(isapprox(ζ, ζ′, atol = tolerance), \"The transformation induced on Argand plane is not correct, $ζ != $ζ′.\")\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"A distinction between coordinates in Argand plane becomes relevant when we want to assert the properties of M on a test variable ζ, without applying M on a control variable ζ′. In the special case where the null direction ζ is the point at infinity, the north pole, we expect for the transformation induced by M to be inconsequential. Because ζ is a union of complex numbers and the singleton of infinity (of type Union{Complex, ComplexF64, Float64}). For an inhomogeneous coordinate system we treat the point at infinity in a different way. For example, for all values of w, if ζ equals infinity then the rotation component of a four-screw should not have any effect on the north pole. But, multiplying positive infinity by a complex number of negative magnitude makes ζ equal to negative infinity, which is not in Argand plane. In that case, we first check the edge case to leave ζ unchanged whenever its value is infinity, ζ = s.ζ. No amount of z-boost and rotation about the z-axis should transform the north pole. Else, ζ transforms as expected: ζ = w * exp(im * ψ) * s.ζ.","category":"page"},{"location":"hopffibration.html#Compute-a-Null-Rotation","page":"Hopf Fibration","title":"Compute a Null Rotation","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"To understand a null rotation, imagine that you are an astronaut in empty space, far away from any celestial object. Looking at the space around you from every direction, you can see your surrounding environment through a spherical viewport. This view is called the celestial sphere of past null directions, as the light from the stars in the past reach your eyes. A null rotation translates Argand plane such that just one null direction is invariant, the point at infinity (the north pole of the celestial sphere). We control the animation of a null rotation by defining a real number a.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" a = sin(progress * 2π)","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Whenever T is positive, we talk about the sphere of future-pointing null directions. At this stage of the animation, the transformation transform defines a null rotation such that the invariant null vector is the direction t + z, the north pole of the sphere of future-pointing null directions, where ζ equals infinity. ","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" transform(x::Quaternion) = begin\n T, X, Y, Z = vec(x)\n X̃ = X \n Ỹ = Y + a * (T - Z)\n Z̃ = Z + a * Y + 0.5 * a^2 * (T - Z)\n T̃ = T + a * Y + 0.5 * a^2 * (T - Z)\n Quaternion(T̃, X̃, Ỹ, Z̃)\n end\n\n r₁ = transform(Quaternion(1.0, 0.0, 0.0, 0.0))\n r₂ = transform(Quaternion(0.0, 1.0, 0.0, 0.0))\n r₃ = transform(Quaternion(0.0, 0.0, 1.0, 0.0))\n r₄ = transform(Quaternion(0.0, 0.0, 0.0, 1.0))\n _M = reshape([vec(r₁); vec(r₂); vec(r₃); vec(r₄)], (4, 4))\n decomposition = LinearAlgebra.eigen(_M)\n λ = decomposition.values\n Λ = [λ[1] 0.0 0.0 0.0; 0.0 λ[2] 0.0 0.0; 0.0 0.0 λ[3] 0.0; 0.0 0.0 0.0 λ[4]]\n M = real.(decomposition.vectors * Λ * LinearAlgebra.inv(decomposition.vectors))","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Next, we instantiate another spin-vector using M * u = v in order to examine the effect of the transformation M on Argand plane. Specifically, the point ζ from the Argand plane of u transforms into α * s.ζ + β, where α determines the extension of Argand plane and β the translation. The scalar a controls the translation of the plane because β is defined as β = Complex(im * a). We assert that the transformation induced on Argand plane is correct by comparing the approximate equality of the Argand plane of v and the Argand plane of u. Similar to previous animation stages, the induced transformation on Argand plane by M is completely characterized using three different points: u₁, u₂, u₃. After transforming u by M we assert that the result v is still a null vector.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" u₁ = 𝕍(1.0, 1.0, 0.0, 0.0)\n u₂ = 𝕍(1.0, 0.0, 1.0, 0.0)\n u₃ = 𝕍(1.0, 0.0, 0.0, 1.0)\n for u in [u₁, u₂, u₃]\n v = 𝕍(vec(M * Quaternion(u.a)))\n @assert(isnull(v, atol = tolerance), \"v ∈ 𝕍 in not a null vector, $v.\")\n s = SpinVector(u) # TODO: visualize the spin-vectors as frames on S⁺\n s′ = SpinVector(v)\n β = Complex(im * a)\n α = 1.0\n ζ = α * s.ζ + β\n ζ′ = s′.ζ\n if ζ′ == Inf\n ζ = real(ζ)\n end\n @assert(isapprox(ζ, ζ′, atol = tolerance), \"The transformation induced on Argand plane is not correct, $ζ != $ζ′.\")\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Finally, we also assert that the null direction z + t is invariant under the transformation M because it is a null rotation with a fixed null direction at the north pole. The animation of a null rotation is correct if all of the assertions evaluate true.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" v₁ = 𝕍(normalize(ℝ⁴(1.0, 0.0, 0.0, 1.0)))\n v₂ = 𝕍(vec(M * Quaternion(vec(v₁))))\n @assert(isnull(v₁, atol = tolerance), \"vector t + z in not null, $v₁.\")\n @assert(isapprox(v₁, v₂, atol = tolerance), \"The null vector t + z is not invariant under the null rotation, $v₁ != $v₂.\")","category":"page"},{"location":"hopffibration.html#Update-the-Camera","page":"Hopf Fibration","title":"Update the Camera","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The 3D camera of the scene requires the eye position, look at, and up vectors for positioning and orientation. The function update_cam! takes the scene object along with the three required vectors as arguments and updates the camera. But, our camera position and orientation vectors are of type ℝ³, and not Vec3f. To match the argument type we need to use the generic function vec and the splat operator in order to instantiate objects of type Vec3f, because update_cam! is going to match the given type with its own signature.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" GLMakie.update_cam!(lscene.scene, GLMakie.Vec3f(vec(eyeposition)...), GLMakie.Vec3f(vec(lookat)...), GLMakie.Vec3f(vec(up)...))","category":"page"},{"location":"hopffibration.html#Record-an-Animation","page":"Hopf Fibration","title":"Record an Animation","text":"","category":"section"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Updating the base maps requires a base point in the section denoted by q and the transformation M. Then, we use M to update base maps 1, 2, 3 and 4. For we want to have different choices of an inertial reference frame in the tangent space of some point in spacetime. The generic function update! updates base maps by changing the structurally embedded observables, and then the graphical shapes take different forms accordingly.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Although we are talking about points in the bundle, embedded in ℝ⁴ and of type Quaternion, the generic function project converts them to points in ℝ³. The one method of project takes the given point q ∈ S³ ⊂ ℂ² and turns it into a point in the Euclidean space E³ ⊂ ℝ³ using stereographic projection. We identify mathbbR^4 to mathbbC^2 given by (x_1 x_2 x_3 x_4) mapsto (x_1 + i x_2 x_3 + i x_4). Then, the stereographic projection is given by: project S^3 setminus (1 0) to mathbbR^3 given by (x_1 x_2 x_3 x_4) mapsto fracx_2 x_3 x_4^T1 - x_1.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Whenever we call the update! function with an object like basemap1, giving transformation M, two things happn under the hood for deforming the graphics (update!(basemap1, q, gauge1, M)). First, a matrix of type ℝ³ is made, Matrix{ℝ³}. That is the job of one of the methods of the generic function make. The correct dispatch is selected automatically for the job, based on the argument signature (whether the first argument is of type Whirl or Basemap for example). The selected method makes a 2-surface (lattice) of the horizontal section at base point q after transforming by M, with the given segments number, gauge and chart. A chart and a gauge play the role of a choice of local trivialization of the Hopf bundle, as an atlas, for the purpose of constructing a pullback of the Earth's surface.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Second, the matrix of ℝ³ along with the given basemap's observables are passed to the function updatesurface! for updating the observables. For each coordinate component x, y and z in the Euclidean 3-space E^3, there is a corresponding matrix of real numbers, of the same size: (segments by segments). In the type structure of a Basemap or a Whirl there is a tuple whose elements are of type Observable. Each element of the three-tuple in turn contains a matrix of components x, y or z. Reshaping a matrix of 3-vectors into three matrices of scalars is done because when we implicitly instantiated a GLMakie surface in the beginning, we supplied it with three observables representing x, y and z coordinates separately. The generic function buildsurface from the source file surface.jl builds a surface with the given scene, value, color and transparency. Here, the value argument is of type Matrix{ℝ³}. The interface between the construction of our base maps (or whirls) and the graphics engine is essentially a reshaping and type conversion. See surface_tests.jl for use cases.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"Every time we update the observables of a Whirl under transformation by M, we need to access the coordinates of the boundary data (update!(whirls1[i], points[i], gauge1, gauge2, M)). But the coordinates are not changed, and instead the change-of-basis is taken care of by the map M. The coordinate component ϕ is divided by a factor of four since in geographic coordinates longitudes range from -π to +π, whereas latitudes range from -π / 2 to +π / 2 (exp(ϕ / 4 * K(1) + θ / 2 * K(2)))). This division rescales the longitude component of coordinates and allows us to have a square bundle chart, compared to coordinate components θ. Rescaling θ and ϕ aligns the boundaries of horizontal and vertical subspaces. We finish the animation of one time-step after updating the last Whirl.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"The function animate takes as input an integer called frame and updates the scene observables according to the stages that we described earlier. First, it calculates the progress of the animation frames, dividing frame by frames_number. For different properties of Lorentz transformations we have four stages, each stage having its own progress. The signature of the four-screw animator function is compute_fourscrew(progress::Float64, status::Int). For example, stage one animates a proper rotation of Argand plane by calling the function compute_fourscrew with status equal to 1. Stage 2 animates a pure z-boost. Then, stage 3 animates a four-screw. Finally, stage 4 animates a null rotation by calling the function compute_nullrotation. After calling each stage function, we update the camera by calling the function updatecamera.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" animate(frame::Int) = begin\n progress = frame / frames_number\n stage = min(totalstages - 1, Int(floor(totalstages * progress))) + 1\n stageprogress = totalstages * (progress - (stage - 1) * 1.0 / totalstages)\n println(\"Frame: $frame, Stage: $stage, Total Stages: $totalstages, Progress: $stageprogress\")\n if stage == 1\n M = compute_fourscrew(stageprogress, 1)\n elseif stage == 2\n M = compute_fourscrew(stageprogress, 2)\n elseif stage == 3\n M = compute_fourscrew(stageprogress, 3)\n elseif stage == 4\n M = compute_nullrotation(stageprogress)\n end\n update!(basemap1, q, gauge1, M)\n update!(basemap2, q, gauge2, M)\n update!(basemap3, q, gauge3, M)\n update!(basemap4, q, gauge4, M)\n for i in eachindex(whirls1)\n update!(whirls1[i], points[i], gauge1, gauge2, M)\n update!(whirls2[i], points[i], gauge2, gauge3, M)\n update!(whirls3[i], points[i], gauge3, gauge4, M)\n update!(whirls4[i], points[i], gauge4, gauge5, M)\n end\n updatecamera()\n end","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":"To create an animation you need to use the record function. In summary, we instantiated a Scene inside a Figure. Next, we created and animated observables in the scene, on a frame by frame basis. Now, we record the scene by passing the figure fig, the file path of the resulting video, and the range of frame numbers to the record function. The frame is incremented by record and the frame number is passed to the function write to animate the observables. Once the frame number reaches the total number of animation frames, recording is finished and a video file is saved on the hard drive at the file path: gallery/planethopf.mp4.","category":"page"},{"location":"hopffibration.html","page":"Hopf Fibration","title":"Hopf Fibration","text":" GLMakie.record(fig, joinpath(\"gallery\", \"$modelname.mp4\"), 1:frames_number) do frame\n animate(frame)\n end","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Description = \"News Report\"","category":"page"},{"location":"newsreport.html#Lede","page":"News Report","title":"Lede","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Show a small piece of the story.","category":"page"},{"location":"newsreport.html#Context","page":"News Report","title":"Context","text":"","category":"section"},{"location":"newsreport.html#Where,-Who,-What,-How-and-Why","page":"News Report","title":"Where, Who, What, How and Why","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Tell us the facts of the story.","category":"page"},{"location":"newsreport.html#Where","page":"News Report","title":"Where","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew1)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"What is the relation between a spin-frame and a Minkowski tetrad? The spin-frame is denoted by omicron (black) and iota (silver). Omicron and iota serve as two flag poles, where we also show their respective flags. In order to see the flags, find the arcs in the x direction that move with omicron and iota during a series of transformations. The spin-frame is in a vector space over complex numbers. The spin space has the axioms of an abstract vector space. But, we have defined a special inner product for 2-spinors, such that the product of omicron and iota equals unity, whereas the product of iota and omicron equals minus unity. In other words, the inner product eats a pair of spin-vectors in the Hopf bundle and spits out a complex number (a scalar).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The axes t (red), x (green), y (blue), and z (orange) are parts of a Minkowski tetrad in Minkowski spacetime. Choosing the default Minkowski tetrad, the tetrad aligns with the Cartesian axes of real dimension four. But, when we apply a spin-transformation, the tetrad no longer aligns with Cartesian coordinates, and with it the spin-frame bases omicron and iota change as well. The kinds of spin transformation that we apply are four-screws and null rotations, and so they are restricted transformations. Restricted transformations do not alter the sign of time. Here, the time sign is negative one, which is the same as the wall clock time.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: fourscrew3)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"If you look closely, there are two spheres in the middle that change hue over time. One of them is the past null cone and the other is the sphere S^{-1}. You will recognize the null cone as soon as it turns into a cone momentarily. If a spin-vector is in S^{-1}, then under restricted spin-transformations it does not leave the sphere S^{-1} to S^{+1}. The past null cone is the directions of light that reach our eyes from the past. But, the sphere S^{-1} is the light that we can observe around us in the present moment (assume we’re in deep space and away from heavenly objects). Under spin-transformations the null cone and the sphere S^{-1} change too, because they are embedded in Minkowski spacetime of dimension 4.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: nullrotation)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"timesign = -1\nο = SpinVector([Complex(1.0); Complex(0.0)], timesign)\nι = SpinVector([Complex(0.0); Complex(1.0)], timesign)\n@assert(isapprox(dot(ο, ι), 1.0), \"The inner product of spin vectors $ι and $ο is not unity.\")\n@assert(isapprox(dot(ι, ο), -1.0), \"The inner product of spin vectors $ι and $ο is not unity.\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"generate() = 2rand() - 1 + im * (2rand() - 1)\nκ = SpinVector(generate(), generate(), timesign)\nϵ = 0.01\nζ = Complex(κ)\nζ′ = ζ - 1.0 / √2 * ϵ / κ.a[2]\nκ = SpinVector(ζ, timesign)\nκ′ = SpinVector(ζ′, timesign)\nω = SpinVector(generate(), generate(), timesign)\nζ = Complex(ω)\nζ′ = ζ - 1.0 / √2 * ϵ / ω.a[2]\nω = SpinVector(ζ, timesign)\nω′ = SpinVector(ζ′, timesign)\n@assert(isapprox(dot(κ, ι), vec(κ)[1]), \"The first component of the spin vector $κ is not equal to the inner product of $κ and $ι.\")\n@assert(isapprox(dot(κ, ο), -vec(κ)[2]), \"The second component of the spin vector $κ is not equal to minus the inner product of $κ and $ο.\")\n@assert(isapprox(dot(ω, ι), vec(ω)[1]), \"The first component of the spin vector $ω is not equal to the inner product of $ω and $ι.\")\n@assert(isapprox(dot(ω, ο), -vec(ω)[2]), \"The second component of the spin vector $ω is not equal to minus the inner product of $ω and $ο.\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"t = 𝕍(1.0, 0.0, 0.0, 0.0)\nx = 𝕍(0.0, 1.0, 0.0, 0.0)\ny = 𝕍(0.0, 0.0, 1.0, 0.0)\nz = 𝕍(0.0, 0.0, 0.0, 1.0)\nο = √2 * (t + z)\nι = √2 * (t - z)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct360)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The phase of the inner product of spin-vectors is shown as a prism arc. In a Minkowski tetrad with bases t, x, y and z, (with signature (+,-,-,-)) there are a pair of basis vectors for spin-vectors: omicron and iota. For example, the spin-vectors kappa and omega, each are linear combinations of omicron and iota. The product of kappa and omega is a complex number that has a magnitude and a phase. Being spin-vectors, the arrows of omicron, iota, kappa and omega represent the flagpoles, and the flag planes are attached to the flagpoles as arcs.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct720)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In order to find the inner product of kappa and omega we make use of both flagpoles and flag planes. First, note that the flagpoles span a 2-plane in the Minkowski vector space. Then, we perform the Gram-Schmidt orthogonalization method to find the orthogonal complement of the 2-plane. Next, find the intersection of the flag planes and the orthogonal complement 2-plane from the previous step. By this step, the flag plane of kappa results in vector U, whereas the flag plane of omega projects to arrow V. Then, we normalize U and V. Finally, the angle that U and V make with each other measure pi plus two times the argument of the inner product of kappa and omega.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct1080)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore, the arrow that is denoted by p bisects the angle between U and V, and measures the phase angle minus pi half (modulus two pi). Also, a spatial rotation about the axis p is done for animating the Minkowski vector space so that all of the components of the inner product are visible from a 720-degree view.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct1440)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"A spin-vector is named kappa and another spin-vector is named omega. The extra piece of information that makes spinors special is the flagpoles of spin-vectors. Using a differential operator in the plane of complex numbers, starting with zeta complex, the spin counterpart of the spin vector zeta prime equals zeta minus one over the square root of two times a constant named epsilon, over eta (the second component of the spin-vector). Except for this transformation of zeta to zeta prime, which is parameterized by epsilon, the spin-vectors kappa and kappa prime have the same features such as time sign. The same transformation produces the names omega and omega prime. With iota and omicron as the basis vectors of the spin-space G dot, we assert the following propositions:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The first component of the spin vector κ is equal to the inner product of κ and ι.\nThe second component of the spin vector κ is equal to minus the inner product of κ and ο.\nThe first component of the spin vector ω is equal to the inner product of ω and ι.\nThe second component of the spin vector ω is equal to minus the inner product of ω and ο.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproduct)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"κ = 𝕍(κ)\nκ′ = 𝕍(κ′)\nω = 𝕍(ω)\nω′ = 𝕍(ω′)\nzero = 𝕍(0.0, 0.0, 0.0, 0.0)\nB = stack([vec(κ), vec(ω), vec(zero), vec(zero)])\nN = LinearAlgebra.nullspace(B)\na = 𝕍(N[begin:end, 1])\nb = 𝕍(N[begin:end, 2])\na = 𝕍(LinearAlgebra.normalize(vec(a - κ - ω)))\nb = 𝕍(LinearAlgebra.normalize(vec(b - κ - ω)))","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"When we stack the Minkowski vector space representation of kappa and omega and fill the rest with zero to get a square matrix B, the null space of B is where the piece of information about spinors exist. By performing a Gram-Schmidt procedure we find the set of orthonormal basis vectors for the inner product of kappa and omega. In the following lines, the spin-vectors an and b are bases of the null space of matrix B.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"v₁ = κ.a\nv₂ = ω.a\nv₃ = a.a\nv₄ = b.a\n\ne₁ = v₁\nê₁ = normalize(e₁)\ne₂ = v₂ - dot(ê₁, v₂) * ê₁\nê₂ = normalize(e₂)\ne₃ = v₃ - dot(ê₁, v₃) * ê₁ - dot(ê₂, v₃) * ê₂\nê₃ = normalize(e₃)\ne₄ = v₄ - dot(ê₁, v₄) * ê₁ - dot(ê₂, v₄) * ê₂ - dot(ê₃, v₄) * ê₃\nê₄ = normalize(e₄)\n\nê₁ = 𝕍(ê₁)\nê₂ = 𝕍(ê₂)\nê₃ = 𝕍(ê₃)\nê₄ = 𝕍(ê₄)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproductspositiveus)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The flag planes of kappa and omega are obtained by subtracting kappa from kappa prime and omega from omega prime, respectively. Projecting the flag plane of kappa onto the 2-plane spanned by subspace bases of ê₃ and ê₄ gives you vector U. The same subspace gives you V for the flag plane of omega. The inner product eats two spin-vectors such as kappa and omega, and spits out a complex number that has a magnitude and a phase angle. The angle that U and V make with each other determines the phase of the inner product times two plus pi. This 2-plane is the orthogonal complement of the 2-plane that contains kappa and omega (and is spanned by ê₁ and ê₂). The camera looks at the sum of the vectors kappa and omega.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"κflagplanedirection = 𝕍(LinearAlgebra.normalize(vec(κ′ - κ)))\nωflagplanedirection = 𝕍(LinearAlgebra.normalize(vec(ω′ - ω)))\nglobal u = LinearAlgebra.normalize(vec((-dot(ê₃, κflagplanedirection) * ê₃ + -dot(ê₄, κflagplanedirection) * ê₄)))\nglobal v = LinearAlgebra.normalize(vec((-dot(ê₃, ωflagplanedirection) * ê₃ + -dot(ê₄, ωflagplanedirection) * ê₄)))\np = 𝕍(LinearAlgebra.normalize(u + v))\nglobal p = -dot(ê₃, p) * ê₃ + -dot(ê₄, p) * ê₄\naxis = normalize(ℝ³(vec(p)[2:4]))\nM = mat4(Quaternion(progress * 4π, axis))\nο_transformed = M * Quaternion(vec(ο))\nι_transformed = M * Quaternion(vec(ι))","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: innerproductspositivechina)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"ζ = Complex(_κ + _ω)\n_τ = SpinVector(ζ, timesign)\nζ′ = Complex(_κ′ + _ω′)\n_τ′ = SpinVector(ζ′, timesign)\ngauge1 = -imag(dot(_κ, _ω))\ngauge2 = -imag(dot(_κ, _τ))\ngauge3 = float(π)\n@assert(isapprox(dot(_τ, _ι), vec(_τ)[1]), \"The second component of the spin vector $_τ is not equal to minus the inner product of $_τ and $_ι.\")\n@assert(isapprox(dot(_τ, _ο), -vec(_τ)[2]), \"The second component of the spin vector $_τ is not equal to minus the inner product of $_τ and $_ο.\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The geometry of \"spin-vector addition\" is shown. The spin-vectors exist in a spin-space that is equipped with three operations: scalar multiplication, inner product and addition. The addition of spin-vectors κ and ω results in another spin-vector κ + ω in the spin-space, which has its own flagpole and flag plane. Taking κ and ω as null vectors in the sphere of future null directions, the flagpole of κ is represented by a point (complex number) and the null flag of κ is represented as a point sufficiently close to κ that is used to assign a direction tangent to the sphere at κ.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: addition02)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The tails of the flagpoles of κ, ω and κ + ω are in a circle in the sphere of future null directions. The circumcircle of the triangle made by joining the tails of the three spin-vectors makes angles with the flagpoles and null planes. Meaning, the distance between κ and the center of the circle is equal to the distance between ω and the center. Also, the distance of the addition of κ and ω and the circle center is the same as the distance between κ and the center. For the circumcircle, we have three collinear points in the Argand complex plane. However, lines in the Argand plane become circles in sections of the three-dimensional sphere. The angle that the flagpoles of κ and ω make with the circle should be twice the argument of the inner product of the two spin-vectors (modulus 2π with a possible addition of π).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: addition08)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"w = (Complex(κ + ω) - Complex(κ)) / (Complex(ω) - Complex(κ))\n@assert(imag(w) ≤ 0 || isapprox(imag(w), 0.0), \"The flagpoles are not collinear: $(Complex(κ)), $(Complex(ω)), $(Complex(κ + ω))\")","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In an interesting way, the argument (phase) of the inner product of κ and ω is equal to half of the sum of the angles that the spin-vectors make with the circle, which is in turn equal to the angle that U and V make with each other minus π (also see the geometric descriptions of the inner product to construct U and V). In the case of spin-vector addition, the angles that the flag planes of κ, ω and κ + ω, each make with the circle are equal. But, be careful with determining the signs of the flag planes and the possible addition of π to the flag plane of κ + ω. For determining flag plane signs, see also Figure 1-21 in page 64 of Roger Penrose and Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: addition09)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"For example, the Standard Model is formulated on 4-dimensional Minkowski spacetime, over which all fiber bundles can be trivialized and spinors have a simple explicit description. For the Symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In theoretical physics, Lie groups like the Lorentz and Poincaré groups, which are related to spacetime symmetries, and gauge groups, defining internal symmetries, are important cornerstones. Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group. The Lie algebra SL(2mathbbC) plays a special role in physics, because as a real Lie algebra it is isomorphic to the Lie algebra of the Lorentz group of 4-dimensional spacetime. At least locally, fields in physics can be described by maps on spacetime with values in vector spaces.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. As we will discuss in Sect. 6.8.2 in more detail, the group SL(2mathbbC) is the (orthochronous) Lorentz spin group, i.e. the universal covering of the identity component of the Lorentz group of 4-dimensional spacetime. The fundamental geometric opbject in a gauge theory is a principal bundle over spacetime with structure group given by the gauge group. The fibers of a principal bundle are sometimes thought of as an internal space at every spacetime point, not belonging to spacetime itself. Fiber bundles are indispensible in gauge theory and physics in the situation where spacetime, the base manifold, has a non-trivial topology.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It also happens if we compactify (Euclidean) spacetime mathbbR^4 to the 4-sphere S^4. In these situations, fields on spacetime often cannot be described simply by a map to a fixed vector space, but rather as sections of a non-trivial vector bundle. We will see that this is similar to the difference in special relativity between Minkowski spacetime and the choice of an inertial system. This can be compared, in special relativity, to the choice of an inertial system for Minkowski spacetime M, which defines an identification on M cong mathbbR^4. Of course, different choices of gauges are possible, leading to different trivializations of the principal bundle, just as different choices of inertial systems lead to different identifications of spacetime with mathbbR^4.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Note that, if we consider principal bundles over Minkowski spacetime mathbbR^4, it does not matter for this discussion that principal bundles over Euclidean spaces are always trivial by Corollary 4.2.9. This is very similar to special relativity, where spacetime is trivial, i.e. isomorphic to mathbbR^4 with a Minkowski metric, but what matters is the independence of the actual trivialization, i.e. the choice of inertial system. Table 4.2 Comparison between notions for special relativity and gauge theory","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":" Manifold Trivialization Transformations and invariance\nSpecial relativity Spacetime M M cong mathbbR^4 via inertial system Lorentz\nGauge theory Principal bundle P to M P cong M times G via choice of gauge Gauge","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It follows that, given a local gauge of the gauge bundle P, the section in E corresponds to a unique local map from spacetime into the vector space V. In particular, we can describe matter fields on a spacetime diffeomorphic to mathbbR^4 by unique maps from mathbbR^4 into a vector space, once a global gauge for the principal bundle has been chosen. At least locally (after a choice of local gauge) we can interpret connection 1-forms as fields on spacetime (the base manifold) with values in the Lie algebra of the gauge group. Notice that connections are not unique (if dim M dim G ge 1), not even in the case of trivial principal bundles (all connections that appear in the Standard Model over Minkowski spacetime, for example, are defined on trivial principal bundles). The diffeomorphism group Diff(M) of spacetime M plays a comparable role in general relativity.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"This is related to the fact that gauge theories describe local interactions (the interactions occur in single spacetime points). The local connection 1-form is thus defined on an open subset in the base manifold M and can be considered as a \"field on spacetime\" in the usual sense. Generalized Electric and Magnetic Fields on Minkowski Spacetime of Dimension 4 In quantum field theory, the gauge field A_mu is a function on spacetime with values in the operators on the Hilbert state space V (if we ignore for the moment questions of whether this operator is well-defined and issues of regularization). By Corollary 5.13.5 this difference can be identified with a 1-form on spacetime M with values in Ad(P).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics this fact is expressed by saying that gauge bosons, the differences A_mu-A_mu^0, are fields on spacetime that transform in the adjoint representation of G under gauge transformations. In the case of Minkowski spacetime, rotations correspond to Lorentz transformations. The pseudo-Riemannian case, like the case of Minkowski spacetime, is discussed less often, even though it is very important for physics (a notable exception is the thorough discussion in Helga Baun's book [13]). mathbbR^s1 and mathbbR^1t are the two versions of Minkowski spacetime (both versions are used in physics). This includes the particular case of the Lorentz group of Minkowski spacetime.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"However, as mentioned above, depending on the convention, 4-dimensional Minkowski spacetime in quantum field theory can have signature (+---), so that time carries the plus sign. Example 6.1.20 For applications concerning the Standard Model, the most important of these groups is the proper orthochronous Lorentz group SO^+(13) cong SO^+(31) of 4-dimensional Minkoeski spacetime. They are physical gamma matrices for Cl(13), i.e. for the Clifford algebra of Minkowski spacetime with signature (+---), in the so-called Weyl representation or chiral representation. Example 6.3.18 Let Gamma_a and gamma_a = i Gamma_a be the physical and mathematical gamma matrices for Cl(13) considered in Example 6.3.17. If we set Gamma_a^prime = gamma_a, gamma_a^prime = i Gamma_a^prime = -Gamma_a, then these are physical and Mathematical gamma matrices for Cl(13) of Minkowski spacetime with signature (-+++). Example 6.3.24 For Minkowski spacetime of dimension 4 we have Table 6.1 Complex Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"n Cl(n) Cl^0(n) N\nEvan End(mathbbC^N) End(mathbbC^N2) oplus End(mathbbC^N2) 2^n2\nOdd End(mathbbC^N) oplus End(mathbbC^N) End(mathbbC^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Table 6.2 Real Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"rho mod 8 Cl(st) N\n0 End(mathbbR^N) 2^n2\n1 End(mathbbC^N) 2^(n-1)2\n2 End(mathbbH^N) 2^(n-2)2\n3 End(mathbbH^N) oplus End(mathbbH^N) 2^(n-3)2\n4 End(mathbbH^N) 2^(n-2)2\n5 End(mathbbC^N) 2^(n-1)2\n6 End(mathbbR) 2^n2\n7 End(mathbbR^N) oplus End(mathbbR^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Table 6.3 Even part of real Clifford algebras","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"rho mod 8 Cl^0(st) N\n0 End(mathbbR^N) oplus End(mathbbR^N) 2^(n-2)2\n1 End(mathbbR^N) 2^(n-1)2\n2 End(mathbbC^N) 2^(n-2)2\n3 End(mathbbH^N) 2^(n-3)2\n4 End(mathbbH^N) oplus End(mathbbH^N) 2^(n-4)2\n5 End(mathbbH^N) 2^(n-3)2\n6 End(mathbbC^N) 2^(n-2)2\n7 End(mathbbR^N) 2^(n-1)2","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl(13) cong End(mathbbR^4)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl(31) cong End(mathbbH^2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Cl^0(13) cong Cl^0(31) cong End(mathbbC^2)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Example 6.6.7 For Minkowski spacetime mathbbR^n-11 of dimension n we have n = rho + 2.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We see that in Minkowski spacetime of dimension 4 there exist both Majorana and Weyl spinors of real dimension 4, but not Majorana-Weyl spinors. In quantum field theory, spinors become fields of operators on spacetime acting on a Hilbert space. Explicit formulas for Minkowski Spacetime of Dimension 4 We collect some explicit formulas concerning Clifford algebras and spinors for the case of 4-dimensional Minkowski spacetime. In Minkowski spacetime of dimension 4 and signature (+---) (usually used in quantum field theory) there exist both Weyl and Majorana spinors, but not Majorana-Weyl spinors. Our aim in this subsection is to prove that the orthochronous spin group Spin^+(13) of 4-dimensional Minkowski spacetime is isomorphic to the 6-dimensional Lie group SL(2mathbbC).","category":"page"},{"location":"newsreport.html#The-Story","page":"News Report","title":"The Story","text":"","category":"section"},{"location":"newsreport.html#Who","page":"News Report","title":"Who","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"With the discovery of a new particle, announced on 4 July 2012 at CERN, whose properties are \"consistent with the long-sought Higgs boson\" [31], the final elementary particle predicted by the classical Standard Model of particle physics has been found. Interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs bosons), determined by the Lagrangian. The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. The fact that there are 8 gluons, 3 weak gauge bosons, and 1 photon is related to the dimensions of the Lie groups SU(3) and SU(2) times U(1). Lie algebras are also important in gauge theories: connections on principal bundles, also known as gauge boson fields, are (locally) 1-forms on spacetime with values in the Lie algebra of the gauge group.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The adjoint representation is also important in physics, because gauge bosons correspond to fields on spacetime that transform under the adjoint representation of the gauge group. We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields. The gauge bosons corresponding to these gauge groups are described by the adjoint representation that we discuss in Sect. 2.1.5. The representation Ad_H describes the representation of the gauge boson fields in the Standard Model. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Connections on principal bundles, that we discuss in Chap. 5, correspond to gauge fields whose particle excitations in the associated quantum field theory are the gauge bosons that transmit interactions. These fields are often called gauge fields and correspond in the associated quatum field theory to gauge bosons. This implies a direct interaction between gauge bosons (the gluons in QCD) that does not occur in abelian gauge theories like quantum electrodynamics (QED). The difficulties that are still present nowadays in trying to understand the quantum version of non-abelian gauge theories, like quantum chromodynamics, can ultimately be traced back to this interaction between gauge bosons. The real-valued fields A_mu^a in C^infty(UmathbbR) and the corresponding real-valued 1-forms A_s in Omega^1(U) are called (local) gauge boson fields.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics, the quadratic term A_mu A_nu in the expression for F_munu (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field A_mu. This explains why gluons, the gauge bosons of QCD, interact directly with each other, while photons, the gauge bosons of QED, do not. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by A_mu and the particles described by the field phi. We then get a better understanding of why gauge bosons in physics are said to transform under the adjoint representation.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Strictly speaking, gauge bosons, the excitations of the gauge field, should then be described classically by the difference A - A^0, where A is some other connection 1-form and not by the field A itself. In physics this fact is expressed by saying that gauge bosons, the differences A_mu - A_mu^0, are fields on spacetime that transform in the adjoint represntation of G under gauge transformations. Gauge fields correspond to gauge bosons (spin 1 particles) and are described by 1-forms or, dually, vector fields. Even though spinors are elementary objects, some of their properties (like the periodicity modulo 8, real and quaternionic structures, or bilinear and Hamiltonian scalar products) are not at all obvious, already on the level of linear algebra, and do not have a direct analogue in the bosonic world of vectors and tensors. The existence of gauge symmetries is particularly important: it can be shown that a quantum field theory involving massless spin 1 bosons can be consistent (i.e. unitary, see Sect. 7.1.3) only if it is gauge invariant [125,143].","category":"page"},{"location":"newsreport.html#Graph","page":"News Report","title":"Graph","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: graph)","category":"page"},{"location":"newsreport.html#What","page":"News Report","title":"What","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The Higgs mechanism of mass generation for gauge bosons as well as the mass generation for fermions via Yukawa couplings. Spin groups such as the universal covering of the Lorentz group and its higher dimesnional analogues, are also important in physics, because they are involved in the mathematical description of fermions. Counting in this way, the Standard Model thus contains at the most elementary level 90 fermions (particles and antiparticles). The complex vector space V of fermions, which carries a representation of G, has dimension 45 (plus the same number of corresponding antiparticles) and is the direct sum of the two G-invariant subspaces (sectors): a lepton sector of dimension 9 (where we do not include the hypothetical right-handed neutrinos) and a quark sector of dimension 36. Matter fields in the Standard Model, like quarks and leptons, or sacalar fields, like the Higgs field, correspond to sections of vector bundles associated to the principal bundle (and twisted by spinor bundles in the case of fermions).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"For example, in the Standard Model, one generation of fermions is described by associated complex vector bundles of rank 8 for left-handed fermions and rank 7 for right-handed fermions, associated to representations of the gauge group SU(3) times SU(2) times U(1). Matter fields in physics are described by smooth sections of vector bundles E associated to principal bundles P via the representations of the gauge group G on a vector space V (in the case of fermions the associated bundle E is twisted in addition with a spinor bundle S, i.e. the bundle is S otimes E). Additional matter fields, like fermions or scalars, can be introduced using associated vector bundles. These particles are fermions (spin frac12 particles) and are described by spinor fields (spinors). Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly neutrinos) and, together with the Dirac operator, the kinetic term and the interaction term; see Sect. 7.6. This is related to the fact that the weak interaction in the Standard Model is not invariant under parity inversion that exchanges left-handed with right-handed fermions.","category":"page"},{"location":"newsreport.html#Perspective","page":"News Report","title":"Perspective","text":"","category":"section"},{"location":"newsreport.html#How","page":"News Report","title":"How","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Hence, by the uniqueness of integral curves (which is a theorem about the uniqueness of solutions to odrinary differential equations) we have phi_X(s) cdot phi_X(t) = phi_X(s + t) forall t in I cap (t_min - s t_max - s). This implies the claim by uniqueness of solutions of ordinary differential equations. The unique solution of this differential equation for gamma(t) is gamma(t) = e^tr(X)t. Then e^D = beginbmatrix e^d_1 0 0 0 e^d_2 0 ddots 0 0 e^d_n endbmatrix and the equation det(e^D) = e^d_1 e^d_n = e^d_1 + + d_n = e^tr(D) is trivially satisfied. Then we can calculate: (R^*_gs)_p(XY) = L_(pg)^-1*R_g*(X) L_(pg)^-1*R_g*(Y) = Ad_g^-1 circ L_p^-1*(X) Ad_g^-1 circ L_p^-1*(Y) and s_p(XY) = L_p^-1*(X) L_p^-1*(Y), where in both equations we used that s is left invariant.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 3.3.3 For A in Mat(m times m mathbbH) and v in mathbbH^m the following equation holds: detbeginbmatrix1 v 0 Aendbmatrix = det(A). Lemma 4.1.13 (Cocycle Conditions) The transition functions phi_ij_ij in I satisfy the following equations:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"phi_ii(x) = Id_F for x in U_i,\nphi_ij(x) circ phi_ji(x) = Id_F for x in U_i cap U_j,\nphi_ik(x) circ phi_kj(x) circ phi_ji(x) = Id_F for x in U_i cap U_j cap U_k.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The third equation is called the cycycle condition.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"5.5.2 The structure equation Theorem 5.5.4 (Structure Equation) The curvature form F of a connection form A satisfies F = dA + frac12AA.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof We check the formula by inserting XY in T_pP on both sides of the equation, where we distinguish the following three cases:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Both X and Y are vertical: Then X and Y are fundamental vectors, X = tildeV_p Y = tildeW_p for certain elements VW in g. We get F(XY) = dA(pi_H(X) pi_H(Y)) = 0. On the other hand we have frac12AA(XY) = A(X)A(Y) = VW. The differential dA of a 1-form A is given according to Proposition A.2.22 by dA(XY) = L_X(A(Y))-L_Y(A(X))-A(XY), where we extend the vectors X and Y to vector fields in a neighbourhood of p. If we choose the extension by fundamental vector fields tildeV and tildeW, then dA(XY) = L_X(W) - L_Y(V) - VW = -VW since V and W are constant maps from P to g and we used that tildeVtildeW = tildeVW according to Proposition 3.4.4. This implies the claim.\nBoth X and Y are horizontal: Then F(XY) = dA(XY) and frac12AA(XY) = A(X) A(Y) = 00=0. This implies the claim.\nX is vertical and Y is horizontal: Then X = tildeV_p for some V in g. We have F(XY) = dA(pi_H(X)pi_H(Y)) = dA(0 Y) = 0 and frac12AA(XY) = A(X)A(Y) - V0 = 0. Furthermore, dA(XY) = L_tildeV(A(Y)) - L_Y(V) - A(tildeVY) = -A(tildeVY) = 0 since tildeVY is horizontal by Lemma 5.5.5. This implies the claim.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The structure equation is very useful when we want to calculate the curvature of a given connection.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"By the structure equation we have F = dA + frac12 A A so that dF = frac12 dA A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proposition 5.6.2 (Local Structure Equation) The local field strength can be calculated as F_s = dA_s + frac12A_sA_s and F_munu = partial_mu A_nu - partial_nu A_mu + A_mu A_nu.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It remains to check that F_M is closed. In a local gauge s we have according to the local structure equation F_s = dA_s + frac12A_sA_s.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proposition 5.6.8 For the connection on the Hopf bundle the following equation holds: frac12pi i int_S^2 F_S^2 = 1.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We write A_mu = A_s(partial_mu) F_munu = F_s(partial_mu partial_nu) and we have the local structure equation F_munu = partial_mu A_nu - partial_nu A_mu + A_mu A_nu.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"We will determine g(t) as the solution of a differential equation.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof Properties 1-3 follow from the theory of ordinary differential equations. (Parallel transport)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Recall that for the proof of Theorem 5.8.2 concerning the existence of a horizontal lift gamma^* of a curve gamma01 to M where gamma^*(0) = p in P_gamma(0), we had to solve the differential equation dotg(t) = -R_g(t)* A(dotdelta(t)), with g(0) = e, where delta is some lift of gamma and g01 to G is a map with gamma^*(t) = delta(t) cdot g(t).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Then the differential equation can be written as fracdg(t)dt = -A_s(dotgamma(t)) cdot g(t).","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Path-ordered exponentials are useful, because they define solutions to the ordinary differential equation we are interested in.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Then uniqueness of the solution to ordinary differential equations show that g equiv h, hence g takes values in G.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The solution to this differential equation is","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"g(t) = P exp(- int_0^t sum_mu=1^n A_smu(gamma(s))fracdx^mudsds) = P exp(- int_gamma(0)^gamma(t) sum_mu=1^n A_smu (x^mu) dx^mu) = P exp(- int_gamma_t A_s), where gamma_t denotes the restriction of the curve gamma to 0t.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"What is the interpretation of the structure equation?","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Taking the determinant of both sides of this equation shows that:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 6.1.7 Matrices A in O(st) satisfy detA = pm 1.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"A^T beginbmatrix I_s 0 0 -I_t endbmatrix A = beginbmatrix I_s 0 0 -I_t endbmatrix.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Remark 6.2.5 We can think of the linear map gamma as a linear square root of the symmetric bilinear form -Q: in the definition of Clifford algebras, it suffices to demand that gamma(v)^2 = -Q(vv) cdot 1 forall v w in V, because, considering this equation for vectors v w v + w, the equation gamma(v) gamma(w = -2Q(v w) cdot 1 forall v w in V follows.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Lemma 6.3.6 Every chirality element omega satisfies","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"omegae_a = 0\nomegae_a cdot e_b = 0 forall 1 le a b le n.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Proof The first equation follows from e_a cdot omega = lambda e_a cdot e_1 e_n = (-1)^a - 1 lambda e_1 e_a cdot e_a e_n","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"omega cdot e_a = lambda e_1 e_n cdot e_a = (-1)^n - a lambda e_1 e_a cdot e_a e_n = -e_a cdot omega,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"since n is even. The second equation is a consequence of the first.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Let Gamma_1 Gamma_n be physical gamma matrices. We set","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma_a = eta^ac Gamma_c,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^bc = frac12 Gamma^b Gamma^c = frac12 (Gamma^b Gamma^c - Gamma^c Gamma^b),","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 = -i^k + t Gamma^1 Gamma^n","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"and similarly for the mathematical gamma-matrices (in the first equation there is an implicit sum over c; this is an instance of the Einstein summation convention). These matrices satisfy by Lemma 6.3.6","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 Gamma^a = 0,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Gamma^n + 1 Gamma^bc = 0,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma^bc = -Gamma^bc.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In the following examples we use the Pauli matrices","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma_1 = beginbmatrix 0 1 1 0 endbmatrix, sigma_2 = beginbmatrix 0 -i i 0 endbmatrix, sigma_3 = beginbmatrix 1 0 0 -1 endbmatrix.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"It is easy to check that they satisfy the identities","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma^2 = I_2 j = 1 2 3,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"sigma_j sigma_j + 1 = -sigma_j + 1 sigma_j = i sigma_j + 2 j = 1 2 3,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"where in the second equation j + 1 and j + 2 are taken mod 3.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(psi phi) = psi^T C phi","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore property 1. and 2. in Definition 6.7.1 are equivalent to","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma_a^T = mu C gamma_a C^-1 for all a = 1 s + t.\nC^T = nu C.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The first equation also holds with the physical Clifford matrices Gamma_a instead of the mathematical matrices gamma_a.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"There is an equivalent equation to the first one with physical Clifford matrices Gamma_a 1 cdot Gamma^dagger_a = -delta A Gamma_a A^-1 for all a = 1 s + t.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Furthermore, property 1. and 2. in Definition 6.7.8 are equivalent to:","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"gamma_a^dagger = delta A gamma_a A^-1 for all a = 1 s + t.\nA^dagger = A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Given a spin structure on a pseudo-Riemannian manifold and the spinor bundle S, we would like to have a covariant derivative on S so that we can define field equations involving derivatives of spinors.","category":"page"},{"location":"newsreport.html#The-Iconic-Wall","page":"News Report","title":"The Iconic Wall","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: corrected-wall)","category":"page"},{"location":"newsreport.html#Tome","page":"News Report","title":"Tome","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: tome)","category":"page"},{"location":"newsreport.html#Wrap-Up","page":"News Report","title":"Wrap Up","text":"","category":"section"},{"location":"newsreport.html#Why","page":"News Report","title":"Why","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The following three chapters discuss applications in physics: the Lagrangians and interactions in the Standard Model, spontaneous symmetry breaking, the Higgs mechanism of mass generation, and some more advanced and modern topics like neutrino masses and CP violation. Depending on the time, the interests and the prior knowledge of the reader, he or she can take a shortcut and immediately start at the chapters on connections, spinors or Lagrangians, and then go back if more detailed mathematical knowledge is required at some point. An interesting and perhaps underappreciated fact is that a substantial number of phenomena in particle physics can be understood by analysing representations of Lie groups and by rewriting or rearranging Lagrangians.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Symmetries of Lagrangians interactions between fields corresponding to elementary particles (quarks, leptons, gauge bosons, Higgs boson), determined by the Lagrangian. For the symmetries relevant in field theories, the groups act on fields and leave the Lagrangian or the action (the spacetime integral over the Lagrangian) invariant. In the following chapter we will study some associated concepts, like representations (which are used to define the actions of Lie groups on fields) and invariant matrices (which are important in the construction of the gauge invariant Yang-Mills Lagrangian). We also discuss special scalar products on Lie algebras which will be used in Sect. 7.3.1 to construct Lagrangians for gauge boson fields.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"The existence of positive definite Ad-invariant scalar products on the Lie algebra of compact Lie groups is very important in gauge theory, in particular, for the construction of the gauge-invariant Yang-Mills Lagrangian; see Sect. 7.3.1. The fact that these scalar products are positive definite is important from a phenomenological point of view, because only then do the kinetic terms in the Yang-Mills Lagrangian have the right sign (the gauge bosons have positive kinetic energy [148]). In a gauge-invariant Lagrangian this results in terms of order higher than two in the matter and gauge fields, which are interpreted as interactions between the corresponding particles. In non-abelian gauge theories, like quantum chromodynamics (QCD), there are also terms in the Lagrangian of order higher than two in the gauge fields themselves, coming from a quadratic term in the curvature that appears in the Yang-Mills Lagrangian.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"In physics, the quadratic term A_mu A_nu in the expression for F_munu (leading to cubic and quartic terms in the Yang-Mills Lagrangian, see Definition 7.3.1 and the corresponding local formula in Eq. (7.1)) is interpreted as a direct interaction between gauge bosons described by the gauge field A_mu. These covariant derivatives appear in physics, in particular, in the Lagrangians and field equations defining gauge theories. This non-linearity, called minimal coupling, leads to non-quadratic terms in the Lagrangian (see Definition 7.5.5 and Definition 7.6.2 as well as the local formulas in Eqs. (7.3) and (7.4)), which are interpreted as an interaction between gauge bosons described by A_mu and the particles described by the field phi.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"(Image: feynmandiagrams)","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Figure 5.2 shows the Feynman diagrams for the cubic and quartic terms which appear in the Klein-Gordon Lagrangian in Eq. (7.3), representing the interaction between a gauge field A and a charged scalar field described locally by a map phi with values in V. Fig 5.2 Feynman diagrams for interaction between gauge field and charged scalar","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Hermitian scalar products are particularly important, because we need them in Chap. 7 to define Lorentz invariant Lagrangians involving spinors.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"psi phi = overlinepsi phi,","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"overlinepsi = psi^dagger A.","category":"page"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Dirac forms are used in the Standard Model to define a Dirac mass term in the Lagrangian for all fermions (except possibly the neutrinos) and, together with the Dirac operator the kinetic term and the interaction term; see Sect. 7.6.","category":"page"},{"location":"newsreport.html#Porta.jl","page":"News Report","title":"Porta.jl","text":"","category":"section"},{"location":"newsreport.html#References","page":"News Report","title":"References","text":"","category":"section"},{"location":"newsreport.html","page":"News Report","title":"News Report","text":"Mark J.D. Hamilton, Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics, Springer Cham, DOI, published: 10 January 2018.\nSir Roger Penrose, The Road to Reality, (2004).\nRoger Penrose, Wolfgang Rindler, Spinors and Space-Time, Volume 1: Two-spinor calculus and relativistic fields, (1984).\nRichard M. Murray and Zexiang Li, A Mathematical Introduction to Robotic Manipulation, 1st Edition, 1994, CRC Press, read, buy.\nEdward Witten, Physics and Geometry, (1987).\nThe iconic Wall of Stony Brook University.","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Description = \"How the reaction wheel unicycle works.\"","category":"page"},{"location":"reactionwheelunicycle.html#The-Reaction-Wheel-Unicycle","page":"Reaction Wheel Unicycle","title":"The Reaction Wheel Unicycle","text":"","category":"section"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_cnt = beginbmatrix dotx - r_w dottheta cos(delta) newline doty - r_w dottheta sin(delta) newline dotz endbmatrix = beginbmatrix 0 newline 0 newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"dotx = r_w dottheta cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"doty = r_w dottheta sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"dotz = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotq_i) - fracpartial Lpartial q_i = Q_i + sum_k=1^n lambda_k a_ki","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"i = 1 ldots m","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"L = T_total - P_total","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_w2^cpT = beginbmatrix 1 0 0 0 newline 0 cos(alpha) -sin(alpha) 0 newline 0 sin(alpha) cos(alpha) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 r_w newline 0 0 0 1 endbmatrix = beginbmatrix 1 0 0 0 newline 0 cos(alpha) -sin(alpha) -r_w sin(alpha) newline 0 sin(alpha) cos(alpha) r_w cos(alpha) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_cp^gT = beginbmatrix cos(delta) -sin(delta) 0 x newline sin(delta) cos(delta) 0 y newline 0 0 1 0 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_w2^gT = _cp^gT times _w2^cpT = beginbmatrix cos(delta) -sin(delta) cos(alpha) sin(delta) sin(alpha) x + r_w sin(delta) sin(alpha) newline sin(delta) cos(delta) cos(alpha) -cos(delta) sin(alpha) y - r_w cos(delta) sin(alpha) newline 0 sin(alpha) cos(alpha) r_w cos(alpha) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^w2P_w = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_w = _w2^gT times ^w2P_w = beginbmatrix x + r_w sin(alpha) sin(delta) newline y - r_w sin(alpha) cos(delta) newline r_w cos(alpha) newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^w2T = beginbmatrix cos(beta) 0 sin(beta) 0 newline 0 1 0 0 newline -sin(beta) 0 cos(beta) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 l_c newline 0 0 0 1 endbmatrix = beginbmatrix cos(beta) 0 sin(beta) l_c sin(beta) newline 0 1 0 0 newline -sin(beta) 0 cos(beta) l_c cos(beta) newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gT = _w2^gT times _c^w2T = beginbmatrix _c^gt_11 -sin(delta) cos(alpha) _c^gt_13 _c^gt_14 newline _c^gt_21 cos(delta) cos(alpha) _c^gt_23 _c^gt_24 newline -cos(alpha) sin(beta) sin(alpha) cos(alpha) cos(beta) _c^gt_34 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_11 = cos(beta) cos(delta) - sin(alpha) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_13 = sin(beta) cos(delta) + sin(alpha) cos(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_14 = x + r_w sin(delta) sin(alpha) + l_c sin(beta) cos(delta) + l_c sin(alpha) cos(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_21 = cos(beta) sin(delta) + sin(alpha) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_23 = sin(beta) sin(delta) - sin(alpha) cos(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_24 = y - r_w cos(delta) sin(alpha) + l_c sin(beta) sin(delta) - l_c sin(alpha) cos(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_c^gt_34 = r_w cos(alpha) + l_c cos(alpha) cos(beta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^cP_c = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_c = _c^gT times ^cP_c = beginbmatrix ^gp_c1 newline ^gp_c2 newline ^gp_c3 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c1 = x + r_w sin(alpha) sin(delta) + l_c cos(beta) sin(alpha) sin(delta) + l_c sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c2 = y - r_w sin(alpha) cos(delta) - l_c cos(beta) sin(alpha) cos(delta) + l_c sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_c3 = r_w cos(alpha) + l_c cos(beta) cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^cT = beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 l_cr newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 cos(gamma) -sin(gamma) 0 newline 0 sin(gamma) cos(gamma) 0 newline 0 0 0 1 endbmatrix beginbmatrix 1 0 0 0 newline 0 1 0 0 newline 0 0 1 0 newline 0 0 0 1 endbmatrix = beginbmatrix 1 0 0 0 newline 0 cos(gamma) -sin(gamma) 0 newline 0 sin(gamma) cos(gamma) l_cr newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gT = _c^gT times _r^cT = beginbmatrix _r^gt_11 _r^gt_12 _r^gt_13 _r^gt_14 newline _r^gt_21 _r^gt_22 _r^gt_23 _r^gt_24 newline -cos(alpha) sin(beta) _r^gt_32 _r^gt_33 _r^gt_34 newline 0 0 0 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_11 = cos(beta) cos(delta) - sin(alpha) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_12 = -sin(delta) cos(alpha) cos(gamma) + cos(delta) sin(beta) sin(gamma) + sin(delta) sin(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_13 = sin(delta) cos(alpha) sin(gamma) + cos(delta) sin(beta) cos(gamma) + sin(delta) sin(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_14 = 0 + l_cr (cos(delta) sin(beta) + sin(delta) sin(alpha) cos(beta)) + l_c sin(beta) cos(delta) + l_c cos(beta) sin(delta) sin(alpha) + x + r_w sin(delta) sin(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_21 = cos(beta) sin(delta) + sin(alpha) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_22 = cos(delta) cos(alpha) cos(gamma) + sin(delta) sin(beta) sin(gamma) - cos(delta) sin(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_23 = -cos(delta) cos(alpha) sin(gamma) + sin(delta) sin(beta) cos(gamma) - cos(delta) sin(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_24 = l_cr (sin(delta) sin(beta) - cos(delta) sin(alpha) cos(beta)) + l_c sin(beta) sin(delta) - l_c cos(beta) cos(delta) sin(alpha) + y - r_w cos(delta) sin(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_32 = sin(alpha) cos(gamma) + cos(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_33 = -sin(alpha) sin(gamma) + cos(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^gt_34 = l_cr cos(alpha) cos(beta) + l_c cos(beta) cos(alpha) + r_w cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^rP_r = beginbmatrix 0 newline 0 newline 0 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gP_r = _r^gT times ^rP_r = beginbmatrix ^gp_r1 newline ^gp_r2 newline ^gp_r3 newline 1 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r1 = x + r_w sin(alpha) sin(delta) + (l_c + l_cr) cos(beta) sin(alpha) sin(delta) + (l_c + l_cr) sin(beta) cos(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r2 = y - r_w sin(alpha) cos(delta) - (l_c + l_cr) cos(beta) sin(alpha) cos(delta) + (l_c + l_cr) sin(beta) sin(delta)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"^gp_r3 = r_w cos(alpha) + (l_c + l_cr) cos(beta) cos(alpha)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_w = fracdP_wdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_c = fracdP_cdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"V_r = fracdP_rdt","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_w = beginbmatrix 0 newline dottheta newline 0 newline 0 endbmatrix + beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^w2T times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix 0 newline dottheta newline 0 newline 0 endbmatrix + beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _w2^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotalpha newline dottheta + dotdelta sin(alpha) newline dotdelta cos(alpha) endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_c = beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _w2^cT times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^cT times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _c^w2T^-1 times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _c^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotalpha cos(beta) - dotdelta cos(alpha) sin(beta) newline dotbeta + dotdelta sin(alpha) newline dotalpha sin(beta) + dotdelta cos(alpha) cos(beta) newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"_r^w2T = _w2^gT^-1 times _r^gT","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Omega_r = beginbmatrix dotgamma newline 0 newline 0 newline 0 endbmatrix + _c^rT times beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _w2^rT times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _g^rT times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotgamma newline 0 newline 0 newline 0 endbmatrix + _r^cT^-1 times beginbmatrix 0 newline dotbeta newline 0 newline 0 endbmatrix + _r^w2T^-1 times beginbmatrix dotalpha newline 0 newline 0 newline 0 endbmatrix + _r^gT^-1 times beginbmatrix 0 newline 0 newline dotdelta newline 0 endbmatrix = beginbmatrix dotgamma + dotalpha cos(beta) - dotdelta cos(alpha) sin(beta) newline omega_r2 newline omega_r3 newline 0 endbmatrix","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"omega_r2 = dotbeta cos(gamma) + dotalpha sin(beta) sin(gamma) + dotdelta sin(alpha) cos(gamma) + dotdelta cos(alpha) cos(beta) sin(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"omega_r3 = -dotbeta sin(gamma) + dotalpha sin(beta) cos(gamma) - dotdelta sin(alpha) sin(gamma) + dotdelta cos(alpha) cos(beta) cos(gamma)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_w = frac12 m_w V_w^T V_w + frac12 Omega_w^T I_w Omega_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_w = m_w g P_w(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_c = frac12 m_c V_c^T V_c + frac12 Omega_c^T I_c Omega_c","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_c = m_c g P_c(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_r = frac12 m_r V_r^T V_r + frac12 Omega_r^T I_r Omega_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_r = m_r g P_r(3)","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"T_total = T_w + T_c + T_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"P_total = P_w + P_c + P_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m = 7 n = 2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotx) - fracpartial Lpartial x = lambda_1","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial doty) - fracpartial Lpartial y = lambda_2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dottheta) - fracpartial Lpartial theta = tau_w - r_w cos(delta) lambda_1 - r_w sin(delta) lambda_2","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotbeta) - fracpartial Lpartial beta = -tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotalpha) - fracpartial Lpartial alpha = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotgamma) - fracpartial Lpartial gamma = tau_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracddt(fracpartial Lpartial dotdelta) - fracpartial Lpartial delta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Wheel dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_11 ddotbeta + m_12 ddotgamma + m_13 ddotdelta + m_14 ddottheta + c_11 dotbeta^2 + c_12 dotgamma^2 + c_13 dotdelta^2 + c_14 dotalpha dotdelta + c_15 dotbeta dotgamma + c_16 dotbeta dotdelta + c_17 dotgamma dotdelta = tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Chassis longitudinal dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_21 ddotalpha + m_22 ddotbeta + m_23 ddotdelta + m_24 ddottheta + c_21 dotalpha^2 + c_22 dotdelta^2 + c_23 dotalpha dotgamma + c_24 dotalpha dotdelta + c_25 dotbeta dotgamma + c_26 dotgamma dotdelta + c_27 dotdelta dottheta + g_21 = -tau_w","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Chassis lateral dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_31 ddotalpha + m_32 ddotbeta + m_33 ddotgamma + m_34 ddotdelta + c_31 dotbeta^2 + c_32 dotgamma^2 + c_33 dotdelta^2 + c_34 dotalpha dotbeta + c_35 dotalpha dotgamma + c_36 dotbeta dotgamma + c_37 dotbeta dotdelta + c_38 dotgamma dotdelta + c_39 dotdelta dottheta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Reaction wheel dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_41 ddotalpha + m_42 ddotgamma + m_43 ddotdelta + m_44 ddottheta + c_41 dotalpha^2 + c_42 dotbeta^2 + c_43 dotdelta^2 + c_44 dotalpha dotbeta + c_45 dotalpha dotdelta + c_46 dotbeta dotdelta + c_47 dotdelta dottheta + g_41 = tau_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"Turning dynamics:","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"m_51 ddotalpha + m_52 ddotbeta + m_53 ddotgamma + m_54 ddotdelta + m_55 ddottheta + c_51 dotalpha^2 + c_52 dotbeta^2 + c_53 dotgamma^2 + c_54 dotalpha dotbeta + c_55 dotalpha dotgamma + c_56 dotalpha dotdelta + c_57 dotalpha dottheta + c_58 dotbeta dotgamma + c_59 dotbeta dotdelta + c_510 dotgamma dotdelta + c_511 dotdelta dottheta = 0","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"fracmathrmd xleft( t right)mathrmdt = r_w cosleft( deltaleft( t right) right) fracmathrmd thetaleft( t right)mathrmdt newline fracmathrmd yleft( t right)mathrmdt = r_w sinleft( deltaleft( t right) right) fracmathrmd thetaleft( t right)mathrmdt newline fracmathrmd zleft( t right)mathrmdt = 0 newline I_w = left beginarraycccc I_w1 0 0 0 newline 0 I_w2 0 0 newline 0 0 I_w3 0 newline 0 0 0 0 newline endarray right newline I_c = left beginarraycccc I_c1 0 0 0 newline 0 I_c2 0 0 newline 0 0 I_c3 0 newline 0 0 0 0 newline endarray right newline I_r = left beginarraycccc I_r1 0 0 0 newline 0 I_r2 0 0 newline 0 0 I_r3 0 newline 0 0 0 0 newline endarray right newline mathrmw2cpTleft( t right) = left beginarraycccc 1 0 0 0 newline 0 cosleft( alphaleft( t right) right) - sinleft( alphaleft( t right) right) - r_w sinleft( alphaleft( t right) right) newline 0 sinleft( alphaleft( t right) right) cosleft( alphaleft( t right) right) r_w cosleft( alphaleft( t right) right) newline 0 0 0 1 newline endarray right newline mathrmcpgTleft( t right) = left beginarraycccc cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) 0 xleft( t right) newline sinleft( deltaleft( t right) right) cosleft( deltaleft( t right) right) 0 yleft( t right) newline 0 0 1 0 newline 0 0 0 1 newline endarray right newline mathrmw2gTleft( t right) = mathrmcpgTleft( t right) mathrmw2cpTleft( t right) newline w2P_w = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_wleft( t right) = mathrmw2gTleft( t right) w2P_w newline mathrmcw2Tleft( t right) = left beginarraycccc cosleft( betaleft( t right) right) 0 sinleft( betaleft( t right) right) l_c sinleft( betaleft( t right) right) newline 0 1 0 0 newline -sinleft( betaleft( t right) right) 0 cosleft( betaleft( t right) right) l_c cosleft( betaleft( t right) right) newline 0 0 0 1 newline endarray right newline mathrmcgTleft( t right) = mathrmw2gTleft( t right) mathrmcw2Tleft( t right) newline cP_c = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_cleft( t right) = mathrmcgTleft( t right) cP_c newline mathrmrcTleft( t right) = left beginarraycccc 1 0 0 0 newline 0 cosleft( gammaleft( t right) right) - sinleft( gammaleft( t right) right) 0 newline 0 sinleft( gammaleft( t right) right) cosleft( gammaleft( t right) right) l_cr newline 0 0 0 1 newline endarray right newline mathrmrgTleft( t right) = mathrmcgTleft( t right) mathrmrcTleft( t right) newline rP_r = left beginarrayc 0 newline 0 newline 0 newline 1 newline endarray right newline mathrmgP_rleft( t right) = mathrmrgTleft( t right) rP_r newline mathrmrw2Tleft( t right) = mathrminvleft( mathrmw2gTleft( t right) right) mathrmrgTleft( t right) newline V_wleft( t right) = mathrmbroadcastleft( D mathrmgP_wleft( t right) right) newline V_cleft( t right) = mathrmbroadcastleft( D mathrmgP_cleft( t right) right) newline V_rleft( t right) = mathrmbroadcastleft( D mathrmgP_rleft( t right) right) newline Omega_wleft( t right) = mathrmbroadcastleft( + left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline _derivativeleft( thetaleft( t right) t 1 right) newline 0 newline 0 newline endarray right mathrminvleft( mathrmw2gTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline Omega_cleft( t right) = mathrmbroadcastleft( + mathrmbroadcastleft( + left beginarrayc 0 newline _derivativeleft( betaleft( t right) t 1 right) newline 0 newline 0 newline endarray right mathrminvleft( mathrmcw2Tleft( t right) right) left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmcgTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline Omega_rleft( t right) = mathrmbroadcastleft( + mathrmbroadcastleft( + mathrmbroadcastleft( + left beginarrayc _derivativeleft( gammaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right mathrminvleft( mathrmrcTleft( t right) right) left beginarrayc 0 newline _derivativeleft( betaleft( t right) t 1 right) newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmrw2Tleft( t right) right) left beginarrayc _derivativeleft( alphaleft( t right) t 1 right) newline 0 newline 0 newline 0 newline endarray right right) mathrminvleft( mathrmrgTleft( t right) right) left beginarrayc 0 newline 0 newline _derivativeleft( deltaleft( t right) t 1 right) newline 0 newline endarray right right) newline T_wleft( t right) = mathrmadjointleft( V_wleft( t right) right) mathrmbroadcastleft( * V_wleft( t right) mathrmRefleft( 05 m_w right) right)_1 + mathrmadjointleft( Omega_wleft( t right) right) mathrmbroadcastleft( * I_w Omega_wleft( t right) 05 right)_1 newline P_wleft( t right) = g mathrmgP_wleft( t right)_3 m_w newline T_cleft( t right) = mathrmadjointleft( V_cleft( t right) right) mathrmbroadcastleft( * V_cleft( t right) mathrmRefleft( 05 m_c right) right)_1 + mathrmadjointleft( Omega_cleft( t right) right) mathrmbroadcastleft( * I_c Omega_cleft( t right) 05 right)_1 newline P_cleft( t right) = g mathrmgP_cleft( t right)_3 m_c newline T_rleft( t right) = mathrmadjointleft( V_rleft( t right) right) mathrmbroadcastleft( * V_rleft( t right) mathrmRefleft( 05 m_r right) right)_1 + mathrmadjointleft( Omega_rleft( t right) right) mathrmbroadcastleft( * I_r Omega_rleft( t right) 05 right)_1 newline P_rleft( t right) = g mathrmgP_rleft( t right)_3 m_r newline T_totalleft( t right) = T_rleft( t right) + T_cleft( t right) + T_wleft( t right) newline P_totalleft( t right) = P_wleft( t right) + P_cleft( t right) + P_rleft( t right) newline Lleft( t right) = T_totalleft( t right) - P_totalleft( t right) newline","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"L = 05 left( left( fracfracmathrmd alphaleft( t right)mathrmdt cosleft( betaleft( t right) right)sin^2left( betaleft( t right) right) + cos^2left( betaleft( t right) right) + fracleft( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + left( - sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c1 + left( fracmathrmd betaleft( t right)mathrmdt + fracleft( - left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - left( - sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c2 + left( fracsinleft( betaleft( t right) right) fracmathrmd alphaleft( t right)mathrmdtsin^2left( betaleft( t right) right) + cos^2left( betaleft( t right) right) + fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtsinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) + cosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( betaleft( t right) right) right) + left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) + cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right) right) right)^2 I_c3 right) + 05 left( left( fracmathrmd gammaleft( t right)mathrmdt + fracleft( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) right)^2 I_r1 + left( fracleft( - left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) - left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( - left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) + fracfracmathrmd betaleft( t right)mathrmdt cosleft( gammaleft( t right) right)sin^2left( gammaleft( t right) right) + cos^2left( gammaleft( t right) right) right)^2 I_r2 + left( fracleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) fracmathrmd alphaleft( t right)mathrmdtleft( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( frac - left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( frac - left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( left( frac - sinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fraccosleft( alphaleft( t right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + left( fracsinleft( deltaleft( t right) right) left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) cosleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) left( fracsinleft( deltaleft( t right) right) left( - sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right) left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + frac - left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) right) left( fracleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracleft( cos^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sinleft( deltaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right)cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right) + fracleft( left( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) fracmathrmd deltaleft( t right)mathrmdtleft( cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) - left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) sinleft( gammaleft( t right) right) right) left( - cosleft( alphaleft( t right) right) sinleft( betaleft( t right) right) left( cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - cosleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( - sinleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) + left( sinleft( deltaleft( t right) right) cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) + left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) cosleft( gammaleft( t right) right) right) left( left( cosleft( gammaleft( t right) right) sinleft( alphaleft( t right) right) + cosleft( alphaleft( t right) right) sinleft( gammaleft( t right) right) cosleft( betaleft( t right) right) right) left( sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) + sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) - cosleft( alphaleft( t right) right) left( - cosleft( alphaleft( t right) right) cosleft( gammaleft( t right) right) cosleft( deltaleft( t right) right) - sinleft( gammaleft( t right) right) left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) sinleft( betaleft( t right) right) right) + frac - fracmathrmd betaleft( t right)mathrmdt sinleft( gammaleft( t right) right)sin^2left( gammaleft( t right) right) + cos^2left( gammaleft( t right) right) right)^2 I_r3 right) + 05 left( fracleft( fracmathrmd deltaleft( t right)mathrmdt right)^2 left( sin^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) cosleft( alphaleft( t right) right) right)^2 I_w3left( cos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) right)^2 + left( fracmathrmd alphaleft( t right)mathrmdt right)^2 I_w1 + left( fracleft( sin^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) + cos^2left( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) fracmathrmd deltaleft( t right)mathrmdtcos^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) sin^2left( deltaleft( t right) right) + left( cos^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) + sin^2left( alphaleft( t right) right) cosleft( deltaleft( t right) right) right) cosleft( deltaleft( t right) right) + fracmathrmd thetaleft( t right)mathrmdt right)^2 I_w2 right) + 05 m_c left( left( fracmathrmdmathrmdt left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt left( xleft( t right) + l_c sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_c sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) + l_c sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) - l_c cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 right) + 05 m_r left( left( fracmathrmdmathrmdt left( xleft( t right) + l_c sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_c sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) + l_cr left( sinleft( betaleft( t right) right) cosleft( deltaleft( t right) right) + sinleft( deltaleft( t right) right) cosleft( betaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) + l_c sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) - l_c cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) + l_cr left( sinleft( deltaleft( t right) right) sinleft( betaleft( t right) right) - cosleft( betaleft( t right) right) cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 + left( fracmathrmdmathrmdt left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) + l_cr cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) right)^2 right) + 05 m_w left( left( fracmathrmdmathrmdt r_w cosleft( alphaleft( t right) right) right)^2 + left( fracmathrmdmathrmdt left( yleft( t right) - r_w cosleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt left( xleft( t right) + r_w sinleft( deltaleft( t right) right) sinleft( alphaleft( t right) right) right) right)^2 + left( fracmathrmdmathrmdt 1 right)^2 right) - g m_w r_w cosleft( alphaleft( t right) right) - g left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) m_c - g left( r_w cosleft( alphaleft( t right) right) + l_c cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) + l_cr cosleft( alphaleft( t right) right) cosleft( betaleft( t right) right) right) m_r","category":"page"},{"location":"reactionwheelunicycle.html","page":"Reaction Wheel Unicycle","title":"Reaction Wheel Unicycle","text":"left beginarrayc _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline _derivativeleft( 0 t 1 right) newline endarray right = left beginarrayc lambda_1 newline lambda_2 newline tau_w - r_w sinleft( deltaleft( t right) right) lambda_2 - r_w cosleft( deltaleft( t right) right) lambda_1 newline -tau_w newline 0 newline tau_p newline 0 newline endarray right","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"Description = \"Read the documentation of the Porta.jl project.\"","category":"page"},{"location":"index.html#Geometrize-the-quantum!","page":"Home","title":"Geometrize the quantum!","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"This project is inspired by Eric Weinstein's Graph-Wall-Tome (GWT) project. Watch visual models on the YouTube channel.","category":"page"},{"location":"index.html#Requirements","page":"Home","title":"Requirements","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"CSV v0.10.13\nDataFrames v1.6.1\nFileIO v1.16.3\nGLMakie v0.9.9","category":"page"},{"location":"index.html#Installation","page":"Home","title":"Installation","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"You can install Porta by running this (in the REPL):","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"]add Porta","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"or,","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"Pkg.add(\"Porta\")","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"or get the latest experimental code.","category":"page"},{"location":"index.html","page":"Home","title":"Home","text":"]add https://github.com/iamazadi/Porta.jl.git","category":"page"},{"location":"index.html#Usage","page":"Home","title":"Usage","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"For client-side code read the tests, and for examples on how to build, please check out the models directory. See planethopf.jl as an example.","category":"page"},{"location":"index.html#Status","page":"Home","title":"Status","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"Logic [Doing]\nSet Theory [TODO]\nTopology [TODO]\nTopological Manifolds [TODO]\nDifferentiable Manifolds [TODO]\nBundles [TODO]\nGeometry: Symplectic, Metric [TODO]\nDocumentation [TODO]\nGeometric Unity [TODO]","category":"page"},{"location":"index.html#References","page":"Home","title":"References","text":"","category":"section"},{"location":"index.html","page":"Home","title":"Home","text":"Physics and Geometry, Edward Witten, (1987)\nThe iconic Wall of Stony Brook University\nThe Road to Reality, Sir Roger Penrose, (2004)\nA Portal Special Presentation- Geometric Unity: A First Look\nPlanet Hopf, Dror Bar-Natan, (2010)\nSPINORS AND SPACE-TIME, Volume 1: Two-spinor calculus and relativistic fields, Roger Penrose, Wolfgang Rindler, (1984)\nA Young Person's Guide to the Hopf Fibration, Zachary Treisman, (2009)\nMathematical Gauge Theory, with Applications to the Standard Model of Particle Physics, Mark J.D. Hamilton, (2018)\nDynamics in the Hopf bundle, the geometric phase and implications for dynamical systems, Rupert Way, (2008)","category":"page"}] }

    ?U|ooWnUEv_& zfGLnCGdh*-7Q4Z?qu6_`>F7b9i)2kLq_BFuk94Py5Hqg6c`h(r3pm5!?d)c@qRb`5 z#YYYlEpS!x}vd>=}ADXUBCfUEZktd79+!Y69~G-V>r$U(tHk5qL7*P4jj2Fjn=uYMACfuT@}` z{a$d8%fSGq!7awi@LZ29fKjfrG;4Ufe~WR`7*GMqdHE0cNH6N^B~yBUM3krfd3YEf zfXIlXT%eqU;Pu!p_-<4Ri;Cd81rxUi^J@J3gm^+F+f54^#qDX;Ynw$?&9jtxN_h&wR5_~7O zAY%5ea)Fb!E&G{8(elCtDiWXB2R>8B8#gH4*itBva~X`&;}wzdW>h0{-6!|<4Czhz zaTy*oY2+J%K*!T&1r-z)AVT6^6g8qrMrZlZth-zxnq8lZ_MOd$&;`98-`FTN+d0H) zmojD$mOliy?kDz6rS5WKla7DJAGms+7T#b}6U(t4{;*IchhkTHfaMfjNp5}p!B_i8 zRm|7Fm1f&nBV@0}FSar__k9AO>YhZJB5&W1t~8b&pS^@@k?H z;$?R^p5@$!K@AO9*1`>mp2fhJ%Pi z2vHxnrD-&)`mgoztCgp~Nw(AK~cV4{}lNJ{z$DqLke{AXC=Cl=NDs9{8~ub+VWx++g5S+R)N}oeQ?FSW0|Kcs7pwiLI6VKJWS)GLbUex*|t zTPutj-On1H!P0JOqvbS-=I%x-x~gGnhf?1Vj+fc7MF2 z$1*|)p zC0UeXKzLmD?IxXtFcTC|YvJ0ux)Y%aU?(hBmHA7~(=xDuuA`E-(~BaDt7v@r3z@2*~J+BrYcM7_YOkB6$mGebb& zA-g9>;j#dMMa_)I5rUvP4-I=WF%<#k9!nZo1rJQL-1nS!l0;du!_^YunAar7o}7E# zZ2LA^&BgMhd&fw)vPZH$d&O*pIcl%2x|Le{C5E!3P~Uy7i7ZonQe7&j zSqZR^l#ajB=6H5kgS)mWTD11wUQ5|9tFmGL*{@H$I0djTU!1#It~c0h@i4;ds#}!B z)$_!GU&!%oB=e4e)dew}Z|z4eoEO&9c5Qo8H?-J7aZ6*DsXnlUz3z+A!_v;m;p)3& zG^pO5##hTgHLG?srS=GD({VZ=c}{;^rT^Fu4nb5q&=_i@4nH#vgdkzALn&V6d&e1_CY>G;N+KS+o)K>Es;4PRA{2qHY)68()-DwC&4;)tVP6?xk8vrea8 zk&_&R3Bt}DW|Kn;lKG+1C>CJw=fnZUMOy`hXQ0$pfsLn2R3{N~xL+Bmgxw`*zhF(r zshn>EvVk_AUlVP?m3BZa1K-MnAWdk2zz!XZ)*uJ~1{V_(KS7w9C0Y7lmbcLBv0O{C zN>A#sgc1bwd;6;G-@oC^g5fJnF)Demu?MR3*cjMc3q-(D@jx9-N^lhQ0^8R4KVa0t zofpC#X1ag%n!xzCzj^y}W>)l8s}Z%XRL4cF@LG&GSXmZ|xOA5!iRD~ZYTWSRaG7~n zetZ)8LSfpH&xfiATh7&1?X=0Rcv3);hWQ$OJqWPMu;LmD=FG$0qiB@l=J zLJlYi)C-_0am6YN#}WNA<3v{F{5Ry3hyiY(um3^#T$=hdl?!Uyr_=I$lccsoy}Hx@ z?8`A0@bEO>Y3u*$;4v4Tyi<@aD9M%eg6qnn^*N8k-SEMt&7pg~R%I?@=;-WFSk*Yn z*q?K)+Ua<~b0vF#FH6WV^JBn8C%A$!bPBx_)b4^p`+heoimFhIu;-e>c1V3l|7U~zCsUMiDJyj!khs)ck*YlOmRnlv2AHph2MXvIKc8PrrXi(Qogy?@g+5wUz5HJ9TeONr%L!#+6q`TmAtH5aTE_`HYTG3&FZrhsPPfv*D2UT?9yB?pVpvRmWXU3ulebP^`W>isZ2E$GF zaU1?goK(;@q0oy~gr#c4ch=hI+U81nAHlMj>X7?f|@=|6@A> zEmk%+xj#hLf;TLC7;pfJub)^(C+qj+U}^!V&l?!qjwVg*>{dgp}D+W z#kP8p3&Le{*(H+<>b4BltHIY^x@kAt&{mO+qj|z|v6L6jeGqptlL+VNrdQOXDGZeF zbxf#oa38C3S-P~nxhuY=a5*ARV=i(_6cR#uRgd*jTpHUW_mII^&ss;ne|+v93XoDwIN?I??+CLQ=WGv7+~>dof! zGD`CAcQsJKB^rp*q9`yP;a0>LEVrbr!5QallN8==^Tv(Y7y3-f9Vz^~r5WVAu1aJu z{sD@fqzaTF3q7C_l=DJ~Pq2VC_BeSUuzJA5`T(G7aZ0`O>W<#chT8zqK_o=q%=&i0 z0GR88AeHUMI_QEnVBEAxhBFLQc>Ur7OSQo}zySn(2jCM2R;3*c57xn-03ld>23Q?< z7I$8$4)D^4w-__9VStbb+c3$c7XQP4v-GX^ynRca=PHr{2Gs4Q)G!`St&Xjf1~WqD zn{L7}phT>RsRR$Hr_5(BDGA(v{s`r*{kBQU0UdO-WxwI?HD5mOyX*Z9;sM)jA5Kdd zZtpDV`24=S8+B6dcr$2Geb*ekcXj-p@K&M-+8$^&8Ej)9&I4_RZ3p7d59judezNJd zK-Fpq-Co7rgsEw5KXu>8p1&_%c$*TTlMP-b5i|Yy#L-e@LOgIhaCoX9e(HgLe69>a z(0)-}rD*q{rQ@T3+C6`fy8&EXHo3={3b2pwtqO~(Kd)Mh_+^u9Xm#a{Y>2k_#pzS^ zwU3`?ZR%Ez?DpSNBA9=LJ;&9Q6A~lUZuXADA>C|OEXDO*DXRGNc8l!UQ?=xkl zHRllzLKBuxlH!!(o-yBRvEsWmTzXrA#OJZ;*~@lxjS?6c30pDywDk>gNs~lWkDc#B z!ym4H%4l}6c*?OyugRR;3)@bzhvjBrHSjXnVlOAp$BRRieA27c8-Om+C52;dZAqtY z`J%>%KIVI6~P5`iYq}_2g1b0$L?PC>|9NA+2WbPM4L+Jw^@8iha9(vZan2 z@jrbztL)~dghf6^y^7(kzO`%l6OE%@yVo+duH$j<-A*D9LVTD?9H$-d9_R(%z6}a5 z0HL$z;uu(twVP_iaE??STH!-q8K)glW(N@fV9b<01I}~cY>=l-tqA)i5R!J6w@xg> zb2ljpg%;F0Zf?ieUV^OKRs^&aV2TRzBXgnT{BN~x6lPw|&TJ_Q;MP31YwGLa2*S#jCCXj=WOsS({!OAAgtLX;rJv0Csx46? znEidWhzB+9iP{0jdc>lLUK?gaR;uH|$H`C8A(XeQ^tjdnHAbS9IsV?TRQ|Trk>Reb z;@iMV9w^X}Z_{B~1_5l5lL}ftJf&Eoz-CX7(#6Mz4=b0`udAmAkyOBpEz<=@y;HHu z-R0zgz~hPGtSQ+ZZy}0sg82CDU3kL>N-A$fEvVy%+E{SoCLtPfV+;~hbCJqu`t#`) zB*YBNUXRHIz*OK}nuI$vo9xlZKPN4H-3%%<&|jlww#nGclcya;4fOP!mvPe2lt2;G@r!>TvES1t zwejj!_^7nuX4i`^PlclSZFhJLJbyj2?W1BI*EQ$BXb8M$bsyZB@s=g2F#W=s|59SM{feNS@PL6KO{6iZr{6L;6-@}8{zku7z9ZNuK0=sU8s1c1|$K&sI zJ=qlfdKOJEE2P7sDaVe;aWjykjC@XbUlLPwH%t40CnF%T^@%^_*Q*?kptP|>r(WLo zR9p6yvh*UCLeQDZ7}BD9ETp9T;#zFt-#JfE&qc7y@YHA6yhqx$?if@pEZ2$qujd%E zQ?$mJ-rxJWxoCcu$q+~Kp#f56VJz3v*Qddll<5L`hY#T6ioq~& zcEp~ZkPjEsW|F53^wtCTEp}11Qn#*y?e|}V>AH}`1bZd?y$|XCG%kOrk4P@afR2lOR@f%XX0%~N^U-5Fza;E zO^CPH1b>HD`f3Bh-Q_zz(ui>cWZ!OX0*wNCZ!@ztm^foxL83eV=P0v3gF!NK5-?a8;L=#V zy2^PW@BMxNE<&)=DJ(nJv+;&Q1LMTW?<^YPe5aOuite_qs~O&Gto>VI6j9PlTQ;)H z(p0fFFjBf(CDVe6Bpx}1P=@0Ku%oifVY&)woe$%Wm%l!KX8oK}$mxcx^e~kM^$X*j zU5=Z_La*9{|H%Hfl1HkNut7NcCG>WRo}|X35NU#HiK6VFAWgBxeAc8woo&e4I5(d@ zdEi+r^4KTp?32;0!sB}zqdHCWURm9HQeHR}vQ)2Yr}zwi z^HOTolo*q=NN{`M$d{PteAqtkTrtc~b>(|Xe?yoA!O78u-0jnqqU;-=REYl3UD4uS zBr{>UQ0`@LnW6tQQk#YS^Ln6~P$TJF^By0%j3VxWWgJ?9G=bk=6@AM9>EwCSnFWh9E5lN}xM~ z{#-W!B(kO`cwDmM0IyIRklO6hUrl4J;53@$T7t)@QOFQQM=neY&RQO%1hGq-W@h!GyQo=)K*OT>9g9Hi?TV zLW$Q62kFstg3AH3Pd@tXB>K={+j&VSDJ`X#_9){EMgr~9XX?J$gM-v7eem&yEi_n% zYZnSoa)d#IXmZ~S;O^(uVlDJWDj9=ns;lt~4VSt1n!oQ87 zd)xn7L|QrS*e;m2fyog8TaiU+sgr^lc>^{9z->|CiiObm!`!v~*GKj<8c2`+qV@{r zJYDsi(QC|0uom67Eba4q$X3PIe*dCS?0Ff)mP?RBxos>;#Vvu-$-eGW z#N3LEM^^9Jgn`w^)A`p_>22H8$wH@}wx9Qsi$n!_;fIp$-4NopkJFO|m9^Qo%NHBT zS*=CNt>h_?&1+ux4&rN)l7R@fmj(_YCh%Pgy=BFb|I(%3d`1k(j6-W0dOuf?Mq}H~ zGn5!cS2c0&JTsRbl(i$LGc1(TU+y#bDDq196y4!z>Tg{?Z+$%7PglS*oXG6R>Xl^- z`j5~fMxEkB2N|~gCff|R--g4qHv0yNGjG7 zET`!gE(RqW(<9)by?hB1QkEvL;K0l;!D4fF&$JASfIW|$UGX=2xGr0a@mM)d8ptaH z&JkrB+^#?*nso&Q#i@}>=>Kg+&a16~YX*RZH8bfh%m6-!N9J&Y{LW)}yagE4x(See zggovtHyDCpqr?tcBlL}B#0WI(X+>iJSHCT=_ls@Zn-i8Fn76Vmg3^GE&RmS8~m zTsM&6*EUlvK0|AaD8O;f(@{4>@f$HKBr^+%7RaN>5D% zzg}Yj?7vgi*b$2VKC*%zf0-`uP9O*_Ip2hVvP~)GwbR#?6~R0hwS!DvU#DBMoiNr4 z3-Effc7A7QFz7;hnF(Xb%jb+cjAaBgIvr=IuDljGUrX7Bf9K4w$2nK~soLppU6i}@ zqx(kv@_HuJcLE2n2pb;reN9B}ed2((*pcz)@9yosz3yb+bG1oC=zNeG|Z@KxBS1C!5_sVJUDMP#EwvV{nila4t zY`kQ6x^?4<;k)Dh?54ED?SzFdB2HfAef=l>W=;-0+LNiBp&S|-ivRel{;F$YbA_hp z=G!=JjLbsTwM_-g;ly;B4Iv*3LbxRrCsf{vpIDA>TAo^~R>7ffl@Jj}L|2S+<1h^A zEuG}ZGWG7Y&fmB1JXw4#(d9#fsDFQJjyt|%*gqyn&!fT(vlN+jLGhSIj^PFs^*8sG z1bJReNO_1$AtZyNrJggLZz*_^UxddjK9aUv^rjpoVp9s0O>rT#UZX>}4YC5zGVlMe zk)S&G=0%JC&Pf}m*C)f`GlY&dHcF+b zLt`S81g(`2B}Yad5V&P=@brtMToM&+X1JzuO4*qii2uqlAgr*^1I;$H90RjHO&KbA zU}p)0i~fGDFG#;wgqaE@6O#)j$E8C+2b>gzUJ&dDyuH6UrFuz4 z;lSgS^U_kFU|-ImJ`Ato?FOp4%Irde!Vljzg}}3RO#7!3AGib);k{*^ zUzJ9AW5z7aKV===zx`MGuS4HWejB4^?C^_;2n8Wp45!%_!IQN73i~Z@B|jl5@yfD& zmG3{UuU_1*TcmJkg!C;yReCIG5fEmHqzt-UI%MYFeAe#t)m%u6?i8So-BXuyoS^mW zn>nt7;DLXVn(D~hxmM2|mZsk6#5@G}MA1Paw=>*KL-VI-$kJy(<_D@2xGXv#t}>(V zVv?$V3!sZ&iU$oeK$Ac|1di^wD6H8*ClP@AueT$mKkW8aJR18TWcYw|+*xTiAWR#I zIgpAtIk6c*s{nt43qBmDF|fR_Y8QTW@}a1a4)CGB1_C<=3xEGu95Fd-?bz+DS)=;> zDirD=qX&tc3~ijR-j)gS5%*!7hBJ>E$$PB-k}R+>CbDk?!QB{1T5+*_97~_^PT%K?CVU)IWeB{=M1<>B z%Ev9`jjrA{SM8<@L&=}lO`Opim7`j!jR-t9M81K}w}_R8t5R82ypM1*6tmh zJj3Qkl0JnXY|RzS#GS9Kcv*w2p0(gR15VxiWN-|-aH=-crzmHc?x~I}zL!T2Qu+MqFWL&tHRADSoFHt1!A3ev(61dk{y$X*w;OtjImU+XXH zR~Bu<5-oLB&#k7=Xl|$nw9@iAQ%c~-5cFMp2#vT>A{u!x(jVlU+!bcx?Y@&-Sz9|- zYY%8U9r!+L9;k7^+Hk%WvUl&^1$vtX7i|FU0OnG-G5F}wksy<~KU=mU&=2y%Q)n&( zfC6P3fLOr9f$b^i%;#%wbJHQ2n%qFD`BUn<`*&dk9#s&@;sRgiW{~!ELJjlPVLp zrWJNFBr=jEn4#YPyRt zqUk+6s;jCBxXF=-%Nz(;hVJ?p-5Av6<-+N~wp$BpEy;cfib#_4|K2 zJw~~ZnN47(Lkuh=J>Sn8nvXw-`vmt#utzNzQ2r^LsP-Do_FqtEq*d|CT-hIu6La-KAcIhu!aeDo=6 zeCv5TE{Z)@?m>oEA6jyIQ}U#%7;)E*vPyj&8A+-8ZSMl6SKRf%gmHeR#BA=pS4L?J zY^)hGzYfY4-TCEnRw6-5R4C025sVCq8!?t!O*?XBkH|iu0Qn_(bSblTODWWc4i{v_ zEklXp-K;u#+&%W;^^2pZOuh~*cOLX=h?xRbk%1c(P$(ExwbCG5i_$Tmy*y?fdZZbM z(&R5IgTk)RJ!MFHS7gH`A|&o4C}P6dHb`8tq51UoLtj$r#1uy3&=As0$96|mR(jfd zy6%)C7Xn{kkdEu?iWVX#e%`A~&OgML5d>7wOY2Q59VhZ_&;(B9$Vu?Mf-LGZbs)d7 zG}3wU{8T*wTC3oa$%;1)fcGfU|0cPYbXPCXe3Fs19<06zTjyEo{=CQ z0%-Z5Cq2{Y1hODt*mO-cv zY5xzUY;exB3_uu=>#;`41 zRd7HKS%h$(RND2;xF~Aj-^~go5@XDXH#h?0e9hg6!=5q4Y<=OB3Jxna__{ivn{VNA~vr$&*jQ!HSh^FKA zxXfjf8k?hjXuJo%9Ew8*i}OEi;EyGaU@LrOaVy0|O2tN}7ipI173Hh1S*3N%6aABS zL95wX-SAub)OJiqg%h$dXk*H0 z_N2Eg5h&Gjig3cT1dN&@#_AxcQ6ht(=fB?1g^-e3TyY_m@OyFAf$zoGHa6cVC6agbUs659oKtRdMD zzX#rmCG+rVP!5LvfRivc9i1Y~{_s4)_W-yfY^UA}_bjbLCmLiz6N-`J2D@q&7IOc` zB9^_bluJc=WmjSakiY^Qazi(!>Vn5n9jl23T#H}wi|wOi((=nxM7pTal}G!(E*^ib zcCI5$32DB3L}(`M4qe_h_n5NpA5yZsa1X=98J@iRMT!PntG9fKe0~ZVRcA%ebvnT) zQ!o%Y`Px(v>|RQTPAM}*fht&u6OF)W0P09>2}GKJFr&Uc^}ywO`Oti>@H#o0IYUt2 zOsvHw>?2@H-EJB^fYBQ$N7)w8W`gK~&DY=^5b)wK5l$j0Q=)(;f|Fl^f!C|IPX)i%Yb7N-MV;6*EEh+C-7)@;>OQn&8~|z7(gKM2!h5K4g8#F zTsu}ETUvX&)h~7W4=#X$3il(W*PrL7g698~y9iU*r!dz7ch$NmRhj?SYu zT~@w2N||C;!=<{gNvqt#%33PoT?6I?+Sc|d&+WrpklYBp{czNjSQ`n{%5&GfTSMRz{4Ew2pG&ZSIi9!MX#2~M?T95q(4=Um)AbubTyQh2g5*4A z$ghDTV>bf39jOcmbYu(yXT=ygIGP_@l1yAX!-Mdbujg3_j4oo zfI~>6(r$mA|LeC3I}qEFOzroNOP6z#%1rQ(6F$_p{iGXp>+(jAQq+8(Ui$tq5ux?a zsqj5(`@(VRY+h{oRJl*eQR~;^sb$uGFyfR1jmcv=>Ft*NwUTeTb|p=5md#_`i_H54 zD<|3N>ds=pzYx(^5eZ zCaXcLGUT?s+gLImD2D>P7OtNIBECRIpOMD|apa`G4%4H{K-wQ21!p}lQ`6;zl%0ip zFkp2&F?j+=YQOdCwH+{xq&t<;^B+7|QTAV@%K{P!m}H2j2~oB=ea*QN1+HYkLa7=l z=UtO5wb2J=B-nTu8Icmg!zrB3@hhz+b{>^)_O5)kF&Pb&jfwXJrj3?}diwgqqeI`u z7rSGx20Ic6?IK7u28YP;;!@Z#NXFScJfcv2*=y99%*%c~u@SYjW>y-6lC@-ewVVGl zvtn??SF&5rPqpFpS*#x0LbyRpVcwm^>Zi8N9(>7r>T|rJ>OWgknKIYT5UJKy{LmJ9 zh{`i(p3AN4Uie{CRPkDjJqr`?ne(ID<&rzSF>=kq!YO6PZoiKR)cBjGC4X;ZMJ`N5?&EO&jZ@BZ*DdNVsze_jvno!iga#h*}NQGGvq?#i8Ch| zb-QB*XYM3ypjdo2N3ksu9+h%fOM*~^Br!SGAkS|Qj3+-uXp^$h|5NVpkK#JI9cpP+ zjyn>YWMU#b<>DS>H<|Hj$7u#oBTv>aCC`$VG|Nj`+%s#@GCT+xgMIz;&B@DTd2-H~ zH_lf+U8QR|mVI?mp&xS9QvB)18gd50o~d0hE9pnj}^^o#EE zS+LImUR23Edw@VkneT;!Vrv_?15a)4NDz=JV0TGusrCs zU}HMHwh6ZM>IMFIoSebXx8dP`lq%rR!V*Q{PY@(QwCD~e5YIn@Iv|prn*;xO$R`11 zl9d(d=!PWD^xEH{L0Ew@9*p>e)p4Jjmn{5Ry|tgd^ceQQ8jx1u9a2rjHls{d=^gb=bs^?;}|yBZAkW&+e)&qQj!46nSrvL zcYb|){$LCS^yI%Y=BN8#&C|p@lvUx8`*~t)gXCahRI%ZT1$$U0<{7xZU~LUsXA6t= z1FZwN4eaSUR387*UG}!&@5RCX*ZfLNWp|n%FueXum%TlWlj1dcduiSI&-!?nyeP@% z(st>suggbz`6_ zsf}M7(`hrrB%su@7T)disp}AU;mFYS-d!phD%%oS;QGd`jAw1znq8kOw1Uw<%pqtR zSn!#9tbxM$E>HHZMVD{4?VsRU^~{9 zfYUI^!gem^#2p6tx(-7QZ9`3mq{ zF137(RN-k{HqO5QhsUhN(+c5?b~^Zv+Be+Kil=b~JQZ49UV6I`Q2HI@jVWbj7Eo5wKn_nyKZrpG)1Prm= z6okzn2b)^kY>o#3wMrgPzo5`T?ooR=Z<|1w?(=WgIwSleOMo#5=JUGCEW-W4(Q@Nb?+1Qem5M%m`15J5noBkE7T zVs@oBdI_x=FC3^Q+Wu5YZ@Hr~jn(hUEqC6{*q58Q#_G9{LU$E?cYh#0@jUwK$=gggyil@c6!xul?Kxz4q8_Vs7d;Va#pH+0{aqq#9MVoNwxL&)K04p!8!?g~;^oj@kq#+L;pfb2smHrYD#+G~+{@gDfJxbjEsa?1> zwXgULMPl~Z5M`|__{mD>q# z%kz!pMvGTQxC*!mr9DRwIb&X$?5}wN?3g(GJRwg+GV2d*y{}1T@b?X-`iE#dGI!gy zJf28UN@$x}rkOvZCWjlnoS3YCA$t}k!5(%q1n^1(=qhp&!N+!eg=gN0*>H$h*3q!)vuz{f#T9{oYtUF= z*jgBzjr0-}v8N7vkmcn<#+Ja;CjeaMDjFL{?W@2PUnC_-HOS(#dI5xbrcF3}C z%5h#zq}tVpuoPfWxy)pIeDp%HdGaH>k--oniS4ew6|(TZ#7{PX4u@pgpX;UDvOlLz z_D8vzwnjBlg@NPJh=1AduHF4RYgYbVf3K(xq^cJHzRvUr*n$e|PGBkkWJ%H9*;yVr zYcTT1mFx0C5(bz}xQfH*3T9{JuvxDACPFDc@KSm!M|$pF9n70y*)Mogx~Djm#U&&l zLZ;z1%y*&L9uVf(aV(=Ru@BaO&0oI2vKoRD0NexTR`)_ zq$r~Qb&n=sp*yw&HaqR6CFUZBlU1bgzWO#?jlvm_Z zRFnhmj2Ba7o^0afDZ4O_ABCm(Q@09~M8n z-Mrl;&!5-t{v81bioq=4J=pO=bq1OOU*dt$n$MEaaWOvIpGH;RZZ-WK()q@)dEAh; zQHKuknR0R4u!q*rHHg?TUi_vD7Ny1HkwAouB#ZXOO|>rDesq>4oaWBaOkCBzGOmiD zOP7)1`B`Dk<(|0`zIgZ6>sA?_%+t*uIF0I`5rs_N^|oNiI0K92Oho394;DqNlBR`W zdw)mIsI03!s8_(0|I&Exy*RBix_c@zB_Td0pEC3>h4+ymj>A&%>^?t)rdx$o)sQTP zK40Fg)Tr3>jqhhm9X}4f3T$|?;%qF+Jlg1ef(`bfsLXHnGi#oalVDiFO?Q9y&yeAe z8#A;yolYR8IHV&0`3DyOt622{H$(mdOGjo_)`R?v14Vy#d6#(%?z?F3-O>i=2O-<` zNE?(e1cX(#$Zg%P)=T&4$OGY#J(L4Hx(rSdC!$!TNeJ*t zeKTT_&^IA3YHIYJ4H^u2FR-j@P)XOlX9jBd1Ub=5h2y?$k~g0cAvg9WWhO>&vSru4 z7`6K`(TWGSQ@66DdVg}#`)8{C05j3G^6LFh5+|mJg7K;IDJtzZ4Mh1j?oKj)xRLKL4{<&@%3|nj$ zwAbC;SG&tg4C@kvm zQ7mB7dFZ;v2G#`Kuwjf>nS$^GNJOY{0b++7w$tgqcCo`W$B3h(6VkDrLXw0eBy_S@h(fl^kiGZJuE-wQQT7ViD^8MBk`ua@x8s@*Pl%t&;8uj^_%5;cPBiTN4!O>kEz98i})2LlF!eJ6drMwvV0t7;Bb7{ zUVy!2XS?>wEzYUyRjh+&NhGG8n>E&&@_Sr$W=Uq3x;>lMM`U5~^mpF-fzjL}C1hO` z@1JP+-a5WMt@g>B?4|HNNq^1*VFtx(smuZ|-pQZ2w7%w}N_EwV z8cc*Bh5_+&o+Z3TAwIvn{Nt=s5V`us-zl$#5 zgwq3y-Q}x0%Ssv!8`hsXt*DA$$DKKPiw$h5H#v3%#8PfOcCwOxm-=oW7ZR%R_8G6Zr?!B074UCsllAPAztmuL6O(ROI@+~J}H z31Wf9nILcw!i8v61t$&;)DQiWq(n&G!1+#~Yt&K_ zGy1MY-#mXYfp9u0+aNqGdWxxQLU<7 z@7|r6(+54W`#x1RCM?C!d@TOKoZ)X&D9IL^+|#?(6?1PjZJ!(xW2nZCvY&CHsIp~i zPL80nb{t{0D!WbNjMfzDT>|QeANs>(Te0q~SUm&l(qHHN0MOu|HLCo@u@}axze8NN zg*rl(4iF-m81^pV@KhsGY~f&q_5EKLuI$}@vsp&E`R#O=BI-CN$feemL`iakc*C@1_X3JI%fO_|%VARYuG*G~t81w;F zi!3hqE)7}7PYFw_few4Fq)7!;W|Km=xIhpGeNi^Uy=JjfuOYCjKm#&qAj_G#%Tg!> z5Fm)&fB5jBAj87^JX;VC-eYSSi?gt?S%9cacXxUdFPI!>ogjNjX#gN@FnVf!CO|5n z;egQnm!H9SxGDzVA-g;@u>vdtcUN8?JiAWHLECsFus6{oZ|Q*5m+1`HelyJA27`RsdR}0W$$d}T4CJ4-^H5CMZ2))IWKsE~RN5Q<4>%3POJG9SUO>FU#>B?+lKWZGb&A)djpRhJBW}We z636kuSi|LtH`#*AJfY~X`=VF-&XUqH4JMTVL3Z&`$Bqx<*r|^`ImcWtUOz>drj&nS zqx%5Ql8Pu+j|CeY_?k<2dx$hF)zm*6Z`=_YPPw{zhsU4&=6w?B`7>qw+NI3b^0+hA z;}#U=HSDi^rNQ|WoAf#9+uG4C~h%)L1EgFXom}Z+$q->XR9J)YE%tnfw#G!G1C^pid zt?)F{>vItWh|}LwQ8dH}m$-BzB4>>RS;_sheHkusIy;MKy?aZ0HoDy5jqMy!zX5Lo zd5narB}IB0QasoAr{@Cj06IkgeZaRITK)Kxpdf)R0?u*}T6sWeAkGwaEP{p!tkL=< z`0^2}DhPZ*BQt@mM-tvAcT!B0uY&h2o04% zCjq1J2Js`X#_JxioB+)I0Qxe(XGJS50+s-6ZRn4BBG>Lbs$Kvr`B7x4VRNjrQwEl! z1Uw+~zP=I}eT;eDOFy<`FYORbHYe0l;+QmV*BRy&G*#`xVVz>v5POZuqgolIZz7rH&GGfZ8W!;24ktg^V) zJ<_tc^a!`JK+?#!Z-x8A(<1Jz>bL-F2=^ceO2qm|B(wX`q}Vi-mxW-wMxe1#h~c=V zCQJ#u2|&4pKv6@~>Z&6le-{K_&P=idR|`-0B$%z&M1mgk;0p`knmr^To%Buw<6ud< zl_5SlHbw@zQXst3OHPpd(>#LKS`i&&Eu^RhQ){6H_kxS3ct(PPv^<&u3nm&uh9V?U z^M+5tRqI+H=KN)E$nXTo4akJ@oJ#t#{U!n<0p@7onQQZZP1qo*9a|Lt zB-}>!c<$!CIz>OEV<3J!%E8~#{9V|a)T6^899z;fO%bSA_$p9X9B3Wkbr1JQInQ{l;|!>o07ikp9GJ1tC^3&Um{x%s zCWP&TcTN4>scO2CB--v@f-|~Yx^kIw*Y@isT6Zga#o9)!n^^jT>qzG9+e*44#}TBH z6l*tZ#C_dj-h)^Y5?!oUS;ySabf$aMUly;0$zy}gJf4+ifT`kqs+(yr$? ziwZtk(6QY4eaWSDKWvPbpMKcMEqV3wQMVo`p{dLvC~VE1<{@Ei4e%wxcVW2GJElDG=K^^RqW4dg^UCB~s1y=2O@lNtYBWL97=GcKSR#4$Y(quEg9|hxv6he%8JRC{n zcQ1xU2|*x`Op2%t>w?{X_QyAaE}ZQqJ2j|JVDkc$9oiE74*L^>9?N7y+W-{j7?-h+ zI#($@xLhrd61jE_+yitGfU^!%vY|koIk;|HbB~KwcW_#m3W>*0r#x&dAdnuxI4pG- z8pkgGXJ-#=KoGQ}UceR<(DMB7$c@@w22v!NEBu*4F#6-%I+#k~)WPS4L;X8K;{SJq z;EB`X!Gt`4=B*ciuU1zJVJPGArUe?4!n|oJG&oF1Sl3jVO8%&AM3x*1x<=s4@iXl0 zT)0+Pn5SMaoVruOd2ZQeKG^eP&qzYM9>x8%PTq--0(&Rg?M3~MAC8M~)tnwxf0Jm* zbFf|2sd7ugq|=`Dpe`f|`Yt-|G zi$`FBnlDd1``K7!d_`OOt}wQ_PRgVOF4elBP5T=y-4n$2|yDQ!-BTk?JqHOZ|yd1Fdye5ToC#wRuYj^olm5!_GfE&GShR; z%PT7~&?sccAS`lwz=H2vx^q!5N5>wSR#uNnU_=ha=;yqyCfz%pI4aBH_gGx$*HN=O zbP+|FCxJk)zWxCQrX|4Oqhzvmd9Ovo_YkHlP|P{&0rmjNNGZLbN(8tn=)+W3 z45+(7v{9g8jNwe_<)jV+N)>O<6rRN{uTE>qhXJV-1oi=zuf^k*-i3jB9Jt;r1n+AD zoW_GUBSh++is*oT8weinnkwT8kDh|WCYXkRSRr*HJ8On3U20Y%Y*Z4L^I0g$DQ9tKCZFyCOy@mk8}&GW%vP@HWS>kJRED z)!8H*a~o3k?~~Mj)s%7zL9l)TH$R5a5YAOwkMpYZZ<<@<587=_wd2932F*NEuTO|? zu~CQ7Mu0O!X@Hj0$i}9({1pIyvvs8nX(zFqcmV_e3+Ty)(kU)lu5e((39k~!riY`! z+yz1vbL}rPtKRb_tY?G7yx%WvhT<}}y;veTjs~{^Yy!~!eQJ~W)otihr#)J20|hAI`vbX4Mm|481fF7J%+d*d?jBDqv0laC*HvAkgA*!qJmr0;l2BSjxK(FMco z4!4EwM~_=OTm=-lZ|2K>zH!BR=G2OCuIZ`$4L%PmgI7Cu5~|steF z-9@(U#>yufLHO}u{(L#lpw$%^L)$QvWPl+-*$fC+L9seotmq@7xu8FDBll0w`)W!< z0KH~ez3i@3ZI8(XmYhNIDE=zCN|5xusF`34kt#4wxh`u}sx!86HA$K({l;>n&4uXe zreFDX^-(ul9D^WB3V9O!P_WX{HBjMGyoq+)xxYNbq}K!awW+4mz2XoL!p1dGA_X`z7Pd&vpG16kVi=)40?0C&?dI@eQ%zJ4GBb z=ZgKUK~d4Jx?lU<)^2#$rD?niQ?X|@@e|L~rTOwRL_!P<+#V1Fmp}Aj&a8%K%`X7A z*YLlp3-TKi+h@7?%v=U?xgMPAAFY$-TW(68> zr9hZrMaCX*s1OngD+j!gvw)Aj1C2PNiyIp*uN<&Y(iita!<2EH6-nt0F_ zLXd}(9$-PBsuEN_3yLsjz0-*9U=`0xRW3Uw@_%a)8`-}*YZ^j@4-c_HMvU% zMOsJoP>-v;Zr^u&L=thgN;L)v+BtPawd7pipWfj&w^ZHgFWy5`7yCnUixgj0PoWYk zEIgk_(p<2&!ZA3Vqmh5$tx1K?es2*caZF{3_#&5AAM)&-x{3^y79VS$x-O~7{8W2V z?s*hlfGP(sVy*JQg-e4@`g$x#2C8%}vc$j(_E2`l&kzM5JOq}|MSu?{-{*I}_(4aE ztO<1sN!!TI17CNcq%~7*fWAD3hj)jD>e-dCTd?wGEE~!Bh9UkBnc8|N8T~oz1C`Cv zZ=$RVx~<%|n6(C@iT}J@_AKK%%|~?f_(fViF3+B{yUc^Z=BZP+zQ6T03U*V_mG4`#`CYRv>Wr%b>m7d+xuZ1#0cxdq*&5qMJ}Oky@e0S-zrBnuRf%T zH*USVHqFx4N7+_dCv&5RxcS8wgS-(;_)EuAx8>|9)i%7({BhuZ3?bwX8&`&wU(F?Y zWDkHq2}1=zu*0a#deu)q;EUQ6iSKhjH z;huH-%l;opMxsfG!#TTe_I7V*$L?g#-@2SQD0q>H>O?4z-{8jQkT=HU=|F{CF&r6> z29<%z-PF}c;cpk_p{5k{Pi=f)=&l(CaUxtU&_RslL2{=()4%;G z5c3a`kH3k6{5J@9Re}{Mj=j6uCOpe69Zb&Gb_(d z4fohH1tEJnIwPzd-b!ahS;8`03mGT5i_Yr1x0mV( zy?IHL9LpT~$Hwo%r{l$#`~FM4kwrn}1|YQ1 z@^vf0_jj)^39C%yuph-P7K=?*Ex4qfcAVNO(>+@I2gNQ`Q1kZ~;$`k#{lcKrOKLyk z=M2q08OPID50f@VW-$Fmd6n^YXni#zLe%{9tj6Sn1xWCm8g9nS;?1ez=f7r3$$Ger zYKVj;_xHQ!sAtEb1u8#zjHS*6;`bFe4Z4`S%ITAdMxEUS7`Z~sB;#75J5ZF2lcSCF zr>1FB-r7U95g>RAg9kx2$>yIy+zuiGfXoRwNFE^Bf!@nHTQ>A-xTEy+u27n|y4DQN zftE>vA?h#|o)iIC$<%Zjuzfb-{cLhA(K$fFXZyPM***eMQ+55@;=wWl(TD z$%y^k#6aWW>f!>r;qmb%SZAtqhO9Rr`OU`0Ml=mhbaLJmWpIBdDUqe04MGK=!=%Q% zH}!CGd>AmoLoEBlhb8?Mu=oK$@s`l? zd(&PKYtlAft;4OzB#q`$&VcJbiBP>~@-N=5Z5&oYE6H7>LRmz=dLu^{#-KLDdVV*j z$OzjEq)~Vl08hX|!8FPtU*|C0^ZR#Uo~0nP7sG$i+slgyMGCKg$rWMc0mAFU)84*i z6|xXbFlJ&bUB>)ip|ll90uD2wTk~+moKd)4JUsmhgO&gr#he<`t?-{v7sNfgDBd0R)8MZ8{DX*GU zDhrS|$A$3aVb3)7UL{B8a3zxsbG@DwTKs9ol>Lofx;oq`!Czr!tV3ZwF{+DrqN?s& ztJV3(e0nc0q3^A2^RIc65|wJ*d$nL~*YK@2wNJT3XXPi!}Uh}HPxoLI<1GTARH zVsemijYF_@yUK`Rl~}{uYwzNW+Lo8x!o5gN&AI;a`uMpsh;zB#ZtCW78nyJ4VRaSEn+WAYTm%W87($rSjX zid6ibh<|QQPs-&A8Z1nRAn#cTe30f3i1pFBIVF05+>{09k-H7ZY+a zN(MxwJw4%bb?_^wOrS~OIsRJBj3Q;~D&qkxVGh{9GA)?lAPG>3^OSTgND&dJx#A8d z&_N9i$^&cg$1RhAT!Fmjsg>8dypBxdNc0rcSj~Y$3NtcY27XfLE0`0D%S2H3QD6Mu(|fJ zNea^Hmpgx?@t(}UAFS`2f}s*b@B@MXE+UwavWkjv2&8vy@iq7Ng36kjkn3YJ40j3|2T}#`Rp_ZZLRI;yc36#8 zJN_`vlJ@h`CWH}GPAlf~&^i?%zfE!O5^_-W#;esV2Y3LU{-`pE#&(ig%VL-bg7U;R1O zSK=xGQK`>oS&f-$v{LM^^sJjOAiL3ycAhpD8JzX5vK+nc{^$O~hcRd{tO5}aEn~p? zanVk?i$j0S>icU8yo0mf`d`TPue}$lFJnnm+37I0haK$BOJHa^x83yzC)&KYCR?wD zp*F5CIzLW!47{k*dlGSZ(uJT(tKBe1n}{U=|07cRET~IIqw$a*h-F}wnnT%)U-)2O zXhon~2q<8C{JCE1A}(su_y;*_1513C3ApDRf0cf;T6dECcr=liBxstyD`pkK#r-sj ziq}&y3&$YT@o{K5V09Js*k;J%p;Ckr9}CaNp(RDHGgv&Bh(nCfxOhC+8%qY~JUu-j zmJik#;D4%Zn#Pxe-vg2kCFziQ#!p}~;aP|89Egz|9V-UsuDdNmxH~u@2{XMQ0`gSY z_M7dQg3xVz#d9j0u?-CkhYdf!*F8XG5!wcd1N8z3#etmzTBPvPe4U3|7R)JtyTjkp zeIGb{Y|7{**~40t@hzKnzE0LROLGHEVlR@3cGCjL^GCx zclPm0_wotzAayGmnEPe2i4Z|$*b&tWg3u03H^pesLsK;G9EBJo(~rl7l+awXhF)eyn*Hl2gWHpOU!3?YimoGE&?0|f5Z;{&XoWs zU@o3P0`(Eq&g`;wJjCk|f)=r8)a&AxO8EgK8P5kKM&0JR&fJw&^8$(wBFUS^AqpZq3n(g8 zPTI>H=P|F2-=preDn8Cyu;h7`+C{kO1~!PVrSLydri`?r-vI6m29Yfd?cfVt46fwv-iOg0=Air6e9@wqw5;aT-d!56Ay zOCQ2N7Cn!QKw~i^9!z%9r?>f|D99x9-c@^;hebm61PGieDjYpLAX2YA2eE6pY;0V$EuN8Y38Nr*yFfg5h!Vn#1D7=*Wd;VaDBxH<0lPUYHyLyWC@O(qih_80 z3}twh+`t-$S3qo!g;w^SLlJ3tdDfhVc*cyok03)@YU=Ca9S~RmP}tk69Ha^kdqIZq zEPz>Mvdf_4UhPw7XGoqUA+M~`kPm|*1>~rwN1^CWy~jGJ^iFna4X&#fkRlUcF9uO@ zY=iHl<&}R5v!B!%fF#u7;MGHT zTdi3Lawp*bNu5Gl|4oIm=MwPFqG`}Pw6qD!=HV4-s;#LhoBd?2uHRw}W~xM7Bk4M? z)AS{=M(-ULNTTYRf*?up3>utj&n>JV?#pH!y@IjC)si;ZnJ*2J?@mgGp5$|;(;-#z zuq~2p$Gex3khYuZ((JUj)0rf+iO1?#IGjK}Ng6Q8z7S!3Ce`-gO5zF+bK-SoQC-rD zmV$Y|D&=*=4Zf%)Yw$%-pH^^If%9?8^Rc1I?Q6PRZPzueur^jJGT3&%MZoLK{(@H1IK|pOyDHmHFQ7 z362)weDLe)QAl#^<&R{O-r8SLjd(;d!6fRh!QJ24rXfmv-B9qSz!z$5?3-m@(Sviv z;lph@<1ZLZMjAZU!F!K9R^q&+qT)m_NC0S)fG;SlgZ@&6DDkcDf#7k7dwM3SGxtQ-_xzA0>!#5x=Y#huO9;>VdvF zR~;L~1_rXaV(3x@u2+sdAe{th8gD8u2f81Mr};bK%z`jny#S2^@#~ib7yeGzIpR%& z9v9CYvYTD@;Mag!Quwz8k~C;LlneF-4>%D2l0N*PFB$gFgKJ4Qt{+FupX`%zx_dIs zg9$~1;84$)CtXs{N4_w!Uft2M(LPE;5YCMN^3 zUP!V%#!vrWKEVGwMxj|;I20iJ{DaO{ly9N{z=gNHE-y`3kP!xI$I&P$>D?I5&Hc{( z^;xGLK1v){Mjv1>xVLZkhg7<}6Q(|HZ2T=@@hzrgeRgkicRNWAwM<99J^x((Wq=}L zXV^pZcJGSjuUQ9!R8G*-H{2+<;TQAsZa6F;%^pR(qPycAI0`1-@yd8JP`O+;C5KdH34di;LwI^(4# z*hw)VAdZ96?d{EsI1zH@VEPF$0#0V~OJDEeUh=cQmk-v*>-vrj-S;?%c&O>SnBl97 z{so0W-r*`vScN`LW;IL@WxX+riCET}KR`mAT z(wjhj7rnu9o}drlMj9W#N|`-m4P8h5S4-PAXAoHN4sHlvmzO0N0 zS!y}}scK;s7l?Qvj1MMu2;L~?c>oc*i1jc8coLd)c%ZjYEB**V$jtRv{i&=xz|;j@ zMbK5cx(#a+Zvt2-A%2$-L=WAl(2)uk8z^}1-W^`3<_ZUHEJ;b77OEAH_9^?I$5~v^ z+n1lN;o^Iv+OL1I{1PYuUQ~Q?13r{ z|Mh7Kk|aQ;MP%DW)NI)qe(7Gt`$^e{d#+*}F3)Uhb$$N)py&err-v_c+JQby3Wzm_ zTBx#4&I@ic(gP^44&F8h*gIXvy&>5Nl0_l`)W?{FX8|(YG*0dZ7YPa^6;s0DSl!nV(Pl?wZ->L0j?r@CRr5ROrR&2 z5*~Cu`QN0C(2oCJNZhgAYaR_!XUcSW4==SWE@;7U_dBV11^h3u@a2eVYA-?hawIZO+3APAAWA8t8V^CFpMbEcg>zmx_7rW=o_|wDev73&WuHh#W z%AhQDL*}zCQ7e6_Y!NS>i)dQh?m&vgO>x?#f|O_Dhlvu%k+2GOhY6mmJj18hxYrBuh99lMs3fHfZj*@-9&cot%=E^>5~p_M;`P| z;Q5G&QRz2=eku*pB9djd5jKkFDSi}UZGWGwWbATCw%dO!HdTD1^Wo#gi@|6v1xtsT$YMIX~uSKI`9Cq(D!^Uy)}2+Ty#Te0}Goo~|xD+hE0n_djGff#U>HF++?9GT5@(q1|~2x}3+k$0z2N zw@(ZEni# zQ{?ODXcg2*0HP=oeOt3?VD@V@?1M#xg>!Wic3aQ{iOPh|twO6@^-N1qU|R&?k=2e* z>oud5UJ>i#qjWEZ`vOM`!QBfGTjB$tr&fFe2tZzb{`U3jYnb?)M6XZ=&bT9x*bN*o z_J{C$;0c7IVW=(S!2_NQe(Hbx6vclv6`z2ySYsk2BWer?4m#ica(CzSx*?x%nu@7* zC+1#z+KY;&lIkY%yLWPb6*EIsGbHhszxuATZyp*Wp{Y;er(UpDWB$iCv*FmdPR-I0 z(}>vPWCM2Ci^QDF)xt;BM%^wbJc`iEID7349ixrt+jj5<6COu2f}Ve@$cG-LOYYW@ zvdemBOeN`ubb3ot7-wA8=*jg;Gz@oP&ZTN$I`THn*}@?4=_Z9Ka`jBKACi=&siYgp zb>Nz}V||IUJ?^);+}1N)-q2666MId)CZ0Vr0{4954IRDqAL^QrB5g?$)b&}v72BM4 z0zde!Ud4CdRsv6m^C>&d{9&Re+tn{^R5aQ;E4_V|{Ps^)Npof_LOg%Qd?y9fa=9{@ zgryN@@|7k+<_*VE)$oLDe`le+Hdg3d#c1ub4GOu-dJ5KD86KCvZQB}ujIg{zWOuCT zjGcn*w9iX>)FZoBI}U$p^zf$yeeV1yy>8a=%uZ$T`XWEA=|vmkDJ}6IiHl~q#Wdyk zTMOS@cU^+J?FUqSs+eLrAkr3G^Sx%kFj2O(PpznOt!)fHtS?UKn@PauvdaVQ3Q|3| zaXi)t0j@JpqqQjf9{jzqz^tsSfUq+Ge^}-)RNVl^AF#|`_lQ&C1R*$FE!y$D_XWzd z<{_PhJ?M4uu|BBeh99696pkLSs^WeI_~D@q0`OqqOMoavK?h!4u_F^09V0p>L8KwA zrlENyrB?v#69mx(y{0Csm>c?Nu!@QbH2CHZ)H+Nn)Q`gc1#2n{VggA&R=2@z33-Tj zUUrnvj~W~#v1`Q(1(mch)=1yD!gRXy7>X#XxuC-z9mn`xh8RtRh)Ou5@V}4gVRhV+ zEO7mH??r^QP(3I|1_v#Z7o9}mWdJF2;FsRphw`Ef@cP2ln+#KKo+Xee>BV!0<64e- z0hE?FIJDZQf<8+b-btF8=fiQRs4kP?YETlhQv(qT5{kA7Xw3xM76>umlQ4=r9dV>@ zHRv%e(@^`%&QeoTbv0c~mt}GuS2&sge{5{Pgy1C(<=>QT|1PGh{{O|#X%7kTG!=4e zCE=3th1`vi5sjVf2tJFhE`XqMhl=`zzNWK{Uw%vMp3d&t4cfLZ5@d;Dmv_+HJQJ?6 zzVcIm!DYmb=kJ}JS?trLK;m(3I9wYcHxdk$mQ&kq#3rp$v032B&a|}YcYHUS+Ddwu zY==2Qb64_@I*Xh_I9noThJu1sw~}^3mmwl)7f+ron@+^06z1^Y5d}55Zoqk=Us^{O zOxT{<=}AryD+_Bmofkswv2CcyomA$OxlH>(a`LZ(^!Zg~leJ;=5GWvv=g4FvZk6t} z?=H@H4hG3(xp66 zFNYiF5Fs?wJ-WOH=dGQFjv7D-NV9T|8)URB9mu<}U@`FoKCYjrkj8|xJ(z9Rh zhtFBi>eeRbo{TJ3`MaAlmZkj=7Q|-pXaF}>g*d74!JrwLoo2d(cg-Z=9~B^C{p2_;Mr6AsAz9YI+0$AApTSqkh$iV<;_>qpySbS9t(G zt^PCzE4VUV$3R{uLXQq(XCx$Pd|ig}#c?+7%Np z@DH|>Q%0n)88C^>N~SR8X9C{YF5~-q7IcAVU;b(`)}g(q)xi_n7D9 zQI_Shw;i;mdR_aseDBBVC>3pv73u1uyZlSCE?w;RX5M$h%8#Y;J$(M247W^)lSI$~ z=BQm?ou_LX7Y;U4?@ZwT<{rEAYkSH2V-@k*`<>k^!OHt?A#85Z*^iq0$>&dy21@W( zGJcHE;1DKe=VK~TUa#>lOtqIv{u@hX9DusP&ib3>gx%9)jQf_d7xlUYm_}1S$($1% z&6RMR^4+$blSmedhZ?!3IUWt-Zi@g;GIfDR(L&GzIvEKfa2RButMTP$0Q*3F4$2)} z-Wn|)(7{XzL-Y!$9H8Q$9)1zvaK@v-hf%sLh_0?KtTzDIfd{GF8VbB+vOyB-$P|hO z127S+;$N$k)xawR6$qdRUyi#0%U+P>)JU2J!%i z_Wd?80zKG-WL?1Xp(&N1%D@Ie=0}`L{$aWsWg9$F?yC`^;4p-Y?LfGZuT@#-5Y0ep6?v@UQ5}2;Q=KI#T z?8Tjz{T9#|u0{(48zuzuFd$lR$Qnol*D?1QXa=7kNM7MXg<_!OpU}_>vRG5?r#YWL zYbNIzc&}>?I%kNv6C>~`pizVnt0VtmcONqRQ~j}C2~vew`wmp|!A2#=F2E9VJ}Ay3 z|332n~ANxNdV&x5YrWp4NR!lPb_vIVD2zQ(a-`!B>55N2IORIp=d)0vX zqc2oK_2m|c%j*j)l?!U>XBAQbCQ?@~KFx4h@V4)VJ=xvyZ0?8yrLFUa`3pd3LI8Cq z24U)=hX>krq?8996I6hmm)D!Bsv`u|h^y=7*49_&QKSV&Ju%AXj6 z1R`N=%o~eBy&>I~M=z&2Zq6;&8SHPDp5b`G^-&saH_E!SS_=m~fDHh}v@~XEH6|+A zlEDGz(FGSEweMF9K_}ntY9B;vbl->B3kFl11s_H@?LAn-%F65kRDu`Bq39PABF`BM zg}O8xo>c zISj+}dtw!rN5S9eQ-38tLr=54AN6pH-z#oC$Jr)-D4K-&wAF1$ttcoIWr=}W3&_@x zR)a)T!CnX?cBv;csL6v88NmB2E*+4?uQ`dX@9crq6RMv_ZCAx&z%ZZ#P^cw z?NEn7NDC-dSG^9&z$%>uh<7T`2%p)$^YU4*+09H<&R7v)VYi)y8pybV$zgYEWwlSD zuY4X@cwpBFqWKQN-rQV{Qb?5q;%&zeBfl!dS@tb-LZlLy(ly?8_<`*w| z6>e&jYiw1!8}%{sxrO?d9(g+8^m47;h#0_Gq*dLB&i!79P=G62FuhSg{#ZO;_{YNM zWhM!x`;w+tvAE;63252197g56bk+8yAwvd^4o(%i|)uEVgi>F82%R*>}sI zp7TdvB!5;WG~3&mMv*Tp?l_$wZm}x6}{Z{|Uj4reUD4M|GB>i{=_uv>V8 zu%W@+6O7B$qy=`GFrPb-o~IHc3nvNyE@R_1$F6dbqX${~H`0$s$uIViZPLRIoF$98{8pK$lFx95-TPRx@>LE4J@ zRMb^i{oKSr&3s3U1@e9CiXn-x&1MOsD%LYDjfiOjWGEGP#6Ou;O74vp?m&haHil-SGy7geE_d`7FS?P z^U~(opcm#cdlQ=>cXx@--30x$%s?d^B!FCw2D^|2p2!{F`8z-!YAJgw<0Rs5Y@nz! z&Z_UK$Z*&`A>Mhw=C;GSwxpL#vnBL;Pj%#%dq`xmhH#WWHe08?T~ZBmcjPi+tj*it z+o8Db-eziiiqZokeiPIWI8gPD&!;+eAG? zf18OVa{|#sg??Vz82vNc0ZJqo@?f;F#k(?&{vMi6`cuH%${$Zxo03qI z;{_^3=FG_(Xm}XAc6{bT$DBkS6jt*;e%-WXlB@B%9*s-RbALGUcyT1jiks$Lg*giw zX`_u2!i*(0IEQ_A@{fDM>(M$El8%6q?CCgO4SEr26n(`Sk$c0f#$%2BflY6T<(4y0 zDeF(p)_$)LuU^pJJg>5^iIc0<1&rXcm9w++v&#|!0cpRRd-ADuTW+~;%#|q-;8B4;Nx3KP$lc; z_M*^Am}!FyXYlocUeu1nJWJv_t>6Yxi|-f4zOoRNuM?DrrC1v`S*IN4S3_8d%I=+u zlt>N>85`nvUP{Ed=6Tbll@;5UFgx>g!j1}-60-`3;_1Gxp$YQx3A?Z5uMGJ>GzqE| zu*3|`9VaDL$&VF_g&e1-PT=)K(_BQ;rdFWFxpDUo9#Jj2GrZuEKL8gek8RqC<$qcL zym6#u^4Q1-gkl1=G-M5#G&9o)1}?%(SzKSNs-SKbLkR#7S2z@tQA_vFt%IxQu+a%3 zwYB1l?!3(6g0~D8IL8eSFR9**BFVtR6DBlVPtwMhXZc6WfcqIPQx%L*n>#Eq`Hn8z zwWN*SEk^^;Q8I8Cxt~!>s|~I{9y|cEX7p&&LD);y#>=mqoN6DuYpWb!T!$GK@S6iq zw>74jzw|R-N~U^JvKfxa5gluEetLGy@+0pNe$uPD;rBAp#(cP)On#(2G@9OqDbymL z-lxEFZL({2YQYGjs~(5QJ#oyZeKJe*p!U2}uXh>|vN4%AqqY(D)=JGNKG@Ife^zc;YjdbA+?pSci_Q!oE4?6yDGf?K01?{&qD}I%D(CA8^>>QyIR| z?xP(Xzd@BuXd8fIgfy4AgI}lnL{x~;q^COsietR`e7isVnVvRfr?wP+9lUfv^vSw$ z`)6!Q9%JJvRI|J4yLC>~{#oMXhgwFDUXX;#-|M95c~TnbXxNC^^*@wDFK+mlyIcI-P7%r zg#B-qYWBHTv}DQ2Z!nEFC41p@;Ze%J9ohz&e?TY|7lIiI z@Nkxx&^!pYdjrO@hZCR{o=)oX&D(W<=pSt?prwQJPS=*8g(=E(cLqjmk#AxE?RC)XCyKlZKdOOH?s|9 zxTb`}wqlU1n`WCi9*g$o&Cb~)GI4JQpVEq&I3*+Yzs0N1o&ht#B;~Ek_N+*|yGBR( zbQN!P*I4y64XTt*6!eW5KfoysNugd*`5k$Db4-v$U&joUVs@Q5L)0?(hW@ES+t>U| zuQigPxPPwnL&UB${o5bIyQa;c0xh_zNX1FJ&Q zSR7`F2q=XH6ea;o1SGo&pzTH+q)(9#B=-(>6z8r<=r-NzhlyYu$%2Nw)> ztu+fDM~*x&*quC0;@`Y8e&B;I|F*CJR|i}mAUK4`nTny^mMw#wCXc4Kf7Tw^i1|t? zGEGMxjW?<@$$GI8WqiuLt|>I=rRjwy${%QZmm9MOdAZ2nkIE4dnZDu>Y7H@_vdZqd z#adtWVdC>8+9z{l>pl;KUDlSr3iei2T|v;&WuvwRO+Ma)7zgP7`Apbjn3M;~c|dKL ze=CC_gsAUV9TXTrzR2jTQ{m^rVo1#uOj1hDgEuu4fgLgqAnI^+O>l?U?nwLkQ6Jb_ zpg|UjM*G90&Rt+CVUED zABG0m-5=etKnp{HzPIztFS~=_mvb}up(~#^Ge&lF#VdtNZ6lHrD9}H5Gw`D{$ksQ< zS0$nkLPT7ONr;gg5ep@(ueS_J?AK_imC;rVI`1S=PG!^Tbi&OfxBK7iM(SPr1eKu& zF8Sx=_;L|BWVs%F)}zVDWTKsts>(UF5XLQR%DyjpKU~3(EgP z)_KQM-T(jpkm`i$;3UZ=A)D-#mAxV(BYR|KZ-ugj>=3fElf6T-GBPqFgp7=Ae$V5& zuFv<6-(T0bU03Ry_v`(7j>qHv_{gc7_5K|eRj2;&j>316MgoMGGhL7}Jn-@j*nqh_JK3L1e9dc{O7w?0G9|IwkQB`l81_vt85!IQX{JgI3mOg1)tIOIr4NG>Qg;$Py?`;@D?^-#Y zr!EIc0_`ILZRy&R*R<2YFBN7slKF9ZVLf{~b)2$x(mWf*>V$Y2o8w z!>G!nbo#pX-6z>2E7x$ajO(hZ+}zz6k>aIVx>{O5VS~F>8kv_bH|PZ9ODLGPBstnW zRMx*_O24wDAWtoHkBWE|s3pdvwV~+l&=*7YM?zXrf$YlThNR`&x2B2(QE&Y>5)hIX zfBQXTF30IhSRhlyra|6As(&AJ)TYBn3O%)wzRJ;peDwgY_gDJt%7xlMpINb28IwOh zYto=s>DN_iNj#G7&6A1y)l%XY&3gtE*DAwMjre4X~OSY>f|NZ3oo^E6D(L~?R5p2)K)A{K}Z%<%b zU%B89{S9XOIx#Rnh@0NQMzU4?RI#@=)#+K2FMGT>Ss!iKjPhNvA<@~o3si0(rb9N5 zQ13kueq(Lub`gupSvbYy%N6TfA{L1>pUoPt*+aLW?FH+Z{#H*xP1m@&jGzTuS3VM? zkoN%~#d7nPxAs##*Z9RhcaG%=Xu^69`Zh%n=G)lXQjn4Ts)0a9Mm}GA-vhJo*V10{ zX;0PJM69j^+#+hahR0&@hNsS=^9No|oxo}zaZx*m6u+**yk!@AcVJ3Y-Xk?*ASdS;(;UcqdE!SQl1LkKA05KZi0#-7Hcu@|1r&ysr{K72^>0?SW} z*#!=*h6YQQI5IJNY}EzAg6O-RmXE!rV?^UtPuj{xgI+RQ7-Zmbn22>KgyDn%-3k`} z9`#@`Egpe&*Z3+BM8Iyqj(-mYQwvNA^)NerQZ{sP0|Nu_OuMHxg2orxT^NnPVJ+42 z0!8qdEj~#pC(p!+;qu@Tc#UBZV*O^??&EE6MaFb`)oec5cJaug;t`lyj;}&uFZ4NJ0X^dRK2Xq3sy&$McLM@`} zvkbR3W(^6Ltg~ebx1xEuc4WsEI3s}E_rDq!{l6NQ6YSWKyheBlBZMVxA7u}-plfjs zQ&n)={3#2Qq(JfKRFGWU%1%s7jM4to)aVqCfD?)#1m+YD4u7_{oxm#9Z&5XA>rKZN z+U%Rax}W4cD0{L%cjw}sZxMOH0MLDVB(pe{t=8`0CQ1z!StV_k(;XDrO`o z&aQVRxpps_&ir=reM@!b17t+G-z87;Db)uc)>&LKHE_i$W(5Fw-TL_A8 z;?Dj%{1S;Nm-FLEL!Mt7Pda*&v*CJKqJAf8(Pz=srz3~;hh#i@6P!A$@uW96UGH#gjQ9DXcznoKqJWC^~Q5se4y-`S1#PiG^y%t%|Lwj z?;MKf@{@s>!7(Ryd;PVCYD;u&UlC1w7IEfv6t25Qznr#=n)2kbZ!?uB)znOp~48}*R;2Zc|Otqo3ghm+B+hSxjG#>Rl_fd3uRWw_I^o}@X>Q1 zJYDkT5Ck`7G^^%HC5xUWF-}f7?cA?_Y`9g(d-`^A=l)SawKYfwV6G67QKxTLJmPt< zo!2o3L!LNOYB160=<9=kC{|7?`Wl&P4A4fLBRg8lz_JdK8PhRP5rOD($w`3h z3Y2-`fFMEmG@fQs9y5%dEiTHv3;O@NR9XE|%T5A-venSQ^ycuo0vtn9*OgSk4Mh`e z@W}%u9O_zho4>#R+2#irEywkXdcn!9**3}?`D#dFPqbkaE`vQXuwLf+eruxIhfhs3CEw8AkG!ssZ(kf|K9 zkKUi}dHk3zj^nWddM@^B!joQa@?E|u<=+=;?iBu_HMp(plwo*@T4kS}g~F8}m)7+!Tne#yV;yoOe*F{1p9u&nb|irv|1QOM^K+`_5GKN1j31Z&V>` zwUhOf*LS~M$z12b{fw2b&%8wUC$Az9=~YYi6;)Hk*ovRhpAv2!f6q0D=X-YfXMK`_zUyfkxoh>` zSWRIHn9g7!TG@fRg~wL+b=BogEH3pY?jD$FAnXNF{q zUBDw|se##_3{Y(K7Tn*hDqv~^YlCL??ty`5W&o$avjWcyggc#W@Sy8M{Hj@VYlj&a zR1m+nOV8gf|~FF(~g~a zNL&Q#!^os^zbxlMDGz+aFLE^D1%dgUF8{wF6DwUUQcE?494c37lh~O<8b`H@d^?_0 zNPm)V)JpieR_MFwtDcn7q}$rP!TY*%cj*M`2axrER1UmMTM(M|_wQc-EI_U{4mJtK zCRJ6%2XKa~SEW>O{2)XXv%i2)wkVmOGczzI`pONzZ+J3V*~^&On3?~H!~#Eo1E>%- zg*!kxwpuXixC!URVthsX=0CYTo=1Zgk2D-QPd_QFqNipBnS@nLt4^q=!NHf4$u zhcY=o|4Z5L-9yF@PW()rLPBvdlb<%UK)&+qT z5Qm_?g?c4Q=AAlImRcSqzTHWQ-7!m6TeyHXB{@exHV;S8c?9|~5%b>Z=B&i7bRUJ0HDpMyF!G`u6cF>aem`4mm|29%rVF6;KPrM20Vl?4dz7X%_$1!lHs0NHUH7v^q7h|)> zj!fPE*e%g}AJ?CLvlvx#iiut)Ie2M#j~(Bbn-t=R0Q&QfTNL(LG3A4x{?HqNK+sn9 z9S?5@2k^C=Q4CACj(S^m^tCJv^zGC62|l>k{KTmg7;NqtMBm|=O|4p~bHLa0;3yBU zv`&o6Ce1di7J4(3WX0uAq+Kn#dwT-E?{yltS@i6tmAGG}!eIZ^?qa<+{1Le?hXC*i zvTax*!}6Vuu%-w+ogLgDF9q~l>koJ)fWivEAOGeVAZMd-!R48#00R{|S>`S%$SsmS zR#a#}U|=9NwTX?*Wkf_o#PjCI;6N}dhmH>D=7UQJu?n3w*v&1$z~T%%1TJ;>lK~%y zAq2k_;YWo;s4$?V>wV5-)2Ts%S{GsKUjoQ@s|q+gQ@CE=SDlIcsUi?quPHes?zi-x zCxY;fnc^PA+qMFC*`xyTtnE5OPBA}1=F^L8UUF8|$Imu4Jw0{{>eDwX2KVL$tz2`T z2xK#EPk8!1cHr=~x1ZVCXYK+iG;FU>8TreAmSygOx_ie>2qITdIIyR~ZoCYphh|kE+2e3VySKL6vV@peb*%f=u-@(k<7!iQO0H9Hn3=W1s z3pmJneNjF>fNTN8m0D6&9ag#~oKQrwhXKan-?8m91^2(#X#JrIdfrLkb_}qXz=&s< zfT^d@ii2=v&ILW;kNWBigvy>pN6dz_55Y0&L`|exX4kiy~ zE#5XB&&+1U>qndGu$O@hF7nZea-+v$;B|fYkq|+Xy#%G!S+=H>s=}w)<7O&~&}!Wx zumu2?3%piIFv-w>Oq*OG50A=tgW9-8I)mt}D7((qf;CHX&QJNZm-@31+4kbPWM6lz z8eh}Mk75y*KCSH>Q@Mw9{^Gx{wbRzNucfgl?LnK}vtwv1WD&-Qdw=U$;@t>AVy0w+ z0!m6vkLw(azcRfj&>)M0DdqC+At(>PnIfGDlCTsdC^*#F<9B;p6}_K?Q5x)c5ZI z9)ngn&J@T7ai$QGrZ|Xk5FJI8%xtY`PEo8~1>Ygn&vk~1EBO;A<}oLBdFd1oUzf$P5a;&AL+<|8^3v zOyW@_LI7Z6di}aoX}<-8xpkGnApbG@TZUx_^O&>+_hbn(-v57kA3<<1Mh6J_1rXBn z- zx9Rka?lwMSl%y8J39?M&!d1#B_YYdHUEfu3j9|bba=Tb&g23hj`S7SX+PJ&6`o6q` zC=YpDHZsWW>MtK1{e-t1h&RmfMFzSr(_4f?9;Nd0Aw27?Ho6mPw2=vMFWBjEjGtfA zH{zZe)T`s*8=`%+y{?jg^&D0NOG|kV;(y%iu6m;MvlZ>J)mzN^PIRX7gXi3*zN6KO z8;fP5$sh&foUAplDaA$UqT;C=iDHI(?Jn%5-8Bm zqB)r?6MIED^A8zxM6=s`L(*U6l$pLob5s(mftuh?hB1#Cv;Sj-7vUW13vQ9d-_zWU zGyKgDcA_}H(bp&P(&v_C_gwCHP9ekBV83B^`E<{F=(ab%{@?^y$pL<{z7A^!pp7tq z?@RUdKGzwfA6BX*%#Q%__+z89vlC3>U^K))TJJ^EAaz8jGdv`tN+lQT&`y~j6 zT0cB;Epid*JyFc#`P<$CFOJ@YBKL{qt9s3$c#Ms2kB8$Utkx5y(|UZPn#Lo;rODn8k#^TnpAoXdWQ4 z`GdKaNLtZ~5UgvYK!e0VjPuMep$U@J&0$%(xCK!@Abo0Daxw~&NPpG(1L2pIl?8ho z?T2UE=xW_7|JKM2HWvR1@jNSO0$$4jcN%=eo12`NycJjS`DQ zde*0Q%|o-RU+fBDqX<}IbU5JQ;lV5*R*nOIZpQ-_YSp^!B(M|n5g1m;%vAO*cRe!L zrL~X2`M9~hu0!2kJ;8Z;f6XXDVebOlsyiX!;vhLEPfO6LRb4#UA9Qy6d;KjYM9CDv z#Sa1w34hYhJqpN}{KUzgNVF#qqlM1C?1+s#w|d(uwB?+UX&w3gNb$sZDqc^pnygz# z771@oHgeY3>MW=(^Vvx5({}|Ka(*prm?x{tbN(ajx&ZF=!W?CWV;81U+IZr)TerrLg0vEJ9 z_mC{i%t0A$4h{f9=$M1=2Nnuyc?==YOt5qTpznp@hw)VzIacImEl3G*k_l6Mq5xf!Rn7D;<^31(SIpz=vn2q|rRH}}fl^!}V|rQqhpjBj0C zx~w@X0Z#Z2E2Hh}uE1@AAxS63X|}&7OSS&=zUFMf#%JjfG>W2lZTEk+dQw{r&a9 zT+LKB+6<=Uxiv|O9{$^RaNJBYs#{q-dU7dy)|P$QhgSk8mhmQB8TGnqyWIt+0F>wM z4w^qW&(=Ji`}6UaTUF2yFm>}qX-Nslg1zRyTx(?q*@rzJpbVh2gkh{^k*;AX0Zub_ z5BPiS`G7z*)8#)QP39e;eV$Aj}&Zv;@heOvXZ1ag_fQtP}Djeg{H zBR7`QWQoldsJ}T`JjgHp#YMc;@VJDJ%@Z9zvt0wSj2bF~&+00VmX%nU#vSjZ?+F@m z2>qo||8?|fz(6m8ZH4+coOkLm$qREc-+3ZNgaoP6#B<->g$4a%`MgU8b{df2D4mI* zl2v1h<-~`*EJhPShKb4oSC^MaBnlpkGkmfn4Z#^-w_^@=(STIc(2!EKfPwd5O%Y5H zU@5r1dlzQLcS!Ifq-mv8VJ(nt397;<8L9x#8Zi@RS|0F%FOdAo{o2WspSMLj%b2Ng zj1^STU1fkm<&;wWZ!~4|e~Va{-a(;MQv?+5r0g;CljjK$==+W0tEXJgQjz%;T;;U) z%nL5nzZNSHwDm();gZTQXsZ!aRyD=b^U2Ff1uY!VT0pH6*ycHk~Xt1PYZD6bv@{DW~|!BWYkk2Ms7@!U^gg7~~%w`{b$X zd}+5x>NP8ec6eq6yc?33EkD*)kQ}_%kgXI$vv$%>U~{d%iY(A8A-QnJG?ST z@;j@^22Z*q7It-DLL{O73J&IgdJ#j*8_ewfyA`jm9|OS0zkTlV%8Y5;QV8+lDzSN|x)v6A=YKj|Kq* z{5HVT6g=fRs~`<_E^JV<(W(P6AIB z0=B&&87k;lr5yfCc#4U#b9bdO8Wr^Yxa!2M%sd)?ws|aunZ{4fjzQW1Df$Wx6#RgrvN*sszsO*7LFv3d_ap1|)IN};kbKP4& zq~^$*ir&k=_9AV3)j`{|r=NZA%4J5!=+16UynHGo3>V|OER!BG6XOMf{$d|7;qKgB@F8hz%Ye5z-%^vyly6&cH@no8>O#@?Y5s|jK_N+ekCaz zY!+&)@mP=?1&dKF=7rtE#?8PLp(EU<)*os%&8Uq?r<4kUxM{jBrEcxA`WTZ|LDjG} zQB7MlS|G^F-VUZ0*x@^v29>-eTa!3dggCPw#jN#eK zw)}fFbfvh?qC56WO8tjTGTs^an`s(hW1~r|3z{#&JKve_&#pOWUSZh_T5A1mF}pG} z?(EytQC?@NRh^tSrj^c+|3UK>v35gjmX=UjLUWk83OSLuPFurmx~f)I(|jqROa6$t z$5tIS4|t#Q4v;fcn#G%M>&M?9ePihTt!95fNn4=Ho!2r|z}LeEpadApr;fIElqnSJ z51C>ibPU2*K$Snp4Wc0_)k#}TQ~af0^I3;0|e< zi_Ea=ClO>nzS1~NiNpa86&zi-|6aCknS(_mU4<%ujGUZ00LIb_7~FQ8sRP+An0=t? z)+vNLL{inMcJhVcSMJLQz%HYZ5P1y>-`zuCb2d&#wi!Wo;^dkNg9(XrwXTS$=yjZX z=r(Xktn2{r-h?wG19r5~0^~1)V9WBqNp?fe|El!s#@ca)3ETLdK@<&VBNcKjzCxwSZ_LI-K&x7^Qj-tcz5pK8-XdiYU&xu+6 z#P2To@piP-P)k}SgHGob8cXbffQ&u4V2UFT^J$MlBzBI&}WPLa20e`o!AOv`sMamA-*F$#UAs+#@j^klg_Jt9DYI zNrM3mb6H5f0SPK3VGUJuL{fN!@qT^3Mqr@*=#lW=cecKHsU|NT^5lYHKyBduDV?bP z8TeMdzH-;oK#|2-=eL?>Fi=0iL-0=yY0}N(hu^wt+67kUW^(KZ1Mya0EOKvo_juf@ zA(?z_3b0xZ)TKS}!FJ6XVSu-6Y;4f3f$K+?^&$f5*S`9r;7Z>`+sw?D=X7g%<=X@N z;)Sh3?f$3zoGH&E{*%$vT}@%t^!McabI;i$ zxaCu11WazknWB`n#K`GBRT=GsJtT+TEulSQI*(C+Y9rv2?f$9h)n0#A`Slj|)2ZFx zi&Kuhle@>`@oOg@DN>|8i0@*pYdFkzsQGS=I<#pNspqT7GF-GL9H%ZNf2k77M=wT( zY$Fsy%7#gUt&D4OPW z>LF$ui|yWa-Gt7fTl^6Y##7cJ903mEy~+Ys%#>K-*_nZF@Ufmb?tN*VEEf3eRk9yw zU%vMzmXenlUZ@ed!yvu9VGzaI@cm&bt*Y>>B)0@9Q~43dOJIY`odsT1wdAXwt)R2# zhXFTP@U{2s90CE2Z%=hx$B?QHLCrJrcsvr(DGl0Rnh0Woam%NK;vPz`UTT|FbqpEi z-f9Vtzb5ZW^VFJ~EQv+Bi^M3P1L@k0=T=9o$lOw}HbHtP6esNiNs{~B&B1gfr7D)7 zj4CZ=nAGLxgWwqenIOz!zT+jqc+xdljCfAMa#=Ba5RiDkYi#KVL3jnjZv57ujL!~l z)(=VMpk;#@EBKpsYA{P`(D&N&VY-?jtGjw5m?I0eh2)+h-D>ec?hc1&IuOvI#J#5N zDs%uKK@oY_;0vj=N;$V=0R$K>Eujj!%(dypNK~|`yGWW~1Z@}e2On(!JcPu7u_qO3 z@09W~=CAONz7^B~K)#txgzK)y3`0WuuyL6}!I>qwCp9${qD^#Jc`@_VJ$TEEjs4?M z2DM$O7W6kDH?-#A<>A3V2jP>h2h!&|u&dB^K6O)F##uyE5e$e8i{2sc*k<7^oWLn*x0mISh{aeAe(vM^opj=1PrOf7qR< z>!*x5`?Nva6VYDWOZ_9Qfs`U5Hp5o) zt-C(ODwBATC$%x=7>^}NJ`#{r6V`8b|smoTH5b&(Dm z*`%U~v^(_T>7(GtT3%j;*AW14e2xVa2d`hh{*U&A1fV9s-;VBlM<)w{`ZF$V+g9Cb zePrd|Q|-(fT_&8s;U~_MGXj)u`QKdK1)Fi#Rc!(9KtmGo&+sdP;uD&FaSI^|z~_O? z%}GFyDRy895Q+dgg&%Xj<9;+95b-5xnjI!!2i4Yg-u?9JWDjA8PX715w?#9YFYFWx zi>cp>)mmo1ZFSTm0VDf#d zca1m0az|6}r5a5D;%0tl?AYyf3R`!|1D)L`9f`GCtw>afNhRlryaNZG;*W7bAVcnGxe*d0hvON7-FsopBx11WeMX-_6@HfK!QK@yD z;HKVD8CL7CH#CjeY}~hQ#KolVTa@Ckv~&>VmgtU7S+y>qINUBUikss*v*OpA^TdC;;KzMwKl1R$s?CTqy!?S|?xYuQ%1;pqr6iIr5LUFpt=LsoS6)tZ_hH^gPK)Ci;qV06tlIx!LO&oO?sj!SxW zw2?R`UkV-;zX@g%6~)Va%vMm)j0vPo3r@@l(OS$n`U8W-`TJV-8)L4?jv zXx3PqK@9nIYWAX=yx@GK&X4wrvGA8shnnWR>Mn6ycmn!}CTuotox;%T=Nmtmt|$Du ziBtsE5s#u)a*H39qSIAsY|e9tW7YY(!{D73$`)7qzf;K(u06bKEGc)p05F0oBl=TS zv{J?lmwD=&Hz1t?WS&(81P?*WMkfo$G0Gey1aK5UjxjlT>(iVQ zs0UsuHEis?#&4c>{&ae__q_9WyUg*AC%&8BM{6BEKOZ>At?!sYx*AYL(^V`$;js&A zNQMwKjk^?)K#L2>0F($EY}jhj$D}UiVZ5Ta( zP!aqI5bH5GXwMLUY9XmDTH)*MTlJdNY}~jg)b%ZOI@4WA_BI}6&6;;xedl`3!1nRl zh-~&?N#tG`!+!AE5|y6p-``!#n%8Kbk14fpZc44VS@aQIJ8v9Fe52#(jfg9Z8Js@wo9Acy5}|RDm!PGOeKTPY#&wQG(>!Dmw%DjzN+nVD;Nc*mZoTRVR)dt!OVjG zx>?Xw?w1|@vWB#RsVT^EEng1V*R*IwOJjec8xJZoc_lJmqPv))(eo14)5RUD&ovW_ z{L^-wjIPY>2RQ^8Gb*LsSkh5jwJg;&86`9S(rIZPQ6TNh7jo@ZSDBP-lOlh1$*S3% zxKNU1&giI=*Gca-%X{A}SSUSK(2F!hE4QXGoP>{mizG_(+V3);52)K{!E0DI4kHk6 zSU0HmfQbs^bHhl?hVyv#cSFZM;%mSdUUiCe=8waZ-rk7y!xx5U$yd4~uvG(%E8tag z)tO+*4F*t*h!X_ahj-fB$}51k;lcXcd3|w&qL}f&vI! zydr7I*|MrbcZ%zPLN45Ato;|v%Ha0GZw1U-D?5w}oCMB-PTP!1>+Ao!mZw>`|GBD> zUMN6o{c(e!FUWW}gI3`p!XSXf!mP2Pm;tvP@H0u-5ZVrcTI+F$IRvHZmXIFk{qSD4 zg1*Aocy42ZJxT`DSl`qSzO(-=5`1p%Mb%hdw^v$m*^2M)B`iP9wfoWfL3a(Gt%f`^ z4we7i#!j4UxV{>439(N=Dbk<<1r)fv1j9o9RG!lu}`*hB4u3T_s7EN@WXxQ*V z%?XH+mxc)y71#7eg!>>c38t94$54g-*GZcgJPD({ic3=xW2dJFn03{oU@bFn@B~yLhT{n3F+> z4TIX8vWGWy6*%IK@wacR2x})!xBxpFR{&2h5&#=h2cZ-+XGD!^H8#Fp@N% z^>X?(C5?>s&tHn#FHwtqtrBh}kq`b_!V&!LmVBlBxVDY81(7!ghfyAOk7^4$BVF~+ z_f%&4z1jw-{e^pMwTVObJ-F{g9?mJ;8vCUi9VGRg@6Akn68V?GwyoqY@nYwRk#D!! zzE&BPFeN|8N4#Qg6Y9{spCotr=Wwj%owQEmjTdH!$2K-BXBI4Y(`v`9?0DpjIHL zJpHX@(xN+ANBzNa0dp6&7+^iP;YR>S2gVYz(cp*z@ehCqoSdA1MPM_&w&QWuTAv|p zz;KVDqLxqE0-f#RRSF=1z>&ANZ`wKvWotnGTVqd4{oi4Ry$8b=CxJE+WqKk64G+KE;Q+jU4A={v4v2NY@@1|+sS@P! zzMh)sxsX*z=(Zet7&RG1=Kx;rEran)Ya0=*H7u z3L$*WJ`k@Z61{LUNg^hpEsXzAQuCp9N`Rn~_0gQ(J_li=8uu$_2WOW#!=KG~F_Co? zr$=ksH5Ww?A4V?(=GC~Z5k+e+)OvL-2l8Lh9myd{gE$JDb9+xU<+;lOIpfC`iOl^k zvQegpj^KvNEj^Sbc{E6pA{uDUeDgSFIv2S;vFl*oy&~po_c2j34oT&)t$)-T3Q5ke z@kzHl0LCPA&pU^wRAgW1S~Wl10-N7M`5)!w4miSc?ZrOF<)^W~>(75W2gdT5WR%y< z=Q&6OiZW>3zt#T7&UjjSn|Q%D&_+befpNaf8tPweQV_-Skpbe%Nua*5@hak@4M6d9 z3NIkw)lLOeCB;FY;0`*IBj9URXMWFabZ`Ztx@!TAal zX$P|ICSIy%iZ;Wn(~~0?W4^`PQU^$?0@?^x$0t>P%3VzMvU=A!El&poUOoI7lvpUb z_VeL`Pg|G5Z=?>>d(g)xrdS$(r0iwWsIQNz3bFk3l3&RryB@Zj8^Y5GiO*Zu7R!Ij z$=zg$b9~S#lexfLPI%vM_Ix1fmtI(gtoF?t!Qh0eLM1au)4OWK(GEt$>B%GRO(T$! z+9mio4x@?-##<*e+Q9^opPq)8j+Qs@tn?5_tLgrxxEdSAZPiD^SpBDp_JvzT)}`TfV zB|)qBSptrIyjalJ_zNxcz00f| zEd~5XC|XCHVW8zERHV*?q@GLEWsUDN`CvZfdkP^fXN_o%C21<;JV5HiuU|4wsSSIOYL6;RU15soe&i|j1j8fF%NYszr5;>ySbw~Nr1 zD}T11-Xr>+iE_~s-=Yt~ELrVm%| z0|AGoG6x3%F21#kt{1uK5i>8YS&TT27zhaoF~`a&th`A&>aRO=CNgYFbJPosE~@ih zzbE5Y`ULTZZu-`SIb6eHGmJRXFJ>6Ar^RBvi&EqdS#g5A$=S&XShsNbf?^Sz#lSt` zCWQ>}8cbT2t1E#xjK;vC5N9eI{h_iF-i6>rh45~dT1e=|Wa1oN-QE3rvf7J!c*iCT zm14~La=`xky`RSkR0`jY{(3C`o?;V@6WJP&XCn}Yl?ez-Y%qyGohAd^Jt_=zNO5jb zMfw=%jzQT3S?d@Mk_@_L)i$%=KAO;Tpr_HEt9#SOM|(Z;a9!k*_hzf3jcw8b;Eq7% zKEAqfwdC|9xqP}jhHIm9e)E-q`Gp+rJDjB%8Gk>x={KXzB;7+ zdz0K1s5kLNK?e}|?;B;%Gzl$nwp>EOYq`PJCZlgkn2nb{=57?N8U@U{x0SxJbe$3z zp52!@^POxgV#SVzvGgV9Oh;r@9}t`gDY=Fl=$USqTmni;w3Ag z>yN;#F2Z@!g1Ili*yws%?8b1%r0+}p97t{g6-W!Q`-WrMU@iy5-S0ayy7&hz)|$uQJ; z8Q|$HZh=ec>9^N>#$XTpVtEzOI!v823e_6wLBBf8{(f~9tGbF zSW8-+YMu0;YsEnZfbj4DLgO{z@!E`$>AuTw24z7Dw{oVj(>8m8V}N4vc0-YYSNu z;owjQ;fDNRz2E!kS{*~s;zV6!3>%x5RovX1lLqR^%VBoSX2cNY^bta;zZp z599QjWNc9LhlzG^{OX}TAy;~K5h00!n5CNr+XJ_{FBu#R#1~EZUN+~rmTpsiwXbUU ziO_`+Y@BIHP%UDKZJ=SdhfJkGAW!gd#F_vw(|p_a7g2tGQg(GsjU2KXd_{1}DGr{6 zf&$eY(n8A0W^0P5kf2iqCNKz(O~=3(&45Ny!#`#)95jfgDA`R^{is<3g+cZvLBZjQ zkn$jR`{&HSWz$8;-4@MCKBLrXC4t4G))9S2P0s{M(r>W*ZfM%xN9k-i%Kattzbc2FEhq_KH+Nw=la{^H#=@-Zi5iT@qh-@AFz~ zF()@!F5YWn{Qj}REmKk#$CnojSiT8WdmC*vw!dNeG&1& z50*(_2GuNRJQDomfS@`#H%;4?!7O=(0m;w*I1ce-P&zNVL#(XEHy{r0HJrjwlp6f} za73X(hOkhfzDIG+_V$lKhyCth!Q~6*0#xetA;K2kp)s=JGC70LIi;(BIVxgKQgz!K z&J2XY17!y{&}*79TpC1*;2Q0>_{trQ^4R&NNg)2u{YtelDJ5|>m44QA@jg%Td8o|5 z`AsL=uns;vUiQd>K=`*6fnzYk3p#@S66Kjb#Gd@Q8Q@7gi7JYzzT=a$*9? zB(M`UIxb$JHW8u#vmCJ5;N>Qs?uP;e5@>jP%(l*&4W8@aPe0U^m2EC0+j$rlF;6#= zwaf1(lv_tSC{dC3X(i;MBL{FaU0c$;H|fyf(r_nVq6W4wbjj7aFl~ z$_B;_yyD@&8@T-lbfR(ga(Q~Z5PmxQ<0S3H^y$W0xM{6HRkehp^^}XCxiiMe2NY}W z9;gBPcaOm}M@i%R(qN;J_E>`IZA{*Wd~Th1YPO`jcJp&AshVV6iX*e_-Ms&GxSC~Upe7TUiDk#JnDBeg2!sOta{l4Z>MPc&`R|uWR#>N%o3M-iaRP_VN&B@SvLf8AvvA`itVyUs>doHd9v~2u0H`slRZv=}Vlov{MVUuKec6+8*)Jxb($uJYJ%{NWno9 z*4_+;9u@2WU%mq_n(JMq6(Bt4k0>uKRV^L?(lTQRh{MP_$SEn)Qc|QcRkh(R(Nup#i)rPn}T8K_I2*>(c}? zjXrG59s2RYK-gXFm&%Fi3Y4{@bYZfB1k)po3RsBwHYm=n(W{SKe180Dt_EF;nkc&S zd#FtA{yMd=E%UFE&!21{X_n2RY zh*u+Wh4#n2d#&r0e%V0OR?sExpDOa+fJfT^rVbB$L%)d-{dXy%a z@feY+DqM@E=?Qeo$uLwvBF-+xKe~vZ%04ehg|Hf@FuC+xG!j9zM-Ms#q)_0@I7&zg zfocl7cC{?=RNe|J4A=S(Z@2HhzuoC*7hC=B!;>?J+u5}^Y;_k#{CzMI6ciSYrDMcM z{x}mAxJdzO0IXm%E-+$Y!ok-I9ww-XQR3No4bX8eWc=+NIpMp0=pB)1*_Zdatmx)a zcm#)?_M2qc0HH|aa}W)JpemyuRzTNN4YmLN{3(eBEr1b8JB$jm2lMD;BPoP&Ath6V z^))E}4_51^g?x{XdJdCaZT)PqJCe9LFU8k{D(UQ0s@S{ZVsVn9c5`g znfv@4WpBdG#Zv>b#&Rn&N`umMg~#ED_tZ=AwR_*r{T@avgD{64A6k~{FFgdc!?cqm7*n~V9jGr~2*QnI z3?t~JFOXRKJ@czxM%T8tkEWDCP~#_dWdiA#&KH&VFyfPjp0psDe!k?L^OVMLeSjbC z#}8`QnsQ|@01#p^)w9=uOhW??0l_i8}+7uD!gbE|8#OER>>j z=J1D45qfy~0EiECb9UYV6cWV9w1?kBQpcIzj_I^J{cBfT1O%;ba6yL9?BKVuV?sOu zlnL=f3iJUe4Gp4T90&w$-a5K3dZ4N|!XE)|Rrn3;um4@1_hMw|4vs~9K#XvkFj$4b3A}ZEi{OWupTE_&1?8E3F*r^2;vnW^ z?o2}x(v|_vG(QwL*}|nkQw$Rl$P+)gd;6%7o(1t)fduzK0a3yqpOzBc32a`8pl6J2 z&bI@Su&~A*5o9=GLcuNQ7V3~62x3H&v-1fHC#-me&~LuAT?Gc z-m+>SLjt;6fn$zqMzV+48D1m1C@Q=j1|9oy z7B-%j>oXZc*~YdujT@o9sE8(P6b))+IdyH6lGOz_hY%P zH*Q6598i)izG79C|egq^5kzF}c1A@qqKBg1a2+QMa(jj?aLq1M)Y6>(TY}vL`lzo}nZrw;) zbE$==0)VGbcf(E|_;Vj^K=0XL?d#zpyF;2Lcw4)2d`cSQ5jkpFQFy& zj`qmkYSfeNc=n6@H%Nze#6ON!|1PvC98IbuOB{MbJb;#(6Up;TwYyE0lwG@XiJaQT zi6K}upFF>iE=Z)@_^8gD3b!0vqWqO3Pwgy$ThkD;ue1pl|MsIhc|H4&6Peq>(jRo$ zc?tbp>NT~i-rmk-MS@rlk_%Q{4u=aL!Dm0d3R21Wr`iSI)HM{d)X+v9b6_cQgE;E_ zw9{*L>8)Hr8AhT9!3CNljXyx9Ekj2Ltw-u2^zab91W^VnH89&<1ScaXXF+O18jhd> zl*j^C+C3zJIIKG@lfZ$22|WW?HAI4(U3!?>7%b)Zt*=bSxFHG)1vH%BaQtAA0{$w% zW6twkK>#rY-k=!_FxmS=;`>X2QXF~j-@?`4!v9^67D)?yYnz(`A8oYb1XHebm4R<= z()K=0lvZUkb}FT;C; zL*}8vn0&Hn0?xI}r|-XMG1Uo`-F{3YiyY79DmN>mOFkIbIxf?HvQod1I(EZ=`(5Z_ zJ7q|63!M*DWC49@Y0)fovIKRS3WZx}a{R`18l2jI_2hv+M;j&(2^7M85iy?Sbi0ls z#rt$Ps2wNu-r1Q$V{hEO*8Bj8&=pPh?vptn^uoguL*O8q(_UhZEduFx_1C&VD6DcNqVYM)~sHVj=@_s zkumnVWm9>!PwlJvQ#?KmPFsucvX#yRBMqQk?CiMki9*{auGpWvPSR5r>0#Ezw=CQkzIkEqLk|L4p=Z?v{K_mw!2b_cF9lYFBbEVJ`uWqGg{OoP6^fVGV-D$q z?d=y3(Bw&}LStq~@=v4n(MH(}j7r`3=G}eAj(s0y9$82cM*ji)wR*~MlI1C|SjzAZXgNI7(#ghd#UIB<^nB3k=K zKZbKmjgG?q#ghzNbFwRdBB7?kWCyW?aZrESJq8>=@rd3Cq$eOYzT7DWe&&DTCfWau zeGpLF0%(aeTn!zFI;(;qqYY$YAsO&fbP68|r2O@6?6*)sSA6`)lc<1}`r+O%X$w_z zq5{zI0II^#-qF#~KB-Ck)Ay>fzW0XkYAov`Ba%KV)i=`a4ox#eSNh3u5CJI7Kf!^c zHxN|3*l1LxUjjWMBdh~OY2PuAB-Ms)GX!I?yl^}(i7L^QV7wcQ6>c_{ z`}Y4)^(Wv^@BJSzJ~Y*YG-*O5RA|yz(iBOyq7+3TYnCV^TlQ>8_6S7?MJSSxgltKw zNl21pPm+-A*`C*U{^$NZ|NFYH`#RS-_vK{f`~7_0@7L;Hu2A$;TdF%H%EfLdYR2as zm&c9bwe^0Lrk|_%SEy5KC%$>~u$C_y)r;gmzJp;X`zcpJuh4r1!NB0lxK*;NuS1c< znE0GNHpFA0xexz{5&b^#SnzCN*69fnm@gi|zhY^6?P5QjOM7w9UF2x(!m&Y~M)3zD zHj%FmBdfoX_gFM6+?h>U6yc=fyE%Z#G1q`KXVLb0v5i}06!Ra9c(IlV8S7P|EN9R= zO>lq}Av~{F22d=xX08x`bAJjQhF8vvo|gz}ynW$~nGL;8b>{JHzorPGt|p7QU%k?c zvu(L^a^}$iH&E0!h3-P68urg1tF5F2>UY?C@Syo*=+VAD8n`tm25GY5Fw9sL+c66wc^kXLwd50kTP11H`Wl-wq6w}t(>{i=2@Z-|hoflU- zoqc`Z{#33y-B$9!CAh3Bgxve_^|$xyFVX5glqB5K=Qt6@W-sy0!N@|&_6x`619Hv5 z#U+O67eixim!CY$Tl}c#`S{EA<^9H6r&kaO_m3o;Kftr^>nBaAEu9lAR|E?Peuld= zHr4!mX)Cj4yR}q!=)QLbUqVhge@)yMvhUZ`I~;8pJG=g@8sj`=aoh7%5mD@60o#Yt z3*mI*n163ih3Psq?mZ7v_WwGBjXVM+M%#T`k{ zG)A=0u7a8Y-+v}ot*drVWeHrCaOvCbD)CO@ck43^X7)Hr3dsTR3nQh&$45N02SaSH z453T@5_)UUXk%BjA#hbtbt)BIJ!Idoi)~ANc59W5TH3#Sxl4r|0#N{3lsy^@Cgu~U zyrl&)+u@!K5xwYywB3732ZY+=oE&dleJ^?c!)#3W|9AD>#!HWzEk}1Z$5l)H78j(7 z#W5ZaN^zWRn_Oz~m8*wgFd+j&jI%6IzR*-ClQ5LVt7FB$$$41*Z&c0E>BYHgCz`tE z64%JyXeO|YxtbRtWc&qs`uCX<>nEP?msz&GQE(2Cnr+wCxn?^LQ!5haz)g1L5=WWj_ z6}gQffI?ue?^ zt}a8oQ%rOw(@R5m2`&vzU3-14AS}%$^IBqa)cCUTTU;XeyLuXg4$CMZF~fd66I!kze61C(a$lQ7yz3g2o*^ z8sV0t~_yT0X+eTDH_Tk*;_XS$-nIWPE?N z#5dk{ZzF|$c>WsbV$6sL3w^X*!%YG&H#1rhoY~pDFHlE#bq0wnG!824o)R(NKbF{P zVsw09z*IHp$3c7QVIiAnQk=4r)YDI5XUplIEPb{$?~%y&THkbpYyEMH%rcKu-U(Y1 z?HH+J8s{%|19{gs zhj{j?I_BvibrIq>W`8wlOL$&}HE8&yaS?@2p{c1rZxjchL!nxd(HGs1If&_g z+QS?$LJ+4T^TBp6f~jAkae&zz7ychPDY5=P@sNNz>0Y;kOuV{EUu;w$OYXL9SR&Kb8|Qs2qQP-QrZ-()DdKHR0KW@|E9Iy=wzDKj!wggSI0% zW2-xx7Ud;nHfB*tmV13+?w*lFuF=iV2{RQx)9iB{!>>IEE!BA3Q8#(=^8pZ)sg_zirO$xl#g6U;6~)c(w3Or?8I05 z>|&r9OwcM?OJ%sYa}Z~ve1u9tZv5QbH+o&1{KClIj@k4>>fg=2Z2DE~tP)Y_^+z*G zSmp6&!&CatUWK(7F*`-~^Pbgc($<0UqtM`b{|weq6jZyqf*O1Gj*TG60hrLy)AQe7 zvlG-CrAgcS%7&sRlKov zPlhW!JD{+kmMcZR*l_Ay$C6kA$~nN$zjxQ2TX**T7y>Qej6o`gCKbM3jV8$AE#Zj3 zX2&c7YU(~RZNGRebCbw6`7<6-mNmJDleZJ)XFo`a?^akSDp%O>Z0U4eNl3^*SIC9J zjrC*6{VOhyU?&nJs2x($zQyPZ3uCW!M3In4jH7WJ`J-KteysPxOg~25evceo_AN+_ z?iqbPGK(u1hCfYe1AV?R(&uJ|brT&(dagBYV^Inl=6uYDnN1jYuB&=?;y=1t2+lLkHyyIM5xa3?Z0-H<45H( zN@d04c7(F})tIBr^kN%dZB1{;$YLAJFIi*%tcQbi7kICX)E#|wN-|w$_@?O1L&1yPPs&+l zD*3NUl)O=;XAri1j|tdZxH6;E`DXb258C>o(_e(R^Z(qLu-L@GtxPmr(NbhL(Y62J zy=ets>2;Im*+#NN%DA;y1m71cIF_w9KS1mZz>LYt-1WA6zaYvgNHP;n`1fVaXw5qx z-#d)Bg6CiD59E9L5<8WoXh<9yRv5R!i*M6pm{q*1LmtTK6*e1Z%2ou)Q z$=mJlz&hb#8xA{Wvn+!9L}HXk$Ylv1#o)jh#LUJm*6$Lql7o-3PKL0q9M_Ims&L9>jAx5A$sMKuW#qr3kZGL{hvJi zec;TC_Kc^NFsrAGt@^w*W0&+nOEc?;UDs4K6oX&A`wODKrH7!no37ljZ*#!59&__o zf7c2MzT?|2RsGueOR`L?;kWni4~IGL={9&wVfT1!uOX*e1xpLx`q)c5V-a$8D*EGt zJubapU+h0}?AkMrN5Q30Q6u8hPtGM6=5>3`RsXFIJ@Wl?!%t@f^iNE6T$YGehqDdS zv?ND0vY8=4X5@n{7mMhHFx|erWI2KNtQG}D8z}XC@nYOtA?nDBiDAo8-`O}T>ownd zc#0NEULWp`PaAlp=NXn>`g9(#aQXTEyL5FX;7!Bsz_vWl>_dG$01!+!7=?sZZ5co8 zJAODcRXe-+(AF&^Rzd^4421G*dA|o<6evH;^mVl;ol{W$RdfQb!vwiC3ZJoBw6;z< zRW#}d$sY+C%;Y%zSYgsjeA1Gy|AR(P6aIHM>dDpHU%cp2YOJD#U~|6OfeBC8_L7bl z8Hin0Q(Y~4GSoDjrE=_rPlZX2?vBv>i;0%4sLcsE1TbQ2)NS<=x<-HUAkXI(pOM9d z@7I5ut@uG#<fMd&G~eBT13;c#`%v`Ln$9#goI=o(8-m-UN)sX=ZvQdmUssO8$*$l z^6pECxc5JWaNVp}OJj|GP{Hd}cG#AGEvR2T!73Mnvk-UaL!Tpahu8C%vUPHu=TeBD z+f?+U-eg?D=Bv#XgYcYMs2Z*4$|NWpv6F?>AP@`?z`uY0OeJB8fl~$c)8u}nqyjUC zCZla~v6}zRVMesT3bTcIn~|)JsmH&(E2bvPM%s(sZ>mew*c~l)nMRU%rWP*N8*otX z&a~e_+jY@|?c{Z_3NQB&xnjEx+EO-Mt=jwXh|~Q%`p5T%!(ZJ7yiKx8v$IP|E<}#M z6q^2WXKv??32!_Qt!-@w$=~t(AkddyXII3?e`KkT{Qqu;M=gU@rZ_fBo3~X&bIgJE2v$gaHTiC*=7Qe z#5NL4ns^P+es->at}!Nu7<4?ctE;ILHXr}#__Csf(IAsou78z{N;4QX_IGB#9I!bo z@@3ktXupC2as`=HGRgJ*uz-ulU0#^mM=y+eE3~*d=G3u*5{)atdL=K+AJY6QYZU*ed@CDV8`#S! z-N&Ix3e^)KiM*&bytS$+W|9`o88Y{}duw9^&wbs7Wv|ldgJa2ekFl@naq12I7&G%N zs&?d2M~Sh#Nj&4l$Oq+{sfXixYm$CfuS_^JrJDv{mzUSK7Z+cfBN1x+>xEos?$kwg zZ@ezafpl#|L=$2emVhvIvynI}#}CGjueP+^E>G_%4FKlFqPBXU$%5vA#I}zqW$QdV zhl?*LQ@mbnz8ZaYowvqNQ3d}#8JJ}yd68niq_#rB+mLJ2kymt$YRPYQQ%kK~hy~zQ zA~*49QkXfP{)(h19+?Qk99_Bw@^XBbeMNIV6&co{sjtlQd@AZC)n)ipAqr9?fp zo+(#fYV;VvaQ=e-OI2RU@t=8q`$6)nJ|`F1%@MtV0d$R16hyR}=jmm;Y_d2Cg-M|S zruP{yevTCyO@Kg{>FoHYX^kks0pi3RhD+dU{o)6n!GsJwg5aruONWI$uD;{GL&&`PYK~VzY%ZYXYVrM~?-}1X{eL|?$iYq~Y|}K# z(|&O9V!Any%dnK`VHaSSMFb_aa(9XENH=r~kXL7*)o5UMJ!J!H$|TK1AaFeUH* zA+SIiOPiTDlHu0UaVa+XNH1%L2=2jSWcpo4B3gWwE@4H2ROCBBn5Eb%c7f0e$O9WMR+aE-vP z68`eR+jVZ9`M*{;=I)$EaF^Kof4RB2XP0~C=~390M+;$D!4^L?8*8aVI(V-E5%%*F zEn1Z21pIywUD3E*j5DchN;goLK7IDu5MdeNj_1f#-=J&pAFggr)DmRSE{5%DNuP?&AyPQ@H!^`l;)8D_O|wiX;|dZ2Ix_tar)R2n6kepUQvV zi#N=RniMMI9C46#jXtg$W-4QDySk39Nl_7Gb$s>Z7jMXhtX1l!zeM~h^J%+DT7J`t zeww73lRNxx7K#aN36W86B4iY@O%ePEkQK9I!(^ki=Rdx?Q1tBLc*^D~erw)0+*S51 z_e?cYHLt&{bK`tXHXsw&z1WGBtevbZPas$~{G&K6dU^Zr$=tn8A~9N&K9p-SE9y_t zxPz+i9e=f5?)vQTgRt{>h35=e>ZXx`dERld&ka2l!9mjBd7Rv_jp$Z`V?ExH!W-jPD5shPEP1lSpgCuBft zy0GAr*%V*jkJvQi6tXQRnW6f}a%OH$F6szx;FVOWMw1Os`TS&Cp+Q|Fx6jtUS?3<~ zblWI#SAsFbIqg?`X|Vgp zdy*Vp)W*X(9fd3FJD=H~@pd=5OAQ5|PN;Rn{`v2pXK6dk8<6~LVE#!7rg?fd8GVC; z7ohweo52|ESbueUp)f&qx}C$o@I~vcI~$1v*1E>0cZh6JYy^+dgr|lU zMTwl<{4Spc(Y>=Q(Dm+aGxWt?o)Qlr|93mKRsMHny2+5bv6dsQQ9gxPNaAq$vLVjb z5Td`JT>Y$1%B2nlr)E9dsqmhz}pFCET&nyoNB*P?=5T2mVLXrxWJWA zyDM0c&n9cd+FCr)`MYW5w(a+> z@(4~FBP^T{+;(C38R_^p?>PfENvIc_25$B~ho;b`uxC_8MGKkYk{lHZrn(E?zqk4p z#jNOZYjS&Y-p=Q5cL!sOkj2l}=L!%9NAOd=ccbncpe2BX=_k8A`d=EV}>LSaw z80F|fDOJ#l4@>zTfq=~(KDEh7gnBC9Q*0Vv>N>7ZKCmD0XP#wQS!lWps@6i=O*&UZ zZ&=M%3L8L+H41Z*F>imn?hiDBQ{`#9ouOE6!|d|hHld_zG7mzAi7JOmk~XUCJDWGB z`@GNNm*80O841e-gdg9dhWb=gAa*_}$&6P7i9sa3S~K2QX6Ui$FuRG6{6t_$E9;t= zqXN~RwOb}orlm{*&Jij2CL9spGuuz305FEex78M4818w5Wzo1%%)uQt0DrPfwItfL zu=eU^ZwTxjbtfv3t|_D0IHi8DM4ZGL(c8oh$@a8XkKMRNUE1Z?Q4kQb1}8ix*n~BM z{p=lC^#7cydl37h@5=CT+aocK0Y^+(LgMO#S&AY~P~`gz4)c%b&ws7F6v_Yj+-@IT zV_jw>0{U*8@B!J_qa|SQ9`)uQKVsD>Lc;u1tYIGXPR}k^9F0Bpudi#*(8hvX;0@;}QxWSg)Y#>+$uYx4<5u zM-Mib!3o)0N73Iy4p{0K0tk_WoP-0EHJ!6hb9E|y`s{HQ_KaTDSXQ%^vP*1TYH(^6 zfxuBkAY@oVZhAL8LFC#EnTH{4fu^#bR)s&IUpP-C1xE8)n`Y$gk>on1zW!IGwgy3r zaChM8x60--Q%;gOvThAeolOPF=A`oF2~Dr~E{6wQC;V=T>1#?cSl~Rn!$eP8%=C(V z9w8uE!64nYY2SXg?}8&~+N`(x8bp6<<8_=i7Mvyp{P0{(a+-Z8;2&F9QQ>>(QZ-ZO zjh^_#I_TwyN*@R48ci56)26>%6|gt*Uj4X&LteQ!I_1sWbv;@Mf5G2?J)CdfPT;f|NGd&|T6=6N3do6>)YWW5^z~eQk_Xj-z<>%;LSFIj! z#=fhYZKqK0y*j2`Zo>!_Hl>R%&m@prULqin=?P+q(jeG<_Kt-5(M{e@k5*2?%T>+@soPMDA+O`PS++f9%A&M(Un)z1a1^W*x>_ z-l30dwL4C#igs^%_VJmvC_2KGt1j@qh8=Zaz&icpOxM*l2$T3RR@^xPp?9OE0iay^3S8 z5ejPaA7Q^h(`*9B1zWnChocUy5Bra^EWi>1L5Yl8f{G6VLZE)9eM}w2`DBiD1`g{C zR1OSY;b!IU$T?K?;pFPo+Z^v2LiKi#){gadwO5RF{OjXEo0JAcNvxf|<1S(S?uOeEQh6f#orAW>n02vf3$h+4DO$^C!8sD2@o-S` zyT^ci-pZ6gpI)0uJFZnv-)~suSWRa<4_PQ4oLe0I`RiCnne$NPu6#%XS=sfv3Nn&a$9D;HV`B0Hi&hi9uELRw@-o zmhE1~m{*~}0Xey+G&G)}neqqllz;n` z_}O-ol(SU*b-!Eo$#YlJq!-_z0w=cx3_#1ErBpn!IvgFZ2nN#_P;8M&?=yA}o{|0J zKM@mVTWs~f#zjs{6@j^%I96OJOn5xVL?XReQm!cyDs2k!7~#GUdOPZlZdt(qJSLLi zuBG$nTFq<$Nyv@#q`^N*T*}Iw=0#( zQT>E=m>BG8=!GhF3#nZkXA2F6YKCK|58tvrW))v|61#YgIWOQVB*ED3-7hac>?{kp znite_9?3-Bi;xHERmb<3N!sLPRqaA^S$VC!TL*%rPIOOYkv4yn3U%x^#tRWE}oAWHg8^dhPQK6`8 z2|%_6eIsJZgcs^#lAQWM47Rv~r?C_)8hDzFpkunQW9Z~7O zF}6tHf5=afANlj(1fU3Yk?L;A`mq7$jY{O8YP4!YXFI`g$~tLVxDm56Q&fc1hxKgN zfEliSlKd2loGFTm zipL7cT*9l=*R3bqyQW9-*UKv0?MhX2Bo>h`Y`0tGuX%69`ljx?k2Ag`8*bu?A#p|f zSv)9FiRY|iA)B&<<@06OMpNP!KXqKp28Dr2#oU%K{qYmrT z~Jepvu zS|t~2;c^Vqd?gIzHRebUQr#A7xym2ozg#_tYwA%d#hj@U|K62UuQbz>5p?ULwte8k znAZr^T1&JpYWv5YN_FB3GDEB^0MV>0;DFHES~bj@EUX6*K+*lrQ%H`(c+Dq*|GlmRsPJ78%zDrR9NTF6|CBV<_JXU zreZ$E7HTYhT8?)&}5w_^6Sbopprq&EjMl(*POmty%h3jcl<#Z_{bH2DvdzGB(v@la}mIwvQmU;w0@ zkmh=#X9_*ARni;I(Ki+f>V^1wZHo~Cr6;TgWj7ux89qE-Kvj_GNRX?KJDT2TWsz_$ zw`H5!$EAqJlMjU$_&@#d@F{9@ ze0gucnT>$&;5K6!h~Bi54`E2ew$94|u|7KVZXHG2Gh|lCq3tNUjKLIc_4*Sj{?WjW z8b%ANwkd=Zi|lM3iFAL_LC!h4NlmAHmE*^S)T{T^tJ)v9g{nBo@n0_MXtl*7bVv*F z;Y%_`j5gK=xh?x;WevpP$y_Iq>Dwx|QebA)pAFjS!#{l6M@UE?w=1$vz`jEbMGh|b zwEaoP|0r*b`ZDA?QnBcR0_bbdFGLAhCuCUa(={%aohd>n9nwe6@t!L*Xz%DS=M^FO zGyTtcEfX_dkF7U?Fv^5b0Szk%$3qbQ(R9Ip{}7-yt`+~yxQ2?PrSkw!A(_Zmi?3cl z&YjG$qNr^Ma|P8a^WXlHqgtNUg%}-n_~Ma8f(Fxu2A5Hz70lZZZbIkIq>-#2l_BrC zOk#8-J^Z&*xK97zO`GW?&by*if5I}abvAcbd=mR4?z_a-MD_|P%OS9?tvz@{*X zRf$a3*v&E4RfX(=SVnt=z!t#(r3+t2rVtoW>xfb`o#r#SJe)xYp4^*=>k$_S?kPS_ zD9#UUHRFA4Mc;a6={5snat`po*0qtf2b-QU`eYRpwv&25qV$ig^7reVc97Agr0dbR zh-*26)~g_K8w445*jggo1h`faZpR(g?ck34W@JPH$WwNpEFyOyS=f83($1^u`*1DD=CVa_~G&MV4U478FW!u1@dFy{# zfGCo`AWVZu;KPF?x}FbXu{(`>Q)KPDk1vqTcj*hJPfm*tmcS1Z;2_BhX1)YXSt}1e8L=$Eie?cVL2&*ZR@ewPL;B<2G$kRjG089p>syA4sC6GGbTY}n~E+p zKt*0eFGd;*sl+++mgl`Wl~+ z1~w_T@@mHYh1ds=>S8K&MiuH`Ku}s#Xh2;4^r~z5ST(y8<(u?vuc*bBxrqs)ox1b( zUZO9b6HrM83(%%ONX77Zw+v=woh#6fW5ApT;6mT2KEVpGHaSJRxlp4u! zK@u}2=0iR$&Wld%EIDWJ-j`U5VT$(^p|OmrrY=DiT%<-YWxBM?EXmer;(6Y zj~Nl{L_!A4YhV<3RdZX$X6L};^H;R=Ig7b3{QOB$CJ|)z@86~dVJDTp{Y2rwEEdT$rZ^oc|p&`NtLTq-_YgHHwN0%2@{-=&81Dap(Kt6#xf?%__0( zb)S`S~{nZeb+$T@w9X zvs_1s{L{6h0tHuKkR{cZ^1OHb4wC$_`P+SuWCb}nK8_X8z9O}2sg%{67Z8|7vb4q+ zuITFSKkaUv^EHYl=H_HSftL%i4ONFtiHqwhMlWpd4q6O*Xqdaw$8slEpcz){u+*Qf zrOTD9_9i0!Gpwd(dK$~(5h3MhAtf?@+M;_BH3H2zss+`cR^J#n`n#2R z6K{e!Os-mzKrn8}YW#&baUzvTa+)yr^JfJ?FMOeYgrpybN~!6F{F zivySbKWyf^TUVMaZr}2^+g?F-u477`(LbC?96Cr*LA0Dk(^DFI^%Dyz?8j)lN1Bp+ z(s7n&vkNKjlaf+iWptaaI4~o2>daRDcXb|*hCj+U{G>ls-^>!oNvI@0+Qz$K z?T$LS!tBPP#85q%(CFu9#y5QAlr8$}6m*&QqU>I6gCg~W`*ezy1LZV_&gW;1%8w3= z{E#a?B7}gZtr*fa@<-MVPQU}z)@B%Mi3D^n`Kf*0nZ7dyb_pi}c|J>9a}yMeE*|$8 z4xQe2Ag1n3mX!NM(&bxcZO%VinIrt_i?qD3oNtQxy7MRG8|J(5sa@iej#qc!b1Q8} zayx&diHV7Qks&ZU$8SSJ2w^-RBjZPoJu0lCg^XQ|CcauF5(X!yV({7Ut8$^p9(G)* z_@(~iwM0ia@ZMU0ex`=vNoch_Nx@!;@k&Sy5}&rAclj?WD(W5YFw2&3n8vH){i9Nr zEUrL1NXmN?g-Kh`6w*rLqyeolC{3{HUTNNePctOevh9OOG%Eiu<@ z)fI1XOE-+AcRW~X_!TYS=+2j(!iqY3=7Rw8sN1;fc&saGJQ5A}vDnR!>}5w(I5DVL`ifune|$>ye~YMF8VCZmYrKKL zp_LK$t)dlvXzSGQ=E&NsNms69+LL^ocZ#0yJ@t~a_KKou*%=5c5;CL{S653SOiYp& zX6}$ffz|h#25{EPcM`AsRL)&fuBpnZcQ%Yfbay-3t|jDi!Q;qB#_cSBwtScL9y8U> zx3O2Ed$>!eie0f!oA#$(O|R?b9v!Sy8F;xO@}IidGV36_jc=SnJYIx`x%Tk6y!+fi zEr(_p2L_dbG@Nb+JedwM;mk{@-Hu1;2Ff$JKl?wCT3Pu~{m)vB2D;KIA5QnhyvPsx zzuCD#$-Vz+^z7Q`j!$YB1e!*_dufL?JbE{kn0@WiFG)cgUoQfUMMu+g;y5j3=3gNN*yhP_Y%oY z>LNgeQ>}QB9t3PpJT6QK6~hm$aadMM(xQ&s&OjUD**v{}3-x>Dr*|sNecM2*>+ek( z&RAxBaQKIL#+6J*zR5skwq;=%A_kVbrM4nWxE&T<-UkE8ygdYSLUsaZ*^qe zdb}HenoRT-2u@`9NAyMu!Eo9{#{&ya0dGD^*Q`rg1|e!>Z5C`dD`ka;Y9Om8gJ8 ziH#@Q=wc}o_CH+wwrWi}WkLJW3K(?4-NTKfdqxrt@)PKbB2W)f)fx3&=VX z$&o}M-IFC0-d*ktb43N=t3U3gO`GjaEzY(qNw3!oK1vv%q;mQP58?*g63| zG_1=1EtdOP{x_^{0&E91>z|jrMiU6tmcjIst7=D4$>c2CIn(sG$;~pfYAwf$(Zkl) zy-=y6L}tB02u&rw1nG)y=xzs~bE;`eRME6oxw;4z{-jyqd%F&&-*z1@mL5}hvGD@y ziQ&M1cP~t{hDzT3NR?8a7`r8HX-9r=%rB2t6Q)ODIVOKfTXDw|>6 zK_`9&M0}hk%Qk24YF)eN39@fo5>4V8v%XLnu!``H>(=MN6(8 z26(1`*;aw|AS^5EL$>suX{()>6!4uJP$=FP+IYFNHKR2bndmb zZcrk}uk=;2ThMX*_i0dU|a(j6z(uCp&{``v&Zql z_%iIh{E>%a`*JrH#2{sHw@v4IYq?TIM~=(Ajq;%z1MwoDEWN0$&m%dNTG6SHQV%qt zZ3s{FD@QL$-tSKP2!71AIq*V=w(%Dv5KuJPKZDcI>dqx(fJsv#qm?61@0(pw z6Avz|w8k&+&J00Nszllz6Jn{4nV&xrNu`+Qn3;`wg$B*^p{_0{y_lTDQskIwT9ssY zeSaF2t=5s?*ES^5Fr<3tz+#WdH@hDp4=$B|d2W2)>=za45%JzK%hR2ecHJKY5M?tRY8z{equ zJu|iY6XW8V?$xh4xw+fl`2?PmGqfytu3RtCWcJc2H6t-)yu`>GLd#NAG zuy*3h9Q@}j3-1AMU`Q(bGji;mLngndr`FH$ll_xQ_Rox+KEfw|7Cr-Ro-c2$=rAIK zem2NKZ~}^#N8Rykz>n}b059Gj2*V!4gk)qM@6cLhnQCm%~BQQ@T zXfu&2WhA}~wO-ehyXU7mArFKE5O7BsPN+mUusFb<5(xUSmx}r7#~x~n@<#%>vMDSv z5=W8yQ#~5%6+d(U12Ki85t{-$xy+Yfu&}-#{_R*xNV?Uc@lG<6sO%tI*%}4z$Hk>a zQk{9LgW@MDv0d|jJP5Oe887oHeIP0pB)zy38WH1?L#Nu#-4gs$<5cIdikL+fkJ9ZWauzLQ@btP3tE4cFh#Pqdv}EXot?)-14-}A?I!XwE%!e9uFKP= z+*TSp&wq7sP1Zh(Hvu#TQ=zz(Fm9=zl_l@}ZyZNL>H`$s znB4|##>C~7NQcv+s=II3og18hnvSA!fWN*e^MrLmIRcz;H!1(O?`>xN|KInp1H@X+ z`z!_t__#YcIeB^Uu`%mN%X|#n-80?N-IXIog)d+GWa7~W!aBEY2#f2*37%qH*e$&LKE-a#5|fIjr&63SDnm~;14lP?-BET61h7kPJm3(Kqy&)rG8K~ zR2Sz9UHhTOfwt8F!#80%9~s2& z&2nA36FGfqwwE}cN@5FbYnwC{pqC0*r6{c8VpZK`21dg>WE6g zGl}-AlzIeeF*Qa@dWV;T6Ck#*S4xIcLxt2}s@08U;6cTemgL4vKSwK!Ik>6VUMFTUGbYmV2uHqMo zVz2vWV@mCpm+<`a5{gK8XY}Myh{K3ByWe_^T^XVGsIP8mkoXo4UlvJQMsQC?3}3U2 zb;4`O_ZXvdTkt0YlPbqwKtn`2u6NK129z5=OivFQb z>#WRemSwAgWmT$^JFlmGemyw#;oRsQ#wL=R2XeSK6)>6bsx z_K6O4ZddyY?dh$fZ}Zigoaq}8*2NV#5T3)i~&VKhf9|r_r+W!q=wg(KQgHIIba3^S3sSI<8TSHW7_wLNFcY$ z)AL%GE5@-?UJgnQzps%vHb%6<*%evp^K%9rzIAeNGW*QD^ore#z6R;J1P(N`BTI0Dmnb_{QbUHgFh2{K7+1*q{!1zKnOVPTYEJPgjiy<$C8Iqbzjio8BABPspEIzv`v zz;(iEM@3>FwL+5|Uy&XS>x3LXs@?!HLi+1ej9AhOk%-C^xWXGC$8)Kx3tldWPU(#6NMop}PTr`e>TND_-T~V4fJCdXdU>@)$uIF$yglLbcTTP( zd0{@dXs7t&tKYmMv~%q@CSEVP%@EIA9VcP8F{54};k|SnXUfs(%%a6j6|4BxM=WMi z%FDCPZI_k3A1dG*zZC*zNPOTW2u%gbLQ#q6g%uCID3--|^k@(X(YUJ})-Ld;Z{9HeVRB_C$6~2^tg~bWqkwdeW7|)Yt2^j~x z|J}6I*U_<@b}k?pg)Zi-q7VqIjuc1F{>3-P@>pEY59z(yzN_TtP<0xfDz%I3dHceBw5NKF!uxVa$Rv3IsNj2rq{m1cUz@KaF91{vsSvX-?s7k5 zz~~yMsP3D*uCOv*!IDqp?Z~1Mk1UbjYq_yq#swZhQfgL~kXoP_tYuAfqSB~4umR|W z{RJ)bR}jWM55!uI3=hxwC|vGxTRh)VSXD8RI`^~RcT{0@=)&aUt}lBEU!MNxE=5JLROYfMT%uB0yAMR#{V7>Vy%Aicn~$w zO;4dV6}<)LL47|gY8loLXH<7T@fJo2Mp9Bc`io-TDhl4E9>pA4Xds_*B3g(k#D69E zs1+`1WOQsH;q8a8{4ydXfGP4K;a)XuE!#B*K4eZH6?P>7LzTN+`RA5RE-}Y5r-BBk?OG|y9=|A1B z8$9~UJOgLGn#~(s3R8Le(bz_|g_GOO$W`xa5>`J^tPW6OEwKTrAgjpr_Q z*HE7u{{B?=$57z6{CrHe1GF*#txP4UjQsk3sJqioh6s`pGWJDW{`>uHw*!GdVq!=5 z;NSJ-50-#A<>TBR5py&hYdkfSt^sj#N_~)EupntkNf(0#Ib?#P7o0!RO?I zubN@##mkS$PmmNN!lU}1763KkJ0p5uc+Gr#HiT>d^_7Wb%@^L<7uo+-<{Rdu5d&S0 z^)6rGe@Qy0Q_sA7RJX;V|d3t_D{b~v)SA4_JP+do? zAc-2fH8hp^*vlo>Eg`ndyf;v0-`d;LPwuEi`+EpNYBKQb1FWC#sA?6c+WACa;bpz| zJs!JJCHXP-RldZ*H%UL=s@ZVaew}nHA4`%JFv``<2CbQNJnHn(^p6fQpIpkcMNxR0 zWs}=-Pz$^i)DwV+Khkl@_*X%?4p}$+j5^IrsxBbwm{X1H@Lvl z-#P(~!o7*jHib*buunyh;Da-{AhaNIaCL?1Vg-|vht`Uyg)pZyEezA=3J|N!#BP8I zou2%AW;pBK=QgV`_P!LzMoS)F!b)y~PIkUb-Rvq!+qS)dX19*kxU^T9nzq4KQrFyk z%ZwM3FCBjXF$Sg{m~z$K2gSN07v6+y_>rCMI^cu`5(xkN8 z72&BxuQk&No0>}v1?h6Ns>@XJ$;Hd1?ckZ4ZPs5`J(eDwVU1BpDju2os%gk9vC)sE zhH_K`_lW3CMi!rk2UI2y_0{(B24V?o*a>AU`Fn}$u4@{x{sy!A+YLgdT-;(~*3Ccb zrAWyU6pi0+A6pG{?2^Jtg#wqB6WpsrE8634TsX1)6zlTG7p^pq9PO`QC43qBO!CLz zf%gGmj~?x_O(BAlY~+S%K8LF+ew1)JRHgV4oL(<(7XLGYT5l%UK~Vv-M820pYTbRcX+FhegN7SaJ zQYk7p`U1@m136d%w*CLT)sh7?sHll&zF;#}ro2$bEu|zu`6EA7T+g(jKmj1hk-e!# z_?(64_}pUXQ}K$)Q@+D>o@H>*D$MHq9|l>d6qq6dbICR;TXg? z&GZ!cr#`?5Z*8z7lg@5tJDB$*l9ls_?MYvm1@0>i)JoVL_KugeyZIcQ_21iQFg=?h z=Ce2Ob+SCbhOfSxP?;e(J@oeHdHES#L1jl?Y|mSx-q;kPdnX|Sm^VUlkPu#K3`HY% z7=$i*G^{H=6(^dU@q1}K?HoBTwE-0nCE~S?Ae@aInzpB*PIX#bnxjOWR|G z-a7K3Y*z~^jK_nzqU%Zi5PLs{)CMM5be-O7fJB?djV2#S4RCwPWM`-^j|dS6z@)Y|=AYcB2(CwBA~54K;@+f3!yh1`47Q6HrHWPw7ZG?CdC@hrWKedCu)0f|lDDuo2o^YK z1nZmCLO{c&%T4hQ$|F?9Xc7GF6R%CJjCA6j`daO;%u}~~m>Q;E8Tr(}ZSBuxpRTAy zs|j&|qIxz22iMoRWvw$UT_^7SSXAHp@ZaBAzFK7C>c^tTmabuVvV!PCQkw7YI~p$- zTu`u^>&GHg2AMJBfJQ4y$RXLJ zl^9R(ag2bqnK zm;#_IU|8ztoX)-_NXk~|crk6W`Hkdj)6wfs*K0q4x%ywj^Q`jn+@D6bGw=RsKW(^T z`tf9QXTVc2+XMpP{~_ybprKs*{qd(lJB3i> zT}?$1qELhoN=Ya}5|buPk|f!ZG)a<#B=5h^HGB7*|62dE&ROR<>pYLm%zaIFBk_xj<+b=0tfR@)Ua3e^ZHis}Wx$T_zjCSACF3Ht)`W=$K~ zSMV_)w#L;WX$u9@ZZTHJh7NWxf&p>XOWS{e>`cpbegjUG8F+HG46QB|E=+;c!|DSv6T`Q(ObwTc^C7&{LH@iSi^d*hb9n!3fgfIePu zX}F51T5dC1-*>;SIAp_lmSIC4m`aWq;Y`_PigH0%?3Kdtp%H~TP3AbznK#gCy6}Jc zY711b{;}k}`n&BGo`WT*wFmeMUa%yDe3id^ExXVMsqX`)&(t`GtXkyS}twOgWMB)2kVN2>sHpwhRyX^U8(wd5+(X* z;pay$4sWcRI!z(pBUE$O`McKHn#D@Nap+4b%CmpgQd3Ymq+>C$P! zcTo_j@D({?%~h+8S$lGsnDMu;fz)84z@&HEcKJlz=ddt_u5akr!6^6DR-SYc7Y6*0 z*35rzudX5XAIGGNno`xD6A?UU_!b}9@u}KBkL&zAzSOU6qjqBF(9lqQ?%&aN%V<5> zS!`wh6>o+Euf)}c2MqOMu~v`4JW8f*zO;RkOxvf}!BVbo9i1T;gjf`{D9EEU;<~iJ zD(jn|rUKCMrAttrY)CEZfy*C@;+>uPNcq{1)=s1pnlNyWAVZIS0z&7|_2YFRmwLZA zhlBgjCi}7L8#GQ-DN=o!cTTRk5C>41`XKS>v7fo?-rdh~-d@|JaXaBFQ?&Nm$~PU4 z#*gYed>&4}(pY>W|MUCA(W&7D9HAR%H}0A0eGj=$5oL&H7UEVcUz-+27@QyoH1JzI zT6OJ!k0K1ti1zNrtqYh7GO+4>XV#}kmn4fi#92ZS>$4!j0DTydEL^u#-9T&T2aMAt zd_3zAe!YErv+e**2&|H)km^u~cwK69Pd`I{QPc)@@LRIg8OjPE;#P~=%D|q5;6LP& zgsz8K<$5hd{5Zn26Vpk1WDh1+9CFV;nVnjvSdl zVb2Vq9PNGO+y0xsYu4yVoe^Qcy_j@tUR_|3KsqWOWv~KZQq9G zhSv0Xr`GGHHju9UdnIXEgNIgpx6iLVZy*t zj_4RfJkhBwJ^f~!Xag2DE%=t8@p9CFmfZ@Ov3r#V&C+WoQpe(5l0SVa`IL$QR*)m{ zAt52q94LjGO8V5F1pNG(vR3{6Un|#N`0~fRQJ0*+qjOp+YX6~|t+VWy=y;gFGc2sq zJ#6o_k+swIzU=xGJa&93ou>O_!>)|;@4n6}KA9{l7&uy_pKleuZt1u8OQ-(%`@A=k zZHVP(x_|9enJr)6UAFpPTv3~np&)QWu<^iHm1 zXTjr8(Ow}J&OL|Na+~TrCvgtuwWKW&&QK7w;gtZ{DbI+g2Ci+NM7VUP27Xx6+qXZw zk(+YF+Z#e22ycENAMgJU`H&QT?eau`92Vc2wktIR90t(>Apta3r}ZpHH`@0!ajknZ z?R$P;m2=sRYH7KkKMW)HFoCb+)`J$I3H3}cXW^R&YjeNzMONyb#7nQIx=bMy zZ#L2%L)Qyb9&piVH#mGh&7tk^PSe_6?OwVe7mvfA9X*Kv67RObt6!r1)y9+AgIu#dd(W%GTL+|A8`#Dck{XZnWx?i`7s?%3_P)?_(;?OpSzzf&6Ui*&XoLyv!(lbGVLw>_< zD=Q%WfN=SWX3?NGag`~`%?UiF0zo~zjQA~b>#=(6%mn2FskKI2!Rv&NAp;+d7&*Or z{Va7)5?5O>i>bQh;K5aaT-svh14Ys4ElC~+$53uJcBH&?v(p^M3Yp{yU(#OCARGArwH9#DLG!&$>VBLq!MKeA)8A1tcGgUpv>!Q#D z&~@Zw;3xgd#lc9-#F-wDG{i*)urIC`F zmvk zH3la$WvOTsq3kKJ*dM!t&9JD$JBa@*_e_V!F109x=Xn%GvM>S0Jg>C-4D%ac38=$z z>v5(_AjFtJk^@OA5L1_qZ~H9(B8@oojC6Oqfs!-Y$ia?0LsrtY<3=(_?BZbc1>xq6G>TXJn| z>U91jI-fbJ92K+rnC{Eaxh;l%t2cHH>?{B2cQr@CUwFGF{x01k zOtgKu8!uKa^0jmHp>s3G9S>df@WeOU%F}1uZoQlTSh*v9!!!Q{OcrOtjws~v zVwV@Uyns65@gBN7b*$j>9nI(~r&xxS_PJZwJcUr0Ut>Sc>zPBj`!48cTuJ@kkAm-^ z4;3;ZrSJo>3&n0DSTT`f&zY=?I1>1*9UCxxcxoYDE!u8&pcjJZNYWK45g3RGa% zB!r^b%U?4dWu1M4Se5tjfSF)K{Qmtr+-6X{kP#m;e4A`K>3mu!e;P2_p+hO`4XImk zisx{U7Zqp?8Wq*Zu0!ZgM@n3ZNg#5iLW8f(<2>fV7doxx{Y95_4j^e;B@S6fCJ9qH^W=+sWnqSqO~8Cao^wyBM6EGDu`Ne&PS3$frSQb zoTv+OJ(A9jq+XKO5DVi*5{766{@il*g)Am=iS zY%h#WTQYO9zR9zyD*Us6$QbWp07W?*AUVi7s@>0-xw^FK{4x09 z(L@VJO1Vv%17KFS0!MR1J|sEpjJ8W?g_+wEAECoP5G8I}2&o4%5O>9a*dIgvJvb2e z@d|fldL|&|0v1voB!w%=4UY5m^K)WGnI5Q9rpe|TN8WYNw7#u>>sYf{joiqOVn^3k zl`!u*S3EDz+?v?&_=4GOr&()No=h7Yp2wu*F3Aet|2?m0XOZh0(+`{YFMT@aFit<4 zf4-zhbGl$fKz9t~(U^BXI`1DVTH55d@ULK#N)JEw!?Djtp7UjlYlTxz54KJ|p7h6L zyFY_&*V;@O9IvK0iTa$r`=89uirexYA8i*ju74CUe(bEW+Z5e>YM;uu)IXkYdi#Lx z=rCo)7G_nE)q(lDWd&#= zt*i_M+tS*@r8N~Dfd*}^+=P-QWRM(ka}y+g+JDCeO?5^hS9UN)aS-@|%eb^L1xMS# zzXcNfzk5j}JL$j6N*mUBn6^B%%D6zWK&-kITw$xl8$%rmqQC$yw;5Dx(7ZlBz6=d1 z3b}@n1H=BR5zwee?&6SMmjoy5^wST0wP#UFJNxiEbz<#8a|Vjaqc*Him_m$FCZi8lF$=vkiO%9QI9b-ZSexswO%y>@x0+8=$>doD4Tgk41GKEG!it2eOw{b zMX}ZEt^01u0|Zqg3(I{s?kHei7=pK6!_W$SY`#oH^tQ$IjAxe$vbSkXN zQe_~VBw2N)ro||m=q)H0DheCRz?Qk zC8!h#DL4#JYzrH?W{M&tP+ak?3+S@qe{Po@*8Z8Rauhr5rEkh7enf;!c9ZU_F-xry z5))%KEJ&=HApF+Rk!j5Y`kdE+(=S*xOfvWvNCj}3`*^6Py-(Gp2U-IvC8OZc|DcHQ zS&aYi3EvZ?T$&}a(yT9laU$B4gZT}4PQdqQ!pMpbppLZxrbDiSpTrD)?VgD(-3DV0xxBrd5yx+VTEx+gP3)EIo_SeNdfS(d0 zE|+vQyBMTxwHoQhh!du#T3T%5N=agXFSVE?(Jg3NIP?AFgp8I#u)`CL&I6siUAHjEVOzO z%LBMG1ZO90IjZv5^%8WNAsXLbUeJ@tnLU9VvM`d4u1^k~L zMF4E{O#p1eNl@2|#rE8}>0nfdEa#-1dA#w2K(t1()kNisFJ3P(4AMAKRZ@EL5$o=p z%rZk0m8mJun_t&Ugk1w#QB!1w;^Hqds_U<6Hg*o3`uN)+!}X>f+H#3|^_-LTt!@;& zTl0q`dK|sZZnn+*rc(7+j*lzYHnGO+Q{SkvQjmrxQr9jucddqj z{qGu@_Ujtb%2JUn2p|fBNJL+xZiTuNxIu&gBAODbq}UzQ$`tqvVYsqeC4X90aI2{k z0TJ4XQ>kNfIFkkMdiufNO88JCLWeOk1W%uT$RGfFFAql?n|6&I%nrt~ zqNOyMXf*B2ffsf?!Dr>1FAaf2yn0VR=B_SJL{R{(%jFq zVKXK;(la>LFjC4GL-yCDF;SC{c({?(t#hf3$C?Y_82 zeW|MLC)tx}Jx&*FoMP6^^($5|Pn&mZvQfULg3&{^d+uM+J2%GveeQ$5jvoEOG-Gb% zo6g?m!%rqAJ1ete|BP{$Rh&4l?(33E^Y^HFo}a&mx!&abLdCEhN9^|#wRGJvr|M!xEl7k{_*=ST$D!y-T1qoZ}@; zfN!7)Z|VdChCvCr&s-W!2&uzvq(LnTb{icThH$x1ohJO>Yr^>7YceV)P~nL4b}m6w zH%PV9n|*EIR73A_AnP3zJP|vD}iLgWA6eAg_tFx&ndhaqGGV{99|Fn zZ0;ok76i=rj!Ezf5(qJqTd2cWnv5K~^$dM|6Ogy%Hqyrk)gn1xY_efzQ#pkJ6`3*F z07((Pfqk226liDvgY#u-r^o6V9@1g_OD0fI^wEP*RhQj}g_FWv;CH2$5N>OdRfpeL zDx8)2OQ7^5CipUxBmg5swLxnS=D%JS^0PAlKI)zv#gn13?=c{0}E%ud>j^|Djfvgf4C(_ishyPt(@CvSSTk2Zx} zQu*$=XHIk3&8f$EEwi7!$^EkTy#9{QFV`rArJV`lPB`}FkCnWkm;?gcw+M^@{d%fkd@RZhbqY9W5Rn~p_JGnW3?8s#apS%?` z3f;2WeYa_Cqq8W7BY@yjM&wFTo6|UA^zH$afAa=xCHDO4Phj}&-w(7L^9!a<`vp@= z`nS=k7)hE&exN1=X>Gs)v=e)@l;wipe<>kBiqLikLi>lv0Q~+UB>3W`Zs?E|ApWx0 za;knc3LOkzU>X-mC`XYfuPBEn`%4rCx6t)7^x?3~+|k}5jsepKk{kVw*^hI+9M(j? zTv{9M$%~urvguT3UZW^IN3M~?hO46azMp-cV#{iQpQ2&nPE_3gg{qyk4Q;Lb?1Xdq|63AeCe zrGv`>$UNYA69jSL=jPULVw5A|?&2mGNo)6`RKd~`qog$L8uEm2QQP5va&BOQ^6-Gw z1b?7Lob*~XU3d;AU1-_x;Ep|Jq5jvk?U3VXkVE4g+Cj=~Akab{P7WvF{q)4=?rRv6 zq*oLXkH^t6Px~PH&%)m!oP#@F3$cYX#{Nt3reuE9KW9>Wtg!%50TUJGdd2-XVsmJ`7 zV{h3|?`qeDpLksF+b-C5W~R!gTTMLL2ffF>u33K@TMj1TjaOA@2se(bn$Ub=?MTZu z*18Kpf2c-4K6A4jPbl<$6}E~ZXg3)8;+#E9F!0cSk}Q^EDh4FA7-H|X!US;(!>()J zu({ZzbZXgn9j_(Bjg(+OP5LHuYFEE64SKgi>6oHI$Fq5}{aNdw;AD($n(-cre*+3# z2sa7VQ==N3-8mdMXBqmxSkdqmzg7{?5e_rZ%BSN_(?Dj^6Wiq#wvny<5Y&@`b=*I2 z{eZ2UG@h!9mkdU)avMbvLW(*(u9N01?4FdP2uTyVAa#f)Ba$o|47M}JrWwf!lh~Sv ztxv)E9kl_8pehmyBFI?Ld_xl4tjadK&^7G6)uND9A+&EK%0XVrm2!4yg165Fd;Q6qf6O5xC4Vm9~5;)ng7ScSwg>?RWM zo3Uxwr_`cUWs|Xgt3`QgJtOaB6sw}OCyA{eE-;kWhmYeN3yTNO2+q&%-?!J? z?(jI!kjD{gRe{k28|<79kvHreM9J6>1&Q={geY~pnm*xhuu0XqD~e!lNv~O?OULI; zQc@R`G?nbkjI6kV`a)}rwC2%X35Y~Oj@bx$BkXgTfq0wrO$f>I0p*C>fpLC^dm2*B zxVSm<;)g`x+Kn3}0qz66z5nbPYUD{2TntUx^W!Ck<;R{r>ynl4`f_Vm?QOFQG?$1y zYO_stcxyMSdoUHAu;=K%o2@J}dm(GVr)rnShnnjT?-{2yJKay4|L)H*)aCLAzGTMR zKMB!4VO=zC!3MPnV!0Qo!cuLsuncu!^C_=eUG&0S{a0UQOzMI*R;58buBdyq=KStE zRl4VAe~Exqdgx=mh2)+5G11SjD_)lW7{pE`>$4HVIhXwAMHsA^@WrfyzF(fHtW{ z;7Vuc`?aoa!dXMw8aQ?CLX(1g|Ma90zxJyF+6Rcvp*gQxI+g3@2goUWloA?0IX_vwb4 z$JYF9XCE^VLvFvXy6igmMoD=Oz5>WUli6Vs$a7)99Xp051jO0w@~z*Oaug=Ec;oq` zG7sl9&@LQf((;e{o?Xe?)fT`QD*#xG)&nRN0eHbz2#-5s5*qCbkte7kiwh;v_Y)ne z6e@)gQVzpa&pq>M@u(aAMZA%LILV2uXmaQa&4qWhD|ki#vpJ@zG}ci@fe0GYbJu4mBQx)E@RTV`|nk? zqBN7pqQLm!@PUwxlzp4k+^)2rZ-_W>Vyp)0f;9}G&lF_O$_m0n^Jzk8nm`O?o4w8( z{#2cU{c2s3^qa#sp>JXc3{sw;jMy+@)1?2A_umg}_;n-b*NiXzi*c{M06IoEY2 z^Ug8%GYgghf-9ZchDU?AeX7`l8ZVPvj_EQ^&B@x;gPF&DXv>yjtl}IO%y`t)Y(6-nd6u z=R0Gj2!FmvKa}SL3IZ|{hDzYE@6TLDM}0r-_o)j~&^h8UH+-eS6oCrTVUW{ipUb7; zTZLE?iOa{<7F(h~;LDdUE_`?a2mu0S1rv5_53x4_quKs5v$nbD&pN6O)Ar5CUrqn` zwIf*qOd}$x7EWgd;(!+Cz&evyg=>VNzwO%js#Z7~UrZA!ihyGZR4yeZ z3c2^pI1sYH1$Ad<@!h+qE`oo2a9CR!r`M2&83dn^?Q%)i1?vk^cbQ@2y`rLxEO}w` zbCQPvPf}G+Mg~M2{l17Kqw3=DjWFPc!P`3Nq&>*e~4545@2(tLiKG&L=Ml$4G zk%dicwLl~BdP$ircuV%*dBWX96fp}FLUD!QQrVD-Dekc56cT+jgc%B0_QI+j>{pOr zGf;A?+C=1U;?4q4a^)$Ea7mRtTePe=f*>9(0 zY5m_^4k{Tu5^`-9&v`Rmee-*3om(AyEd;Zkgvs`cQj(@Fn?|)yNp0*_XFluVK*6Zj~q}=iS;dUY9ko1$aVcMI|1pU+-%c{s4zTV{1Q!vqT z;!s(-kb%Hu37;cIps!I4KMbT7+!KStAdq`}c?xLgfx)ERbF0RQ8AH%o(!Bw8T(oCc-pNmAd13JUdV+pHr`mA zgN+w@5Y9|?FyJm(0h~1C0>Q~fl7i6KnUMkaUA-gf#bGC%CktDW50*nLQBcM5@yzVD zu)x1Lq#VNhsvcN)kCz^8?RP5x)CE~2)jGF+3nR6?&>scSlUs*Yl?aLk~xWPJF#*TJZQkWo-iAthSpwX>jGl ze^x?{IcvR1UHGbvwR}ZK4Z%E@EoTCI-Tw?$Y8BJv&uA27FjuL!%qvd|e-NWN8X{|1 z|Me-v<)>6n=3Vrhr!Z0$=Nm*_}By0Le@$@eO#0luS!60jwr?Kw|12f zPR?W1_WPE_eT6=Sf9Kt)hq|>WGWqqX`SZ@U?3*_G)TNU5Dit!%bc_Y8TPLVtQ&{U6 zlk+$#fsU_t&OW=qGxx=Q4C8r!rwzK7`2Sh#?XGN#EX@h+>N6`|PhsD(>G%{j{!8cJ zerPiolh91HqTBMokC1mo^SJ}L-75v!)}13AH(RsToF2{*+w6<|=mi=KT10}uc9Cp~ z6RZkY{_jIVO;WJhuwf%4H#c#ZV;G6%ECio^@}bF*|1B%H+%!esghbtt|6vEeaF0)O zpb6zq<1Rx3jPBWfU*nqFH`^mt0)PQR{PxuPl$7dIEO^h>nji`Yp70|_j$r!24uS-( zs13+1hjiV~k0hLjNs#z1QVtmU)(i?wIb4KkZTUqAGI$D*j;u>^;VWW&CC(lK3kElI zq_ICk!(+3|s0JbWmG)s0s7S;)2(3A+2|-S=2H%+g8Wx<) zU@G_D(KA8VbeII=nT7hFCNB{uzza=g3shj2fMu2@!whs)L{9Fm%$a0I!jw#KwCC={ z*v-|VkV!(ssE0{^I*Y9^U<*h!ZAQ3kX!dV!k?KmWQy|?5GK|2K~nx>$C;52 zpC8Y;UfY&_?|8Nyb3NZ<6JO{s+Bm~ozRYrSdf`;7tA#-mosD|#?xa3{9DcVi#-c6j z?9*Mzp`2GgPgmVP7-k}lja?{m6{jqTeCd{|?LP!>U0#~C-(OWNZoqS}Z}6Z1tZQFk z7@4^v#G2XkOld^YhqQ&DZ;!udoYe6e`q|rFcWmuiI#u6<8JNw%ScJP6PHL!$_VIoU z`biZr!O3V!OstAAV8Q8@-jubdbMcQ+n^mj7?N&Lpc*e-Z%bOtu{%554)Az(pnP=IB zazWz^BjK!$H(nivvm2@~ueUrSaSmeiL=x=J2-e~mfvBmphw%UuBi@05x5vjx-vyOV z)2*57$>Yv5LU6Z7QQzPi@_2!>?(ziC$YunuPr;@YZKo(QAvJ~44l^4jw5~XB^-aLL zl^&nKGlC2*(7Lb@Hh<`sx3Ce?^mBDn|1-Eu2ER4`p>G0RW_k_8FPQwWyu?61U>Nz5 z;6Hfmpqw<4cv;rL>95J80ZM>}olyC}(2_p^{HU}i<&xk+KK7tP0t7hs44|oa+aGudKQn7xrYKEqZ(**3M?X#W&RQJ zWS}++B}h&!u$=$+MQcyN@iPC!k3EhTMsL3w?uh9-b#{J*QD4T~pU0G+s!iAWu*_R> zBvyf~KVQ2fe7*_gLH%q%suF&1@`-ixM6ST$09mxS37gMaUqCt(|Cw`sE@v^57Pfvq z;?-y}YclIUS>3x;=W{eEsp`_Fwmok<7RsvPw6)1@I}AVy_6ZV>1R-(qJ{3ByeEcMp zQ&|DS?KGiT^mqy+Vx=!ve*Ge!?uRtFhr}`#X3rNO?h59U_YDU;D zq0SUZ_Ce%K*2v%>*n)9?d?e^o0)y}U~Bi{cz&;l5FK zAWTAvDn3ZUb)L1jNxFW1_y95;G@xOmtvL>P(2Ppql7rY5!3((+0FNLKa8rw0HV2ry zG#jU|qy#<#42^--ur^ZG=GKGo!Oqa=oK<%qHf@UV9bZn=g*)Q3o)kyU;j9kZM!KK) zWF7e@?szx1b!0*NGtnlhFh&Rl#EXLuUIQ->r zrw07Wa1k&j!5B7cspUNs-XYowIafXXVliqK*}=f#z|41eAb1B6z<*^~Mr~L?!Rp!H z4et1BWmee0q%doaxLXU&SErLcjW znlNCSz?3M?!B-HRZ1uBj7A$jykw->fT#pgGXc~KJymrJm%G-gWH8sCa9*VmBTht_9 zq+;*m?I(*4s4*A5^l`^H0i|}e0i)cbXbpKla-AA-Zot6B&>sV3303!bpPC{r9r7;| zAG^Zvj?j({kJvOsgh+Mj#g?Ph%EQ&T(oqxC43(sDdJWE%c;i27Zf{x$hozp0FMLDl zG22X6Ab8~M+pUZ{^^RK3o3CvzEGTH^-)!pqod&z8QvH0ve0ITlf*_s2StLw$A;c9_bGQ9?> zcM?QFpLCK+vZ#@JA9=+%9l00~g_l`JsgM{OXEf739ScS{jHh@W$J zXC{CY&3FwXd?w=Bc$9_OBz`Rxr^%?w*tIV7_y-gKUV=mr9vnb zTgsIk*QX(iRFKS$WP#1WR~)+D6fqOcuoS_63=W^FyX7E-@)kvJ!sac+)vyVrX2@5z zT~0X)1*T;d@^c`j>?895LIUw$_(bC>F=>wWl!iB2S^#cCXjhjfe%1Vj8R#H2BDo{h_gpQd{joN!Yo7zV-~LrWmeK_9?0s@K5xHv8OVM(0o+ zxwfopx^h;h+nYx#D2bn3dJg%P`Ft<#obRbLeDKSBS1kqL4@Hgd`5=wqTd~PTr^wFC z{jrZ+-=JhJb!#&F{^$tS`^5NoRMJUj9l`ye=6_cJ*#SLS0XQS@t4*EQ7!mI3tDTP( zu?=TG@$j3IUK1tCxBjYtk$nI5{I_1Mm~rq%^!DBnNxUHIhKG*$bRGDLpig|l52?bl zfyfj<0GLauW5E&f6ebD)MUu>9`0a7!i(HY%217Xu8Y~F-jMEd>_`D)zJh1;G@|VQb z!)S%OKdWzKM0;k)qF_i9rEy7N66gwJ(~zBOp9{rtegnetn_UoT3neYVh7cPLStKbT zLGxa8i=Jxr{yWS-!_=+kD$xB5A&3P)_FL>=#1w;7x5f;HafK5?PG{J20bt?PAs$YC z7*cMGYSJ9WQt+1KHvnyF^`Z&4FiaT`alr!y%fD4;vhY8}Ie1Xvy0J4yx-(A!@da?_VKwR!DFc|Su*KE3{31ZN-;HWI`|zs3%mrda z!pF5VhJwr)Pc3h)1WZ_&JD{;M_sBLom5fVxyD7LzU{54g3z6DTY2NS6Jc#j2Eec0S zwwW~Jc%CdS1>ABe)o1O@NezRn0Dp`0b^QF{1Il?&K}IAoNCOVT(t!g$qQW+EDZ|O!)V}f8H5HlqHWO*%=vFSI|v4>>q6h zt*VdJVlrNa}@kM~m zCemG~;IM&1Sj92~Wg_VUR&U0!kF_UpLaI2q>K!pgW9%|chmQytkaIq8`(n$3B~6H) z@AU>^1Qtu2Q`9IYa*YwYYbhb&GMSyj0m38Ass#k}UrygX&3I^BA@L`f6H5#uIbt{l zb?Hz)BBBA6X)Hz20>iD0@)kFg!ASLr_^7~&FFXeb7-!YRO`2gs*EdqH6B2Hdufind zoDZ)uQhuHD6-7zx0Vv6_HOLCESr|s*gaZwOnFk$F0|SK(9r(~OYCt)O997`XH9QQ^ zB~7hfmh=-Sqm8wfrofS+QD{eSFyS;fxek9U(hxP{asEM^3Fb;FcD`PVBs6d$#AJ!1 z1$WHdyL=s;l}3kfvWO8fh|NLY1n3j0#}(zaF%VXTQ*!!gJ-#C7nx;O#CM12@nMWtH z@hn+ifOR{h9K#5gsaOnhGMSBS2n7)~%S=r%`U|2JqW9L%vKpE6^Q-I`b#6e^gSNsSzmNP=b@5|yG8?F~X8e5=li(E9h(nZv zQn*t?0x|TB0Q>Iu9r^qjxXB~|w9hVz|2^q+3jg2HUf{1ovR-dy>?gKG6pny!qa2m+ z$-uLbU?leDKV1086!Jrhi&A(Hs{%gG4;ANjX3mtQB9#v)IOuPwk1*QK`rwD2{&1a< zpB?#4i15ZqQqzY05D17o6>M(l9Eef1M{+V0i?uZr{J6|7qYF$J)2NW>fSFY}WyaB9 z()3JtwBszp-F1ImpCQh{?;`>s|Ey=oQ3FEq%?Vn#`czIK-HFYBQCZ|l=$^$esJIp2 zikA)*Qk4T94s;vErrm4@u&Qq&?Mz?_Uu6M*)^hknr0$3a*jTjLW|7Jdd|5x)M#OUBw$WLSG();@QAXTzZ zM=?2mO1KCR0(4aNxp*hCtV%GQ;i-bkl~Hb=yDG72w|X6DX4~a8Z7*BgB3S(cy|_BP z5f6uF3tt#U6Xfp7LNg`JP7Bu_c+9KBbV|Xu)!qwHI{s8}P6 zzt3(32tP_@BWTOwCTMj6-}S;p10I-CB`z!*=;;mB;v2jni=eM{OV^ zra+o9iwH*7OAuGN72s-`D_S%&1dlpI4@H1n5C{T2?_o{ocp%P}bm6`gazVCsc|PQB zif#cInOK$IY5JG)8_l5kl%qoU~_Aq^DmBH^CLg z4&ER8BlMu}IQ{CHnr$L2@6O&Q6Sg&IjispHADZ#)v=TL7`d!O6VWW@izZL9z2yVsJ z9C#*7wGW*0!5sj=hHBMQ3-YGX6j|d_C@7Ycrmisl$2XJvjm51Owu5a%Z zti*{=D&ybtpXJ<;VE9AFilPXyc6f30Ox@h8BOx>BMOYrc8IBtB$=?*22h0ll3RaG^;w}vP5Ksd`}BOnc_oP; z@4!|wX-KSV_r@U(^)Py-0P55zipX2^b&)t-tj7)bPM{Bh|RRf9ENopSc-%XsU8^_lh_*=`n&6-uM|w5m2np0I|(aT}z3 zyo6SuocRq43?bZy%)~qzhOjxIfldveGY19+zI?%xP?u$OJ;U2`zWiwzD=O_VfT5e* z8wVApSY0~2DESQl$I=|+sa-foaD8Iug)And90Ak_vT5zXh-aCFVFV5JJ^lYC1%ag9 zRD+5+$z7>t9+KZk@UJ>}1Bt~Si^`;v(*9W@&-?X2kIMY|R{>lM#5IW{Jj#PSCvtkr3UG{@nnK1x$B>OM zVznp|gn|?c+=G}fs@W73$UjJ^1(q4O)gN#-rBq|Ik;)4^JUjvdAcb%saqxI{@*4nW z0Es|7La({nf~SYSjqZF}vi{xLxtF(gm!JX}WymDv3GWrc74*SK>C&T#1p-b8Yo<5{ z^cQ0ip&G8SC*dq^K1(Ch9B5@_p-Ydg{0RR>>Q)>h-rte+1y4+ctu(_FX8g1^ z=>P=~3u$h$kf|&RMlToCErEbu0R5RT5cg<~SqM)NjQ&Vic5}-y(PW*sML;@eGt1#mg!+}MzcNdw$ON;SsoGzSbV_%OI&yOt6XA7};4T$T2aKY{M1 zfX{@d`3&C8lAFGlcSVo$4^l2IJsc#DB#k?q#qq|_Sh;f#1n^bDzQrf~Y%R&sh*y<` z4#j;_R_~kdVE|4o$B4!pwD9d;{BC;lK9#LM-JOP)FzzOv(kY2sk8jkefhI(S z_GH23cGyfRTilQZ%_zq|^c?Hr|7ZGm-Z}o)#I20{bm(MQhQUNjmfujz%QWLaqKwP( z;-=*4s}8Z4YKS)rl0F1vZC3+dv`plR`;GF>tpJTwz=lj=iYLWgIT;xweX9VBKAO=^ zgU3#0J8Q(1?vejiFjwSuY5vc-vNnC1I+H17T%E@Kceu0=JyqPQ5YdpS4m@XFdkzPP z41|`Z<0(IfM zLm#iGQ4O#@$cy5QuV*Nb5H=hq5R6CLRkj`qv<5Xs64~+i0Uit&1qqX+jS;$M3HQ5$ zXcW)EoF)Uh1Gjf$BWiR2D?tl+aZ{K`f_GX*-2gLrAH2qE!5~UR0G~8F7^BI$*ap=I~MXoT?shpA)qadK39gI;ft;kHw?KR&44g%#^r)-xSMzX4UKqE^* z>X*8iub!8@{@Nfk+ojK$FciSw<5!bn6t=17S!VZ}ge8{w!5!nq(qlF)X(~?Bv3l3F z_VsCBUsKbBVFf`Fg)+47Sd(j4OV-iNtbx&-rX|K6B{QZD@%@IbJ6@)ZeL$cb>EhyF zG79+tP$Ff&@70@!Uv5S~nWIJ#Ve`lRw-X*Y_KW_Rx;fgeH55-KqDV}k!o|)4geA9L zcGcVPvoN#>ZyA#&VF*hGLxJ~tr4RxgGauF;X?-g+LUh@y8T%XZ*uhfW?+XIJ?~6qr z0&n1uR#ijZn#7ULcSl@3;z~q4qZQ42r05{JkVq*2YQ;Q?jA~fq>V+qSN#oLL+}F@$ z0b!ylD*-4w@lt`K2P>o&g)0pDf*D$mK(6tQY8Evab^`1;OOfZxT@ zZL&Rchr|ol17y!oRR_O!;eX&`8AIWO83#IO5M9K->taBRbTL0%@{$7v1}N+b(tAZ8rmoJaZ5b@Y>@RO13Aps0y$!y=o5l@iK7@sGIRmAGR8@yl|ylf?l>AS-f4fsQPKS`S8JzsG|qD>qPSd2 z89%Z@y2$A{r|WS>UZ@XDPJa{7?lB45HU(LZ;L$?YjYWv4i@*m@+d+9>`@e+ywU0r%;Lmr;bh3DWpKnW8u8^EFk+P=UdBSSrABLSnmh6j2fwny$PT2o?xgM(y6 zT+B6)l6XYIB+~ve7$K1r3or1lb@V&RHp- z945g=8k~&1Rni68nRsAuGZ25&bTUjJHLIj)Vt%N*>B5Q^|zCrxF!LnKRAxvin<8h*&*qQm`Q}ukx z1F+4lJs`)wBIZ560l;-6tJr^7Q>s*y?mpmR)MKX0k9zg~ST+0S%%5|^4mqwIwLUXy zVjhhT9a>qq`hQ(VY_0UieF3J}AbJ2&jVR2In#(7C`pp&4((M3WNqFnxn) zTf9wwkkt~28EcpTi0p6=_??vD}2U+t+Nap-T z{Hk=SQ4O|#aZAn?HjohjTZ4n3K_P}o+VX&lR|IkX1Y?=0UrmyQBfOB7sv?VU&&(Z| zbdb&h?-O8AjX12O05nV#<$`di3sm@F)4lc(Xs;IeV;5Xf-u8 zV#x!gdH=qQ*x&CWA1A^9WEI!3s1Z8p_wWmlWP1nmXsdgk(@yJQ?Gd>mo<%z`m($>! z4-nHnS4t~d6FVDV_^MWc%4IeP5%=A*^dXwW7U`)4{fSpXA8AwtrQDDQr7{^DP9@*9 z%tG@QPeGr4rFMUPUPqTFwya{ybk&HuEcK?(swt**V<=`CG9wK0ht17dLmV?}%J_xX z1Oem5ZYk*wFuzzbZ1&SC{*QgI1Mj$w1^m;84|t&QML~#r5W)b}X$^TmQKW8coOqHh zFxiB>_|*45oksY)s15UE5#0z3iRiU3Ll3x1T-(|jzYG*~%?)_an!1K?^2mZmUML_e zXoc9pVUou=_h1c_QV!d$F$5}DG~$h+e(pY$I0z=N#SL0@%za4Oq<|*__lL=vF{x$p z!MgoeyQ$-pU;h|W?%Sik$F(nW6QHs5bi{c>1k?jbAjBEOv3@lJXf(hT7$|Tn+2^J? z0Jp;AOX^tB!~sqQ+34s^`SAmRpIAdNsqt}!!rud&2?fD5ZMdyGiXa_Qjo5;eOfRV% z=B;;orgZ-TmgfbQ0Fb7T>jJk2oVa_K9`5d@oSAs0_wkV8fyG+7so&VbzUM!T_#gBO z?yfVB24F1h48ZS$98@gFY-wj=LVUbK?E0GTd$@Oti`T4PJ)OuQ?>2rdw?Sw-iv5lP zzS>xWYh^thQTWnS;Be9JOd3XWOr5F`fNK#CjX)p(2Ba|w8i2)7PwaDX+A*L#&h*tD zg%(Vl14m&?3kCq-b;QXmjp@q9y^$5eLcljd{2;zpl_lHzIQVw|Z`sIzIxI7qDzBO)) z+yj2rif5zhKiBM8);+oXWk6!j(0oO`I|c9zc_m=r28;<9KS+42)r$fu7{$c+==*(< z69p|H$OHWM_X$UTO^D%Rpoc&z6)-83rC&ESssYWo$gCo;yEpDpRq@ZxAq*@0aV<2O$shjWhQzznQwm!7fM2cqrZ z%Ff(@{Q?{4xeCxsDj0BhMzGYNArMEYA}XVGVf(l1@9u`=1^zKG7$M~d-y%yITJUOk z(mNP_4r>dlTXFS% zN0P&K)5=z8(7_K8EPWj1&6_s>stqG=Td4m*t{%!!d?ay|X3?o6$yzh)5ahqtw!?ks zT`WBwlWX^rCIWUas$DB=G3UaQYoCk8PlP)}UctuaY5^cWt1f8^KGiLZlO(4SbDHj1 zAOolMK=vYVjtlc2;Dy~zO+HUB&?F#s z=)n5UV=bcvio=O*ese_#m3f@wtEGfO!#bcdOZ~e-(DsaCT;kK150;!bGk;yHFeH&eYU`nK9?Ybn4(6DGC--#s;?LV?9&sF%M z>hbaLuwS+r*j-$%Ql*bnRc#n~1|--%B&=aQhSJmBJ=H;>3d*lw$z9+)DyK3s6h&Bz zVfRym0u&b}fKQ^>0g1<%2_iu1JOEva0BnWO3!pjLCW`1-F|5Sg!2?a@vK$a3wwM~V%FLNm)`Q(l(h)k zX2OqyHyVrqHf^a)0{?N5YnTLXe(z#v^-y6_)q}N!xN)SqJt(Kix`Er*R~vXJ5D?Ay zuYEp7H4wJPsXSb?d{k88{?%jdOa+$*C3doFEp~k?N;>u1#?f?3R#M=o=uA(^lmmNX zf3y{XiG}U^W_z?<5@-SS8TzZFd5Qe6aTG)k{I}sM%luON>db@8gG?>t-+)72d9+LU zAnx*2McOwBdON`g;SHN7@d?jC7uBPBGAW zngXu?XlU%!;Hhh`|CRspq`~8*R!S&0cPsFfCNN7|quK|SpBpXDRQ)3$|C+un<# z2+CI5@dk>~G^2n!@CIbpQgMQ~1dFVU?=49EFfuc4&D2u(|`cnHD7fnrp{ z46JBz3tbP=9gjLy7m#>v{lli`?%+y*=wPK0cjK8ktO<-9Hb>P62&Y5JrQ{0ov!h#( zr-=f;f;YXrD^SQ1jFt##hq7ioW?iXJ@31D!ZCGOM%n=9jv3rHfrSSVB&LdIHikp0j zCIrY>488n|vevd&=hC*i1Ig}suPBr;{mO;^=&Z}!|6(v7C-xW$=q}WgGd*xJnPcG#J4es{Y;~E~Z_xjv+s5mu z^Mqo{y{@CPzf1_o9%&f0{3*&Wa^fjqio?i4y2ubtGBD74fU3(8FN)ewXe8byC5B3iwabk8Drg>MW>+7A7jz=sfo?RIpWqsxkbHp*{jOnM|QLk2ZOwIA;e z_}nQuK9B!;o?3P56zfA44PnE0wiq{+hu5_nOg~bfWtu!(ow*+kLXaLncHHH;-4tF0 zlE#7S9sHVSf{3j4c#`FUAjp6@uEheIGA>#ld!r)~1jsN5IFl}3?LzRzXpZpa88gU36voYThc?I8izppcytsx5neISxR z69rtN?K|EcT{>xvLyiD$GR)ekTM?V18IM?;hCBco-~)IHSQl~3f_q1>$GHj%^*+GS z(8_UUf{4TYp{IIhr;+#GlBQe^#Dm*SQ`w)teue1^3l@lF2>VFGFGzn+Eudit#o`;o zoV7j$n3Sl?I32N(c(irtVG_ioi*sl~AiPMO@zg?L7;aCd4CP&SH+<>P{SdTB#J#aI z6Xzg$>Dmt4n#2E!`Ie`!A`WF*nEbA7f8mb2dL&43X3lEzkM`4WtG%CNEUvg+NdLJU>P6@PO=k#iCH_2}=!xXYKx;r{=^Iib z#VuuA+OMaE_J2%%2tUcm4>& zeN<40P{keEiT|&??+l7E>(+HlprX(iXe8Q10m%vy2W-hfGDwmvC^_d*6afhWk_99u z0RaKYDoL`?KuZ=8njkqenX|f`b8glBd+VNGA2l^ySmQvw@7{Z@{j4YS@RAYJl0i5R z7I7lUP{ZJ|V4)Y14n2%SD#@{ji4a@wnF7&m#Po1R!ia?!Vga%o3%x*-dzWBL0Hj;Y z+=^I(Q8AX?r5_VxA#0@}V6eH=ef4~y_ z!V5@z^O2CHfZ;v7Mmc71j06%|BQFu}f}A*D6BZQ#nMKNa3PP3@mc0+Su`_u!TWZNIEP>qN$$a8=&VA@~^=y3drdp>93gK zM1vf>91O4oc*zX0x5L->4q!#XH40!Zs?71AG?LF^}Fh6bAdBlywF$#}eW zFRn`=yR!e}wFIShVipz%xH-V=-neG$5HKZxd_d0ef0}8t|7oUk085SQICadSW~{;% z2yw-nugJ1Wkl)>OIEL@yau>h~r1NW?n7|Qm`u#z5w~>T!0}&nIH+n^FFx30glBQ z4YsL?*&qib=J*1%1c}Xr@d{wAkgxza!~MdOQecw;cZ=SKaI3inv16cpglYzT199H^ zfcGI`g7nK%f|%hBFjj~ufp2*oNd_uA`6v)?u`3WBw{W<|C6>4j;7UHe1+$#AdmpQ- z`IXCbxuD|(Oq&RWJ|u+ZRu{n?3-CIdayUrxG=V4$!(YLxdHIPCnC5i1f1HJ}5GYv) zK@aiS*03tCyoCEA`z5&QuXuA~1%dncJF80gG~hq#-SelZ0RaFwulyh8G}+0S_+AG9bP+@}}U(kAB@D zw`*7)(bC?o7y8S8tCQ*++(5rLhKHq*N^|$v+S4DoC(s>#JaRa%)3A$?JitIwB%yVL zM%#fFHu14zl_TegfYFf&dG}MUj)lEXM~Arm9;cov+^BC?ZGsR!|6P7j(YVm>D?wMJ zuN)VUdmw1`TzoP(;a-zR%DedZ7s2tBo{2%8@$c#SzEhfneX|T`LcM)r_cqBcwl<(jPPy&)w7-$-BT8oe3 zS|W@ie3A}XPc--!_!^q38^}}kR`_egR&g&h&yKPqIc$B6$A%bw(?6al8~EOuX*~Ug zMCx9iW^7y>gV$_Yfljf+&aY^6|C~$v^cwKqZzTb|AJ<_EUCraiT-@BJr9jjVCuBN1 zNPr>7(9=^db{c40FPovkE*OAF2t8wCP%=PLG>9O;-5^;7WCLJ&3XAkw6Nqf8oN+!A zxHo`FGm_5WaE92MWQ`Sz_Y1+j6K>vzhkk(YpizM)5Fr8!ko^+eriX_Uah`x+`uQD> zf}^CLG1gT}3v8UM6M;!yX+JUOI#&7)GW%}u@QhUWIyf+P0B9G7)YqzoQWQC|E=9%gx>$+G)D}%FxhkL17 z+8sibO921(_%1n{Al*cg?fv&g;CKZ$Neuh!u$7#<7D}*cNgIFveOSxxKee%7G|N$~aBYlDZew(5d2|okz>6oh_w!qb zZrF+ll2dyP4q9-JAzYGbiBB4!KHtC9Uc1#S?m>(OobaIN?I8cXv;nhV2$4KIfUF(7)pRfP`f|3{VF+d%B2>LE5S1VCL98st_W(JJVV(8+3c=jDe(w1UV6`ZSQa00-#Bj9T z8o($lEDSaZp(U{1T9ALiOa4^z&qcz^-lw3WrTtz(7mQvz*s;>+X&CnNq}ZAzaT%#m zA@@jAw4Zv`%|Lg=ZJ6nQppNf77g0RC08<2Dix8NhFoL~x>sCcY#VsKrxI_wGg%#;N zoAv@&whqEDLx9^DpnETyVH@q#L*v{~U0q#QSGZ7ZJA&&@u7N)WQZArm*7OVvuvLgF z;L!*)BLJ_%5LQOF3RQRgjH_x+M#^Yj z%gqc*BO|}ucN+FEn)WRbl$2cFJ8W-PfT|ZJ18)vCZ-1Jan6ap6o$DTyB+u=iJ0R9Y z=jY##1*s-6QM86P71{1qHY6r03KPQ=97q(vkL27nBd}U>suD|9p=+IUtx3$DzFt~c z3BTu5c1+LAyjA&hTJ=C-g;C9wYiBQYC;Gk!Lfnnm+sI&j#@He$gTIE~FSj%^v!0H5;kvmL_M!`39AS%^a7VC**ER+6lh_m<^#{rhRoK>8K2VrR-4 znFGuSAjODQsw-FE+78ji+y);XjJV;RKu2{o431d<%ORsqlLMM_V3xa%0ezC7O>m-R zBiL=g;2t<29;;CKx5QLqr-A7qOYhl)_ifPymYqxnCnqNy0NK_vPPg@98wnW)FoXgW zmw=^${1@Ia{9ssHSHoKR`uci%d%=RABSu6-1X}*Y>@(LiwZuh4&Ne#O+S;0!Ov2d! zB8kEIwR!QI$c_#1NtgI78%uoAI~z{U2&_KjYzIArtr#gM7uAG}uIqh(<7^*XaR1VI z%1zjYtWq{cx=&%qQ^Go@wrs4fdn|b|XQTan9C@;Qqt`6d2e|npX2apGj1lWeN=*g4 zLtkG%XTWA(g_A)QTT!H#U42Vu*8rb%im9Iep2&b*h`{8jQ1*@EiRYz*R4O?;oIv2N zTZ>(|9>R}2Z=vT@`-<-t^85_}1#~I1h2OMz4c~3$OzYv)!?{$6z29X~%&>HnSR0W{ zgqP+9>`*}~XFNC-9=jHujd-mHTZ9k{Z| z-5@pstB6Su8^O6mkQ)vHf>LF0;VF>3zLts!34t>m{2uUr=)HfJl$DibWMsfJ@52X| zg~1yrNYeur4R5F%vy+Pp6f_V*)qvP+JS8>N*vJT|!4OU443b;W?Z6kD;8EnX3=GBZ z-a*tAd;wiqQqtIevFuT@=#xt!{~R(k)Q{NHMKKrX8%ws=FZX&jDi#6I3FZwNQvoFx z>+q*?ut;xNs@P(shzptWlH=7vk(W~@9zHkXU25?;Qm|1*0K+6R24BcV3Df`LVxc5u z`6$q|Ln|qfies|B^L?{t;z1hnUR+RS3FgtLU#xlhlef!}Claqq2f>3Yvu*kAAZCe% z{?m0VsEE8J!<HD_*!RM14;n<4C>3y z&W=sF2q8rb0B(5r;C>3T|L&-^PWO0F;gf$WdzmB$jGJN%s*BFU}aA!)pwb&x~?<>lPDb8t2kEr44OOz?xzNHf5Hoq=J-bp?1- z&8BKmnSd*7&JTpi4zljfx*YX8zJdJC(o!c6kK6@7M_>RP@EO{L>2*&nEow8UJyI0l z$}})A0Ob)H0`QoD7Y0l3@hy<2Esg-sBg%HfeQDGa3M~--z__7x3dr3sve@`EI0)Wm zUBH~S8v|RGzP5oH607wvosWofE#j<>rh>hFGGZ~h{!y)KlseXEjfOele>;9^-PPIW&MNl zO1JD=_9_*3k))Ep&`%h?aRJ~4#sZ--&=?_tNhvj2H^q8FKqYBgF%qo%ZpdaRHfzC) zA~1a6f-Eq0#3y=k1X{~6>P5WQBo9>mD+a~j#!k;x?y>;*U%0SuchTnpJ8oM<<4{ab8e=_9p(?O%%eIDi;guB!3kyi}VW6c2=Nr9Pkgq{b2>AKuV2I#wdACTH~v+iR{|CYRUPW4yHPWKP;9G}}f@ z659!Zzey2+KuO_FvY6rYc~UpHJJa@ym*TIwjw0&fdQbKS#7=jhW14c9T{cGKcA;wb zu9Ur#u;;LM(Zg>4a=aDWRq1@xOa%d;ZuD*mx533s!3d#rC%1Ti-KSd?Aez8ru2I zU8qV|sHh&54}*83cn=tSz{LZyS#va6zQ^u-H7hJY|ElITgZQoJ)$bP$Qy%IU%3#7r zq)92!p)%vaX_rI-ylvtufAZ}TRW5sC?7x-kEFQTVb8Z zALl)01bGeky>8#4B$ced47FQezPC50X(L8$rG6djY{plEW$0upYYY%5M$(11CYams zUS*vM{`@eL1Jd3RhS4lLfVy3D!4TTrt1~9K%r4nyM!_gMG)THevkvP zhoJs++kdGF_lyF}HHWNH!4@`-+h|;*YF!U|z#M!}cpC8UoU1Z^MF?621_Rt64JSrMpkM*^L5L~tMuO-b z&dISc!i_N==Ls*2^eMCz+6B!>h-V$JftM%8e1V)CXxN?Xvv1H_#?*q9nY@fB75{54 zGHC*9Mu&xW)6e*lGf`Gb;(5>Xq~D4#`wX4Dd$`tk#}8=VnfA~#WtU8?xf z`$`PubjSTiwXOd!`KYsHHTH3SK5+DLK(K-kJLHA)7~l@XTHMB1--FCy!8KCa5*=)-r-2Q=djmE9Dk-YGIJU0JX|k={pp_0s zSq12J502RWS)L~L7x8?=?uk4%L}WtuFs6T0D4R!{gzX|*)TaU=W=pI3*1FU zL%xOOjAdR{uatFh4?nnT8tSq4od|3m&XAmYe7N7Yzh=I+r*_-CGb-$(n<4c(Az}?90~;(m7KolxuziGxLTQ2M}miwSh5FndtMw@+zo`Tl%EU^7GOya z=jQ6FcWvw57y#spKob1(62#vSPQ(Y`?+P<7=y?4rHrAu>;4zyMDOZ^iS<*;fIQjFx z0rvX)_dh(xx1SKBt$~rWy1EKtLp{9`+mUrKjNok?0O!fc07CYx1E6K0S78foK)?bd z%D0e#zXz=t6mw*AY+kZNxyUG?5PhNog?7COv~5NG>{^ARL1=BA)SVwkd-@GK5fUp# z2<4+1|D)#-5}wmEQ=RMWx5_WjbXj&*Ebb~kEtz|ZtG45hjCWbkXq9KX7-lIDqol3c zGZS*E<@*ES(AJ-0Mm@ZtFjzsqSy$K;j8VEE%cN1Z5SH!jkmfz(Sl@L!?iX+)!D6E( zSw$@JtGNJL6S5|P(K%x#`Q}lHCSE2SY#3_gpD;gTv+WvO0)NGj^zHgo*1CZOO9ASM zb?*Qv{z&A8m$u+A%|@Aa`p{ygZs*iEV-YfO{OU&EDmnvmUyq%{B-f!ENu$hmhO=VR zK>Ov@w&`hf)>^-SD)e*!{S%(NCFP&@VEbl0D=UkaOqG)D$ZX!<^I#KuplDW+sUy0R1&&?1IX=?zt0@Pzu4%}1^kcnYkfyF~KF(dvz z2|)leFt@;Y0@4f$){l-%_j;0P=z|80`fR`XqL@+gH>KT`meI&oqR)LGAqtI zOAgLS;6Zf1*L9-U0lVZGY%U%Bae1!@H<)Fut%~105X3zC{P9zl!+f@)HFh(*TadnN zFQDE!KBMjXgZ9}iwT=BZ_w;fwbjsO9%Q$uG9(-Aw3&m+aWUdmmD5kjZCAr_qj(NuF zY(|7rH}uogW`EkY&_Af3FaXddCSVi^qMCIx%#L;5y>0Eyg`8*w#^bx!?gw$xoyW7V zS}^UDR;l;T=)A;z;RP4%H|xMMOi%*+tx$Vpbd)(gAmD@^ut%UQ0elMoHsv$Kf|s>* zVxUQGKB(cK{)r^RpM%0fn0B5}F_c(tf84R~O8Q2J5e3u~lntf7JU{z}mV9=Yt+JCy z-V);>eM-D)CWTqvN|I-ZhGkvBr5F2XGtm0#8)uYh6nNxuaf%=>*mj(K`s1B8M1*b1 zI2XO5LWkDp^gcc>JM~_R-?O)r3-vREpE}~Db2CszJEEpU{C-?yYIQVS)h!qcd12E* z_i&&-=H?}>0oUZ9%vUy>yH8W%>-9Q`NW$McfM=dpq*m{fn_7 zZf7HD;}(+LIAVFp+31T zEc%rx@c(B^@kk$86bX-3$nH*xTPj~Z9GbIQIHW#!zp*+u+kg5Q44*IzItGy2Q~xlDA4?GWsM7=>LJ)CkRlJohS#>9O2r{86fe z?sCh)EV$eFba`l&ZR`=|9@qIm(ufYr9id|lm#v@>$3P4@l-43KapACM*Umkkj&{Ax zR{IvaBjLeNH>;#X^qv@fUcVtGB~Na5utL(>g9`#X{oK8-l0GE=X8LHpv`zISZMF|<_;}xISnb54TR5DTj(vS z0Cbvr*1lpGxbOVQHi?#ZGa7s4U>H`%r^6)-A&r|kuy&d(^xDn)Kq7=JOIJg+XKG~h zeiuafQGAUOqz$jG^Bde-nVTD$pSM8yK6nI1&Yw^^J{-p;dHY)$if1 z94u}x)|_Pr#QDcyI!^lf#_7YBFP^F1n^ZNXZDHo;O-}09CGkh6wn_T;O9UmYo_BP# z^Q*_qE9HbikpP7bv_HILFi*UO0`D*>3N9{qAZ8;K7J48Q5~1sc9u=fi;DEMX3;#Xg zx)CxZ9E_IM8UUg;Bu(Vc8XT3)P2QA8HF(P`>-zJ$7z!l>sb*^^4~PVSDz`d&x|DkE zuU6L^oX`S02!F8Ur0i{-3bsbKV66Lj-#z@$`(of9pe z6%>S^M$~y}r*i(1zGlidBJTGNv)E)-a=$L6{NmJjP`Ew^Q_s1zr-$lwJubFBx>Qog zugoOOqEa9AX%LYV8`ziRU!J5Rsa}S5gjj5>b^D0*(wx`23#w$cTCq5Ry#6|TH+j&w z^IRWOgcxOD8dt|3Ous^yh+Rbp$VY**H3BZdjHD^1s^g2cM@fbL*V)aRjw8N_4w6?# zz0wJF7CNmHZQ^CWUZm7FE!rct+H|oeXTtwrlSb7}OplM8s_U}-JWPYYm~OiLa?g5^ zaRb0Hm+pe{w415Ytltss{_I7mZ2~Ee#VKA^Y(SF&;>1DFgn?yr&V2 zyIw(i%^Q@xEb@Jtwqgm)KlxBs!&eF?X9lCUpMzvDpNZ$pHVEj3B@S5cpYe>xS!3E2Ucf;^HBU{ zmh`--?#oVWIpsUj-9bp!GPY9el1r?Qb2T<&@7aTm)U%M2>n=n7^{<0d*JdR@BctOf zm>=7|5_&h*Epa}i%|O!SXIcwV@jLu7q8bU#t`e?04LfpPRcQ21Zoc(ZSjgsjtb_x6 z+p*;jl8fSP5yqiixcw$|GLAaAWl4;V*1c1$J*?75=jd{kyZh9)K7Fh~j409K4nOb8 z;%k$8n*gK(Kbaj|D(=n5K&DN>i-AU6E=z(FG9eX{9-s|C5@E6?ObaSHWy~`QX#RnP zm4YRhHM7Tc6fJ;N33#g-X=z9fa1-$(owBemh5qdd20=2f}LsjEJ%T#@EP& zEx-?)1nFg63`wQP9lFIQ7{b^pF2^9tZWLe^S$>u&0pWZ?{?Bh?CEX3bxF7l+e;Ddd)R*-gRK%uFKfw0VA2=gs3Y?L5ac6=D=**tc844ouZ*NH;eAE{N*U6p z#1kR0D|_>AWFTl?V4_TjMTAZ!Pcw>HK6W}Fz;H^mfqI+Uj57MNX=g;{b|%a5h%f)t z8*jcd>a;3^W14)QkvHsXzau6uvk5pRChSP?5(s6};Iuh=4LCES6)n+u`Rr<#Tp@jJ zL7RjYy$mz-hmqb^od0T^O!C~uxK`z=7hkG)p%8T>m%J46iu2GaAjY$2aa}4sA&GUL z87=iG&Cr@3E|SO&JYLXzdA6EokRn-Kx1*2z86V5V^^p@T)2sK@1v0D(TMUXAmD$X! zM7}*G#WE$*_dfiggjqPZRmNGRDU+tQ#9|m|&0x84HtPzqOr+_=& zh6Hgsbu3TjsMNT0DcOm9FivC!a?eB1i_eQKkBdNLI)?7#K|K@qH52#$R5YUUQg+n)H6w9KYFK{n~G1DWh}MZ|DOc6v^S`ef8{aqRuQ+5zlzAVdStJbHXQD0}8H2&lZ{Yxp zW51xO_C~H(#l6lX8D_HQ`T2&eD>a2a9NKaG>OZJ{J;|P%n2t;FSu?rI-%z9P$kk1@uosQY( zoOi0du4LBRJ$iG}u;=LK9+n}Fs*iI}Ae4{ThooNk(}&~)q_eAvZ(c$KN9@}lH7(GQ zNAwx*ksG@X+Huv-M=GMtBtDK;dr^vpob?4g#efai34^7PAyy!P3;~1;@HWxp$XXCF zdkmg55c0EVdkrm;JU%pZ+kdC=!$H>kqoY(on-BG+Z0PsxzpU{|o97xjt7+I|e4%nS*0J z2W`7+C^IFBfka#Rs7uc~O5d$4%eR;@pG4fav_2qp?}NGT;*fnfe^vQAky?Bft12+H zE4;kfOxA*B>GM)jE>s6VL`%cEla#A0zTP%LCYQZB|6@vO=txeO_O<8`{oX@|(PWXa zaYp(wE+)#eh?`*wg?V`jzsA3jo;o-sW6w5g8=pWMh3qpnWuBGD`N~GENFVNLV!W&; zKDU0RgEx4nVs zXpWvRSJfOIPUIaF3~z7X-TX&1({)T$k+zMz=MiUM5)1r-r6oI}Z!X+C)U|GsLjH>q zrq*pSad{6&eU8(sy^~34RA`g9$d@OCWHF1)<_MJ|?VaDaKlWrM$OD_UY~qso zw$fw+ce3t0la#+aFG}Ri#g~@-uLsZ)KX*;^m#Cs5EGPD!MkVsxHKo*vXa4gvFa3L* z6vi`iM%BK3-Q05^63jcTax|nUb=OElJuduQ4K`=uvh3R1Z$&EMlCk^C5_>~E90c=8 z;Ld@A5?28znM_OID2CvKz%=OAzK~QlSYETr1XtgiI@n|u@mXNEjb%aI>&P+ zr+VNaKE5d^$afDj7T&Sh2_};>?WX=m_n#bZ-8AQZl+QmW>PL}#He&W_bo|0D`n7xu zc|m!zL8AFhmHzAE4elQ5U>a;~JvTXBTfk;NnrH317>P5MTUr8=wIWc?YTQ8kDcm+d zqhT9;A!qZTW$3d3H{Dss!QbE28rM$C{wZ<8U;+J-Kr zRhyCA@$W|HFOv`dDCzaP^zrZmchJhy-R4qz|b&;8F&&9I>iel zB8VjdhTq1{k+`nU_qpU#m}`hL*N|o?vg%`Ne@E9d?`&RCO`Dd^kvjd zSN%@;YQer@;0}QTkKEli*D$CxXXBm9qxp+@`3t8UMZJ6mdBcLf%zf;|WxYslR=g3L zJ3sI;BKH2UPo<>C`T$n)a5cgoUo!y%8e3yq20C&4s53}2>V3V<%%-y9j9^fyDtQ0_ z@seUY?B^fedTT=DcCU26>ppz=?mTzJ&5ztFze(^P3BUug$YJGYvH4UDQz z!?uhF?V}JSbYlL=wAu4AW1o4G6ds<{xx5rs&CHH;wZOV2?x8m3=*;-7446=MRvTZu z_E#fjpS#*w1qC^VwGqqBu|uzaKb_;5qnR&8HZcb)((vq0%?*tyc?CPGpc_YwZw5v) z#+_??4{2EZ)V&g#&IME5yK7%)*KrEx)MG1uNMtG^^^1acy5d z+-6gBzRvJ~Nx8i`~4ztlf>s#Ch_ZQ~}ZgxRJl6zuR z7R&P>dhm~_tE&S>0mL{TBv_@ujSl8K;FLPaa5zaKxh(}pU?f2)03&mteC|IXrn4FO zZVmtg_45PXqivE}xkS7D5}m5cH#ZnbTf%85oy8kOk+QDcq9hffi7wP*Y$p$>_!0z) z5Qs_vFB7K2?H8M0L@EW)O&?p#iFnMhWh4>w{m1)C!W>*)m6u0Y_!FY>loZ?IbvK4fpQ2?nh6qy$S}Jz#DZxljeYGZMCpFPAM`$C z?pOmx;jN_I_v*eo6X9kZG&UNho%b>y467=0DrxVx)YG5t&uCyg=_|?V+;Y?FpAqVt zH;b8P-gV*r?+0;IPCS;5?dv?CjGmL&`qWqKpRe>z66sJBpMBlOD$1COlBXQMp}Jo@ zV%50cHIccTQ1s#Ob|Y=GNCSV-;UVem@or=TRwIj3`Y|jF3e|dVI4pYN$IXx07fuHmKs4 zsEwt=+AnQpeJY&TakE*Bq!F?Mcm=HLV}xrQHb};=ZL+FljBze-@HvU|{MJ5DOL_*y z4E91sB~no*NKU?!`ej^9)0@OZoLeCM0|PVuKkvGM>E8`882^qJ{BWemdGGf4&Kf`K zmQz2^y54Cs%f%A>l|fMU1-3^9HHBp-V+qcQsOLI95!E9$v>Ui4kc4AM5P-0TER0)EO|DjY7YpevGslymcKaM2e63UP-s#;e<00b|rCHLo_GvTNmD_G%7@d_# z9p)++o6N<_RPIpnZK09hlw+@;-t9}+*4{g)E2f&^5vF`86P9tGZLB8xwVaKs7!&Jp z~^7&Ez128KqA0cXiFJhYq|( z{tOEY;a$=kk`1vo7Y(DBZdLMotSnvk)Pq(kdL}f79`Isy(xQUtrV4D*{2`hB#%lc*zg70s1TWn4C1Zm zlPc|>Gk|a_J;rPH=XWB0^C|QXp@jI&F@Zl#YZm{*`vk6vTG5A0Ka3jThj%6Lb~Xj)nQ>NjN#aFU<1Eq^*C=pV99G0o&dkVIvSoo z%fjM&n1v;f!osovek<@h3yY@$3(Ms1EG%jdSXlVo)5_0jfWOLOq^I-iZPw|xuAO-< z4wR5ip${pr! zNnUk1yz{3|(o_CF{EJ(Z&p(UXFp{K6DaP#-IMb}RQ{YQw-ktJ0TF>nKsgb(!|NbJg z7yoO||3L9S&cF)sKPvo>3jd?R|EK_h!~def|9=9~hKwu{0wtLZ3UU)U-})IF_5(gs zshMj}O*J>xr54^u5GzZnwvFBV`7~dQ(T(9^lXDX&H4FPd&H{C zw!gez-XouH!GC?j=QtDz1B{1!)`d##7>%zCs^`DtXsMLg zmo2w?jgTt0{Hj+)su{LJ{vH=ER;HEqTN1rco7fI5K2cg4F5c8mD zy>ua-vvHF>l&~J>Zh^%Z)}y6tT}ATqx@Sa(?drVqqKU(*Lj&Cv{XYf^-Q1>D1nN}l zyyzP%A00>9O|QpjrqpSvi<0gdXs3p2x4hSdf;ssDB%N!jZC7?BJ;HV~(ex&q4{=AI(gxrKj%p6WurW z_|H6llD+r!wshw0ho=5-BZH>Q>nwZ zM_j?@sr(_oi2^sfOn$EBDK6WKBzHTirK9KN7jbSOs^#}u+h2RSo%QvccF27W_3d8j zo&Y|j-B0}tRb{+GNeBuB$zy3|4XO$yI6MV~?aDS|PZYDLv8pkuu{wz+N7q(VuKZ@l zu+F55y!D^}jTe--KFDPmz!QEoDJrQ`aoeznrpTn`%$8>9U0a&)1*h z<`tWyM+1&XU6(crq)18zN#aj(?0pJeq0i28gc53l!H8c{R*}*!G)5_|0+oEXQm}G2-jA+FSx8OzHbFH#Rl4tau>0#k51Uise7|Twbt|-|Bl#-Wr{w zZ)*F^a8c>4-by#Gr}mUay7pfjG_NQ(@0ql=eeUX+yVC0!ci6SR{GQumk164F8w206 zNm|*yI?t0Ux&0R2dEFuWLSp$*I@tpkveI5w%BLX>v1yVxe72eNu@`1gZ^Jq|2-(>V zth6T|=XKFitc1YW`D%QbJxVeyRMcmRZ785{c*{a#ob{=<2*~xADghWUugHs@a=#cpQtsok+?xJ;kNgQOyM`|>1}-$lyu_f;6adtO zG&A;N$M&;70RYW@>7a8JoM3;We~lGr?J9r@f)>Jql0vfrWV~KHEYBFOT$rn{9p|OK zOQ5FMZ%JuvKWBn94!YHtc)YaIBIdVAYV(_UDzCjcnd!GW!%xg@Qdb?K{o5jSQex_kSNyGZ_Cq`kmJM+>xu!)8`^_sComU{O!xvUJm4k z5>(MrIAlDg9_@YLAbTk2@KsPXpqSK=#H4v0zLcrB6{jtZbXwY#lVc%EXFhqR1RNU-p zYW5ETUGS-jOlH<>1H#zE`fUAeyh%JL(Kh$0)!9KHkf~!bCvYZP4b$HGyIJ2Pc1S@ zQ!7Hr!d$`$oJ#fB5a{t(umQV^S#Z}Y01>$7uj=x;Jf}aON&pS-zCJYoIN9!GD?$S0 z_txGREc5*0n5-!6eSh@;SHj^twf*`nw{)8X zJCPm$8>ZqVKNmrZJ$Ay&tiF7iSkY*Nz{R>-fErKA96OfCXPgSW>*-zyJ``nKkN>$fiU>Id=9TDBy4YD-PBgSID2nboveAyzq%h%Sh!m->K=DDHY957m*?KOc>w)|KxfoSp4$Sc zd3E{F;HlEw{%#=Ju5PkRe=JYJGLu*8WK-;g{6#C2dP zeEScwa~w1l;ybqAIQ8gIa@b8iV0XBI10W}WgJLnzId&#OS!F{}kTsfh>hx`~A9U@p zw^D1(#Ie7IM}NpGiNRT};VeW4-buCU&B@c+Yu%Yu+v)k$iz}{sqAgy$!QvjP3Q9V~ z#_AAuLu~l@cm-(>KRA@vD@Zhf)c2@)-Mi&9S2%OA-t9y;00hZL{Y@}QJ5M!z+j*|AIb#> zV77|(4t)a5vxYhm$v6S>jugWoW5ZT-T^O2-=_N=ysV{5$iIw#9@u9VDi(%j8(B~tx zUu6HE2Y`;!VhDcL3%t+)`tJ)E0&6M=XOn7PU|6r73J#tc?^Xq#|JcK(0nQ=72F5`c z@mzja+e26@bGr8O>A;0nV~$Zx98K;UXT1A)>HP=6V9c$pp}fW(%Er;?Zw%bkh&dSw zJ`j&`LA%iEkUW4|Trz+yk^?TwEyTrc4tgsisg04dUPJz%o2dhiw9y1BtM-%drha+q z{K}#|Y5YBL;PvuK9Gk4dLvF%uw4f7yhwvd$&Q6>FYl=+S+Aa759u7bn#2eBz3jn-4 zPsJX?(st-bAjU-YJ+Y`0g?-}ra)^!hcK%$zGIe`kj?3Zs z(Pybm<79dJwH%H4lhC-xaFQSwj@;`ZYBL5}h-CT-SG9N7$RivsM2_d6k|8)4g)@Ha z=j)~3o&!S2#4;ZDz)IFPU#=_T9ei2HHzS5QTED$!+B=H2ERvrQml+I6pOd@wh z`nu)Ik9f<1GSk;mG&u|p4=M=K3d55ekiByNmnRUgvGX`K9u$Sb#SVfB3r%jo@0I=L z+-3(OPTo%@bJO4=2??!VZP2>gv1e&zrnZ#ovp%gHZee%P^>}Pl0hm}MXE}I22j+v@ z^>2!CN;w{qj$;yzObG#&)OGYT;MnIb(f+Qy6^L_r_uCbj85U&4!`H#!YHx@{Pqo;D z+gQ|TYiMo8h^~=B=G&VDMh!rKeJu+RMxlVA@PRx4;y~xKov3|;rilY0LRgEN9|6d% zF~a(RI6%w8-?k6L8)E$|1MzE&`PL@?G3v}|YGw{KF()8-9Seby4lQWqu2nZiCa2o$ zv{qjMbP9pUaop*nK4G_&)5jX|5Ka^%h&qH*9uP!vOjHUwNeDR>Kki>(4 z1L3o0vRpu9;sngPlChGbC3ewF+ClNG()0CEc{i?_I*E{*=TT4u18XK5p-dKsGzVe= z)R8Upruk^^qwa}$(uc^Vf=Q-uPD`-InClzuOCFlfD z%1`0s0Wl)zU%C%PxVJzoA<>C#zgP$>Ch%n_f`UPgOcqXAKYVe0N*JgnNOPspFKTbt z+T}KllzVvkEv^J{3{6(Vj5=uf3JOV$h5&&?-mI}gsRl_7{AQVbD^#B&^u1N*0Z2S8 z3r@-=uI}IMLd)af8RAEIheGM76|w@nAqX2%AvKJ%2zw zC*})hZ07U?C{toAm9AuOnKfC-0MdPfvJ$JY1z5ih8m2;+J)Z>?tlTJz!pjKXGP$G<{i*r^_JWkO%$@96B_=`Yv0^y-B)ZGF~?9hfB3T9nnWKVvkefucbj5X*_HGZttLs>;TAEKwW#lG;7;x4M3VDE%AiO}K64qJLG<4o4 zMy0vTK!58=vMWf%C-Z6xRoq0j``(k6i2KO%pM6Izj3oGd`XH_SE4Y6-B8A2va5x+q z?E>Tn+Wek|>RW*Qy1a&6o2OBem9UnL$5zS%Yjo$EMN`DsDHJ@Grpqn~7O+)GOlys4 z-auE^90Q#7aOU*y7^JQu*^aUii;AgvB`RA@;7{VZ;Rls&4Qc=<#2Q2`vJ;Cmq=G0I!>rJ-u#T{f`zMY-Yi?K= z!Ngv3oq`-@rQpSPRe$PHP30257`^&VJ!YUAd53<_`=l^+<<*GT)?42nY$zk$Km?9LD9Z_*uXaD5MM;A#CX%w7K!9MZ z0Ct_7hzeSuaH9LvZV9*(Ph6OAhE>?};_ztxuRq@lFjZFmdBoarO28HD5U)M^yMbIC zhWBNV@+y++ypP6QoF9EYzHP-=Jkql!eVH?BG=q=*>8RW~xi6$A$7XJ$dTwrY)p|8I zxAPRi1sx=Z!|V}ya`0f9(djx~)ASSQlBvVW6CT==+U*8(uFqFf%SGK2%2V$2pOFv} z!@S(*5_Ci^Iw_8F=sNn=P!4HuYIVXhmvnvRNGy+|L@&>9Ph`qTU7d4g5oijhAO_8e zddDdUa6>`9jtvZ~Pr^2G>y+r>kvdlO1ioM_stCiT^X;HVx$^)VEMZlA9lK9j7( z%ADD?J;D_ayRBVwU#(nl)CZrsKMVExR;_RJa8c(&e|(qt5_O5Y3X=NR(shGESyt^DJW?$LOx9HPjK?@{odfT7G# z48kRde4K)T%{3-jmJ#Au)FbEzhmP~zKslt&ejT#_JPVsnVkkDa2m=mCaBd{<6~%_q zx~}hAu*ejY*O;}XPX1Qf37xV#K<&j9@X4B_tEMsFH{%+f$=JHR=HP5xh{9q%V(@xL zV*@W@r}v-Q!?#bIZ{L3X!U8k7{T%=OlFbtdiE?s+eniC;3OYJnQ##=o6?OJh%HL=1 z|5fz&^w~a}y&_YJ-Km8`QOnL69)GmlZ_a3I7_n=0ZFq>Sgh-CmV?Drj4jGC>#Kp$O zI)uH`L&V`Ffp^!Km^rftV}r5dG92f;oN&R9P(_F8Pa~1%Vi)zeG2e*z*0|8-#L%>a z@#=JW#$x%R7^!K`Rp?l*+HB@8p?Oxl6&7`?Ug@fB3vgSUA@2I+P_aO)RjfXXBISrG zm}OjUpykN|cMO}ah&l{@E{!}B^;fE zQ_iGxCH{8#IP{@ktkq1b-%!{SK9bV8N0!eXT-naeP))xbe|(>XhCowNntwGrSAskg zhp&&t#o-NqkHzg02dOeP<)Wc;Fo0z+wvm8D`dkji))V$4 zBuC02WUGcs^#YZ&&`>^-{9uK7Na7V)c$h;9CsJ$oh-qw1yVU7&Day8IImk9UalZ)+ zV-dfZjp<__zltn$|J|XUMduiNx*fn4xYyLw+<6E=w+3yXq!iDbBRtTA!iHX_>9e&5 zFI;|D1bzJd>mk9Z7E9uXx6T@*Kj^NcRll45jNc}!c!Lx# z#$y%0h7GRAfY=zGG^hdR3qm!5(Q#vR%=n5h|H3OkDQ0~&K2**L2Ol_5BqcOG_Qhf@ zNp;<6aGCq4zcM_~nR~7~ysWvs)E;8$cWLoUh-9L&c%(vt#GRXxDAsov99BL~LWu(< z8F4V%JIfYx~|c=dMCRuEJ?-Gg3$2x$z8`V?8hw^c_KrveTR2lME#* z-?1PNkEBsWu_=Mg`}K5UQ^c`%#eo>fb7S;$oDspz`&o6I7j)6X27EW|P&T;c503Wr z4LOs8)UniI6NsGFq!8%1oEgmX3K4~*W_o5ZGLK4BEF^1QL` z8TE3ZyAFl!(m%I9w1xl)(bpGda&j*$t-03;A=pqa03?WcWJe}Rl{yo< zzy}QDdpCteqnDk9g`*Spq$aqiOe=0q(n|9O$(i-8x*RoN;XxyjIu`?_ZGsH3l00`n zu8uXtf?$$fz#E$^%`Proe8?X;yMQG9l5{upl0y(Y@Lv_#IXI-!+#i8Y96@pLXydNMLtlJ2 z3>pyCBG4_Z{G0jxu460D3RU!rfi4}MYB^akq(OFW5iNd;@oBMSlN3fr;t6jA*_AFJ ze~sW20BW?GQ{XTLrMDa8Ui>#OVQf9Os=H;~z4&PsnHd>Aj`YskMXV%S<#+b>9AZCq#RDq;_-8rC8@2YTT%o9m5@Q zEmS%Z%vcecu~lGJ5sI5*&t3i9?2n}RB0|AonXer@|9R<*<*yF)hPx%;F$)T&DxUgq zEkRLf<(Jd^>~)maYekwu<;Sqk*Rz8=A&nW6o1T zu#`mJJXw8%Xy;cnwD{c4YcKQEd!2SpeYQ2tioDS|wK>~V-1bPiSW;Tv2#@De#5x>~ zWKmK^qF6s+*0qXI4%w(nG<=~UIPQBZhiow68|Hx0=5j~mU?KwnJF8R#pbY@t8>JWz zP5PSB%2^=K%#W(8-%koVRzb=o7VTmpat555jRqXG<_z~c!7QveC)g72yyFCyg5d59 z$`0x7dO9V+(gxtj&CqzU<3OM}&SCVNSplAdgXO-3^V5oeD_oVv$ z%&wazsJJ63hZ^O8RpB|gb@7L=v^}Ar2pM5LX<;yF?A=S*kbeL3GC9daJs>lbs-VcB z7=IS9I-yYT@gHaI?-(+$$cZON{E_AkM5oW0uPxt^nyDAn_4QfHA*K06J+X+!71fc zZ*~QubnpntUt$$51egW7>jj79D)1sAaFHL6% z#v;a)9O<$h&tF|TF;}EoOTgU2s%H3Vr9%adkMR%hpU&x`~RNWgMp z@`=I=1jWH2J}wSqACP5%Rm4HLHZ@A=vU#T^Y>Vd4r*q5vh;z}d`D?FjhHv%UtIMyx z#&Gaju{^M#c0M8bV#6T|-({QE%OS#o;b}f${G#J2)GrnGqZRh!Dd8u5f@?dW4xk=^ zOb7KKO+x-02K5Mq0%nTT`Ic`W+3bWxyX1XH6F8Vj|% zx{_@JW}fzJZ5`>cCG{Owxp<@NEU|p6u_>obc)RbROLeo5Np9J++R=(=p@4k>p?w>Y z@>(=yt{+P(w-&Sso>GSYo8q<~)AkFWLVPA=HRyZoZl~Q~xtRg;U>b$my_1f%t)1#XW^W`! z|FjQ6FS|pWyClu<0UIi^uuo%+6hJjctYjB`sbD|ZGnNNy)1|^q;JE)!;xGJ6p6Bj59(()O^;pTT%ajd}29%Tc) z1nHRhN&|<^`Sb*c#NW5;oh2oT6_o;?N85UArp}g)OnO((tcj>x^lCalBK{&}cgNk; zRzCkrb;zc6C7FwOExGcJ&`{gnIsTIxEsMjn3F5aO^7Ef|Ro)Ixf!tvl1tKv4$@Xs< z$x9EIevt%+6{Vm)O1~zqfY+I|MjXS(v`{6{Ds3PF<>Q&3_IktNzuQimxx?BDpWxEG zwPC*%*`iW?Ckuz*CI{j_k!_UY! zC*+5y+iKT6Wr)=YD#H`~431W@B@vb?)#iusPX&SSmTl>qu zogLWHA#P(GTRdXE{k7-zf~n8ORGJT8-#KQe|5pTxmP6K@iI(P2<-tPX2SzW34{cCm z0^t{LNy&8|TW@jEP8v6P5il!O=p6-{n^(IHbE!*s)t6SaI;2e9tWYKK9VcL7S#%=g zf-yM!Cl<)*u*z{(_*OL7or?8R*o+b(DC_pddw`8T0v~9m2Gl$Y{JiuRyxzixi~@VS zwd&yQ(Y?fq?Ys&%-{JHg@SS&Aw~RmD57#`b4L=bxtTp(KYi)X?jeLW#D|GAA-LWC zodv^F_sq2{N|`g-$umEM;Qh^&zm!Q>ZB-vyXeV`1eNSdtObX^w6gXy(KoDf;NC?D| z__CjwhZljwUE(>8+#jodlE(~72@T|ChxVPj!SFH7(;&>wnkEmpFCQURO$=&#ERu*- zW6@3Ws;x2gYT+?%CIiqBdmVo>RKGd#s&dqNc!8sG?RLf*BE~<=r8=e1;TcFQ$jk6W z!!+1R5k(Tpz>poJfNDUSTCU`dDI*O}@_5z6QS=332B-nFzqW9qQ}HRcjy zT0ho4m$uzow~xBO5`j^CClFNMtPsh%7l_jD!O-y}rSp&CPl~fjC@1`h!=tch6zgau z(4*a`uP>mL#z6;OX`rlcSL8jhx2JM+%w~w*ojUA6PaQ6QxN>{1Mlyff*cYDFt7H+2 z0q{OmTq#4T%`c%&tLe_B#{wF28CNfx09=G42$s}V4yKxb1x(loI)fbE61>%}-~i!4 zXu*9Adi_QMqjqxEK7HtiLn0HE=XS0d5(>5#l1<6ejw6M2P#k|3h~zAW4g^gpHVabO zt-!!E{;g*w@CgGArPCa++0KGy9=aMI^t2`ufSYZSC774DK8zkJwT+e%+ zSN_)@Uypm-+4RnH8}x`-(f#W{Pi2$q(0g_A{haEWk<1ovv2XMHnHOHb6}z(kZR^ZMeaBw7?0t}cz4O^v;f+Cr&x=J>5Cx-_lo>ec;~Y9W9lXS!66sM z7p~T=Rz^yKREnT@7|=$=Q_f*l6g|Bi+&MhM>MZzf2ZzW{s*h&jS0y-A9(b@4Hk)$y4fi<;x-#cBIp1 zWdkZtToe7Q5wLlScZO(^SN2}kjaFj6&_^7NGyV21xjrmZ7`lH2OO6BwwB!KIgMu4m zVP5|@SdAP-AKLo~^<%WnKJ}8-%1NA;KaY zz|POQ3xwJSSV$Al4;3zyAQt><W*q} zC-vuTrBviqPLy0_2x#L{qjKszN=;STw^yF|=lPTpt0U($>ubr0IilEIdL>Q9h`wO_lW9D#-Gdv7nPH~h1LlpS;j@K4Hjz7y>kD0pe&Acu@dU$6Fa{I*m z=06eX-DC39mS%|bae=I078pkgoJ5c)M7+WUXLP=}G!|(Ht~9uVF^YPexOXg!uHfS5L?gDCvpF+WP3m|@B4JyE( z98Ocpx9&QY4px)<`&Wr&4Oid4r#;y8&K=^5wQwJPO9zQCd`0EUw`FgS8IsRJlh2w~ z#`^Ah0+jdb36M7J;2w0pfR_&xjlm*$oN;J}I1IolAOybmU<~>C;#bdnp`9WTM!9g45{;31J+jPy0Rt?Q&MBni;mrKdt5WL!AVkBpti?ioQ+VCEDn6p!U3Zr%Ow?63u?^5 z-#ajU!qr)WzBCaNFg=~4#U>5Vyo*Ock5lnO1Wrj=@5~!O0T9->g9DK$p2S>t6Q&^| z4c|rJ2q+BLbH#ZSy#xmbzD=w`so9iKLa_e}7R1Z6iP&^SEv09H`PAA}}_-(BUHQLC zADOoqR$ES``mA;3D|RCHa_dsE;I=D@W5jn$z7v2-=i!E({G_-+@WLd5l7hkMLDhc{ zP(WfZm0JttBhg*z!^a12@$&JP>Ym`bE=u(;zhkk`x17oNy1j?}D*5zt$Li5JpIS|y zEf1e1MpI-=vBWqqELc$>g_HseB_JqxNOzE^Ac&?E3|xFV3+oB{&2LM}VlRYt?%r&X zJKy`+y-$liae>iKyeE~Zhvzw_158a)niVVuip@XOQ+XE;VLu39Z;+}yc1HMC4rx$4 zNFos!gdsxQv*oyFk8P*=5bZaMMYS8T%a2oefyVqW2D@-az^^MuS92LDD%*adn`f#Q z=Wb3K@hNergVjDA+>IF`U|h!{L6`rdd}!C1Mxu(}^j!!iZ!o6q8N=s!nHQu|*O{1! z>2~%QV{EJBkjEMI6Ux%8yW+FZ2SLYmfYuy7_Xaw^Zpq&t=%Wya4Wazl3cit5`6#d% z3Q-ZUNHifz(RXCIb8|?$YD7d>{lk>;mj|0J9`1KGUy8-hWvgc9NF#d|dR;!)`#phI%J}L+vbWlt79Fe{2c{n}xyM0e>5JX>vm- zr(!N+wmj0Y?zV{9*!B(iVUQRcy{3O5GTL%dwG^t?i3@A|@WlbB7<|J$76=CnXy7~u zN-P8nBnk)$Hx|GKsu-JEE6?cnZEEwKW@m!i^b>QB7K>|vg9kqNs!*`XW;T6@B3sOOo7Mu!x z`I!prB$Dke%+Xy&il!DniWR6DT1tLnxNx=B9+Cg9-bU3P-)hbM+r|tp_v;%LK6b;{ zrz~%)^bWBL9DnQ>#o?wn;god7*V%XBNyVbUGxeAh?Pt8#MS31Q?KHg@fxTO1PEdGc z_NeGj>7!-XNWLKJG8dn=IXV3U12$&Uzr9~wMzC^UQ+$R(h)auS{p;CrK2DMKYJ*o} zVlztm_K0WgbM4_5^y9`dPZQ5KO8lLjc-~lM^zFytfs>an$g=yP%YDO$Xd|y&CRqI^eWiY%YU~?iEbvLRHl)PW?f*zh5sb|J~K6xtc zi0Fu)Nt8+9Hp5$o5dEHQzDw|U^A@V}X`+FNE?oGoCpPkx?oGp6Gv7=44b2k%yUsv? zM;P6AAMb)sK!2l*-h8}^IZP=?$Kdhc)7dwHlIe9?C90!|vllWSuKTR;=^AK@4VFJ6 zVMgN;LQE%KSZbDUJl_7QwqLNA4RloLS;W6R4NvQTKt4I7j8HnH{0pzr=!~|Q-%QO= zxyl8&t)i-XL352|xB_iTuB}%vsz)mq1@_{k(SHDuhnNCA4*_unw^w22;O+wSSHSU# zzV&W}-3nNBpxc&b-nEX14U<00430#%HQrBLz|^yvPG>A7(T+2|EZd*Lv*~}>uY+e} z_HXAIr+C@e8PwJP*O~gLzz`zcV>RM}I@M1Ou4a_G!wf3#CV4Nh%wchJnCjlZZ*)Z; zWeoo35tu|+1rxK3fLwxj{7JGyNsluZc&Wlm@gow4@x7-|*#3H3w8M+Vvby6r8K2W` zUoy{gB7QpUp|^^j9@q%oJ2lpQUUYZU>YOO!bNiN~!Ekjw4RJS0COD8Cenv2##-~3( z(~V8KmZOAIMs!RLE3QqldF&A}QZ|5wYwRO=44(FYJY6>b^HRntXMR-@@{kT7EmH9V z&~!A21Cpq72~g<8hW&}gC?YYs6s(^0Zb^J1)|N0E+2X%6KR43)kwY+YPzINMIMTn#R%&LDNj*9s6=QHq3LlhV-qLI=peWByv z_WV=`(Y`}?QDcWS*-X|{SB!XM_Adodg$Hk*2DKf^ehO;4#HjUcGZS3SFNF%2ATY3cQvB3gpZyDezN;+62 z8ne%Tch6ojM2pL%arVBKRzHhH(sfG37q@B%0X zZ(WoQ@P;xxT>^f2t%M>Ch?3DgFbGeUA6kc?)^U?xhpY zd7VzzHEn3@3fW7ZyVny8Q59(3e^WJHkToS=ED-V4k2Xs5Ca=eY=zGKl;?UoM6DrK{ISCazzX9>z~MpK#XO2fLfkmVi-n{Gr4#XzllM{@Tt_L=#PyvbK@1;j%YxMWll}cpx&!q@06h%GzfF z6$b2=9aTSHH!N&dRjo>U4`VGc{4~?cswV6`TE?gwvSGTDSa^g` zf7ejf`o4?wu;xsz>Hp~Nt*?&mKsT4CvYGNl%6FP*$!wy@ zQhv2>=N|3v?)48)l#k~VK#3R})Ieyq_#Kx>04|Hi>AjPLaJR$Max1S7f=y(4kFvI@ z%xb7E??5B1EA)?Do}&oTw!qnzRNY+aEQlNHU|!wEya9mtPVNJ#%~=Fq&43i)lGZfS4Zk>htvC?+X=F1yi58d5J`cSbn~aRWhy zu?Y9|S2(0*fxZSm)B|0{fa@c)G$kVY0PvB+vg66rg#%4?^9VJOM$Ll?m2PXD#|J}t zJ2^}C<*j`=pk2LGXQSd~+xt?XS3_Vx(NHRfPRtS66so&PZO~_|JUY$TI-eA867AOz zmqXvan*OX-LQ2-$Gjron`^IY489*e79YYR$>7>pEpQI=~IHXByNOQXEMQ<`wBF&f* zX?5+`=Pe8JAmek70B;b+IT2|FwI9e41e8ybfK*VtfvJVj1^uTmP zcf2wcU-oSdeDxsddwcr+_2X^eo^42h0st1?SX}G=T)@<`Ah~^ zCUvPz{<73Qjj=Z_bXu{mEJ>rI+|@)VV6~&2D?jV$zkC}+ZxW$}# z)n%klofY9?I}!cLPGheEJinz*+TUP15`^)>A|R8B03r<3_y{u(|G|T2q5&5MSPA>Y zgz(yf1No%E0p$#x*Y^L|=|5mjKPG!HNog`>H^;8o$T|OQ(m11gJ>j|Nsx6{@ z!1v;Pmsb<$qQjaiQQOol6(=-QC6te`*nf&PJUu~Xy1l&(|P5lKC|-`$Q%ofZ{Sw3Z{VE$2KTo z(yT?*V-{J!jP-9|#BMOcREC@NFhL*L`y-+bz5KrxijsbZImD{C^zeYZ|HOhtwRls~ zInf9I>}b>H9*&+>yCLcQblg(%s3-b;`yfknlFHcLV@jSC(@xeTsI{P7?ggyvEgfo2ce;vD%4Y6M zz%(usK#!jsUz>D!C}BFK5x~4X7}e>57dnHgBbi&@x))m=Paz4i^@*%Vg1`k7D?~0V z;ZYczf8b)@2|&ey%t0s*7dyd7Qdx~wk6!rREk{%vZ2eRFQrvcu*6J17O6cOy?V)A+ z%8Yc&&7@cIxBEGIJ#LA5>#aWM+>@NyHi)XOqCld=q|+r%xK@}|QQ#7U9hW6pm0+4d zUQ8_y7bf_a-4hrb8}nCg%Xr*B<@IpiX~AoP1s=7bG#}#0xzDC{O(w$hqQ~}IEBqk* zkP^qrl*4-b-)Ax?BB=Tf@Ln@!kbS9F0^v01?QuqjFgc`&WAB*7Y`S9Ei9%hkSk>yUhQXST*MkYa7A1wo{j0S>k0uU}1z zs-1;vrJwcp`szVmdfhbSDX4y<{;%-L=@5CFk~yW7Gazh<25g?Loyyn4^CcWY)ek~$ zs)WNr8-kJRE&B10d~&sSV;?g_?lFQxq-bu5-&bB6trf-CB)FNE;gTi6u;2YePyeCmcaG7%&9d4{jsE*S zhih68tvovV9*dEiXow?L!GUszPn#W1{29crFk~~QA*W}J*_pGzP7gm(C;tZfu~-Ps zK?r!g`2)B>!9(1RV4s8IxV5qPDMM&$fLW8JI$L(1O7C`VIcWU)`K=B)qGe;vGd8~0 zTZ74Dnzmn1dM{(1Zoi&wG3)(3V47AQE;6h+DH!s+Tlo++vY{hUKT+_qF|@OvVkO_G z{UV$BKz-!wPP25G&GJ7bq%ySK>V40x{La6(3sdtTJ_5SC!sB2NqR#Q`C*UFPEZ>S! z9vfcz(8{{UOw^ZS-_a@ZBDhAFR(*J2@97ERtcS($S_SdqnzsFS!=$3Gfd}LnQ_0%1 zWp#!8h7S{34+hM!tI&hhL3!`>k{&_%4*XO)M9=rH-b~E#Ca=rvRQLkEUWhqSKCw&e zJ8|uoTm{?_Am6+lJgD4)dnig^d;~WXshKPR1%hIYt{hs-ClB7Ws8*^H9d&4bve-0O zho)t`uw+o<;?x`j?w%_q$#Oq|#$@)@&8B^#}Pw@Drh)+aF9n2^KN zoB&dD2eK2Wk8rS`?~$_%&Ug?a12zD&(V zIHUC{S%Mv;^ych_yd9%`c!nFb4NB0ir4t`FSaRNtPOf0lYhFbHF<#B3c@ zr4rmPiZt_P0b&FAI+ng-v!0~lExIUR{92{T-&gK(Q(Ni4e3uZoQyX0;YB9RSh8nBZ z7u2h_C@vbbUJH>XyCLj5P3BX9{`7l~gBU(04C)2WLSL z&aQ3rJ$tV0x6E~P`)$i`Ws2>Wdikw({(b)4+0fo#_qhL<>EpqP~G^{8bmz#M!89_jZBUc5V)lgm{ z31FrWU&BD#pezfy*_$GM`sCf@w6i{xsDinIWq?6+7glT+V+_jt`uhWdvANB+9m7VduG7F+An|=D|zO3l0Qp1UD-C(1kGb-cyk7LRY#1kDxsa{(44aG4cL* zWe@-wY9f}GWLgd3KLTpnpCRhI!9L(Of44T%d+kTQc1D$<$3jYotNdcOP)a;B!JATj zK}8SbbW*;P>0+sl8SR>1^_bV+bmoOx)gZ`x{lh<^+s~>f9ysjO2tuD>6Ich2K(foS zqZ$~;2*_I@1xcr`+N|49yR7H}jS_!&x{z0dJvN(f*h@|4KHpgl zgx?H3@_3_DmC$x^ZF)~%98muYH!T`36&<^*m`yEkZ>TdD_T{X)%+!a?JXjw{DuYYa zt4FT&zDb9h6ZV$^?!qZ7MdqrYH7ipdSQNqBjzC|>ulG=^y|;cOYQAIMGA{efG_b>{*I|To;vR6mO$$pClt@+@;pipaoeG+5TBADZNQbdxow)>MQuoeDhX`^c+SUSCtiHpeW68C~F_g@+U= zXWys3+%vn@@QO1$a2mW7CE=+IuqWiVJh$qFCi-vTE9zCWcUO)*%*@pOo)wZLZ*RiH zyaB8feWd05%7qngYAP*IruJ9hnhw95sZY#?1`95Uc!09P-!Z^P;UJ}W=$KKoaF3YP z4{ps)_2vveb}$9n6>a-*!qaYR9K1RDo|M9k&vTh8A>@s>uQJP$(k&TvQ(XRI*?YDd zgQkx>l*l}Ba`NTd-;yC?zrYlYn>pJ9TdVu*`WX#vy*lv+WX(0Uf5b2|(!gW*j&1rW zWTh)B-cfFqcYwEpQdv@z&V-_w^wf)ob0>4lRMf*!rb~yli1eA($*#mf-EiUl7wg?$ z!l%(=D=8yG%`@uWWBqL!+i4?x&(wSTX_-~?ImwKr6(KhlnbKkRP3Zc^g1pr=XqQ~2 zo1^Ugf9U$ku%OzeTR^(IOB$p>>F$t5KuWs1ySt>jyA_b`ZbVADyQCY=27I3HeD8bC zMPL4K_N-ZJ=AN0o_ncJFjK>IF-P;#~sik6?P>{bSAU4@8#B*Z9|K;jyu5u$^JYTxH zU}#Hwapreoy}#0?2t;M}^9WTADB+(|mL7D>=%Ag}GS{l};L%3b=$_Sy(9y`>m<--4 z-?52G!5FE08mT0@_?25<`X-9w&-s)6Eg;32>DNah%MYi3zMk_rbGn6%cF69fUv~yb zjT%V4hUAebKYv2Z_}6^+AfZ?Gw!HKh2A7P7Znmu+`^Atu{lg)WVThj%drS9>JYXzv zKbG%n(jo@582+8s{Tgsmqt0K@Zn+`knla%tYTG}^)pA9b;#ftXbl;9$Zn(`=sYZJ` zr+l*iZHLHpz2P^jelFv3vXYt@Y59nv2ryT|mJL{3He<%^K?(a$bF>P*HskBs_7@Q$ zYv7TIy@$bZ;Lw;c^=W|^)S>Z~#sLHBq}K!wgy8|tW>UPBC)y%CV9`iuV7lAt(^=>G z7)M6BIOX$!#?yT^%Icw`oYr8!w>)x=sS*P-=aw*Wx+K7Z(>WPdaA6SHj z?x&Aw3ds!*q-Dm9_}>^Njx&5%y2P>~T5=}U5#;yv4*_8Y^82f+^aKDd13voKENP>s zhpQX5wh3T1Rdt8LWiJ~3`|#q^`L7UCwT-;G410hMy*!*N!EZ923di`a-fxpg-7amn zIt^rMo-RCHYg}TEoa{rYXfih+nH`8@qRBa?FK~$w1kp0%Bfe0T`s#0Rp|w1;9BbAe zFngWiG3@jvb2H50m@69*Y=6&Axc!IRESd_@-ZP^F3^L%@BA3$m&&oU8-s@YBe81 zs?2U{M+A@4q`VTU=|T#kwIv}6!4)I1Dg07oE+hC@7K z3k>%Db)HI^$5v=!OL!HY`g1`f;G|YJaTpFsikYm)2iF zw#SAtkqwzt!(-Tt_I)P3XUDu&`_fyJNX~q(8>8PiF38aRBaLkx5GRqW59QbqAt1Z6m&WaPN zq96`RsBY$vmEh&blt^$Es+V!e$8-3rtv)XO`j^+uuUM_~JRp~|y9JCREN{!463aP$ zbh54g9=jZO8YE7{dg@v7J5Q4yxTQ$tjU;`*LJq%9vFl_N9rT;P|(MsDEUuXg*9o)@RhG@eU72 z2!D>2zm|c5z5#~@$p2i{KPT+&C8oBjF{_pU%R~i2?%h1K>2GlX^H}v!8Rt2a>9==< zTBo&Aze5VeovvfY+?m~&ty%^m*uIm20)`lILh)wLr|JRGnn&?c!Q>xkyqqmA zja}!tmN^h`RR-$D9yJ2-skM#yC~a3e?WN+_y%Z<=8Vfd zTGJwZShy%@{A;{My~Zo09sBvTdNdFvn4f{T{2yBYkAUZ4knscM@$(3LM}ISQiM7s= z&Vb>^UuB^MCRbnfy+aILCJr4^HxZ=Ne%JhYs)nKjah$%$zG`bT;a2|u#pB@K;(Z3e;RDWC_z zLF42FGE4>I39CA7(vC-dr8I!%@ zK8+CLbaF&=LM%+37%_UUeG~nz#lKHukkmj%d|yhP;U-t=gO@$ane+7-QeAVN!2`m+ zT2kkzAGg>b96xA24X#s40vALVEhprEnD*7AHLD>l$CptAhuoW4K#n5#`5QD~SsV-) zV3|Q22rN}FYz{H7p1+p)gZCoi32LV2v-by)50>;+>uo}+Fn+oq2Q7NX)2X#bEqV;d z=ziZ&nG0Ao_7>-x_QjfVPN-Jam=(#jSA{iCv!yPd?4MTekXW$LQkovuDr$%36-KBr zap^FmWx4DWw1EH2&c+lkzha#3iYcrFSMS@iBZsOoqJscO8mPe~4@4NZf>6OiccL5k zf(%k+OTOAI3X>&`{A_YAIN;Z!B4SwIHGNaXW4FwSNq++#C>?V6P|$BzkuB<0bB(|c zemVF~$$sum$)w5+P%JhX4P**sTMU`F%yaFV29?Ks<)_cXn8{Mh8Ldr^rxp9HwgjD> zIkSWW2lEoY2AIn4d%rxJmSDg`iu7VECNlx}H6yp7bwqU4jWP zLBD%DCMK?$^_93IPcpkxLe=&$Ch>7s>iD{!U|4TnrS6C3wBzOcn4tjE;^Aj{TU{j% zn9-Pc@BPN%oRVJbR~MEUZRkAPIW1^drG_9BC*O%Kf`nVq&UL$+gCPR4Zqmg!fYaPnc~{1v|g~>@kogS6SWAxaVWwbw6I^;hXD9i{pB_ z9|gcQoi|lu@6>~GiB#fn8APvhfmmTjv}5{jkFhWUfrmpbT}VX?m;{sa7tDX`0zl63 zU3rPWtCdF8C#)umV~Z#Uo(~Fy1Io6W3N8k=n@yu`Gto^^<}D`s|GJGK4K*JerdR0{ zLnac>rt-F_bdJcJ;T$7L>eBl1lCSw8V%aTsos$;1;0&ZB*cxA1CWE=sctNcO-&!-V z0sFth4+r~89J6GR0tK`px0`%Tb< zMJXQi$7Cz6w=kqG=|P*@?ZR`7Lr@D1&z;q%1r-~)}fNlYrRT2mDPgMV}5Hh}>(M|=PQv40GY$oj_1&^pDTEYjW zj&SkT{^{{Ygqiaw7}~<)`JvR1R108#7lXVwAR)dW>W?mPv65Z+OD!$!(|C2ROi1Ev zg+5cMpX#)Jr)R+h=K72>S-aL+h_vh8U-T&WPbT#L7|jcGt4!Y@4f%rCpntM_1d z{zyJ@926<>H_B-SL6_^LVwd{F+-rlsr5oPyk|~Bm^ZNGsS3x4{<^R*FyVWZWPt+WRTzmi<$k#^7DN@49nDgqf*ng5HbL zUy!W5N~v%DW)%)@j%0FPksSFjkV2IJ=&1ik_W=%_9rZ(CeW7y)o>7{vy>z>&!66nO z!}ur!MO1IPIW(r#>|<2(BK^4~k6*5kl2~I1Z!WpoJkDI$tlW-k1yw*r5X*;Jcmss3iC|IDaf~o zq|>g@n^}|tMMg7r^1};gz*agurA}WY-f`nTLr_puabS2%Z|@H)xA`bDv-#JY>-zoA z%P(dfzjWn;g5-Ot(Bfz?dSR-mo})94F+IndSh^6FN@jsZy=8l6UmYYXvjQli$lp;RWMpL^vSe z3-|?)wTyMh^`*xqc=)d}j)eI5HhQ>w^HL`+-tDtkBu~Sst5|(T0RDcxz_wIGN3&Wi zIeul~q*$;)>`gVQxqbNUJS7U~Zs$GL5}YE`ej}0WX169qPJXY_|2~olP?zqQ{`B-hI7ooMNf>F^g1(*U1)lS zbXIhIrk5vIDlQ4m8YJ6var?P^7wkn$tRGHX+9@)FId);4+^bdW=ar z4<-#7Y!e5+Z6-Ljn{!(qSu+wrY~PZCCR3$LR)1}OEmBo{{+3n=IE2%>(MH)y#f&mZ zBG0+uZ!Gh#*-*xJyP~*k?y1yH*Ak8r8m8?Z?9EQ4@0*lsj#l5CED^Cxq)xYmFjXAa zYE9lQH7(n0Y)37e_o`QEQkMYux_pOzr=tqv^UE4$2dE2QE>};wkwdesigzNxq~)6f zaNYck90)I$D}!Tq0J4tmPoumEPPJ~UFn34@2c4W}94p~gKfFP&)PS^t0y431V$-VPev65PL)?39ZU_t6Md^||$Q z%!tVBnf(5_etPwDP<4QwWG-@$R=xo8Yn|ko%>DAq=Wnd3Q<4GO!Z?MU>^hhRzR$_A zKoR|`z5*&t8CGIT##K+ISG2q&Q}CqdkyV?O#2!NHK14L~B4@%F8yGp()GaGD9s$9T1H&ff#_z(tZjH2=a0Y422zM%%j ze`U&FRXASK`T{(9xFrb+2>SNDkEQAi=9(=g@4s5gywMuA^GL)JcRmMEMEBnoP9A$( zXY_M`DZ;OsY?v{&8+9}XlOiN|oqZTJ@GYg$NQ!pbaqE+l^ELFu!Trh1*wZqD6nLk1 z6k1IAW+Tz*!;Cyzuy%HK)RBX;#67IV-E0daLpxJ2Dtq1;ez{(%PU1g{DWAy!=&5uSc zyP1SHg+KkN;`}P2N4by|92Rlfj+%I@%}-~>@0dcP&bK)q&&c~k!5*EV)NhL#T`#6~ z#Z&HE&L1Ie-1u=6o18aVmhY#dDY2H%efEPIC&J~Glt4r{ByxaL3mT&@Ead`;|Om#R|J@Ssz@{DOfWI1Mw$)Nx~!M1%p2bckm(JNO9K0xIZ_(mvlSrOF+Mr z1Zssb{}L1^e_*MU2dPlD^8YWEf*00)dKRV4H3KZ|`t!~pPQn}-Mk=3TZk}()X+7JF z>iK>?40=@;a+%qtdVzEvN}6q#uD84b%an{9hPFHtu9x4hJhlreA66+{9SPrO>xAb# z%M=VU1|M;BqOpjsNC*}Rv?hz3-t8V!CyZVA1moB1@>Fu3PK{=a!_CZ0yaUYvnE!U_ z|DWL*(Ywdf=0wURN+ELjY2UPru9LXhrAKr$hnWY1!I}wz-#>rF$53KC<404UJ{P#??Sb%RD`+(RPZI}g%y}6Wms6t z7t1w|ACVlmg_Vn-34{oo2qo^Zu!ov=nvS72XPc}=`W5BA!_f>F!BAUB15UN&$fejaZ5v(BAyewLCh{^ z*(PcyxUw)iXh}H7j-v{6a&gZjOIWo&21`T55RmDZ3kCaSA+J~8rm$6Cm@l0;MACLu z$~nXAJKD@((DDqr%nwYT4n)yDrCa4KIqU|r^|L~m5pqqsT+kQ}k`GWC9~gwf_Jv?@ zL~843@OH$#J6apJYjE+G%1zs~EeLx#icc4>{w;zGAa9Em_+2PMnI-*QsFh)%l{+=! zWjv%M`kp!39lvd@)8g--#HsT z9@m>+y6(F&IKC-=JZnXE*|+$puJyDfhH3Jaf#j9uF7(3WTK0QY!OXGUk}-q=>?k=g zRNa=>*%QCVxH})p^Pieyes0Fu0%s=y{2mx`RAZ*olMAmj8M>%El9ByXvoCz1!J6KRezE4kACBw0_|F- z-SWa8RTNjZRE(k!bADAf1xZvKzn+xdvrSI_Y_^xM5s^X^&j)M2m~=?a@;+U#ZxC9v zOh`8Um@`Ty>3RD7he|{@OL1pA&K*(Ndy&H8fMk+r=<2xBo_oqi>iCg~`ToGZhE-^% zws3@~broYCX)99Auwn(B1(UlS^8(W+ngqhl{41ukn5_zoh6}ft`D7C>U84_kn(CH1 zjT$i-6u7s>JEVzu4YB5Q%21!yRQ`bd>f$a%h_bVW*o5AMhPZYP8SBjFooUe6{7Lh- zAhiBl24pFXtPoR*#>@LMA{nH?DtFq;Q21StT+~)CJD$a|<$h&Ay8uJ*a$Jd&O4Q!t zAe@i@=PsC)8%n|Ld#m5rtvu=F-HpLc-OCz;k&@B*j_&r+s8O~p;^}^EkB|PodA&-d zrF5&%%e^{5GF(v!9T|gPo}!_3-#Id2vIqrZJ%NdyW|&$bT3iH5rjS_o4{yOWWi_w7*Zehc`h1pDW9%ioe%fSdNe--to6YJRy+MWw+UJU3r zT^CCeyYICHX~pHhpU^9=dz^zToNJd**oLNvW*#K!GaB(9>APSI zi3r0(Wghv)W}Rhu*U&|$v>79vSe~C9)e4!y#UWGHZ?DyEvj!1K_ck#Po!q|I7QTz{ z3FD7m7wYc~+w`tYL@EKTW|71_r?8wna{W2O{QBH!nfG~nb>chUOuoxS#z zP3RB4htPG&GAAL^GdiK97NiK%HxpiEiy-I<46v`4SHGdy( zG~@0d^%QSq(P*+ysnv6le{{IVAcXok!0r0 z#`%0N=f@0&8|vy$<3dP;y3)_x-Xf~%5YfungUpsN7vr~|u1C$fmLS8syol;_h*yNM zNjIw)3)=8^iGo31a3YR}_r@5qD=f!Xn@V}3AuHCbQODH{;4|E_AHL44n628po$a=d zn^w)Rq&2h8IWEZkhxyH$mX8s`O5tR{2C)hc1RVi4Nu4Ts&SxD8V*h>WleWnm6Pckgk z6D9r;VLEI^ebjZxi0IZl3)H8>P7uv<_qXltX=28wwiJm_c$L9oD#bb1`BSIOvyJ2} zpmCXG(3Mjif`r`t`+TPLiGlC-zT=~nrOb3*>*+j_#qA+RotNXxG@r{3i^@|b#(Sci zO{i||K{AG|hE_OXRFnc6{4s~z;e1`u#}&R-T=X{-1g?L6wrBfXX4WC$rvMtaQuM6c^?Dq*-neg3C)21zX()z#trf5$JV6?=Q>+l z@_>LT>-R!~me4L*(T{CbN5w7m^eJ3!#Fq-+6|JCr?7t zbi(~w20d;pEITFDMG*~u+I&qszz7>rqL3`(|r{Ni>SGAxI;E;HZP zfiZ~~E&KIZzs%|S2H+Wc;F9PS3M{`?^ZB+(J^s&-Lc-|Z$S=5*8UXF3Q974^A zKCPZDx802=K8#dICER1|mL~Pc-b$0MHCV#texI;9%cP>kj3N*_dP$9W(%SyfWTcBONBO zJdKWMJ9K&9*$n@SNNN#{r;>hH%h{NnCx$>~ih0OK1P}7wCx09E*y8W)Lyk)ZgFnIfrrGt84YTjM&>Yk=o5W8@jhZngAh>u&y-k}+$g z2I+?tul*HHgpu$9wB8Yi{aCV(P6|Rfp6x~wH5D*joOn-xr*_ZYB^BfFi9Yd(=e2b6aeJfGp!+RsDb}u z4|qF2hm$ezB88`k#h$k-#jB+4b8`mmF&)`bwps_uSJ+((N}+rWoCm6(Kchqu!b8Vt z!_tY=tTCk$5#OWk$jxca_0U$N+Ah`y4^=afJZLR08s*Or?G2|Ve^_H2`a;2yG(Z+g zT8M!Ei+L}l)tLr`XWOOq$YwLevYMK8JvpB|4rPVx92s%I87?{81NZgmbO%Ja3` zPQ4y>h@OrX`6yi+vI=y;dg0^jHtS)ymBnz-aMxX!wot)uysW&gDaD+Cf8n16&&Dm7 zUGmDBzNj3beHeRkE@XOpR(~HF<+*S0$b?atH7=yHXhGig?mP;|s-00(QnDxwh{@Ue zs_G(2d>LEG5Xt5pR(Qs+bzu?rjB4HP#oGD~0$dr2*ok{0jlprVo`hzO zxq`~I2_UB28Ok%Y4;Vt3(BU91H#=3|9Ew$rCaN}uDa&+govRJw-sX=2~)I9h8ORb7jEbT zd(g5ff6k;HBS^1sEG5S$G$8>4BZ>ku&4oc)0cyr<8-m2-Q43zHvxXK!_PWQa+e0?K z7H5(BbnWZ@M9(WY1cUl(yTkF$x;E=$lj9}(^Aq(b#4_$UtNFPndncQsQbu;UQ3%{E z$g?+Ae2`>8i``$ZcIPbz>TR|Z=(n-lPAYUiD0OMJQ;-I-I~AKWTYsCES}`?lHxvR9j(huQ7c#;(bLjUVqTIIGCG5L&E?&pdgR7k zGWmMnqso53)6L>C6(&@2U&Hp}C ziKqARLz}IwT2qX%#mWfE?|Q)_(N3E6vB`=X&m`&R1nDK>VU=e;f9Cw%5;zI1C@J6T z92rZ`X5WXzBxPjEpxi(<_AF-rg~HLulXJ0ivAf{dzr}QwUt`?EekU169Y+n}4&ffa zPv5pn{YTUW|AhyhkGDVw4{J+++AdgF`d zY-oLO7i%P`vNSGYPAirXy@1?8{NWBm1fx{1?0rv()YE>#^6<7>QeQGKa3fdox)qwY z+ItuA$9z(VM@O1tH9=kDPxTD3fkF6;)xFHRQ@}}KXLoM=AZj0IQz$kVG-6nR~Q*_uP1`pgNIGqC{qzKRth-;z3)8;2n=fY zUIYQ`%19c5HQk|p+$|~QbhDqeF7zBLvrCGDy2``fiGa?we$Q5QZFIz|hVN}e$0#Ts ziIM#(#r#a9d)N~&K<~!qgS!P_xCOELke%alHqe|wErYRE0)tO4HYZ_UTcr$Ce>X5F zCivP<0RA*TZ#SU%b5LhN>-jUucmO?^{R+xVKewKlti&gsnvFLA#3?S zmW$pGb>oJ(xQJXjCMHCT#h8wDmed1IK^q`FG4GU>?J06%HN*F(C7p}+Pin)@S>*N6 zx|S`jAoUulo76GG?92vMt&9+(9B!`?L*t#*=;*#A>O`)u(iP0qK|b(`h-DjVLBBl-m1&eNSjT^g zDN8}IwfSH`;V7z`>e73JL@IogEkn=UtMNEzWzy7sLq~A_L17c3Y;G(rkT-^d6Z1rG zbscmbfd;4uI+)l4+q;<9A=&gj;)V$RW*y^yvyQd5wp;;KH85I|cv**e6*n7ZoHB?a zzU46u8Xbe7RXVJPb&>zcI(c~0%YUxsdDZm=IcS%it{>wa-W@ydIesD2=VaIlAvKLN zVV%rEXZ)!7a9Y`V*l}#XG(>cN0pX-sw;oEwbG@OglIGbbB%A4YD?+r?a`E7q1-#sz zms#WYI3D|eehofDT&I58Zg(^d1x(~IWs($jLU^$^^G6S|n-Jhlow3Jl4W(vKXR3|o zz8@=Z1~a)mrMx)$ssV6%l=Z@Km3#c71qT#!XLY$%RLSz;DqM_AjE(<%xA1sa+&p?a z6C!*!r#YN)JM~`2$?R_Yj>v81S6Gc%_ee++E$&v8C%1eBzR9Qcnq$*;_WHoxdk}e` zrz4!6g0i*dvTIxufR-)5*q;WQ9)^g(^i?3h8Fc-dC06=KxZ8$%fqjkj>X=$xm|$8- zAn%iEcmuph6I8C|2(6I@y@U{v*B_V1LrBCrg{j$atmkUs{RQLKRdS@NZFs>%`;Zb3 z7+!)uKfFnbkQ@E!BRde75MiS56ki))>0p0B6V@??gu=;}mN!)FrPhn1K`8*%*nnk= ztvqkeWccZ@(ddKdp;qTvpor#kdf5IzKflw&YyD{=<)Q7v{hrXkAw(3@V#5*9(apI0 zp-?}B^mY%ojc^2WL!w+GIg%jCs{0wi?)4DPS;3{ zsU1!0t~O7b>mNFeVYQtl6M0Q*20S>}wB)+fC^|90;G5nOLIxqisKeyYgF4vyBm;sv zUzrfbCn?7~*ERXvRow3UhV{mC5E$AXwV%#Ih|Uwwq-_E4N$A#=R@3W1CqTpIAQT`O$(Om*C&U6?9)elw7R4%tK^L@DWxj7Jn}m)fV1KQ7`{u zhjg(^0dJxa8X}(_Qwa<$B1w{Fht+bZgtWD)Vq2D2Q zuB7U$t@F^PcJqC+!S>=UR~@|sgS?`?FLMDlI^q7D&$jmlm;o-^8fS(cSeJCXAOsau zz}UlV<^i^6mC>@*w8mZGo2wR+s~pWlt;_se4-2i44$YSCnWI~sJ~z01r>%6o0o##Z z`rqy9d5gOD6?wYydGoc93;L-jrh4#~Wtp+`XmnI9!^xsBA$75 z-1?+N=ZSS1G?Zfat*?p(E7N#%>F?p7!jhY!-j}MihD5S&vBJj&hEC=el}N;lnSS(* z1~c35j0RJto)W+?JVouV}b3^=7Yk8mbajyH<|q|e zB)|uLo4YsK;Gk%G0#qA`ifPpk#dG;@PiXS*`UdDP!4CK+xqRUGr5Kq@EUmy_jH-kC zygUi6leW+C!$FmSJ_eOSxrlq==}*AZa)A0$OMb|k;JY6NH)co$oNquu^9M1$kbU7~ zTWdsNqkPwXFof*yG-{KJ48`1dn|vtJR7nIo2fg$NWlBRdS$WX zt8v>->bIZ5LXa$6DW5g=UsU^MkRjgoq#Cm8JogR@i6FFL6}e&nf)sf6#9BSIJqi-L z6NgUS{hXwOrX*w^CF$p~6;5_U9<>a78|@`bu#Z2&(FfvfvM3pj#cQyBZAhUH;ved{ zkVfWess*0v$7~D@3-oj_4a;3_{^6Ro2=3;zD;q^tL)jREBN5d)vsRIEvLQQ0LKLg& zdK@1WcKl6*9~!>l(W?X&j*A9 zuzysY7N%p>2RiE|$8Crhm+8Ii@~}3L%;wH%b{~FDv>PCLVSStUV;gkk`j^|xe+8RA zWypj#$`;=s4fyh97D&ni=0<--J485-BH}{#Ewv84SYVVpaPzF^^)IBbSmVn;D|IH@ z!ww~*cCw(NL^vAh_4>&DreTHAMAF%a9}F&IEwksn4DKuW$4?qFx{Y?OoBOp#^lZx* z9C!Q`Oese^j+W|DBdg)N{kWg*4rnGeQi^{5YPQl&`d}&=7&NqL%b9*jih^ttAQ3U3 zN)}^CUy=>k(<+#4Np?L<-gdF$k@>svA~Q)FJI-n8dX=J(SNUg()~CvLo6TaO`1eva z`1mTH@unP5>c0fQo*PK?6yHWYEa}3m=M=M7SbzH1pJx>?Vr8|*Jt-sr!HPkuO#*!7 zm=0ytDS%PrlfX_=6mcrpekO>O7-YJqGAOVaFGxCBccxztm-7Esp&BYI?UARXts=;7 zw8)PPtxQ7dVr5MgLvR}9NM7Cb_+^@C;4Zuv9B3htMWVu(_Lfka zgS|dk&G$=|#!*NgTJNf{P)>F04@@*Z|tuFfcJ5!a-ya$tas0X6Fi zDwasHhoLx}tAMxNX|Vd4u7bL$^e1M%mg>ae@~TUA7%UC2(I_l0fR3?r1;P6Sr4*tN zesXR~-xgFbR6M6OmiWfAi#*`(F!rBDy?$WO4<&uv7wjzusdR9aful*m^O|Z*Fjq19 zG}yV)m7+8$fPW~n;WzgBIxOG_>1EAddp?|$=;X&ew2&v>|2e9BT*S6M?a?Y^BB>UvxJ0^+&F`N=B$5G2sGU>ft4B` zY@L{OY`qa6(Zz4u1f5+e!Zs|vclrJ_+{wmwwSM$V$FudiIMbfE%;RQFr0YFaO4V#&b%R=6SsbS!W(6;2W@j?tG~vnhj+QRpNapjRLHON^z)oZbX-pQZxehwymuREU#Lj)e%rxKQ0Y!T}KDr zveXXjF>+X^{6qu4$Y`qlEgwl21x4oXVPL9(OVHTZED|OSjBwu>sMMfRA)j!oq+x6z z@j6hs3_xz>lq_HWKF-JpHwv3w$`5iuoJ+6Jb#j$&Kw-BI&%gMbn6qchhw%P@OH_(f zIRLc>R_so-F3mMm+ z%^{lc*iFYLnRR_@y|{4+ESuyT*+>j2#u$}yN$~R;mnd~sFngpZe!gT;RNVglU^|Bq zA|!?m?#zVjW9Afg5WsHw#3&angt6HD0{lKB!rnNgArc!3oak)Z3BvvAo{KE z)gnFZQKQ_Gyr?i0AxEBhb~aSUu112AktI3_Ykf!_F1yQozsX#YrDf#49?~5aE!gxb zM*keyh_Q$sjNi{-w_3*0+Hv)|VR}5(Q`$sx-@O8oy3HG$TCMif)}f=iiAvW0Tmt%v zgDtH57h+(6`vv5e@@-`@j~ut>b3Yk*_;?z#W~97C?;>BjxcH!fWVKOiE$!1>S24eX za6UFPm0|`e-y^vpbyQqf&l+gm{ypYZvDK6O^|Wl>rG|AXytaJPT?+HXYKB;~8U6j! ztRE6P*Vw7d@25ML<*V}#+r!CArL21~<+?*HzEZl<&{JlD)-ebsWI96PzsdAtX$KO` z!SYh%1gkr~;OYBWSa+yal}x>-Vfn@Sk%Of$v5w~|(okRQG~8c$AZPhXBhjhEvGGX} zeSdTK;;s3x(NkyJ!aE+A;{0Ox2%e>fY~3G~#_W;hT^F2_iP>CBH%$nQj;G^o?A&VC zOJ4WyJ5`lbaybn1%Sv!Gsx&UFr-Yq_60at~4N({qI;${;O@sA54fvaM)tulm{66+s z4s#iqGA4!MCu#3tCIKCuTUc3BeoG{YS%5EZ)(=I>(~3YS>(7a1?}m*5u)R1M$*KQ-@T#p{Pq#TzXCq=!@~9wr=+ z_4mHN*LBj4otC{e&a~)tQ4~^!>6h54!-NU>K~UkuO&TpjX7$uCz0X6==YFPCF#Omx zSnr64YI$;YVq%K@t&zSv5Inf5UZKUpm~}R`c_oXv*yMZ8fl%QGF__Z8H_=kAs{Q?5 zUc0r}v}iDMJQ(HxRt>WXe<+-(w&h~zaePZT_ahtk{dDbyKDT0iQwnc^-Dm z{KKC_`AfaN@@q>F9pF7vz#BLQWs?zs_kfDX(+e^4bS3pT6ZC?Ghv}pVI3ujXca~y< z=wX5)k7L^t3>p|qjKmOhaZw2;b&2%mgz_U-7tqqyENoZ&;cy#Fp=(~{hsW;X2>13; z8TkU~P4pP@J!CrKcC7p%UU0=N;`q9h?e0(C=EBH@7%4e^yuD%!-sd*-f=n(Vd_F%;XFZVMv2DMCgS~>)gk@K zMXE^4P*2uF3peI_|B#%@aJEi#Lwb%h8K;X{MczJHB;$7_3s^EH`*<1=avyB;Lpj$q zn4|Spnez5KrNUJZ#^lW2>&Y;OCga0m2!nlz`OuKiOSU2Oed{->EvrdjTIxB|%#VQm zjllHqZvzhgHM5S;j>WpWo2=>vv|scC!-tW*$%sMWcA##%uCo=WXs2*>nZ1cbfv56^ zMOPg(8r)N{lK6=;O3@M<%+?n2-VDed&(|TfrwRd2ItskA35r6CcbHQseBbJ^DP>U# z+-fZ3)1o}XcePmfuAGg?we@6BOMM15rJ$)I1cKITT#?7eJ)%#YrrOcIWIoze^|z)& zkY7jm*3J&M&w4tyvf`<#`aG0lO-3BS8;8m=%k*N;{Z#`x*+tX)i{st4C$=Pv_a}G~ z_XS7*?!f00x&8BxP+OdsUDkGXEIrWPeBCsWq(1hrKQxfUCAxC-Lb602jb0_0g8m#D z`uB_yNSMsf+LkmAYl^KX6HRNq@4T(R!c}%X3GA?G-^#8CQ*tU!6c?v6EV<7^MIOb; z8VYg+?spcB99e#A=S8zYqVben85sHK#C^gCmh9lk&C4xLqpebGE)WGHCdTQRmM^EVabM78tzq_o zX~wVo0)8gRJ_Mq1PYL%Eq*pcxE*XQI(GMD{`wMj7C@v;iCMUl6BVDsi%GQ;0Oe10S zAv)&uJ#ZVd9}zN(-YDs2<+AhLM?5Qc*@^>)MTg9#3y(ZsADmf->gfIkZG2PqA7|ce zrn^7$j!vBY8NXqpTE1OzypajtHe-CJ)Sr)AmEd*t8@5e{zL=MgXB-9$`u;2!gbnCT6txNO=f$uvGSIIrS#o&_}=_48k!K5?Sd!~PwRn$M0pjh73&|qz^&*; z>N|I7fuL6Th9YqJ2qOzr?$U7>*8bV(L#nvj*(1X4OYmTcceySSiA+ z@*A^o**=L~T)N!#$$iWxG+K_o8HkM9QncN~T|F6BArv8#PJv{sVo_ZViUyq>FMQv( z(f;;oMM9%VKnVlF^Oq=C7eTNq&r)#jcdCzhF7~)ng1V!RzDvT91HvGno&=r@tes_M zcnho4_{ll%KL4&cNnFb4PtPDP?%@CKor&`gKM4ANl=SvQ<+sY4VmsF~;j|*6S3qd-`}zrDB>!1SI70%rQt?$ z&Iy{p!??K62r(8EGD~13g1Gp?T5(ndze=$lM6B8=4w5Zo>GCreGMvtnf4vR0*Wp)8 zpZgoFZ78vUZZ%K_FhXe1kL@)lBNZ7(rQA`BE!={2PNaJxBqKW;X7cdCPoCrXZ!ku*3HdAJ;ByzHZP!?=}?x`W@YO4$i1SY-d{%50rz?g1j| zr@HSHlKt`mPQ}E(5K8=okial`!23Iho_x3+<0INSJQzT>8*C$#t>6;&xFNZMnC}{J ziGjgK+Kyh6*OVIQQJ&CDL|;I^5g3CJwu$j$Gk#jGx$Sp~!e$hNzOj3p93?0{e*Cji z#~eF*Qv3O?0CU@l_vR)#cEK+Hrvb2tml+o9aU(%cP*6vFxPr&Xy)ueHq`ObS%fa>DRUDCnvy9A$cPfcdN!$&)6 z!oeX^=}%$nc6Bsbv}qlhqz;JSW>yB>eJ@f_u_t@+ND0%yrsg74?{1NN|2(&{o{*@S*Bkj%XU4I? zG@{4VFOz{MAJ8+WrN zAd5mCL0fT9fTDTr$#|@<#XUB#$JM|2!2T(1Q1hQi+Ds9{ z2B^a^M;Q|j5~GLNeMe?ZKoD+5G2^?c&`=h&^lYlCoKsLae0I{O<9vCJ5>%YEXlyxc zoJgo^k=;%z3#~W7BnFL)tlBxFbJ0w7U$d4{KJ%T_YtdU~k(v*EJkmyJ+(~P?s5t)V z9eVMUfVUsU37)56GPrlb&fyvbr1d}~_(Yjo!;NfSvA53*w~P$j0f}?OifUmzM#p^A(v`yTPquoBP~npI4OeoIA&A zI@43DHefS8%j^?DBqB1R%wd>Fex{bapO>|-k093ey>)k9xyl8PzV8Fwx!?O#YO32X zD?{1IbvXF)NKM6<3RreOLU(;F3sK%a1xt!d)DbXT z5*VEY1Q_;mq5$$LL*@W{&D?3G{&pw9tpe}i!{>+pbE~2k{pVK2j;_@J!-+P^4!#Uy z86#sJBg;0#!H5-US;5J?ytjXPwtjoX(_Tu)hKkZyp(&NT*hdz^*7)VhE)V&Oe`UR` ze$v~>-c`oncv|N-=zQb*)gGouJU(p4X%aIT%hGeXs;=lHcX+9oGHf7o^SGsU0V1JG zCQ$rb=5$#R*koUDsZ_c1eLj2+M-m;PYe9N(p(2OK0r}LOQ>XCMW3u6TWhQdBtZ(7t z+nV9knR6OFc3iA(YkA2Nq}^f=awfUdU_bYOj7tL!3v+3*Nw!fHcy6GU{%C$=HhNYM zw45?07XJIm%#(=s!q0hi_Q?i4b}{Az30VwY#qClFL#@nH88gk=W)s7?G2P*!GD_>> zwpnugERqJS)`X;8zA+M%2+*cDKzQijgw33bZe4!zgpb}TrLF}~9yrLboFUCA%T4@D zUXZUC&9$RrFS_QrESt;&4^CFB2~kA`7UCK5F4m0kf!d_nEIAtbceNC75V^xhw#9jW zOo+r`IctqIGm`S^(W79%)uwkFQv@tMgJ>E`yzp}Ai8Gf8C2}nT-xDvoZh5I^dfGGl z{Bb|`{o!4mpZN@*&#`YG9y}oi9bIo|s_}P)7fo(fmr;-c`z~cPE%Pf1S{U>oSPfS? zbON0U=5M9mpVhXY1tKJw4D3&+Q2`E-#iK9bZvOdnI`<%GNPG1DS<#9i{x~$5|4+5L z8wL-}m{x{kYU!!L`gp#B?~0Xi3kn4m0RvB5y}hrD zKoT;6D4sH_SpRKo%9`_;fAcD=XtoDsz`^p-NxzRhEA6ml8tD*9h>M2TBDAc*)%~I4 z{r30X>^DgP`^uAi3kX8%Skd*Sr^-7i*{AKBV%{NIXXX*nL6dPS+gTaZxakd2&1oUE zMDQDW)P900y(-^brF%FMocv6fl{4ePf<$o5X|aPNcRH-SuMD^oj-(U~)&;tufj_@d z44TEqgNZ?0JREc>=@D5T?dxR7>2!T~_c%Xw(=J23H3HJ`eQ%Ak0Z0qoQB`lJtR+ql zJstVDz8+k~4fTG^9@&U;g^f7;Re!S;Bjub{9+m9Eno7m4Ymqr|6QTc=fJJjoN0@;{ zsa6^V%CJ0umKaIF(3bGZbnwhyI+r`>+Oy0`|FTjCQ$i$7_O`w7P?*I z*D7}Q`kA?=2On@UdRuhG6W$>Bh58cP`N~&reX8V7)&89yGc$B`?;(Ee?8+%%IV&4j zd{_U?rXiQ2U2$%sZ7F}MM|ZwZ=czybjnpV11j8WU`{u{R)J_2%;R>-j*hvzoHJbm1 zkEY`@+5ckX!+$U$VOCddlO64dG|22B-u4ku)$6zL0?JvYJ>7kas@(vgfJrsR}^`@{{L0;Ww#%gn`!$ z6m|$w0!mbrH)@kKTw|rwY$?${sK-Y0?#5&NzZoix1xrVHe47XSk z{%3~PiVQq$akorwt^*q<`7Ae&EZu1uArcXGh3RdZ=U+7~5c#<2n1E#4-Wtz!(g*G6 zWHZ#NB(xEd9WNE96cok< z0j|kddn~~K=X7ugLnO8c=6LWPP0+9EZ^S%iTCH{(rtAd{FL&fQ#LcbSmCbwJcHB}i zSQzPMCQT8hNW_>zSJ(@gVbcf%GNQ$%M1O+t_BE{HOdiVagRXD15;GV$K3TdfxR|vE zzEy}!gF&^sQTk3a48Iu!J(!fRNA;_;#%hzZZcEOhkP>Qtnw7}5u^ zM1S~$6;!0;aoF9f85~QW18kyFZcMQ4&`ZcNl+r z@em-tC-R%l-yh6=!p3`X1#*#{A99*VC&f4N8|pges4>au&)#B^fMY(9geC_ zJ{o4SV4Da*;CEgdx82qTYGu@qF?3c3G>l!+@x<$`Oy54BUDHy->>{gp`(Yr;ox z6cL^F$0dR$*^l5FW*^bYu)MmrFDvysKWfe&-NG;rHWagFD2MiNGX{9Jm3-vm%N~5Z zJ6mnFv7I800CynZW#ca>#E79NN@>5paX6+`e}l{vhkCKm78T$m!E&|>PMa1kZGhW zv+bV0^Pu^g<13RSKlnc-MZwF$U+JtR@sQmNRM0nb4-gC>cc=INi8cFZlQg(6Ux!ok zal_2O0N%Z;k!QD^HE&1n4HRF$2P<@pS3EkDt42q<<}9tY-N-6lF|E=Kgzv_IT72wh zi-Kh$M}tOEJ`*_iG1WBEUp|vJn8ZHx)8OR>@ovS}Mq~Bj_hVg$cDRRe%`T zG&)HB$1_p`FAQTCumez8nRvNI9yofFYrfcHbxNuo_z7P7V47&APJu>pXW5?SY zdA!f-WCiSskpKsu3w>IKBY)Y-%V(M|`0&_YO8n?i5au3+RgnkKi$7SS!7!}_I$g^KNPFU#(mm7!`BWT zQvdeiw`A?l>$YTwjh)gUd;ZeB?(a5TMeU3F7f~MngD9LTBOL-`r0rP45hF0D9zN7) zVE|1U@7|ywXwHJ*U4}BR-^KD$6k@EFb_~Cv?cP`ArWqVw3q{3W_nq2RJ061q9k*27 zRB6#|Poo_fAS*=7OD2q$MNtt4JYH1q3i=Qog>>J)K+ge&lEF6cB7UPh5~#sL&E2M#z6fFL+^RbfHe{#93Kj5oFgcFB|JD zn)MT-1ym6YY@jaAd^{@c3cI~1fuyuF1pn9#Qt5`-`%481v(2X^pbK`qbk*N3UG{(9 zTc8W;vCg%>i&b#+wNfh|s}tMm)fu`RPa8yvOS>Dr4=d}sms{M}+4Q)4C_54ovWF1G z{Yq$K2MS8%1)=%$JX;B9;E=+gk025#sLeS>In2u*>2hnK8CVEB5u71m6ev*5O=ktd zRSL2-E626fB;40K_XE!>PF(et4{$3TW@ z!w0M7m35aH@@GlOBqBLRNsY}s>uAkTq67ER%G~y~q@)6&5zga^3#+Cz&cLX;tKH+A zb2E+}P=)V}ThH9a=EUK>>!Ry>2onwfFaPYdus2^rR6E(+$j7^eI}+N;O0C#?J#)Qb zyiBsdPJ1!aub(=UXhfVMXjh2-a$)^u*IdCOlRA0mX6D8x@BU8CYGD6*)~jdOXp|xF zXb2mL@6>nKU2TP*E@!CRmGzzd%BJy4{l-=g;ASmN;5NnDpZfdrU;V>);xBiW7#rE3 z9}s8WWA>v*fDr=wM|fPBI~Qzt$IqSNc7M8_?}KkH{ARTzrPiG7mL$Iw89uUnHiNH* zQ%iDx>XPc7WGt%XG(3GpILey4`7E%pd~Z?&?F{IVO(Y4?XG7SZYx3%N!96~0f9Nug zL9SQv+jJv~om)F|y=Jt$xguh;tvl<`OOTk}cG{ts(<$P(Jyhf~s?t;Fd~stDIGAJq z;!Rla;Yz&kK--Qb+?O&P@iH&X@8|-(-z4$o7v2#l}*TIFeNFDqI;X|SgrX4C)>;BvcQ98Hynh zWJnzjJZ?G1^5s{(E{GBX7-zKE+41&fdlwlrkUcOv%k}u8)C&N!usU_tov*={?ax-v zZe;LvaiM0U#mSBsWMK<-PLV0{VI+*3fg+QRALMen`ut1EI)^m+ z8atQpBj;0D7~e%t$!+`(N%TnvA>tZHeB#Gw4dn^}%2G)Q2|PT!FC{9rwx_>-0Z{uD zGwv(e&vrV(XuY2Rt}@>J8SyA zY#95uz37Qf{{yV3tHP=OAgp*AY?}33Te+ANqZg zYsTr&n!i{BfM%Ch3Lj#L-hy7?JM*+n$Hp&8gf*87^gRnn8Ki~S71R=0exz^D9)pg4 zZDQFT=PN(M#f8GN$wNVKtIHg`&o$InGI{E+$_)v0c;4nw8p^J*F%BbzB*?RTgyz|@ z02sG{wR%(Yfm1mmB;1tFB){~u1}=t!vMlxyEd8F_6P=_HRxMK!V5Ffw~wm+>k;$`EOi zd<;B1ygdABn$@5A#F_8ulrfFIP0oPm=Kp@@^pnd6_~TT zs;a8Lzdt+3fZ>bVh6?V^$jE4HY@9l{sipJ{4i0u@h>diRlUbaYK#3G%m)EW_5@))X zMr7;H7Ihlzt2zIU^p#-RY~D2TQ|5%rltBCa^0}s;^Tc-Wzob20?5_-upP>LUy#4{% zzR>_58NEc`_Gd=)$B`Sh_ou{~?N=I2`_^P1)oh)7Lf`%j9`R#Nt6*3{|A4cWl!0(l z(I01DP0v%Fo*|H0fi5W4GlSu_ZY|!ScMIlpop+q0KW`V5-CFu=oQ8tdwaA2eguhMnb3*X~;u<;&`Z?M0yrD2^G6Zx7FBcHfe zt&%7ZIxef@qxas0X~(`a<5x~TxwmRRIjR#kG3CD*za(hCQa|Dj?pbCL`RrDo);K6t z!q0~mZ*p`8eD$;X`R&re!%Ju`Z0ATz&cxA|R}R}0wt>_{oP{`?;AD!h7A>nA%{?NH8H9t)JX9yc$V;wRmz^sCPzlji@tWDD2GE1p#5q zaie*pF+Y*#8x2#3EdY=qo=_%qC{V&EA=wq+P|Rc9mD8I2%ARoYn(2f8)d3(4Q2t5- zF`8lzhDWCwIp~BOQ{1_O<7H}_B|j3reR@3*&GlIJf3BX#|2joUiata|X1I(wOdlUh zn1zFHV|mEH|1VIOGN{|l~i&U>UKwQ;4Kbo35PUvlR z6!1Zk6>@=tEl)V)&f>iJic=o&FDYwt{Ohx}HCK+9RHJ|>*%#(*vUHYcz&^UF>Sw=3 z{;P9;0T+Yt&Lqw0J;v*++olA~e5Y^sXK7rsO0rFRx5h7DV+MwZDXNHTBy`ojqfVQM z&v8T#fphVWZsIiEM@@>lseV~t)bp9+=b>D8ZPIW~>*TXZkvADItwp*flLuC6f1i9~ zC~7^M3rV{>bKzPkfhYW)XlF2oO_X@Q&XkR7{_3SPYi1ID0yHD_>G>!#TIGAkHn-%) z?fJ={cck|iw9<-6fL#M>JDe31=R6Qw&!i+Oe`1=# zGAKQ`#9)Kic^jZJ4oLF!Bay?=7r&P3E@nHp6e{omY~E*$a+Brp7t7>-$R zswOkMXd4P8@ZigJBGvV}lRD_^yob-hf0+)*P_m_ESlOL&(uKUN+aTR+k&@U#Sc4@AP=6EHB#>148K2nrN<(fQmgV? zAAC2J9T7k{2{{+Nis&rZ~^fcFdXzorM5!r!2W$tj;Pyr~oODMq$CMz$};Q!Jgl zv^4MKAec~<9Lv-hlwmmhJZ z=D-^XmrF#?cTg8#O(Rf$Oi0tu~gszmE~GBHsAzblC>2`o5W0#8F5UUK%bo_jz3C zSLg%v-_N%1%>bRhmz4I}6d=SPW*V-}G;KYE=urwv=Gb-ohLgl^0$IexCWOr`vlnOcW^0qdNQx6W{-<2fqzL}GK*LMJn@(?t3nn5D29C_$v;C@}3oHC9 z>nEZx3LI4w=aDE%$WQE`&-JJk5_5gE6j1q;aMM#l5Dt!U31_}9r^IK!cYnjW8GuU8 z|H-|7iUt4(k`IQ!k)5-yl5(|yM-fsTcf#+7&F)=u(DbZOeS$x@K2g`*|T+R9=P{kfjcd0{8ah z0}teXTuE{^5Zis=*pusGco~KD`MI!r^i7NmTnKP^P#Av);%vdfz05YtSR!(YiueCK z1>@)EFZyD6do(K&armk7xKgX(_xZgf8LIsB_pf1w^^J`%5P=%>jV?6m>$?F|1*6NsOCQVPrIE(dA^kfPOHFeBBT$z_Q-ETqWvItCknM6#Gu(rPkdZw|L z+E2qJkFCy6549_Za)crA$gdUv!#ZBSdp}d*5%1o&EhnVj#s}Y`TP@zEyPYHhwLF8i( zM(9}nQ@ksH1jWGzZ@y6^gak^+0hd?N*ciP>4};l3 z4k)RiMx^g_$T~{2*gvSk@9q5G10j(=Dd0xurIf8b&%d)c=&s*HMk3AczCX$e3!46* zQsm^|ke8RwDE=TMv$(R-=61RyM6z-H2m=F?t~q~e!-*d$21>^G`1qpv2_SSHtEsCa zBOx*B0x`NKvS-WGpM5%tWYe@#i;lfSMMX(aCR_=H^!4>=Q)IMD(!XmTsk3fhZ1xVP zF;SEK1u5!(K>ABWI5o;(#83y$Oa~40_vufVmrVqGeQ#QLUDAJBx`dQepVK^oO4P}-yIJ{PnLce)oGl?P z4F$(B3Ei*AZ1>jYD@)<`^qy<)SC{F#R+x#gHyy+g*MEEK@ENc2$ie;LmooUR{u^IlKm2s?j{!zYlLKx5X`P+3ni_Z=}hSdb! zV9s5`K>oRQ1s$U0P_aOJWlofM#YYlkf-CGG#PzWos)2St@+b545~$=gZJyjuTRvd+ z36^9iU3{sm>W<1tnT6??w*~%quhY$qnA_qHE+ce*unF;-b8ZGC-Un4RHn@+DT`=Z;o7ue!z2t1eWMi_s{wI6?DTx2oSeS)E z{xm>os9EvtTX* ztn7~?+d;jLg+SL`Y5|lnIig0sZyGaOu~7{U04m+n$|@=X zw9`nhL?ykYqy#jepnY|96*Lk6D;g0A2@4JyEYLQ*~9~wQ*JgY%x^L7vxJmarzI#Bq|@h*HfFaD%B@GWbxy!&?= zpF)0ts`$Fk?pE5r1^vq8&gjnMY2yo`6{JP_jbvvtIFyl+e^}GgN5e?se-v?SuQNNbIh}Y>Xp=`3 zQ4m`QqK=>4m^H<$5is#>Swi?xLIT-)^Z-4jJRncY7GR1WY#G7_vY?cy4P>nl1}p8( zT8d2%i}xD8iG87d+xZrtInbgrA4cC=7@R%`A|1v74p{%^W)YYLI1mkpfFHKhF5Kn( z5>BJQ;&!tc?&?x@b+tY^nu8`U+XAPSO4cUow03dvF8SJHmbfs2O7K!SONV#-+!X zlCSf}wpLaU4krsNW(q&1_Xx<0_87Dq%Qb35yjA Z6A>nA5C2L>emjhQ;Ef17F4 zOgMYvf{CMW(?VE44W!0M!OY>zk|82H_o9zX>^wd%m$2`(ADzE{*~DyTUK(P)DEc90 zjUT4yD9?ZZiJ$d&KvO(mlF0!9`7i+A{Jt;FKBg8r3diY^#3ZG7Rsg$JR5PmYz0z() z$=``QPrvm(eJ;AB-HpF!}RwUK5 zo zy;#Vh2ZEWgG*fPw$!jqB@D%8!GrsW1VYh#OX&q{dKj7H^oQ;@6=(R3s0Sn>-8Qf21B3-5wwe3YZ8hKzITGjtl{#N6@q66@%?S z5&HIVhu*`**V6U1s^Yk%v;|x3M0pvOIOFauH~d>`e$}S^db{+r4|nb{kDHr}TwEYH z$o?P!1KA&cG{rwj{x3)!KLY<$L0qHDzqtYZ+@NYf*||e zX;(&mT4%n2zU(v2j#JCn*qCTIlI=ouU__(+x*lyxW&52LX~@?rP!?Xw9vB!Xl#GA! z=`dma#KwjWfYQ>^q93-hu%Jnifkh^g`!QXkK~I20jrM^IkBA5# z(_NQfO-oL`hKry@$2PE- zaJ6Yu@IKUZpT*nBh&yrMd8)^sQ`W8XIEP!h<2Rqi>t!6SvfF%K8zA8`y^k_!?0gNapuZ$f26_Jw>6$=IbY<}y3g+Vs@R=~?ul=Q3I`eR#;0emj zn&{!mKd%Z;@{GuJg@F+MqOLweOEYh_&0tMm%H>aw<}3A;<5z#wutyez7EVjS)KGkY z_{WT!Gwkzmpwz<~n8f(Ths0b8(TzB2JKw8%Qk7Q!OS zpLDfy;)W6LCr>p{g}1e^L-v6zWtgu29|s+vC)2@$;Kbnl;$=9K+#PSeJ%CJf;QouN zWhRV)nVFfBQ|)J(o0}Ubh(Hg%v5~lKIXSr%muY#iuR|t5-3EL__s_328geqY z@q@WuM21(2NZ0dug8*hjZR@scZ7eW?|a)}{+DUSL8IM_ zz7G@m3=a9uyKnjXcDQ;m@wW2vE~~fF4IR~*YMw#Iut==9+CeY-N61Q`#3w`4xDeF)%!vFCJ9r_BTkCHTTZ0empxd5m8g| z@!5N1aX=S@A#*@d>I+LS$zdd4@0){Shu0NurZ}+wn;(<*_@I5FeD) zT;UC9;9-X^u}taKQi%|Vw%3m?>txGW&375W0foOD55m&Ce%@)ae!hJbJDHDy2DB~ z30^P;zpM^!9}Hjs#cV?cVcZ-87A7xdfRKjTRUHY4*~|olq_x;Sezv`c{{3OmepBDt z<3U%u$^UAm{yRt6MuqYq5i<3YVgLHoT<61Glfa_Q-X#+SU@8!@(_xsQv;R|ST3VZ) zJq4O$3us#lSfj0a*(@lMf@*W!R=1MUDA}NH5@Va=xeC3i`Py=|vi?u{T3W#4%2q6F zY*<)W5Uh(W#b&G;_=v`zo_GS{;^Oe_+muj3zLcrCZU zmsY`MwI0v>J#6Dwjm)4^ltZ8eiE9N-tBmO|(yX%ebt#`Jn>MaD4x)9EK7UNA5eZkE zY+WB}JV#~9u3zTSVD14{CF2;AhHbTR2*kfWm-v2$xad-QR`%!P7C3)=tom(Nb#T8l zk2oVYAG2h|X*IHo?Y?@PgJaaAOls)tD&M-Sv*VYxA&rPK~MdjaAJw4qxyIN0vI_M)Bp&H z2w=T15ICHufh;-_V7*ji%rGdND0li9# z6VHxuSMUK1;4{^Apba4Jo)_KEkl^rDS?lY5)AF4i&ij&BSgAUU>a;0Wk3RpPQ#appXY4APu!r!UJ~`4hkk< zlZ=!ga2xS9Mew<5dt7iDoB4~pfMgIoIyzV!%C<1_3u$rlf*}9sFh!d$b_pv6HbzRr zW1>Q#QvVx&5XJTj?%Fh+%iV|feN>=r`Vt#Lmpak@xqrCENHV>#3s^o4JSEg}p0_g8 zhIRb%v*e zU5+%zma(yFmHi|iztNg|IPR_o=zm)V0+F4O=xD&Ajf#Q*?AWDoo$Ugr80yD(-ATiR zbXp_ksJy5_YR7ewv7L>i3G^U4(Yl12?&=!hx;)K=&sOA%em>8F7V06zc@&PG{rttz3<80=Z~cN4pnZ2MhXh5`dfXL*ElnN)hi z-aESIt+8T6)(?>vUj^`fvE_(fVGZrM>G{nz)vDt`DU4F_!peyP24M^q(FMk=BL)VD zF@)SC3yc2q)P^L$5FJ%7H^_{j(|{;r@U+R;1LqwL6!PxZ9S4c|+)WDf)X{ADWv{o3 z^Tm^Jmsz`^f_X|~_pm!H&X>b&mp9zD8>ExGhf|;J+b+{m)8^qqZ&hfEN@4QFw4uF*N*MEVb8UJ|`#zSIC2D2hBxLb}b>E- zrlzuH$g$%=qaeVTYJSVgx_*8IX|R8SDhRP2gcN@-lsAjeI8gyrkejSMvj8UYHaG|& z1F$|Rs5q{kX+^%flX+q}Rp%T-AZg?m!ejZiTOJ-kaqXw{@;t%NyLyKmsCXEQb&@u} zB#fV|dR~$0Sqq)P{Qg09t&t3Jj+zn_eRv$KTI_rG=BcIdWiA&9&F%P1gbnvZ81a0) z_v`cm@4nB#oQJh(KGeR-*RA~3lM`ybiKM8+{UFmUl|tm!}LS-yR``MUGT#~b3W>5Sa~S$*&HLb3A+#yA>(C6 zVjp(h>Oj(s zysb8k5%zOJUj_u}~#458P;+M3t>Y-M8NbK&HLSNmT$KPdeN z&gh%jX&`2G!Gpp`t`mE~+LHpP>H`~HONZ|iCFvZ_6j#owp%N!2;Wyz%ufz-7-cf)unM)94!>RwFkcmzvj0{ik>-_j_|s+aYQO>#!w|x z^j14mLUac8%3jb-*gA~eUSemgb>W9QqjXbimH@u#_u29@+gM;VQsyr=*I@%=^Wb_V zvam4;olQ?{dJ`#E5+qc^%{Ci}Mp7p6VQ`{jPfB*{nAvrDV_l}^-3;{KyTwXWF(2pm zB|Cf&^aVP~bDk?pLL%tCnMuR-{o=F@%xFM6UYabe?EGQ=c_Y@yjuR#7nKxMb37Pnl zW7+7l;qvTblNxpes=(F#xT|}AP&Y)dNv7kllVs-A^Zh$y#2+RLA`$_ADJ|>&@rW`K zozoF7Tkb9XRy|mUGlH?~?z__kAZE!|k|=^IiYOWG6)x7N?ux?m*6Ixbj()KQhE5-# z4sDUQ1paJ8%I;#E%lfE$hoUPq55#ciZ5eSdB^{lHW?%sciV!`O-yU0My4--6(xrz{ zWZ#|CcY9Y3b;dN;_MevQoSXwV+u8frzf))6pk6l}Jcd&lVkO8kanrDY?A71hoq=rh%K(Ev~Jtd9|MbDNq1_pwF}^b0BFK8~grjHEVd6 zhleNPr&a~XWcy1$bh4oSun=wndm@uem6Cvq!v8^kkOOKk3R3T7)m3Qc3*_@-RRgS) zMv*&mu(rl8Qlh?AH>WYp3Xvkb->zS!4K@r65J(4ti5^5x2H3N5w!+gwo6gBJ2b$sw z1mlj~SgVL*X<>j1)j<-mm5S4Ix?3Zjy!Me|3l|MPF25}=NRl-UQfqKRFEhL8tvAZ% z2wK*g_I-{StvUejd{`)XL41BSmbA0e=0E3O*BpgoTAjaKiOjZT)5#|WwH%FN|{tl;dcNXvJ?|%95lfxZXoVGo25Gald zmxPAGVbLDM7tlp8<#c;X)_m@^fbfHc$E6o(p1EXyP!d{t6$*}<23LQ%z9dLf!6c446! z6FN_=>=39xA(gbWxQH7o;i`M@!FP5Y-`uqBdnB9NpP1WvCJ6nN+cku(qnRL5Om4bd zg*K+fg!N+-8RMku>%--CQ~^i}e)16*zzG2HkfNd@wKCU@E^sn5C{i4RBOpkfLn7cN z8NPaY0*>#qA@tUk%TXEQNKhqbeEW9i)gCD(qV!dw5ETFg5=nmV*3v|E8&tQqudgH8{u}q3VLtrBzq!}=e$H;q((1wgWidLD7fb0R zfP55!ceH+yGh+Yy?Ju^m_&(lYdIXa8Xg{b}79xxAcy-e3OYtvBGGR*PRWdz>6MX&P zmL+j;o|G*V;T4HDPnDuzF5~zq=(ydYSW$I;!FRCeS%P-aE@W6nJ=S>VGJg^UJHoS* zT3CdhTckcAsvnCD_HHPkG)Sd03aOD@j;%Q?^0F#d;L)I!p9wa6_%vQ2U zkjOB$Rxek#+v3{BT5wY;hr6+-K(0A0@8nlOFz*io>Rn6SiXyMv;GB$;L^Ct-6cnZu zS2z(}IE>_f2saL-&_8t&hRSZI#}5tq&&z{E&jAE{ zB(U_%mR4u@QId!QCjEr4%gUo;>c#Poy}APW+}SG-WV5^Q{niM~*8Ak8ch8;gnr)e| zL>?PGq3|GO*?rx&selHgGWh!DI1|N6h%1el)y-{a2iJ`86ThBc9(8W7&tU&Xu4tZv z5hR#y()&*@0FF(FI(ecLZHiHv!G3pgXUsS^-KBUxsSSJ30iUlg4rd6~%bnPO5EN zRcI^9%UxVtz|wPb&(F`(Ok1j|s_N>d_pcqt+V$)!)Q0!3Gvr|Yg*?Ihf29#vj;tAr zjak(HQl5FCg}!QGH4SFK;PG{A=lk%v|2Ca_SeYmq4IpcKhhmBRSL(zx%xc%^@}w0` zc43JqSALcS%5a)RQBN4+FIFC&MfGpJQV7Dx16U5dc8#^a<}+=q1!24nj|W3ca|gNf zIW;tA306^1Dn$_EV zN&Bb8{%MMI^hPIQg#t{&fXqsN>$!$(^-GyasaJo#DM|5l_;se4>sQ?IU#V*NP-qlW z#^|9-ns?n>sdnChZg%n(r4jzz;o`)0hXZmSdRb`5GO64sYCa1~_XxO7t*>htQbDpclEhj20t%qvYg z>Y~wc`1m7%W5&lB7b9c`43Y`6w^bT2Jn5+riP*xaqe8I|oEcXO-l7w~p8il!#WEYF z^E5rMOXAnN4*Jxf(`4iLOoB>pZ~eH<}2dCy~-I{$EPr&c%k?bWK*SXO;piuTl!gN{gFC28k& zmaUjl42|DofVQ~wAm zpo&*IiHeGfLi*_BL`9V&YZPQBs;aKq-S6ytrym|QbGEaqoVD`gBN}TV0n})ee<_hl z0%?mnjM)E*E!=vs|K&YxYK5s`#1hRh4jeth0Ch4Q$W2TDm~$(1CvhC{Zg*}=3cT6U zsQqQKoq-i}D@@lXiBOq z1lL2^UA>vaj1g*AXq9KS5sAyk7H&+p0o7AneWZ|bMC|<@-YAn(=@T?1sQZ1KYt#$= zvN;WxK7kIEUZFBUsU%k~#_#y1WNGHH$V|-<{_g7G=q{#)a=@JWdv}GLQUuLf-qe)| zeOps&ZE=Iz92ORqdTGip#O)q~8Wsr44;A5gZTK|C!5om!)GVyAVvk1sXGgBMl;FPq5WBBUUW(oNaA zQ;<1y`^4+}7E|@5gr1)M0Ek3_7Yp(a&pX)9bG@_l9GccQl2=Y%^s&j$Es7h(%*@S) zcWc+r_p|Ts@2QietLEViY;EO}C^S=Bfxx}}ee%Qz%ghF?3Jv-rpxrX3v5lRb!gM`| z9l7x6mZ)HegIa-;lam{5?{98?mRc>l(PP!o4>#IQv#YA+WM{9`7>CnD5fT#i8%?sy z_cDV_A=~8w8ni^qO!Kkq8v0@87~ZpH(Nxp_6aeBu|M34fF62^`U(A=||4|=hLaa%2 zf;Vni<6+~hX|U%y9u8r{bZ3bK6_{!*6KD$eU4mS)ql|2fA`5>MkjD!ASNw(eyjBNxN`~R;meT>Q^!x* zVZl}E6DNs46Ef-XGs+b7wJD3V#S(O^e@N`#e0EuM{n5<@)b=o?q^frDF91=@KHjrFWklwn>-;Fdw{>!j#5)b$Cv{_#@uri6v<7u6SqnRv!GrEWL`=*|v)z2Y@2|HzlZ}Ja(8i*huR>eOibqRUc#@(q$qf z{wT`6b|`iEpk#@t=rp?hyrijobs{D%&Tq$r8jOJNTndRFfpgQ-Atn{kLo0SC0udfg z54@v;x9xE^A>!zhvoqe-i7+)Sq4%m1bkXD(OXF&BvrBS z>gq~OZD`|YaBvU|uzx^7)W4^~EBK9uh(Cf6pyMSQknbr@6F3o<#^r{AiyFqZ>%w+Q zoe{K~4qp_Y<-TMth0q?faiKl)W`IA|+ z`>@*Gn(Knmt!GOW=(KSA)B5^pg3ji3dnc&HL_j@#qZEWT4&&xm88c)H+$!jhlv0JV z#h2`UpWDXqqpWyabQuaO*eB7SZzlK^annU-ztwHf8sZV(@x;WR@fBV^@hdzm1S|qO z;p4EJC{HJ(dRG%ZY^g6t(bH3b+lhR2m{MQu`IiTON%E#;JuXl{*}@$Qe^He|;oocH@87ADT3HqVCDO*u*$s zS`x!3)AlKKDzfK?+K9EExaHg0S~a%F^x%4(6Xw{RWQ~+Ua+endVbSmrFPv3{-Bj@q zU{zY&JtV8v8Ftli&BZ0c6b9Arj<)+QYp?tI2fF?6PDR8T2nJ3XmPeU zi;Lkk4GgB-gpyzMSAQc#Fq}L6@k3QOo0^Oayzy7FATa4UpYF_bc6OHO)DM6A_PMqe zFJWolKvQ#bcXw#rnJrZgHw3UjfCLhyQD#eh^!(lX_n4vLAg?6(g}>fzZr%A;ldy@E6YT( zlOWl8l(*%krQY@`;<&&xy`1%Cy(RZ8hId=eY~%QM`yqx#mFh>eF20IMXBGa8`i;vZ zoAj0T+hnL(5tQt}q*myZ&W%H05QE@oqIR}p8mf?tADXZ|1A(q ziL*!c4#tLAt)fTel7tO}ng*EqPtZv8V1-8_Z_I8nsA-1Par>wc#mzE|b9!2F^y$hlN#D1B2w&zNu zsih5_2MgJab(y38Emz%5VVq`H&F9Y_nW9(*BPHSQbt)G+YcBF|9BO->3?N3?+1XXI z5P+p-Y-|kTzQ4HZ+z63Pq(>DO&OW>FO@7g{f7ZNUKUnSDs0$VyMEEC9p48cmjEpod z?CtH@D~!ca@c)>ctTP)VhP-zX!~OBgwPYfZ{yAX}pqI2#SO&r8gUJw%O^Gjs_s^N2 z|Hn@duE%1G0GtH>8Vnk=5OF@l-sOh1nSGJVgS$JD%ve>K07Hqf!_xH`eXC+la^yNU zBaN=|`VRvQ!Mt)U2HKGdE;GKgx=lLhSQr^5&$tM(=*X2 zmgPK&z=~H~)_VvjBvp(DO+nx7FeN|Ckt!JGtStDQW%g0~h4A$~DAs4X9)77=ELKw` zW-2b4$TAqk^TlJYr7iV|&fHjVB)9?y>tO}a+zg}c9;uU~z18JA7ABLM_SVU*#Gfr} z6*4u&yLo~P>vS`F0%t!rvQO;h5^W?btKN@Pcv*`XXxx2LW8{jx$o-o z=Bd}cvO6u>5b@9Q^f!{YfAtyjjA!o8#`0n8|fGd9`^KfGF=2bq2uoo4fF}J zYtHmTe$!xfDS_maYV#keu8r=wmVbNM88!W7<@5bX?H%~AZI^o?>lxZ z<7OvV17&M@L$JSBMV*!GAeW{zgzkamG@LVVUSqpi*fiiLvi-s-PfCVyMixbzVV1y_ zCeA!o9X;(S#++z2IrVj34%&kt`-3)Nw_2vV-CtKY1&XX27mK&9_PgJT6WJbkx0~8j zS2sVk>>f__(yL*O^045nIFgYWKF6om>)@>Odsh2naB5#a8W1-%ffjRE6)g^gzf-3F{052Va&Nk z;&`K692DJuR-=zNeJP{Vfy~Cmaki9#FE`^2%i^$_und?|Hn+a9vfyoauClMZ92Bs| zk_=*t-?&{IHJp&eD9)t2$r0SG6s9d z;Yohgv)bTptsKTz(RPei7pYmcW5KhoH1B7a1C8tT=)uCFhwy%L70=#L40ADQqX<6Zb92X-}68u zA{IRY!rto>=6^OH86LJ5O@c1hY4|4M-H>^X^4EGH(rq3R{Iudm#tRGb^%-{W3jrGXT^+L~{4DOAc9c3c)^OO5VZ)vu`6Wy>hw zXJ=n_ZbTI0^ZIR?H`=hCqC;wObaYf;b$WaZ#?@BSFuw-jBdU06Vc+xbIT8R!P+&VO zG`V?uHx(AjB>pW8JL-!4$2tT<|Iau6mPF9#x>WZNw4*m0Tt+(=xw9);{O%g&@q<43 zRxvXQc_*+%t}cJb;4!3LrQ6}5Wmut{sU3(Oh3r%kzb%l0uIaFBQUA6ub#&aS7PTEk z05)p2Ug+^|NhmzeMiuqCj@8#PV8Z6x)9OU3^B+4pS58fBY^7?kO!@=rY0Te?88SJ) zggAA&7F7i_mwzUAiQ_rR@xEi&+v^U6pY`QS?y-cALhTNs6|Z;lMDs%m zqucSH(|f8wIGJ@5H)^{aoAfzfue|Q{lwP}otItK%aMH_X>(YywE=WRbZRK3)mfFd_ zuj~3#g~~*?FGW&HUgsXlXH3n#L6l&e*>@OHQZr#Yc~v`k`ol-n=cBc7Qb2c#L% zhP+%*wBgf<7HWO>HSrFQGTfHVO?h@nYG~WqE6F05nWQ0v^#27HS_+=^Tv~qdac_-# z0v01`T*N?^IDewvw5jb{yQ^;M+k-;klOkK5l45Jlbkmr}QO56nrm*TbH_pFQ5(3d~ zx&&Fybb7j8O+T+i1B0(3m*MJ z5V)v>(ZJRFEFBXlesmCkQj%Xh0^gGQjjO)$PjL;^?e_OSPaWiDXBU->mCkc}&Q2;% zj}O??PDACf&xY)LP-shab)q~2l9+7a*iND*%g;m4;t6X$ieXdEsNA=M>y})AQKG^1 zJnSLy*qP2L2Fu+aeb`U*KTiPuKSZf@NC~cfEGakv#kCVXcP9@-NXpiJFh7^aC6zXT z8iN|KZ6EbmltJ2_Xr}3WoRm5uacZ#1 zOjQlj^k7PEVE>y`{bs1orDZFVUk$F>3qjr3MxVL0e(S07?^;@T&Pb@}iJXIz?=T3@ zOjGOYn}b!d=>s|3-6w>$HVVM88l@0%$7z4zrnWI zJsIcb*r#pxH551PHskmHu2r~w&Qx@bL5d^Ma|Ztak8s?xuDri@p~Fo?`)x74sP4h( z6w&F>LpLt@o#!w)i%P-Jg2+k?Ba&BmQ6YVdjvmy6Xi*V7)UFSF1c4>(kDz>`V>nH! z&{1KS10M}a)}}8{J>L5t!_@Nvd69iScsKLUIViZb(FAzPiCsBAesCnoJR~(%+_3(J z#Y?Jlt92cf_oz;%SnioPUdckMm0iB(aF(9GqH^Mjp~m!U2)xeN$wh4_2FhupB>yL` zsHc9(YN~;sgwK-YZMc~_>VEO)nr9(Kiyw5iK>V=ZhHtML2AsQZ#&?|TJ0&39Ab!z* zgS=~lt4c$;XMhZ6+TqEt+1RMQI+s^-ciVBcnCPcsig=HY@3~abKW5DTO|TwxqlOGB zl2{+r5|@|N*Lzr7qu)7Kvrt1lE1R3I5U9^PzJ87Hea=M=4#rx462PY^>tF{5{@%Je zo?)+6eO}Bw&*!hba&M-y9VNPP(iMuJY*>@tN&T%p2r*UKWxb>?347{xCnnTX2!WJE zgKHQA!=I}I3G}SN^`@pK5aM7%g~#)1U3`)6yfa+|!X2?OF)UA?Uik_SHv;sI*}Z>O zQC=P|H(JSDvsJEFa2i8yP z+9n{h2?%Jj5dTp-rt9n;{I3InF}SkM2{Q|Mf>$00Bm_0oDREpnqw6`7t;_7!JFFO3 zPY~o1m?}7)HqeODuvm3b+WkB%JwJ2XZ#ACC3vf{-YA~(lC+!H}swq^*OWc$ieOAiF z59{T*I?VNHH^^YA+MYFX>0J3%esK2a9nM_6TgDS{)R!f{Df?^PBv{jbn~p6!C7uua zVV&@xdc{agEGk+3(k8ZPUGGUo!q zA|OW2&`n7XI^3NLwyobtvvWS%xM{txn&*SC8COMZCw|)G^H=Xxqeo-og_HG6I51QU z)Ckk)9pQIb-`fXmqPt3cJRG?S(UkCUOB6a z=vxFhZs~D0_Ft}dSF2GD!UP+Wsxa|KOwo%02C6-5{oh;dx-_BlHBS{r$F+}4UkRLk zdpH+9DV?n#UA^@w>s2cwb;F)deQma?6afSd6LRnN{Kq%< z$9VDYW$Dk$bY0wO?*V8ouv(ohC@And;`KlJ5=js*bUNMk`YMiE1iPcoj;>41+uIv( z{Y0P&Hv78&WufBh6@u)B!`=tLubHEK;0axKp4kTB%+tNO`jNU_3=+0)-$1Z~EPDhz zxHU7S6V_lP0I$R8HFYf}mIe*})AzT|bMD!^kNez1Rv%}7ti&3%bhWbsda)U2I#AYt zS`iol0YWlb(6W1Tt3KGxKpHuS2Es&$9%h6)y1YyS8E!1!&R2b|@-{9G8#qd*rodlh zrUi^e39_<@l9DwwH6RSy+}y0pikpOJq9pz{Q9 zvo4#5t82#}1Ah1_`ad4$=Woi7tcgheAyhSJbunOcy&=k^cfHp=7I$*D<0|Ib&DXv~ zY-Lef92qO9N?tTeOll+56nOfizIIMf(3mMFTv~iyOU&0t z*`j4llNnIH+Dh59mY5inIJRc-`|4p=RQ}9HR99K+lMCi+Dq9ojynbUbQ|`LbB0Nq` zv~;$z8{O7ni_Pk^sD0+)P)B{Zy@ViH4;fvNq!8HTob}rW4#XkTyLQ_X2|ieecPge7p$rUzItnq!XuMvu0^p+_yrSs54N6Wu6A91_P z_En_ULS~{C_fVpS!iykuL%VJNv{4ofJ)J#N6j9u-b3b`m1dGKH)?LkVKEyLrK*Hqy zTax=P{|5IOmq~fC6J1L|d(#?0_W73$k-LkDi3#m8^)hwV!TX>{!Be;nQed$ME{R{R zmsvi0jc1EKz*Pav`Q|nD_08?=25R7UOn`TJfDL5nSq8VZw{`UOsi>)e;XaYx&D9kc zpev?qNW;!3+glEn{nyF_{6uYzi+_a9{)j8TN){FG*Qha;_{>t0mk0h}`lRO&NqW>S zfQF~G-I{?;0MgT^0BL~nCgA!BBvZ&^CF$^@dtT%x<}wLq<8=J^@dFsEPo@m^4?S(? z*ir{23FG_zh!`Xr^ISs!IHe9I%hCgHE6_AHj=+xA-rhcHi5m1~F@o}&*lA2Vr{FP_eIlmkX}6?w6`bhQxqrkn2{#;V|AHPy=u2; z4ECoW`~zs$D0dqLI&+g5NKlQ{gq`$$uMkRZY+mPix!6>^(ELvSu#YDiEeWJAs<(_jRKX1 za#t2p!Y@OX$((J-7r1;NK{kob5R^Por2t#EM9j(RekOwrZiPEnYQNKz%1jFe0t91Hv5;z=7zo$tp5>2}^~*i+-t4 zTb!|TfFWFJP+e_NdMvcrn5G($4w;XE`O2x_;^Z`1x0{fVpvltfq+2pk{EB(V{23uS zTG03HliwFmJUGXv-`!rDnVH$zmfpW}sEu(U1a<(;QE21=6&1ik(2xew~=28aLj&& zv+OmW+Bgipl8^t%#nVe|W$79GL$!ICesZU(L8cCC$n}Z<6LH0{=~0BVg+jD#=O}{f zYDh_VsB3HG6CHoIVycofeH^}_&s&os-@EF-nGOZTV z7AcZ-0R{PNa&)>JTRmGj2py>5LU|FCAcJVpAAp_^Z`41A0g4W0UbJ3!&V)aEDd@G>a_H*tnh0&LkQd+`aC&&eTRO)6#@^?^8qag`I z?Ur0GBzN6?E~ZxxgU=8`FuWI3@-&ta8D;}tFW|()Ma4>+I5|0)n=@n#fhQX<4l0CX zCVg>~t9<2C+o9sLQ*L>qn_s`m@==(_;Nh8kb6cRkUPj4fio5TpLxPlV0}F0)GSQz; z14i5OZLo8K69tl)DeEwpk;0gy3e;&uvQ~Sc)yE@ml$4TkozLFLh&K5}Sy>q%n*kWJ z<=OUH1YxL)IY3xwW$_qrf_p|!rvboaE5?-cK>5rDq6(?!x$or{NAG#=*Su} zi0c=E@mQBH#(x)E`0!@`CSEC&)#U*V6W_vG-IoQgIT}KCwfLxPaYz>Y@n2d&)ujCqo3HSa zoHm%6c-%KQTEiSN*ZaGZzt9{)*~sHo2m2~(sKZk^a6{?D@SGZA%VT%7<~aja)nXV% zYjKx3GZ=bOIKR-5F{UPD_91AVP! zK6_JB`ivpKMO)XtkPH;SJ|slv=zXPDYo{~zS(1)+5XkZv zq2d&MR`1+_yFF_IB%FZYuA}3kml^@`&pxe-z__@|2jEhsB2X#8^A05Z7x_PymfAmm zrXQ@Pe-3ocT5Scji3j!#o$N8);W)rOh7#O)ap9$RAMXec4+lCEP>YcNIyDuZ|DHQ# z#QfOhK|sAH0@OqUChS6!-d6Zf@?gjTd1Td~NaT9gKy_I7iMFmf?U;1qAQ6#6K~Gr} zK6hzV122`^14_h4$^p@d8s8}wzQmQ*7tp1eQuJkMp$nV8c8xxOAem`-IK)wCxxuq4 zvE03eBuhY*0(gmpSG2198NQ4hX`j&eEL;9Ze8zNGT^ zi_jgsfh8Vbw72e7_@6AbWYIxqJRj%QM29t2mn!He@)Bjj<6@ffHBdED5Ijqd8as2X z__6H$^Ox#r*jL?=b)h~fb9z$Zi6()1sN+vjXS2Ok(~+iOsPZ#-5j5;KaP?>w*gxD$ zA7U(WX_Eg$lTC7@k~!e*fWS8t;=b!LN2#)6!g>>=NHq4`wutW5nlB_Is^T?9V7*DE z+w~;nlHbaVl6;Rk^<}cfuk?MNG66Qa0GRiE#83C%%Uie9|JdC^NUDYQ-@n`BQQ%Lzr{U zV}$8&;O9_AD~4(jVV@JsQFDxI$_<xYx8dQ)9t82z)Q;@&ya_I5;>;^75snrH&MRq``lU z8)}-4KVxTUFl5R$=)m`$*As0Z?lMEwSbZ-vcfPKKNbSe;+ePFlxEje{FHWTS&fo7a zURh7yFjri^Xpksq5&iJvsx8zzxL7g#tzu36!#!tAXn41qy~Z>~5VrMi{m~N5&RWH$ zjR6~;=sui&b(&4@vWQo1jbd}wPB|ecdds=ro}t+}iXBLq{|@mRHB~{4VM*d~T3`!* znTd}$> zlqU>*NF!EYE)6E6N*c;BorlU(IpotFl@+Lc-M9GSbT63QH}LQehpb{4onBHI=)xS; zpc7c8;*QYL!LSbzsL$`!{(Be9iwEKA2L&8ZN8)-M*v(wk9;MEvk671)tKj?fl{pK? z5kfAEM?_1RJvD=$+$_&#x|hCE_CLq=qf|iI{}>mS8ii(DZ8I7Dt2JxG@jcV;PV=1v zc{pMrghxVU*$Q|Vgwd>9NkicNzXGmW&r8LmQp_BYw-%FU2 zA5L@I3tfHN?Dju=ws(6~W091R>0o`T$uoc{rKfZk8}*9_9lDb_j4%#sP& zo~^Z+T5RLR9tNJj%5&VXuxgm?fs5JorTz?@x9#~Kp7cB@Ujd^xlAc9^1WLZ zcilni^zn05z^vWBI8aT2iU{^1=QUKkLumGp`Bh?7*<-dQ*Y*ufPq?mu>x#wm!;o%c z;5`{wch;%1g>&5eo&)-fMmAOtJ@0Asj0n%HGpGaDqi|8b7*`pxrwy5tnZ&J5*9i#< z+GwdW5k^VUK}VkT%8vnW8Y^*hrlQRKJ_Z8=#lD_(@P}LLj4g8%U6e5mZd!W!^L*7z zMbMP}8|n{?Wwt!Pg-jmb$H>S?*+-iTdJvchfBZWB_D!A-0BmxLkt|>`0}^Vec;G7E z`5$cK(?bCI5bwc`S(gpZq0+ziv+@x)pQXzbx8;D}oj8xr7W#UO&oyBCx5sBxUOPD| zc{Us=^d3xWLz~yn^&+~XUG#Iy80n)tu&}>-M}()ZS7)ru=UIEd2@PWLR3%!2lx#;l zuIvn(9TE*uo0Z4whmah9q9Geov}PVJ=PiXyL#fGaJbDO8b8J+@lM?H^hOz5(`ICq0 zwI_cL_~^8nq2n>qt>jxTRR6NPNpNCUE+t>OT#NPC<6ihV6nye)(f@Xn6dJT^w18mY zw9hk5WuKBm&esxSj9DC+c{80AybH^{QZiQ_>PIro~+}LSvm>zU{m`I9aVWj%Qq{AAGFuQIF{~1 zFZJ5^e>0+^$aKS4j&Z+{^1)TIkM`nGK1EB|@HW>}6mV}P%#NH$+H`pDvhd1~oz6m6 z5lfa;{ft~+ye!TCT%&%veAeZbk`$p8T@h_Om=MKCVqYY1H^>dOi>VZa=8lC_G{6gY zg-SH=Wzdb8Y(~O9%x&;1o+sJ1DgzrjB6#j6dpy}AoRx$Z?+WTYM2-zs=0aB&ZynD3 z?jTyo9gb=M)J#c$SS<`5o)prB3@pR}9i)@MOl(VY-`Nodn7s%<6u@%%)ihYc9fbl# zmyfdVd}(kkc`_i@weO0HLC0J6hzkXoF(y_VodC6{Qgc(5G3uj3KH2_V)G_bB`0n$WfggFF6(j1)Bmj zRJ`bw^+=Y`f_>^LUoR;hrLb>aBG z0)+Cs!cF-%Fzd_w6;&U*^ZPvt*01ueSD8e<^vT75(J;B|{X zOWZ1_hhUdmxR)WXdP>P3OZ67`;2ynK%(-Z4#N?26njX(Z& zsTSW7@`Hd>glzcwm@0$bOvX`vDk!Xv^cL-5FJ46G71zg@){i&C+h=>0tuwEWMMxR5 zg149H0Q|27s72`BPs|4F_u!&+<>e?D00>~QdV9L zz=|xr?Hnld0*8buUM_Kb*B!*a3&*Uu$mQhZ01KTlWWUg)mPoHK212gVGBSCimI9d| zLTJN94#rO+{et_PouupDJU?Bc89#X}22n;yA-)@Sj0t;Z#tEPp$)7`lTvAsnv3ty?ZQOJyO4OZhvN-`${vu3B^ z0Z_hxKR;C5$jb}d#R{_Nzy*XDEY_>psCx=^07-a2R_IqeiE>`~5-FYo`3t+WVIclJ zSke#3u>ua@L!RK4hdPpVMRy)N#3a!S$L94rBnjU4wOBI|d15;olA7agvil_aCVuRR zoW1BztX7()XrWt2Xj|ce07BJ}Q`X+`;Ad;cXZoC_(nwgRhu}3Pc5DxH+@|22dl~DLSvS$LEGcG>(rC|J<2nR(I zDB4i3nw8LGZDqkjJj91g_|>#bbl7EvH0Vn7%IzWAl_1TnKlS3GlT{TKB7=#XI?qzT5juF!4&nhGS11Voy2hrPP|*ox4rXKohTSHhI&_>o+rBM0iyv3#m?A*3Dlcr zrUjtOQ#$4!+ICkZyM-drPjC+lm0p`|vf}S2+PfpIV0DA(m9+tya_wh7TRA#@ccSQK z=ZjnQy8W5}n(E;}^6{6ex2pflp|khG4nlkiHV8XY*GaN zo!|(NvV`M{dnO?8LNW%_P68qugdd5c5AK((k+T7Ye+8p#qPSV7+B_3*1Voo*~(!lk&}#a z(G1#Vk@QLV%oslQgocM$WYN%!v z-SCJpWw+XWuD5|0p0qr?G7#?%H3s=Zh5@SVA9}f401O<9#zotbIX9>-xM3#y?s@}! z(VN0T4*ul|+`?dN^Ero60B(M7@d z;QmW2Nie@axXMh67!fXj{y7E)MuIFN(0Z22>KC_~%FVQ*azCmTfzZjWyG`vZAeRL) z-SwuL16CV=3nG)x$=KSOIjJAWs&jQ<8Z|G(N#~W6l)xOP>volyzBqwvlN0I5!tmnz zh@^~SLdA2yX=Y2Uw_mWH}_ee&P$FE+W*?J@6#2N+v+f)&D{) zokuO|1i+B+7sP*x+#S!}0_l!#l#|;k^qV@r?FJiJXh+-Jf%ErIY_D$yvo})ZAfCwE;gB9XLLo`*X6P84|x#+VtW%uE_h zZEReRz8z}>ZNis-ya3PfK4YyBqC7XB+e~eFR?a!>ns78=oXy#iU++mXolVJqN9#>! zA*dvs{`fbo7P`k!6BFX3qpju3YXuR(+p`jbS^g@{vc|K$FW}5*b->J^FFR%2S6EkZ z`AY{wjeI_B-+zthHw>^grVDLkpun-P_Bik_^^2ZjR*6CSyzvvi%u! zz@!ddizEn4A`iRKnDu$R6~!E0P-4(|$C8J`L;m zZ;PL2=Y~nYnwbitHgrfVM}1%mnUeTwLP_?)4ArAsE6fEx2=Uj1CL>l3iTI`jO+dh+ zfp`l>Yei5#o~Go1#HP)vkd-F`a~H~;aL(gB4SPMu3-(El0URnu_P7mLqj>znC;oP~ zs|UUDA{#fI4w{3}=N7=m_JFiJsxt5&j_i+Q^EZa63G_%(7{L8 z^VAmx_$k^1Sr8rv9qX}F?kq96KmjdA9vNoJZfZqVfpx_vT<8fbX<*1js;Wbzd z7-YRE1$ulS^?;QMkjVIvjufDO2&kU9OkiT*q8@t-Jx`=d_zF4+5yc|aun^E+0Ax#jk)J8(;Y?AuEzsxm_t=SI{AcXI z&D0eZ)BLT)=wpUa8+pQom2l!vRK`)M`K<_n(Ss?%7vbL@L3J_jubU>E|6ELh&~9jp zrs0R&+Ys6IJ$WQ*ynwjDb$(vL4y%_GBz8z2J*6iM`)O20xX2W@g9u_zY9G)pzKY~0 zPED~&c}uJH%(hrgb)2XBeWvQJH6J0NtsLqa-=NM_y=Jh?u=vrYsB1V&NT;Dd=K8I} z!r7>j@FvyVsD_|*L%XY>JcIjiWW`I$b9_twgRQ})@+=rz?3{*_=D0f( zi5HE*NN*nxwLbTZ@(p&12`67!-+ZmHU#H0vqHBfMemV}82_E5ASKSu zD15$&%(zKWoQ2fxY`OaFOhVVEx=u88t}tq2LmSupJMMkr6r~=VRxF}Yo6{76PQQnh zEYZ#1J+^kKJtvlm{ryZnFM6!D-=U%`^hN|z51Sa^RZvQ^#niY>Qz7R%LNO&dmbyln z>&y?s6g=I@;-VwDsB}6O#lRRKcwFkU%(AzDJl8$M`3fNezY++KuL$e0M(~0toK@JdYALKkI$7S8e45pKZjwOz?u!+fd|$MM zU?9Z*)30L*Ht}-^;DNa-8z@5H zL*PrvDsdyUG^XRjtlFUe2+ zN3Ob;ss&j~O+2XpE4EDwN+%py|4_;?m4R?HwuTU}x7~~Xf3`DP5Wzoq*ta$NN|%3P zX9Yb{a%C+07DTO%0i_H|A6EJP7BaQVhy%c~f8+~*K2HXCSR*C7s#&yBP>_*9gC-%BZsY=n; zP~%P=1lG@{a{A}M#~DNe^84nTWNK;|Lq7)w23A&#&*7VB0H>w;ScOnc&5nz_RbPov zN?{BH^6@~XOqPD7sod%v03o=jAUI>rnGW32AjbUX-^oG@<`ZCs)!1;Q4s*h(R0;DJ z>~&JOd3e-ICcx3lIocSJp-V93{N<(3MGh>fjk@L9Wxt`>vh-cBgPolnKr)zM{;|ni z=y(1D{`o)Hr#9*7ivN!TqZ zH9aJ-*Lk)C?!WG(2d#>6b0l=>62zhO^$h#HFIxSD9>uY<6Kri*9$ADrNn{eyj~aQe zz%V?5s)gYmIC7`-%<9!mhT6k&vtmaPgxTb6ulQy^6^l z8C*XIYtA~jZ3;9Cds508*2n^nZHwja!*-n1-L(1vKVT#0mDImw;j z>h?AF;vMD&PELNW8taezoaePr{s`S}h887;BVo0!e_+4uQX%Py+@8kmxSzcUnZPYt zck*B09}aU$9MXM)%kvj+c7JI8mizCump{3KzU|pu^JVm0rbYj|8&JZPwK4SVo9#^X zBSLgg{G(lFPTE^%HwP&#D+9qAQ%_@IqBBS5F#3l6)1EXvg1eM;;}7zfhYm6hA9?4EM^ZMK3uS$s%8e1WtvnN6i zyFTq!p(?4R=1Xnzh~s+`YvBWZLA~5#lE|T6eU_M@+qig)JW0iktOE7nt~Y(e3>7b) z^T@VsjjdzK_HP#aXvRU2;77IxX+|C?vA-hwyOjLtj`}u4gg6@TpET?b!uqA;^YNCA znjQI2DG;&gP{RARrAJ*V+e3s902|z4Gy?gl^T`_Mm4;-160k=DN@FL#?GPPF?06J)sE2QtBj!!pT5-do;@hT*m;&r1NoR? zlF=kjRcTIv1ouIz%;CZ_DpHvbcJX;b-o2+qnKCI&)?Sjn^%)D|WOe}xHwSjvqz$ch zw~kA*&e$57pZW|XAUjOL1YhSDHK$X0QM^5qqLX>-P0pW%)f*z<>C@|_2LE_j=Rz{s zfA!r5_qS3oTn=&b`ZkLn_71=G>DXBT?m47^bn>Jva9QXB)q68T;?f8=Oi1wW=h$&) zoxL_$x4$du_wI&-vX#$M@~so+mxw)uQ*(bX_nE5T*Q5X5-}72EwOYJc@!zNPA&-kC ziG+Yj1G%rfE53&_;gG+aXSyJt^9a=WZ-W=_E2<5>xk|S5`nrjL>@CdAJ@JPFsM2($ zD4ehci2zyp-0e$HERmxOf?&nPS%Mzr>Lm+)SGyE_6V|m=RU9gW0G$sEyr|Ly&nPfE z`uVjj*pm=+);@hbZ&v}!=My=Si6gSx6}tXzd?i$N282jgfmWY0dlf=J2Ll`BqvwDE z23Uj;JvKfbNI#&u+P#@FQqnUETr-)LnYqpf?9ozrDpPLY-n3Od&};$9T;f&%%Pb&3 z9^C^ljaL>;ZOBUS1i=7>;qbu2&6@ zO~R9dl&#y5Kg`Cs0keCZl+768CNP_QTLtd)g2mt19Z|1N+nr}-3tzj78g&z9EQC1VNqE#dj@Yz~v^KXg9{Kc`U(nS0xIafr zZctwQgwkAx=C1s;?S+0B>AdC_8yfmkqA#I1qJ2_!h4@&~W)-{1Sbe^>upbycp1 z^B%AFbN(L#+G8>o6Uhp{`T!@%F}9JbPV`$2z++l6ygkQ3%{t7WsOfU$Lo zrSr~70j5Ws>T=KT)Y+%)3y1MWOz-eMyXyLUl~QbXevO0#Q8XFLtIEzYA)zNi30iB~ zE1uk0ul96hZJ4a0_Y5=GPk2yf(XE|rkmTjIwvk`&jCLEcCpcv}*lO}0{g8P;xbGaV z<6!vC^B)BINO2~@52EIOpEgq3!@Wek9GsFy z5-A5gR@ZJ9j)K6dn*kQNoydL6CQM9UzI^%g>FH7p6xzm@L*<$ZH{?}7e@onlH#s?= z)O@SCuu{8f83|VuFz>)X0vI(cwI6C_?Rid8)Oraey*amX&sTWDq0(S9s@*hSo7`_! z>=0VFCT%X%`fOfMkrI;NTyR!;vElEoQ&2>hYC>DLKOa>!YtrE#4hpJxktxkWQuo9hSXQ_yP`j)e# zu1`))r-Z0s^vLYpg>2yk)E+@W1|~9y(T9(?m*{g>aBKpPh# z^XPFO7t&`Rl}=4eOf6GMZJoVcn6mIV&&YFcDbs_R`ZVWgw}ky|+A7yy#0k6m`5w1Y zB)>mikxG6rSat14nfZ5E`wtuqQcOfJIr9H~=Sbvkeu=;C$)-Wuc(73jYp&C@*rnQg zWuh9c6$mYTB`(O%4}KRq`Dw3I0T59_)YtNI-n09(106Wh_Lwc4odwup=GVPO-NJa#$hmbdOodmf8W#=RS@S!$ z-aYs=2PqglNLhZy<&B4NT#%@Zfy`}uejy=R%8)ZkiyIH+h8!xv*_oP3{8WV-WI7)V z5FBVESnb9tSSdr8%pN~}3_+CZk{YxZyDy`lTz6mqF03$XsIke{zVGJd1~Xrz0Ow~R zdj|&xh+nm{>sgm<O^F z%#x$qog{hh(zLJPZhw5d*c=H zzFF_Fp=q#dXtl3a87X=3=44l}B*V;lLy>_lpF5YjwaHsNOuIDWRwT#0kZ&#SYd9gw zjZ;%?eU!9GJVF9S&3%+YyuS$tnEbxYxYDoFEw8q%7$)fG`?b=wC>S@s(&SpGah*z* zsPXwWen~BLJ4w@if<-r6rQbc~$D11-mE2mlMZN^zYwwX7QQUoeb=~B#lJ^feq>i8t z($~owRkzOEdLj)uy~d>SUhK`ZO2hhQ@!Lf5ZNDe??-Y`(G#(O=I6m4Ns@{?vBOhIo-HE$Nsmx*QR%8bV)w}w=(`^N8oSWQY~LL&oL!|>V=EtZVZV`K!O zCalvrpg*W+L70NG2U`39;)Vf~fO>>K@ARwlBb)66{oifJjQiy)?C&RyjE}!xlIULt zkpKk+yr;Bt!4PeS;m+`s{5n3acMQ|btW{;%#Bp7`bg3{e&pN51uFg(R+iL!K0Tqw3 z=CuComBx?+|7z1xv`OS3amuSz+4IjAS61lxz!?Y0uM!?B`n8i^ORcD=q2^vM{*02Q z7)w0YxrA!k1NJAZa}iDUq8-guZYzcW5Q?oz#6!-vq)I?hmroF)xg1du|& zxza~K{tf6tAssef+seucylM7V7*X!7uFsXvKv_8?lwc}|WRQgTf7239MgdQpS5R;= zc)+$CCQ7m(Sv55^iIi&(e`jaeJla~h>ap@FCkG6;Y%!hdWZX@lxdW?S41T3<+d88N z&~SkiNM>pg`7ysD>S?0DZfX$@ghR3J?)u^Q!RF}$s=d5FNu$t6`q&s%5TTIVYn7ro zOoYA6ADo~V^KQj+S53krybMT(y`bk zgMh9(vF|flW1d~8ddqAi5fIBWA}JQ;p-IzEH$QmTdR%Pd&Z&Vi z71dijtm!XsxxCe7cR*sp_B?JkayX_xX2y0d-rLbzoc7{)QyNb94({#QDST|lP|!R* z=f-+<<%Av=#*(i>`|k$IkH18F9(^`*hm_~akB$(Vdqi5?N%O{*3dWq(A z1+CbB-;6c8VlPp;w}5efK>qL-`<1W8F46gypPmU_=Xy{u`&?Xgh^y1MPHoA4u<++Y z$I;?vee8P`FYa~RY=>Q9B8cL!3o>C9@GD{>M*nByz*}ItmXUxuwG*eGUaTuxB*RNz zyV|e|*NBzXS!$5-04i2cz?V7?D0jh9WHAs%K-C!YBOxYV99r8T50elb(|IB+kOO%n zu<;2gF1>kEy!($Hrorl9=ypI)`^{p_M=2DlzaNAgq+Pr4RP4d`NSh=86%tj#GsZBO z`-}?d>JXqj<8=*?guJ{X+xBY?Bv3pjqo7qPBBRS07O$G*8sU*Ab*8;}(pg>HTqgNGtfKy!1mOs6xnu4!pmfHml7x6H29agzSCaWb1O(ia6! z(*)m_Ioc>Dw~u#?p>!3C2|lW580zfaNo$+5uBO z0<-Od@(X=?q5%Q5jxQxQc&+qUu0MaEPja=~h3FN&N7?vG>Nh#k^$w5JE-+(tg~t#7 z_#O^+HoD5Vb)RnZbm7^zZgbqB?R05^lB`km)AWk95Ve`dk6x2mhp7_{i6JFn*Ti5R zY1m%J7F{BG63}H*;ujxP5mg%^a8IFI;jW?)GVy%s2W)4>><=1BtD;&0N5v1`760;qh<+$_!4euxhG)9d59h4r)VoRE(N`?%fH*p@`OL}3Zg1H)&&gz2h z@d}{FVd6^59(7aAEu35BC}y7McXB+i-#%GHRK}HOLU`SceUB;afOh()g5YK<`(bYL zZvqM%YuktE8W_R2A6|CGT_gH5Dg~y}?qTzZ9byXh8XOu-v9nUX7&Z47i=KO@wqm5r zwZlEf8KnVe&}lD64GVLQRsED%+;y~^S9(RPDUv}G*w7z zunEMmafTmB86eztbZJA5(*#qo1m7&J^K_lgzjpSHP{WCbOZoW`;BDw%2T*$4?sCVT zj}$^F&Iwe};t#&7l;7Rh-Dl~e<7#iCOP+ za=4U$w#~AM@3zpO1;@6dW1&4fz8;yFqz_o5C@GJB-9qoXmk%^`y1LRHZy3)T(?72M zs|7HOB|N@$W_L8O^fw`OYx*u)gu_m5jP_{H1Tvuc6pt^R!=j%fqYbufK3}%JZrM2c zk}x2#k4%nl8&%6?g@|fY{evTa;TZ)x0j*Lpw8;L$6=7Au9gKGmzyJpm>uO$4a>_?KJAw3*cj3C*8>L90qS zu~lwmTzqXIgXM5Ri?J9rTchwpQdq6^7^BiHGVNQxpQ_PaZ+ zrt$6PKjs}h66BRr$0AB@i8 z&@F^<=Sw)90ofl)aR@sIS#WoEH#Ox<>%SN8wv-P_1TLh1|9q?b@uEIO9|0mX1SBE^ zn}D}20+QSEwat$7IN<4o%p5H(@n`}t3H7I38HH|`h<27vai2X;@V#--Bqk+6ChhXi zpHZE&EAoJN$6NIF_JWl9T=>lT4x^br$IGn5TkpWtcE9{&|9Vmu5k4LQWTgMxEy`#9 z8Oo@nI$mi~|DPjS9dcUvmiya3A&pZ$b4GjY+c6)1diWs|O6@FPBAWTf7tYlVxC?gY zU1(OK2?f6{M5Ay5Xo|;?cS>JY_j(n}G*JP$Rm+%rz?Xtrgl*7h#I8kD{5GwBLt^T}zj3a2^`^ED}bCEaH ziL&wWX>5rJDZ`P?f&YKg+K-m+I2`TQN|KArt5X3XSxp;19KlLD zAsm|7Emj&H%Xq5*8}Hz~fKtfNUB_~Lb!O#d5ar1(6F@6eMBmn9>EpmOIr@@EHec!% zeLL8kw3C`lxnbL`c){ogo0nLUr{lGy&Tlz%?FZrXuFLn%n?NyHe;zi5_MdP&nSA6fhBqsu*~UOIy0qWMP+`{Y#7Gj-MbSN2IRd>_I- zW8b~uvHJee)H?GZH@6+^scOE2-mLiehwcrC;q=1d)bw*`$RUbsbzP;6tY6>r=( zzL~9`aBj9aGs5ED!^tPnnRwY@p* zYVyz5gB^?A!8BVI-=sw10@hZE|GtOdyG~sY4rWofj)>7mBO5$OIEmDpi60X_rD704bs`BR)q zaht1CR84LMnHI11Gv(L%c7^l{&h0jiJB~ByClBvAlAg4>9KYSmd-ML)Vzy3a2$5ol zXor-a?Fi6Dw6wIewaEbvv9iLQ0nDkBn2KC@hFJ82#i4TuFm-!OI4knd!dM52w}Sgg zSzJmL_Hfm3f|+1`y}ICn(r19;A?0v&)q|x|s5dAmXl2DAb$;KcF((HBq%a3s47!d$ zIRU7~!U8B25Mt3V(M8XqHIAq$2qS>;lqUA52?-ul=9d#cn4?;sa@oM042K0=T>oot zUA4sI>33|&{qOND0xcr1YsPl9#C3T{$28GOTLCFbwTT#m}QIKD!_FfcA{fO14MBUg4IP|%9nEOZ3afykI ztg`_(R?l!N&C_Ay<(QDi^81zLu4{1{vo2Y!QtM-1YrlAxPx{onkK%Nv$IMn8+>@=N zT2skf^?W0NdGEn1cjFmRqTmb9)GvwAZx?NeE{yf8RnLX^%@5>)4I)HGC$1%Qgp&E0ZlZMaJCj!5_9HLnDg=rS|QC^gb2=~Zj(xAR#) zI8{3f>0DjzTN9YH-{E+n|1Pue+@I494+>JhTul4?hUDDKm})U!jyMiv+WxW? zgb6~rKdn3|AwB|95GN*H6)b_;0CJ&YZ@kPB2dEf>xgsW}TR6%b6%6#u?mmPfL>3qK zE%hCm^p*83vI>rMo!NC_r@LGwQvN45JQ3<_CY_9AZvZ^l?Pega0gwT^@7~(6*N2WW zgziYWDuT+KbO3-btsg2sW@a+_=a+u|Bywt{5asUxB9$-Uo}nT1#2g7qPa#`i9+W$x zb-^F*<&_v3ex!?q=xE@T($$fE7JAXMLrWU~g2%zX zRv;e2L5e|I9z6?Sq`Zda`#YSmJoFLO`q80c(Gd!n2%w_)8F}d=>g((OC&WM{)#{Y1 zW%r~A&*XGV7Lpk)!dd6%B;G2X-nhvLv-BA&;`j44 zyPH&x#Y(3Ky&$$@ATX)(LH6g*G%I;OqCDY+WRYT7*lub_$JAE-40qpB$YA%u3J9BA z$e6f_lafgFx>rj5?Q-vE)L~1%^Wh$n*g2^1($AH%+&fd6jGtWFC{DM;FiP7~}HDmlIS`W`$n-56YuGaA_Gs`jF-(j!plOpLT z3da2c1Onby2x9bqU1|T$j7!KPRZ$b7B`s!&eQ&jKZ4pD+usgZR#>{*LLU18Q*ZlIR zk?-T&VH$aj(G8G314<3~0g%dTbCTMbrLw5#)9^4|m>kr$!(-aWw7SUacR@(aIL8_^;q%4fUq!_ zx*@jY)2C065!pZgzyOpF`p|d=wrxAih}%`RmidLv*yl}G{D0enPoVI6C2&!CYA zepLwO0si35`QfRl)fxxBgexv{@Yk3{{v0a~nBM`<><4r3yt<7VbTUFw$x(Xa{{$+o z_uGq1K4jH7#`FFQrof-3X*s&*ssf#=Q#ThwxTQ9}jEtqNuRdW5nUi)*R-lL@_=-30 zKZ{2^5QOC%3N#-TC-etK0A4l5|h=aCKvUw0zqlW}=HhSLizN87ZX5es~c*K0aW z-`DB1%X^aMvzEDQHoZA>UBvZLC(@gEU6lUBd*4@|JM1MSv$-%exKplT$T2eA3f=xc zGb}PKP0OG3Aq+Wio`$;e(*EbMYH1z2o3AaUv9Q}zLRlJ0LsLlMIqFl4G$?B zy#?hML_$K|;To=5k9!`nNeV>~7*wgtskExvwB7lyky3>&@w~*IShc?a>-Nk84s3)K zu6-Vx@IrRYeyr3qRq2(!liHtKY&(M!iLJSXUcD8K^OIEZmc{7m_c6X5zEp-wQaB}_ zVbNdr!Zae&{HL)lQ#amI9kfx9~&sATV<)&Zj9Vp zg@F;!zDJ-41(1SP-eA-o4RcyxkC7;?vkzSO|hV1gOZ{P1nGJl#-GX76AqG7UDEv2z4#!HUn$xQImlX zLUj->LkN=OXS}0D*R;3@iIP|`KG-o(gbaqe($d=+&tdp=skTe9R8xzYTGgQ?g8S`- z@>_Ktu4f;th0cd(a4CIr(L)EGID1Phx)ih z!s{&!_6RGFnGa#h9p1Jc>YXp9K1ME7sYk{l?+a1_mZ95O6zoLQB0=nj;{+C>|8^H$ zSNl3L0c{wF^S?shZ`i*-+Mgn}tu*~JqDodixWDb@XLR~lm1a$NaOnJdkt9x9W@c8k z=`2({fi-DWm&-uO+9IC!4$A+s9m7RtSn)>_Ah8RDE3q_!0EkIEROl`MfZ^(d+4y(x z!jZ87oYL4+PH0agi^C6DjQ`P3b5{#}tTA}eeic1*KgEX&Qgf1bXdPDJ_GU1@Nk zuZWmr^=##rqr6Y!^ZZMddei7xT(hHDN$49XAxte*VJ@S8!~`lsRr@k-$}0Avl$jvH zXn)ZL7w9|Vtn(9h|B8Ax2lmmQO-kPRwGQ6YPfj(#40`S_4<-h;oVrMn!s8d$(c;z= zuJ|&hr|Is{s7OWhiPM+qmxnqr8sVQD`(n!NH8-@$`bcf~X7)Wlzi*Nf8MyLhJN{sX zE|=Y&#K}nKsunC(&Z@z7qcrmiuXF1rg%*R`Z_&xK-FcTkd@Z7=2z+=#Axa`Hlq^p% zb$U~#*dem<;>f0I61y0`)-HA~fZ!V$a*ANOoskjGn6O0)!mI3p{=*=(O28xPzZj&9 zlH9B4iEBpD$ha{(5vgCXF~F80bno7clLn(W4N*W-YWVX&OS3Y?&+UI34$W{OU~4#uuCkV#S-`o~u)D&hTiy`Bx9D$BBn= zDZUR`{A`k-%}lZ%>dtVIY4z$AyZSoLVLUICS*3g?+$JGr3K7Q@1*ioD1>gi=hM=ea z^3%QE5KOHLu3uKSps7s;9SWiHct2K;t|=j|7K$jbP;dvxE=68ILX2#2}J5V zM4O6(!OxIZzPki!+9+DVbgr1M4F;)ZV>C#6v#zl*ZGH!~jQvyt>tC49(Cc4lFa0cvQsMBs;D(xS&dyGM?eO{INzX1E zS4VemU(OQ8Wj)NCyfFGhJfjX+D#; zqb)_*JL9EF9Ue7*Rme}LAA9n#8!gG@s=1Zhg$J7rj^lhQEYiB|W)H0IWiwl2vJ{kY>ePZ>%C4~o8)JSjFYJ^6+O_tkLamXjEnnXmYSMlE1hfo=P6$qt>hxlt(M6jsn@r~K2{pv`}$awdA>sCnZ~(vH{$8*D%Av9 z{=D1S1IRmz<-3NyKEJ3sV&0yl@Rnj6;Ws7xzi8IK1QK4G_9RwkW9gdIb7ZQ*ExEdK50V`QLJ|q-% zpM22wl@<4LZ~(>2i^2yhqitJzHBJ4+ovc+=?%(#VdA+&XnfB$s+dYgBOY28gUY-4;TcsmHRqB3vtm$+Hop%2oB7)B-o1l7 zpDY`&w7R%x(zb)aD5mq+oLa(rAsnA00gMm%R;gYJqZ^)*kgj$6{qv<7NIdm3VFa-g zocr_IMl#lIhv6lDLt%}yFIj)v5X%3xJ43|>KFZYYsJw!UQ+fl|5D16#e=f$0uBf+D@ zW0FXp^t*|)wyxw5Hs9IWW!Jvuvu5Q8EjfNdRT<^ZSkAllVk`&9u9>@e z1#RqNvY#Ia^SvLL9^#ZS7b2rlTn(Z_tJ^(f>`h*i zU*+o~s0dJ#3QrOBr!sAqp365zlBEhlIL!f9=50`Rs!^KO^+0@xD+7{EdMS2oo-v zurKm3;e=-h9ocJ`%)oX7yvc6Y=7iwzI{Uq{kCX)+=Yu|`?W=SBig0rNsjp)<a8n$(Faw;0IZkt^LHBR@plTpN-&XByDn|px~1wNwg5-@NV zELGS)U;$6i;sz9rLjWkC?Jy|8v;=ZkjD7Shu)OK&MZ6bSD320J$L+M^znNdIh9Z*G z`O{_;%9^);c>ggny;W5;-wEm!c_)fg;1|Trhte@ zaKx{jx(uG00*FTaQgIdXPwhlN2)?}yU>@97Aaws1Avpc72!V1Tn3=QIUHEXtaVc#( z@amO_`C}!5UB_dNM}y({Ge(KMRT8tfUsb50V%_FLjb;T&nK>*?sv;_I)g>CsuAk>D zhHgC>Z4&i>_7FSc<;?yCpG~;9qp+FQsg3xw6PX0lFOB7#^dSX(xn4glMOB5$+u2Vu zv1$D+XP;D_5`StxwA5Ao^6U@7Crw3tF6lU9X~a|3r%$L3$$d7tv&hutj!7cu$2l6y zp5HxE3&BnZNg-9C|5P$i;k?Cf+0EELYfMGCG3`xFW!Pj)$i63nQj{9IDjCH#A-r3J zZE4H0TzZ*rc7IT*sacJc2#-}#^IV-qi&2@=TPZFo1V$u)3;QcM^YN>hs;)-IL1RWdWMLOGMiPTcw5$o-MW=#>yPQGJ( zfj0RJSvk4QM2g>?are za@%O1@~}MgzJQ%9*=S3;k^fE4bIQY&acyN7+nQ9{N=%p>#53JHdSp|}XAUGLCc-+t z!R2Z&Dr67YP|rSq#fQvaS}uAvG~?w5^Ok9+(s7lynop$tju7DY25)#iPE4?vsf=zw zQ6Mk<<7-CshDL^l(Verv>iBc?^z}hK&UzgO5(=5i??wrT2nx<_?ZVSsNcFasFys$x zY^+IMQi_`bOxnuJ%L~+S;1Op;C1vUH(&NFtZRH1KnlrY@9^+=f39_FFc;rKN=q#|I zmpg!R{d>mO{X+h;&`$@Mk8ky*J*WDreVD5z()i0_#MVSG@FtR>oXMkkXf3l3a^3V( z2*?@4t0D==r^?malUVq2%zDMW8Pu=|ID6t?w@7Ie!#?BcY5!S&Bq90r_A_mgnl!21 zGwM>2+$eG%W043ch#m`P(fB<~fVm_`N_<#dAeqJDZHro!AezB(R`#1j_2Py}#ZaRy z7P{-TXMSG`F&h5VX)@9tF~{iB7`l~PMbTC9NvODuKgWc9S{6x75=X^u)L}$`y0pnh zG0PG?tZq@&GSKNLCOFJmf1sOhb9ww^o^yVDQB9JB_x5I37;F5QXQQIdrzAhxQ7ff8)pG$vl@xd8KgBCdkXi*3O{QvhP{?Fl@ zC*HB~m3?x9YAv>98bLY6Q_GX*KaU_$Aos6$o_pAmw*Rx(Y}ovB!@-||tB*EOR1q&e zmKB^OY=*$usQ6)J?q^W$q+G3k4Vb;sah8M4s4T87`d03i>+G>(gPvi$f~FPMAHI8q za=Uo(BDlsN9z*%9${;|jH3e{5S_^$->;_YqYt67NoU*#S#IH5qgHcmU%j_uh79t6= zYz(WM(uZv?^71ZYD%H@0@)~*S8WnMnFAS%^D3hJ|FRh!tagRn7gNuESpOeK(BwEw$0L}wPg^}KPu z^v?#>_pPMvo7zZ3$h;?xli0iKR;yj6kKo=)tWs{ghHFZa>Q)!^=5py-{Vi+0(d;|% ztJUwWFsdAWDXg#1=TijV6kO(zy;}DCCEqs-!lJO~W{-gBx2BQzhbj`*J-+U&1=38P zP?ptr4p#gyIadS7{h#kkfqrbaNf4Ys?abQ<5d9%wx;;vO0pbmYS2*6*JoN|5;3e6i zd;Y~;UEOT$+$$a{dB;v=2KnO3N>Q4y&VK4`Pjg zbpS$6br4KjCF8u*fIosw1?-WK(+Zl((NTslxvY2Z3`Q*?@jkg3fO@f7zt5Qk0pmq( zZg&Z9>U?Ks=hpJL*-_oMjg8W%+y7c;@!mKQo7IL6hDP1P-$vp$Zvsml=p@cOq4@E% z$Sii}Fu=aK0y!1&M78|;1pP_Rue5#=BdNi$w$Qg5yIR7y|~L`s0sohJT_P( z%)$oVAA_9Owoc$*z=`X=&$P@~#-}e>Bw)!7=aVwLpv)fek~c#2&Z6zxf|*CtVq4#n z8!sa1{ib`~-{WrB8ETknlVC;&jF`}Ud0Z_jDY&)ru7A1jJ1GOTkMYq2NN`#K{uj?5 z3FwNV|Lcu4A9X~ZJl*ySvY^-W|qPZw_V;FM0? zS@o#)mmK_@idusY9=yOfj%sTwD4&^*azu?)0CEh-H3Vfr3WJK9<-z+kBn~&J&Pw&CSgX>33VJ zQ%3La08o)T49pP-_?~^3bE$^sAgDXC1{a{c7euW(xmumh5E3qt5`6qFO4Z@Q`wJ-e zJO?iK@O_%*N>%1TSd3`n=2p+;;%HFXsbapRTA#u0h<-4!zU-YqenN_a@)Mz_G_j|h zxgalpQKiv9LMNew@eNX-c{H?iVnrYvhJQ+xK@VfRYyY)fI}eY_ zf+a{}7V5PVxd-!hc4_Ie*(%fGA4j#~Z!&l~cC)G4$iNk_;Xo;-VBz z1A>Yq4ghEs$Z&XRxVV%+tZfCvO#z|{;Y}>>^!fUGdR|HSriKEU4<8}|l4-jyQ{w@- z2mb5~p35EjqjZEOa5T|J2y}2M-PO}m;-X2)0t+Z4*CGjl_Nc@FF9M2X7RoEprFC_Z zKz8!dgJKyE5L74$jgJQ$DGd1!UZnIdUNiuBQSi0B-H$0ABL~0CzOR{$g%$-P{5#iw ziAkTp;xS>@;#?7q5wpc1Xf|R~9wDJaO)m3W^cV+Wzl3i!OVN|w>zQ&WW?TWrW)6F) z{?Wl0CZ@+-G=~EbxXJ+2s@4(56f7Lc_~c))tFGeTU8{~RZzNyc_V(^P_ddcIfjrUE zYZIDa(sP}S=&Y=LdTPiB-VdZ(tFrM>Q)EQeID}U%$ZY$G-7M>*GWF#D{p1TT`@7E{;jiR@_k``|O?6 zGH1nVf~nwz`4EEEL=}bjBa{THRi)$J81s8hw*(Cg4BX)2?7rN;4!PK1o2PAmyt_&2 z4`tcFEJN36yD3C3!bb|n`wL|Y8=D1i{Q>nX*}uDgaI8+U(Bq?zfFZZ1M<}@$2&BQm zOrG$ZoY)(3T3V@KP0`cUMH7Nc3f%c)6^|E(-Y*q4HjLZRQ2W`ILqlHeq`QIW3uOb} z{f#JvR{lt6q%Ryjqm(ncb86J7C}{?7K_;$_a^yi2>pP5iVp(2%Yq4WdEO^ zbLEp8)$78aDMW=<8XMOV8=Zf7>EAlF^}6Oyufkc$)Pz>NBm`9#BIf=y!L_b*z1E>x zXDecHhW?&4TcL^D4?C|;dH(2j?8s9-q?xsL%Wm;DpvXl6BsF?(dtsx~KnePIe&VE}lO9T|^GM zKmI!k!6(rUpLk#KSzrEg0vqvzu?;^aR-)wO7d@fJnVDvBT;N{o(B*!nr>_sZL@00& zc+gm-Iykeo{p3ji`C;i|1ry)=QdfZ9VeX-0QFHS5)z)%nmY;hM*eiOiT~%&PE}xJM zfICt1Js7X4W3z04MvT1yK{#@p#bssYdfE~x^n|ApRX&zLi{XqIW&e7-g;E^&JjaKJ zg@uF&{X$_n1c{j#3+Q?%gJdQ9=UqU|^M*$mPJJ#KyiZe8m%=kZF$3uD5@#zvl*b{U z$qJ6yqc&0fW7+7qU3@6ykU%5Br%!0J9_LqpRV4hvwYW-^+xDbZ;i)tMPJ2k6g=Y0&tf9L$^JS^G3 zioRSzaO9on+E<%irxJYz*Z5kU%D<=eDTMb+99wYaAb%Emr8NhoWIb<`f-GBk*tz%h z5cjR$duL_7gM_g_i7T#gt>bJ*$1NHGyVsgOq@)rbw=Sp=y%ISP{%=* zzvd9n<~NMHrt@P7JNx7rmx^#gx|cY~7Abyc_&rHev?3};{ARS1y2EBqP(ido-{pq8 z*rSX_iCv`4$#K;2^>u_|;UlM&ik8+<;$z^fSfl_#?b^`*wNe7G}JbNtS#GgF^Nohm}4SN>tc;xVtB1fm{$~ ztxji92GV54_Lpi=JbH#0D+d0xr~A>^LiJf z#;pbnMtp1N@NP_KxkY^lqLt9K!3eG&xU%5|46+tjnbtyb8owXb=j7at*McyN?3^!y zgR?HxaK9Zz$N&gBVp|R=8FnHk!U(%d{5c2%ns0DH+4H5NbY@7Y&9XT9`iNZahGy80kW5_A*svclP4>er1QV+dBavz>g5R_2<&*amC*8+5rmnre8k zyOn0Hmy8Z)Fy^U#bj2wKX(vM! zAE7I2O6!|H%c9~U9rA}YUXP$z2pTE!2_jnW66~L1^r<4cBY~?fDh_jCPCReNmKA0} zInJp|=FxVs8_v9>5>a_pTF1*^c z&*eb**3RKT%I2pDx4GP^DZy#UrDzWi7I7CjT6uX57^-;bFT7A*T3X7oiH?cERKP0` zBtPYMf3B{o!NV1dKOp}xFo5F*9DYk1HTp-Z==~jd9*9Ll1^ld-!6-!9KdcWn;k|hA zea^=cJ099&3t(R~*@C3{ME{S-2b%gfuH^+l3l9C+}c z^v-#vU=z&d_wQLbIUr$$8-)=CUnkfEvF+Ue{wGLBzQF|}p@@ixL<%GZTlKv<6{w=3 zvb}!*8N%y3*y953S?!j8y6365;$N_N*L!xd{-k=Gy&g+7sKAO)T%L+a^_}gw%58yl z@_xrFji)P3sOxR;w7Fk*drJ2=B0g$|CJ$Z5DN<9V-+Yyt81Lk{h7l_yii7#4V&5Xk zymkR9?~+wSa+qarVTFA6457@r=iLu;mLkbF--@U_gP(YkMqf6G>f9nGLL$ii{or52 z8dwg-KVAY=;n;RN*;@hx>}-s?b&>;5Rp*dN!ew`cL|?B2bUk5EziqtRqiRvF4Y(o!lwyo=o>rU754qTz3{CEvvW-6X{9&|J%`F<&72%t;0!xw!!yvb zaA)_gr>p+}mOYLOkCC0-Q6w3XtnT0Mu7E_3+r0D((V$^-s0?W4c>8>|N}XqJYuA8} z0X#QEGS-!t65am(4Hy*lbM={8lo`Dki#e_l~$;kj<( zX#IW_jo>+gkXZ|3JhCPeZE2B+H2aJqR0q|K>}+dSfhO5GYC8UlEuZjQ22h7Bx3@CB zhAeUz@{oy`?(YrxWQIyY^WnnBEE$6h z=8-O92+u_lA>A1RA5UNo)0gKm=SwWROC-T0sZFX!^~Fs{`9_iY3cig$gT{-eaZlNT ztgjbSmpF5iq>*sp86o4N9%uyCW>-)v`B|9AeQYmCIQ7To`|m&F%hr}f^^OOQqIRvf zvRg&${ER(}9yYa*>x$(6*$hfb!1bzsbol0zq!~Zm6+5L$Gfw6u3z?NCqaZ`**1O8e zN+KC!#$XGu392B0Kl0}QYZIhNQlLC*z3Cn1`wb(Za1>D;leV1l(H1r{jG$zTS!$ep83d8lA4s1@%&>+9*;8Amf2&D zs4sgA+;`xX2V;G7G>t4s;2{7kG4WJjm3{%dK+eAak4bX?38Yx^(0&;k<3H-5y{-J9 z8V&~_(MouYs$I^oP(qi6Z8=OFuy}2f{5k$sW_IQW2K+tj*_M02GZ*G9(x$*F^ zuHl~auQ{TNxN-LylQqO*1;V)dIf8e=uud-F^3ncZZf_Gmk$Zn^wL={*7`fO52mL)71z(M^=7Bwl?x&`#5jqA+vC4*1iIEv%BCALDgfko z^t7^fbcFsZ4dttBYA}+$)l9f#1d$2Q6Q#=w?4nW};6HE=UrPg8-jXp`^L+SBdjtb4 zm1iH`*ke$w2uMMUeZiXp2$-$tw^v2n+U0v+CO^yIK^TdUhVn$7YBuaNzLF{a7~)u z(R?p=4lbOtfe2kay|st+2dvLEQ|AeuNY_rne0qGgw>n>#{^yjZmnLl9kFN|@T(R}V z5qy+7X!X%dreQYti1i}8BwO_65nhSK4aB0zRMAe{g6){3Urjr~*k!Ig@{%`?oKDm{ z7dS`INySe#bZ0Ltcr*$tLrO=-8F4rkAV@YL(n2SBx@6z`XH0aOudTF_K3A2kU*{+V z4ts9%?7a4`DzB3E+1e-nIm?fCI~kduI==tp(Q7#?CvL zgFoFtPbkK6i;E`S0;Gd6or88Fq9P)?@hL~XedV{1?+4q}9?snh;Sk{`9*z0(MUxgH z2gfS%b8>jXE9_&UqJmndfs*5)h0z~k)m9l2s}n% zUI;(pOXM`T0=M^lw6w0W^>1#v7waBJXn>|)juQ{g@%+L<_*2{vn8DI{?&!*{MsA2 zva`#kKD8yf{bf|Ltz#W&7--y~MbH(Q8(esr|J>kP6yyk<^k=yD`D&FV?E9gMc+!J2 zm8!)yqkc5Bng3Laj9eEO3X zT);`GlUoZ($34aGy4C#Jn6XMS)R!#PrtDpDoPYCI$1k@9K9un^7#yAXH}i;%g8nEL zT_~yE2vN2|NSlBD#y%JE;@8Ls{V6%EVFVSaMM z_SDrq&g?q#Oi2a}uk=ccFlu((Dou+vXjTkUA(*HFhQ5L&mQJNO!Y2MmeZJ14cs@8o zV9C6DXZ85;_4Tow~M{x#cq%+M zwx31yt=gforWMl(L~}%5luY65_Z^kkOjN^FS}2Z|cDjCaOSEeR;uF@w8^DlNK|&#a&*o-D!4e28 z$L)ym@gUY#g}ZigckiEf0b1G0b9^gCV zsqd6PJ-o2cgUBl6w3iRW!LM#TV42@|s5- z_1=1C#;Cx7u5$SXV}lWAEbd`F(4$8$K|X^TNDBg*;uIGx*#}4}HRVgV$^DF(nYqFq z`lrC6bAt=j3Xxd7mg}G2-Ynrgdo->R{LjJg^*HTL$+s@8YLwHBEmFMrLuDk zX1iZKVh)v^yq`u8YP=$ol$JZWb`x<73% zAQ^pS{HPHv?wNH~ZZuFd>RR_gTUOaHM@`sINfRWae{^&UnVCirVK`nm11AEB?04e5 z?%I1TXC{0`pG>!qWErg;pLkdbN4o`?A-<-LbwtO|nzp<*x;C;k{&>L3=>em%ra@vl;Uxv9K^|$u@d;GG2~)_?$a($v z(TVSO{OEio`fFhOx7DDTMPK2|lOnW3Ue>8^#>Kv*sZzZ?oD$Cwr0Zf+f5P9KR{L&s ze?C6Zw&yd$J|^f#|nmzoNzq!8=&Q1!Q|#>v_`J$t$Y z(_PaM94=P;?v8i+$#0~sc!8(3H$%xRf5|47Czx^@stlv*0&TV{6C4D8qY*8pi&G?3 zfr;Jub`B13`UIQk#+Tb;gnB^@b@?()OlQ3zkc@C4L_`2<1aKpS0zv@Jt#@?t;$FYz z#>R9x&`#C*&p!jksXE9Qoc#{ zii@y)$F>X2vu)+_w~u!pyH1adhHp0^|Rk}h;vHrO+yQhf3a zVe&9kAV{~@jcr=@dUj|u>bW|#&?^>^h~GjSV2do4{lIbd(tPP_Ya7wUWyX=4OU1Lv zI_jqu+uj`Xmwd&&S~z#BUzo`Lysz0@N_y)K-M3$l8H4B9sfcC;803fjZJN1mz9q~d z%+PN`PNhy#n&3=?Jl@fWkKd@#O0>zHpbZ-w67227CG=m>3ihWVY#kAF#b5Y?N>f1G zzn^fwD^u{D%KCAn31jx=gf_$NAFqV&`Yd|Zz3sk>Q_Z=}kbc~pzBd(qBr;mDa<=ACg;0}tn|)bYn!*nm zg^BTny|y~vFg++qM%)w|dYP}Uq`nr}5!f#(8F5Vh4Q=dzk9!SnCr@oXkOo zz`pHY3+5pfoin(JO6L>~WO6Ak6rbnvajN-2j`abB2v}7$B?2NrKO+RM+S=MKy6BS2g_xM@h+oNr`P1npiC?SZzw`Doe727M z#57kU+I%hYKFYYJG40_@MnGt_&46p0-*uUOQ8xv;3~glM2s2Lw1Rsx(MNyF9~cq zENMg>XZ?si^*6rX{(4?0J$b+FOQ8gXpkmNiVX!D~%O6$#lanE}_u?1Ej|rM5xVaVf zeh;`xN_b&+F^TQ(?WGeBUeH|n@>9B#wOWaPw2r-{G2%}49|0=cdmE^_lxk}%*|x3# z>>wB=X)`fR!T-I=uf_RKdlGi7pjT^GTk0OI9{m(O^_CKGwL0oqrAOM-uD|?CKVV1k z@@rCwuNY_OZqrPtKG!|9IB?giti(j8%BlT{UlAI=rN&17XB%!coAQ{2RUtyL?LiF? zl1rqQOgMmH-o3n>d@z()b*n3V`2Ko=$maE1m8g-o9{XbA_A}Rht#G@wy`|Vbym0Qv zGWNS{yz#Ne$6HZ|pqb7=)sC?Cp@;~g5EEF^R#jHQQVzTyhOPLC86=i>4?WYkHeKP%^~mOSB5F**5#Ql?V9t>$4q!EynybV5&~nK}16Gh&Ks#$*|1Me*niB zSNcAAI}f2w0(8j*1wo`>bN+810gH>Xw|xE2+RpiVR$1cX`*LP=HVr%X)X0&tPO@>C zJx_Zbn#DJgU+gx>oTA+e(@#;#I9`lhQV6 z%6Pd^asK3|8hQq{9EB)`wU;JUR5tl3Wv?r(yKO6`wDR4z3%W_#mVdGrROZNg`*2OB z;9sfiseSie?sz}}kA(VxUcUIG6)GefCr&XtAgk88O`k}U`!;%cW~FHuRcA7K+ID_* z=gRT&MATud&2(!?dC>&|*++Yey;i@S^LaVFz|P$;W8#N6!aQSWu-;_XQbnbd5S4&;Tt?@G&Y7Y~w)?T5ha>r0L`7?y!Ggx)%BFdJhz#vali6;OqS4bsqls@Z zpS)crwG6L%jfC|!Hdnmcd!eo4cSJoPdQLpnUi%;VKz|AWWiK1&zxo;rNXi zIdmmV*DxN*fi;Uj^c{q-%fc(T?KM3A7*KM?<51Om)8ER)#x`7b{p=?{m^D)%&-{$* zLgKlXiwTEVpPX2pl;lx#TMX!^k;9S=ngre?RAQH&o*vjlczBFpxGfm#yezFk;N^mg z`0gR#YUmY11A`&{9v(u2VJuRa+iHOA#P!1|2xHFqXjlUM?-?%6o74?oZIKpK!nbkI zqI?yFHVA+|R2M*Z57+^`0os^S4zr>KqN4$Q~POD~2+niPzSU>rv%Su>LIsPKXM zmzTPg2hji0hjA9S=!iimrL;KH8hRtgp^CQo_isy>_EZ37sL}=S#z!LELZ=LMNd_Ef zfjRGyR)xCo&mnQR2G)0&<8mbR!R|d}QE%#Zu99SOtHLb-_ve@z;uxmx@@wH%`f5i|J|KA#P>_FZF6K^7SRXb16l<3mjb?IBEK{%X z*Z}2|NBFHm=tRz!wZbN)(IlPXRj#LGn1oNqpW9yh+Klwzj0!GV9~Wv|ai3+A{>Rhy0Gq=zZbblWLyc8E<< z1Lt2Tm0b66XxK}Zs=c)4xO?XZgA4;((D4;~BL%P->C{k?a*73{vI<5{SUh1#VL_3p z4gPj~w@I*gfsxdLn8ZRSPCdi~*es05pjW1)R2Yk8z_Q5Oft^-` z?kTeqOj&Ue$+ZSsy^IW|l3`o48*CQw0>Mm%Tn@;RR3YnI1F8UQK@9_SyUd*`bUcf- zsi_RPoc;NZ$53-(Sm2IPjDfDuMgbB461!9-k6nxv%15Ei%6~x6{Nslf&_AzSxfb*v zdj0HQ^m_G4Ld16FcAvsvPZ<&8FEh)~YX3wNWaBlFxo@b4&ePLtM!xsG7gpm*PTlKt zTir>{3dz6qWQ2&RIs{?tLYw}zX(NBkhAYs%oP;Y^B*1;sI?}ys=S%X=oXZ+%@4i68$b-!{egRKvIOU_H z#nkIFpHrjb|85cuifA*dtA>8yrF`yQ75Ddt{A@sTDE?Ka1RX~MK|9(v-KCS>k9s9UOXkG~CF}Ub+t60Q**!6dd z;nZT<2Rq{Jgfh;lM?ukce3!~>O)P9heLC{E#mk&WKCat4z4+XC^3}2NuxqIOh^Hl^ zW3Y(G)MfDlGJm^Wqx)i(EWWjNmSn}pAu)B&{)%K_-_iQJJtyZrIhuYls`Oju$i_0Z z-b~aXom=hHGdS&~eI4;7p3u;=eWI<38K68Z41CY=&*J86iuOnR3+k^Cg>!$I@Kmm! zANuq?2(XQGufNlMUM>cHTYU-xi~PNtyHkFrM@L6s*8tWcdPP6L*8AA^^wXyRR2QTk zgXO8Yd3K)_OaW(z8<1)1Chp~^BVgG=8-eE*9uWa3>2JEbjCgtb@D&?#O z0WJPxV26DYf=5LIlW}=Q+kcAL0i;9b*uV0oy0S7d;!sUZ0m9a$?Sg`@ zJmJMlkQJ3M=OpY6q@^>PGuS-cW@6t_cAHv8ZTi>RjB$$)D@mR+<9=*p0ho`zeTX#R$dxs*66#(H8!L4H+ zkzP~Btz*Iz9V(559Y3e_Q3c(Ms`_mqqtmS8XA85Bw%nU`S7Y;~bFy;F4=B^bJ%6n@ zt|S_!AEvvGPH24pEk2Z#?5XzQYOT)t*T)7Nf+B_3tzroacjLe1iq6dTjnLlZ$RxeB zm>5<06E#aYV&0){Uf_9aawWwaNxMUwXp{Hp?__fF)%VL3ID>3YA6BjWS*7WbOgjor zm)LZFvW}xOka9apq{k1v%a(CmM5 zi*0RV-y^tT7du^fJ?os%#w5c1L~x+$$hL%6P)`f>^zpLhwnhU7kHmt=*zobj>Zmy9 zBC*#`zKJ88q%Y$*Gu%_x#V^UwYG14m`kK6_wReVj5}mEY{+9xwF9#b@S_0A!(LqjI z@!iqq?-kjFJg~i^39)-X=E!+4@DZ|&KxZxbw;Hm*D$y$)^j_~L9HzWh8%QMfrlDsC zQ*nGIkVHg8K&TL;SE>xa!<^ic3tQ|fSI)s+5MO_djTw{hbYJx2fAR3x5VmF z(2o-ny%If-8Xatl3dQ;n+pVb{PlpMMP zFTOw&1{;9K!G!^JmlU@O4VL`9fcG***ZXb$j#?@&7`g|BWtR?JjQjOoM#aEF=pLIP9dHcpzJB%*(y zPdG^(ba2LW*DG6hAAD^eJq{HNBjFhOJlK?ia=0w}HFH1MnuJeBP|JYjSJrHH`}1bW z(59!|$b!xc!wPOKBWsO>*{kku?^LRv&emsMo_O9K;4`@j*8y^ntJ^@*FxfW*|aU{39j1JYFEz-6lawTik)!#Y-FGfAEV9=gp0`W z-fYyS7(*0{uWwDLAOKS2>6R7TksY&OyCc>M7WGcTN8NnAgsZTW1#v3W92*-OC#Um`Bl7Z^l7h$+yWfG$XTdd=#|Q@IZ#(gq;q4^m|fuFb`b$H z@Ck=qkmv%~ls5o$j>Ik~Z446LBeUzjHunLhN8+No*vSdbK#1PT6`&KMD1e9^q)xy1 zUS3u~0jdkC+We+Kib@qa6=UlULi7MeaC~rea41HvBy`Pz-nXob_w1llR#k!dEXEPm z#>B+L$45L#8NlQxbd*sYUS3}3q#1(%%}bl-)~{YW7;XY`C2TnV{}`EX7WG!@s(m5N zIiAUmNj{FCV>nG4{Wsj*UVL2_4Lvz{w?@KnU-IN)-O#69s_?ZxyP+ejqMyY9;K(S9aul*W=X&dhag?UTZ;kHU>`K8J?ckeDRwLQp*`GM>IZ%w^ zsC*#WB;msDrO;+UkfJJ?5#*X$l~RzpUj6Q++NZH6Y2~sS67J{zK0b;6ELAk{6us6z zuf@s%tETDa4U)RvdqfPLmPxcs{eR|VN|jKS!37ateAV?=Z&PqOo|C`qIA-}Uz35}- zh$qvJ??0-rU#K<;4G`L$Y_uqtiI<)~9k}G@@n`zkbWQqTT0>nDB_ZupxQdnL!dTGH z-%fGsNz4u~*udm}#<4mFJJ-jT{~_052pG`A70=+ww`tTNBPvwtf=nyH6Vcs$B&?Vi4d$LXv^OWn5{sI4E1| z9_Bg_=(_!Mq6{T-2b5e@Xz*9%N`%VMmB{UAZx7DGK;6W|lI5bhVpwtptj`P<@RgC3Qql&mY-+WVN-&Xsn9jh*WdCG1N|5#FNYh zVC2e!WCE-Ky|N+Zw>Ax{9gj3^O-*vSf0wluPXACi){k4u*2Zi1|EjXjQ*5wQ3? zq-AE){NVUS(cMDj??a;WdL8jaGUAt<`4~fTzdr5^nOJoDEM}6wJFejD{*LwL4MVoC zi?uym6T2Bt4cNR7Dg)c}>?~5YMz6V6Gx(shTfZMl%+{(zqtG7+xKsm+-0vLw&pDL; z7@e87V)@MA^Sb;3NmcR4?X*4$2|7VKSTK*ALXEK&%h2f9w}aKm5V^22t+(W8}?Me(a;dC)7+>B1FiPz#RpbrZ!? ztE-EPopa9MW;d|7cYIP>S_+SHSJ`{p&!5e5)p`h`aO4u z7lg$gm^OOt*r6z5S#Ci3vW-C6yiUTz$OvR3#aq-EmQC(tR{&Hr;1~g8!9oYn0_|e` zPIF$+V+6f|wer0@C`&c^fMA?exR;r5^0C0v0d^_Uq#~)`e*I!WNRy(vz-#h)(CggJ z&7-j~-SSb~`)uS#zD|ZpaQXx!|cTz&7(3f zyN)20gLn>rQ}`vv^?&m>~V%O=6lt{!YA~;5V@+(+X2JPh=h6l*rkk z4fU&qt3*~+iTIT^Biw9bB0K|JT)4viXeRAb!BFufH`#ZzpM^ zw#?iw&8qh8oyX;V{F_goZ6?3x^k^KU-QRe1<$V?2Z!P%)f$fhCH>pMxYQA@fh1grq z_WB$IjQ)+HpKE_@;<8$R@=nkrQo3Qd=4GH5yo;KXbgx~jMvGesq}}xlWl6lfAC}>k zHe-4-q9osrxv1cX9UKn`!z<)ppZjL}u(0JIL4C7&<-;rQ%uD-Ofl9@}8rM$L2mZYN zY0FCMIyK#~bh?)@B(XI3MNYHt{ftF8PqPTI_>C#gdJUbNlylE0eWW{!>-1&#q-s&< z*NWma9v}5SX18TJGA~3th&5e&nD4awNy#V@2bPf2bJz96+!UZq`^heYb;j=k{OmtI z2hNO#?;pYSli|&BcYgBiB0hun=@s|!o1k}Mk5`67@yF)oL73FyGnUO2TG}Ud z6JeRS*w5h9q~t;%>uohUT3VoRZ4^dFkPPKZub24uh2J#on2N?L4c0TBZbHHdE|gv#idW~8HYlkh5pyL|g* zlPn0S;Jm#3D{dX1KSR25uuRY^V;)GJ2);lGvj$jwb!~c|RVQ)ZqrG3hvcZw^X#>Jr zVhUoPpsE6s4EQ4}D=UkOCK%r7ZRVE8bZ)P6M;Bd+^=nM2J})oZ)lCQzf&^r*zVQs# z_Fq}C*GYiS1Uh64Jy|Cq{$3t{7HexCa;;Ha8(=~7G;csn)78of2}Uju>jWnV);4AD z&3S=4a7G9IZ{#@{TKco)F8STz#>dG_#|Bkp`G*NDyRV5)lt5M#Zsap{p8mAt)MT$s zEDv4H6tGGVK+6nhfPSd4HU<=UJz>YTddhLKC&_S9b^5J(^I6l;nxy5iY=H0nM%V+i ze#MKrfdUWlzi9n3dhho3Z~GayyWh2se1AH{{Y@_=)T8myM@Oe=MI+Z%*3GLGol{m$ z=}(8OCj2Y%Rf=>jE^VazC@gfaK6>x=jr)Mp=2%0@+56uneZ`eM3+AsPl@!ktrfY6Vo!A9rSyw2a>Y#yT?vowlgg$<4<;Em^{-Ag z&Weez-C?U|f98Z}sVe@qSZxi|$P{S9h|gNEf0i=;13gcRv|YnLze*O>FiD?u>trO$ zEN5eU9A?(1%cUJKh@6v##AC2hOPH&u5E$SGwrc(Z@P~`*hlnpsD+1;Z7=zGa_l6|{ z63L@Ay~&LP(5Bl7Vlt4=x_P#+vlJ8vYjCd7Ez+vcy+TcGU7-u4_1S7b7ohz~uxKzW zIWywPQGem%cm=P;9Y=P(=&d07P1BUt;lS?KihFXHy}644xL+mbD#p0Lk%2-5l4pZq zzNBzAU_%2I1z%w+4@~&%@dS8*1qBkvTLXtXD=)#f6vh=K6I}=3=PxO_$z*V)g}wLS zxdlaE>g(5EzyTGb;RjZe6ysa#F<94k%;pc-OgLx{e3W98xFDXz zd8~uITma+N?(QWS7lV=q>@eun8JtC4!o{I7pl@U}FMMx!8vyAu9XC}7v}7RTh>YA2 z1Jx`*-O#n#m!rTimaWUV3O(m3LGcpngMHltb{La%62P3Opa3kp{-26-#9@iS)EWr3L!*5sQSS|pnx1rYqJQ3vJ@PR!i0>U(KVot2YiNmsOk!Dl675PY#?eYeack z7(SBZi@B00{yDm8T!TYEReXOkUA1IHOM7UUyJR=@!EP0`U!0fB#iUUO{b3HxpvDA( zEA<;WuSE3*Dp68ysILp||8W6!hyUa$jLQ~~mk4t2uo!OY&%9i3ey6R(E8ku@_6q0l zFKylFbf2Y<#;@h_UT-+xHxFYa(p3leWu9Ytpi)?-+EiSi+*qUsyr4C`bIo!v<cj5JKs`EU!cC#UccH7YakIN6N zb~m^?tR8Qj#%`tQe6Zj_RaW%QAKq5$wk(Iwn=l8z1cxg4AzCN@;Bpp8g_aq_v})vG znQ);%t^kJL0NrxIpRFwyZSBNdYXHVE2{gtPy3%0kzb=|Cb$^2cg0BbAb-fZ-NfJU{GRfCr(47hm1I%b#UgK}!?5cuNb9i! zhJ&UpkcL<-*WMMZ4Vtxe&JIs`RvksUU(rLwYbc~PqUl8ptShrQ+g>_2N;>l1-I8ix z)g`0|6krs(t$eGW_Cm#{Pg;wP3W67--Zj($H`fgP1 zw73Ado>e7(+IHo$qAJr=7TW0sY$npTqv5Hn-&V}8Sh8sBu;wSZjX%~D^I=T!YIOTy z!Y?{N@$=b|Bft8-t(L^n!c8*#_TR45`uu7Yf-5rM6zdShcDF*`_G8th_Rz4gn}!u1 za1HD<(Q*7YNHmA8*4Pzt*1ahFoR`37&&-WZw%<*DkUS&!ME=pZiR#G4dNc9p&u&X2 zHuo*_!%6%@658MO&h9UX#mSxM9+L{t_!72o=Sg?2z5KwA3dY}4q(Zb@GeO`Ys1R5P zJSitdDlVzDa$}&tVB;nRJ#(sF0vMokdAQW6Bi+#ddzIU1;pNy?V6O0}t=7xTazQLqyN&t4}dCku-lV9l?% zK|6Ds`6dW<5oe4qLyW3>Vci3E{;e}?&$DF^ZPX>=wVf(LAe z*~k(8n9MN9I)`4a#}b_J-Ri)F1LKzZG1nSaFm{4`gqXO%mX?-OQTJr!+_Y|*vu?TJ>NJS>Na{s3xj0_w!rd<_GSCS1be|0 z*j{C_sgYv=0wGO0?jW?_f;kypq8U>E92JXv&YzN}&Vek(Q!KXpj4}Q~w4dxb9o#E~ zl8qphz(8>1V!$Zswa!DXXT8Ym=q=yu+3ump$?HFND9i5jO&0}E3ov<52WU&JC6m6% zySy3E>l5a=7(CIm-IvPXH#N^NF*0b)&l)+#Nytj@V(v!l6LS}y=g&XfkJxCu7b?nl zNBC8B$_9_$4R0KTZrHC6v2KO-DKW2gIQaGCCgW6yefhtiwA39Rrr>dXBw`R*Z~Lm7 zQBuO4!KM18DqZ7m;Cr9USy_H-y1xf2?{{3FpZ!C@Ga%uklA6%p8#9~fCd5QZpJyI{vTTlj#lYR@ldo}d5 zJ?q<;Qwlb2Nx(Fvc8;9K1Ty?6Ai5bY5gf*97D9gnqV*gShtY!*j!bU=7Ae9Qfh!rY z6+9v?L{_)sv#ZeiTvhzZv5Ju1r;Br2HHS^dfzgfkN+uW;`@ty}f+cG7>8Yuuk*UIu zGl5TepAEWrz|_EH#6{%Ni`$H(@WfNiauiqpteH<+T3&|rdXMELrmbJGs&4M?*JC^H zvwbWrWl~gEPzXhJ1qKEJ#aMF)tiF_4Bjmvs4}6n=)eG^=RaJ>5ucaEiW`5z-NB_d{ z>v0>b_}dgZ%tTE}aeY6z)(Q{Z-0a^q2N(tn|CZ$tw+H@7;Oq1eZLg^bPaTUQYiuXR zDuv=@ySWamQ_pt&qjrMnz1oFCKp1W}g}xIqmVuvX#UH~0Ari}OUhMHur2%CCETDtlkQ)+s8RwNv+*UGFq2@np`@i>5y z6gOHaXJa2yHzB1O+?fqaaGC)`DJZ~r^jTLaBU!?xXZ48whtV#({UctW^nj}FC_ku5GXPp=qTW^hT@6YPArx%(oc zooRP1_GXv!W#3!KNj9Wm$n<5>dRAO+S*K`zFWr-J$zMBD8|PO~rY|XWydV@8@qAL= zN9aae#7U=Xct`Yocn8B`X;J!X(a8=555kEGrpXxYgfSVt1kLgnt1LR@XexYNVtg-y z;ghN*%PiJIU&U8eRV!aw9yvB_3lcskH@uU0E9L6`-{#c2*Joe!CyqT@8TS70Bs<%3 zGtzX!oISowL{vKeXmjKq&G$#YoLQ6TXzMrEP7Z~_T<=GVn+`tESEkf^(^h$%jw0S{ z!Rl&}$580!v}Mu36`qIsU+kn3Vt@7%RtTDKXcl~GyItPl;^L%@rJQ&8B?5KzyP~}l zt{C$mDIw}vIewc^cC7(^g}iBP*NZ0?t-Y@#UyTX}kN{#kPKH zgSf4zE25t_kIv51+TV$~D7ss`5)!_E(XF7XI!tfAY%haRgyCrVJZ#osWD)CK9j|!; zi=yFT1F&34?|njdy{il}XM?^I)Z1W2IyGg4qB!=IREz<4VZ1;SGqYBkiUg$`b6!Xx zg23f;6RW>Qm;7fUa)TRjOJsQ&-xDV5eq`$+LuB_WmJAoNeT8ih=sIg%m$tS(wir)) zN+fo{V_r8ANm`~`L>vld-3+EX@X4;LOPLjpVSz_*$i_fV5A09}_+vXC^&1K@B_g5k+2mQ6=zgUwlKjIA~RH%Gg#Yz3mQ3rU`m7uRSZj39~%&N zjLS#CKnUJW>_ReS^-)1!Ev!!&bDndTQgdq6S!2viDLXZF;GuQ9EIcp^;&nnPB zL+bsvm}V{YFYnbmd-=0JJxJtYo=dG+${>~0z00O{*Gg5jb@EYCLfE*JxZTq~TRLS+ z&skC=+@0nN$i}{lEsN!sx}+ffqg1wY@{!<|Fx*6ZTuLU7bGRk=EnTEX{HVJt3MU34 zzFT9vr<0uN)rX_4oytGEzlMxWG)z3=i4%;B;yB9q8w*FS9O1ytgZP4Rvl}( zy^8o78o5(#wDobR<5H2&=hnLG?|yJMOOJAScxQHd{D;UczjgkxRqYn7*Yy(Vsm>H< zLFv(6>vu$31Jfh{6-1R!-p=7iWVbghMeA82uut5X_N-|>S<7n3QW;jgHO6g5Ai41W zD?T`kh_m;h2pL|2lXU<1>XtwiX<*vdXw~cA@CbT9w7CC8L4qto9@qpR00BXxfYaYs z43_0SEmuTyb92Gv1j2~ihcva}Dwie&gM&1`lYNyGK~TQJ9ta==$SDT5DR5n~6ZD#k z*G?00WhX__iMn+|t0u!#J}M?4ARr+TdGqh$A`}3_5_cb;D;QRPCL5F^z?Em59+Jz2 zwn|%$YUEsMF`w_|TS^X}A(G!yMQDViUx)f5znGvCw234{e475Wj55Gf6Wgr54-Zj# zm3G#GDe_r;AU9EF4a-z!z4Tc)`i^lp$aGtbM`~Sd&*}w`?LZw5AH(?EtxknB2yz`* zV-V&5-bwCfRKuKYgnQ|9^W+wBm~7WtwL%5n=}<;>JR=D!je~-lw1xvz^)D8K*5=K z^a#A^)6NhIjM}4R#P$%Am2k@HF}s@qDQp$ zg&DV-wDegkf*;?%#WAEK!B_#AI{=nyO8E7xJms&f{U;Fk$|Mbv8$aJYSt@_L*+SPp zJukiXTNXOIdcqbC#=V;YvFfKYy)!iohKDCn%61dG+m1(i+HH3jL!(pZdL~mlx)t&z z$zD7#ivGzdhArEW?evkujxDZx&wT3oRJ(6IwSd6r`sJDSCwWn~aKvL%yxdOK9YOIX z^L`ACE@b0GY%OF(0l5;ME~C7NLVr-Tkq29h*0-Oi;^=V}IBPtzQg;1JnLt@K3g%|& z3@m|6Pb@0GnvdNm{Jpuse|Jp8!>kpFj3!?s5#a7jVyX4?X%Dk6I!nzP%riakqIVpAQu;nlEEiS2&bDd#9VdV2cbo|E&NkD*j- zOgA_0?ftfqU0B5jmG78cB~W2(OB!~5b;jaKuVMHKyDMn-t%W`~HYBN#~jGX&d$84_Y#$^C3eAMXy`E$4EYggn+kx$^||Jqgn{SNJAYNN>>(;d zCIie)pta|CQx{93DOJXDL9Tf%lUrJrC_wHJfCraI`Dgb z9>{Wv&R`G@4u-~5tW<=6V+4^(lY*ixNx4$D$g&*n2O>P2Rvv`^&0IE&xp>59kO2iS z!rHgplwXCLiwnq3mtTTI3-~1VZsG-I09Ioss6l=X6X=ZU5~Lw28BS5kflCX3g{jrv zIcFG~>;wZbz<^6_)p>${3Xy?eGWN+I61|jKwxH=A7OM!3(B<9wHI+Bvj@z;s=ZG%4 zg_;ar&`@-uLA0DR5WF+|Pa(qlL-v~5!<5=B^x3tUS_fmr50S}yDMCG4b(Lb5go=fx zBLb(j@t_g`lyH|!l`i(TWkgluCW(Vz?{L$$Q|j%yPOsDG#yOKNd-KcHw=#=$lCjk< zM>AT7vDp4aH7)w-3!GlZiA`%3cs4g@K`CjTJ#t&Dv8)XIJxFEXrw!#4pc~(&)8e|n z8&4Y`$zyMQ7FRkvJe&>~QHfp0ni=~YIphZ4rru`u4}QWjX$L+dZnUtLiyO6$ zbALs`+oL1$3fOEulbT-W%L2Lm4?Rav8i18I?B6ZRi5$n`lyg8|affButuB)dD4(Kk z%T^V-^i>K&gOC_;xKhO+=}X7N5@yO83yyjeFD;CXVV2j_goTcw;osF&65iB4uT2{b zoVU{|(ka%<-ekV?eaP=2r{|<;hloawST=Kx)25(Bya|R2NG6yn0K#KS=>a=77m6B3p)+o*v*&eUNHw>d%VBv)9ucV{F;d9iW39g83^T z@bPQHPgyUGg_>Vo7|12|7hYPrYJ;SZTG)eLTIqoQpWjwvryk9@uqm%QRmH; z77smslt}?Xeys3aSguI`ORC!?8Pkr-yFL#Zsump~bh>2tMp&(>F~6JTBqi}ha?ju0 z)RD6wY8n|C`Q4LZoor}i1U#_wB=qBT?j;yP6dCUNZuoZWBkcm!bnA`kH5sla8mnH{ zC-s1;QDLK&JnAMBF(>y`?mNFVZ=c&UyK`})R?4k3a?!ZbBcb83e1V)b24sKO3oEO% z7PGZnx$o`i=ex-LR5)*s?sW8;jp(Tx#3qY4m!j;%T(3iuP1uAB2ZGRlx&lW3k`RE% z{ueeww0J%jx~aXKQQWA5l>f`^N7LxhjLJ^)Ua%W(TfIG>1*3(l`0t(lru`nrM!po? zs)vdCX_)ko)yal-<;RwPmhYdxDJjW7{pY!SR^uz7#IKuTB#86Gbg${q^=Zmq%IbkV zdGXgb1MRTPcLk8-Gg4s-4yNF300Vcg*k*XA`PfJ60f>j>p%Q}(NN_~}`3z`XK;&a& zRP_)A*ZioRi0AOnPnjE@g=2%$JsDLE zh$_aw@RX!{W)Xc`?U!d`pB2#Jz$YC;qdS0aPnd49&K=NiTxkUCN5Pw)$}GfWY^4&g z_))tvJOLOO;QO4MdzL2vm^B<-sA=Wpe56RoHb~CB6=^G&0!IXFJ%j!Q(*757#-Rye zpeH*odIP|;3tXL#+ey<)d{p}f3$K3HGUg(gHRR!Y<@o9C1!cnUrzY(9ddL3L0bI0V zSAw?*mXR_e1RU2!eg@8GP7AbT2roxK?9KT{GZR<8^WQWY|KZc2b^Q>?o|XPQN8Cs* zKBO<%KR|WMIUBJbN1;t+Mm6*K?tTls^quMPDr6;WWyZXlJqd5EagD40G^97&JxMIS zGpyaX0eoBlL?;i^>dZAgZ@5LyRs;FZYxgho0z6a>)iWU;V!nUJZ$WH=3Un4{v1_8D zwpF7it(3mx-52PoV_gfjg_;^ms%SNS9q&#_F4p`t8%k^K7t@kz*3Iuv;C#?)!NDh;8OeHE zJujv_(&dfP>o|eh!%N#mdR2fNf1r4I+EC)$n}+_$QRr584ColT{1M6EG`MnHD=z41 zba5ULc>HVmZu~Q&nq<5N&xc(XZQKSdEMfON7xp1EwR~=qU4Nj}HRhtu* z-0f*^R+U1w$dOSbWNR2~7r~Q{D-AJ^bD8`5VAlXre2y??IW;Kqz_*66W^rXjQ!}1L z5hLjbH&Jkkb*pOtwlg?z;6uang4_XtWJ?&^nZK61)w@|0@3~X6f%|`;ztB0E`w3=TiAVkY^Q@k? zOwaS-6k0sI(emm7%jG|0gV%TzzrUK^)F9=NZMsB3X1SA3&I z`Hqu}n)oW`g-+II+PsGb?JDqD+ifC!geK3QQdD|>S1;0XtXrvsK{cvlbNoVYx|k;~ z9r1Z=tguW%yjF1aTs=Km)ga%7kwqzHYlg(Hy3Y#y{lLdrK5Ly;v7DQ;%+jo(k6##d zI?>QL_eI(-dp7t{Iz(3UvR)tJ*tlFCPRgET7$d*U*PfeYMf5o4?d>tcFy?DIimU{o z3rUItZ8An>g(`%Dd}tL7zn<6o4@ zxbkbUJP2$Al$RJDM8Mro2naUR_lGyrr98a1;)SvUWfxu!Ebb=~*K}pgf?n;);a=$K z!`I@{PB;&)Ugqx7E6=NJoDK9YJV<*s8NWBS>tL07FCGF{A0KpEf4u;|^J}+OT|{U# z2y1z3?x_kKvIij^NiYm=Y-|p-3G~WrwPl`4HbPcCSR9W(T`D?rO~pA+{Gf0Mg05<6 zZY5a2utOOk4-9Cyx?#l!KtqvMVL?F|N{A)`z9N-}?&MJvPZVsQBSV;H^f6&qkb%(elw*9VC(=!(^4?MfTjqHEiB7NO-n(~ z9KdLmZ20gYCae*`7FGsIy{Rb%LOkdiYxK1WA?B{6qy#>;^DM@yxo%d#xqduXdFI!_$OHjr>Us z-DfJGC4j}oGpV-|4p)N^jASqD#y;Ykg_DAbRC;eoaWQbLPfh@xgGx0r0(&ORcaBD* zK^NCmmYfSiRc$R8e&RfXnbAWc9fW$UvH7ERARem4G=W6_9w5vAIY2x#q>BCpEwn1< zOv7)T=|)P9UVCl_e!q)YAMg-l`7vqz(S5;5+p1g4dt2mXOuy>+A)=i7 zg=*~fyflP#O9eV_(0BZXUTNiDQa>=zUiQ{9Kp(&0ruoXb*m8bJfp}UgRtDiet)l%O z;*6~7UbFeX3r%>ZMUDz#QjLhtKvvAN{+imE@RIQQaFET+u|jkBj8>8+s>88nE!v?>@!Eqd;C640l*P;y7H|<5g_e5<9CaxH)dMC0d^6~MRs-fcV z;sv(EFMU1C#Fgoe>lM&?EcRaCY^50|L%$+s^!e`rYN#wI3XnlV44z^Pv}(#?^i$Bh zNu*19@9`+c6lvMo+1c6K7xh_@;bqB2ZK|1t*>8R_kd(&c>|U%par-I(?RQoWXc<`=BMF^Cr}wUt4STOAZ{>( zO926%`npA*O-o@91zxRgqP?5{LT2_M|3PM0Au?-tvdFK_`o9ty%lDkpFLk5dYZ?#Y zjN-u@x$N(8*)SZ+5Cy^XuMDo1BO2W9wf!5&*BMjz#5f3SY^XzrwI)T_mK47;*CuaT zb*?Q1-nVO!qzjRpx{wLAh?Dx8EP|dMiKD$gF}XwhXsK}hTMpS#CTV@n*_pBV`X^?i z(@Vyy?0?D8*-#2*?t#PG(gkLkOpSo18S%Nw}s6 zjX5;rh9yQ`D;53vVy|aHdLh7v)#~f4Ga0U0<72T(4|7vfSQG|!c@UqpK2@0K^GWuP z-iq5jzPH2A{5?zk?Lg<&F_-F&qOLYvt~kmA3m`A ztQ2lvQjkiRCJLCI?*}X`ndZ}4Ewv^M7d{}#@HYlw_7H%%MwmoRJa9`uD898JeP6Y2 zHzB=U#YS}0RsP}W$TkD1N-nq>=I7^wL8?^^!6Dx+Hh29D;#{$awO!X5H=Rt3m@u*QNXvMLs%N zq8l5+3fRM(p$7}gOz!!;w#FlKCng($MtP`U#|M`MiUQCkVCaCEW|3Cp&Al{wWk@v% zta?-Jab4)>oCnc>c0WSuJFXQJ7c9JHs&7w{#rOvJU@!ve326|}$1vu;toQ-X+f9RI zT2|a(PY-sHPJvfY{JGKP!B1;3L?F z7qItkLcP1sHfSS&frNqV4S(*eaL|1q%Hd*XvVo!-&}4p^o1eonvj?mZ@Z^@EhL?a( zeWomjmXNR&@@!xXLQ%km2Lryv=UPMGrWQB61f(Ts$Xbl=lLi5G0p#iFy$YmY1r1St zh2VAv7$0>ANKr8zn@1WX9Rx5!b$S6>Z_eSYQS^+d>L^#wQK z6W6p5XIkQR6I%q! zH24hOkBEy`u+#CwIE7b@=_Ec-$7oVHw`dePso>(C6DFu<71s8bzP>DJ3qef}BgJEC zep`JqxI8^CwUz*}$FQlu{{CQnpP_R=qj<_&b-GgY@2w55!`N@OI|kRyF4uY7)P_?4 zQJEP3)eKbOcmAEkV9w@l@xf8<=;_JPlprXRCmUeu8UqT>-Tt#bC=<8?5Y<9JXs zLA7--jH4-1xz$KAA$$FIJNIdY_iu75_WB|6>>;a*hC*3Nt-Ua~VAlJIL0GW1WJcNy zSpFVMA=`T7fAcE}rMK<*c*f6yd97%8Nk$IVAHY;DC@g+zeGn{O zNo%Dl_wP(O^FW4N(H8 z9wZ=v)D$+WXV2pq*^DDenK=j+iV%RoPs5^kaD3uiLkRcrHBgCpHv(`KVgd-TVhq?O z&hG;O8%+6ahq=-KZ4m2tj3Fgx0?^Hs2s_o@O)4{Bb0#JNJXNE=;~`e(zDgmt4igSI zo^Nfz;Nv8$YzSkGQV!YYYOO*LzXB-&L<^C#1w-tZ5r0jL8#7Gtt0Z>K*$HwWWq6Zr zBVoS3BI)7k%3Y z>;@T)LwZ%E6N$cJ3loCx9U<1GYLAhh=S%P#|39+cJDv*u|NlR-_n||F>`th}Nme@9 zDl#IQj8OL88QEndgzP9ggskj@gpjOkLb5~1`aO?#*Y}U#=Y6~Wc)#D*b(J`;*XubR zkNe{?smX;+@yQ~!$J$f%mOHT*IBkMA7{jr1#6&%&p|4J_W$91(GxdEsjLLPdqEf}3 z!~MlF%I`>02HcW$pbH3pr&#ScG5@n!K;m%xVcx{}!?te?HhOk!%KY9tUux=3+=}^8 zV%mnl_q?$Eg@FcmffG7(`QibQ-WQu?Gv^qSiMf3xzOeE*po2iUwAoJQRb&)ZvKf4_A0hg*%i;Ghq?R{hRqg8R}$y|Z`_?XS3h`eI-@5!oKo41&CuwFJ9b6WkGB^{)b)zjm4Q8PYoWn)Snn9qw_644Pg$( zSaf(B9ay$(A#e_s`zKGH1V(`$z>%7#;5Y#t7RJwgmhx&eEMk+}dmy{?Y{wmJs}%-M zIc3^X#avs9jUmYBouxm}^sq%`+L!oM1umxJe_Pnn04_%j1qThlt&@|+e2mZu!-fw@ z)G$$OnS@bDR0^39i)y7o^p`ThQ*cH>XqRGn^rOAlP^tS@FpKg#QTzVrtoX@;aK_Fo*MmR|D48xRw@( zD(ONDZqxnW=Y&% zJ*v&H|3&3zb!a(af0VWQYf<0mAk*a+rj`y_tAI2Jn$-NUTlU+pCUnHTZ*axCJNYd>R4V};$SRwCp8>iVjGw876$B>7r-J*ef`e0Qd<(sn4v-M0K@C35LRUhj3S z=K0i;1=rzsWjRsVM_c}+#{J@#b_j#=vd+_8e1{6W^HQl|%9^m_C}FX+KKRbgi`|{u zpUU)9LTu+&q7lwPhmj+aQ!n(N9q#2Mm+-=dRaJIPOM#hr?Y*v9$Oj0gC6c84@34ey zJoA6R4PWheiiuK`_sX5&QcuitES>X8YjoZ>Zbs_a#NisMnK@e9xf^dF6BHJ8DHr+$ z`h-iL(-wMp3{IVjqKepdD*Hl1N>;OLaJOVmMEJ9sL6JF)Uzz)S7i>yyYYHcHKnZgb z17lJU#Q=SxJN2rlkkE5KyH@8r4dvZlz=8se3>dTkg$k?wdnHx1wFU+KkVyt{Il2R- zxRKIf1Ac8#bSy8M>uRM)Q%*!Eo@L^#iA05B*7sz+Fw2n(A-9xT5$oN8chk1Xe?ro(P= z%AqPJhm`Z<1`Yv@=a6X>?3)pA=7EI+aVrZh=feV!Uxf-^y&^<_xIiM^zH+4BiUC1! z%67Ok3*b=O+kHZSgT^R84}&Cw>?P$sizHav19Gj`qAKMJ`~U<6A;1OkC^Hv^gHW&k zZ{D>nBKvQn(m^QW(B?Xt!)`^;Xdx;eBNhD^Gno)Vc7>ktaD9l~?$1;tGcWT_*GrSP zr=^;)vB7T{KHFAR(=vu5D*_S;6z~nXR%3JXt6RqR8ao@Et+7l&$M1@sAesq5gbt*b zoX)^J3V}2H?6!sf1QGgW9|>Bj_a$Frf{MC+-QfP`lJLqpC}cm8PfKoGtN!RuPXG#ISwP;S$|nF3O0-!rAH**`8wfK z8mI69S`A6`8L2fdB$}A$q(5CsC@fHl|8*h0%qAsYuWt7|v{&c*A$iy@s<^wmPR8Xi zqW9ImN?K-G<8w+>#fgHGY!2K&L(%o<8?Xz`3DLk)6Yb7w>0#}#yk!ds^h$U=N4Aa#zLOo($AltW}R5NV3sN#Q2|DLI2Td+ z79agwiiC4v{RaQDxUf)J1rTufL?{a(*l0wGj^ob@%xmMqx|obFGsR#IeEkFy4Rm#f zoq7-nXXWngSe}=`kMIK6O%(!j$(VVYE7~E(5(&irXPEY7H)vggZe!6Js9=uAAi8Oi zN6DWHE3K_f>ADX)%)58N&9kt$cq>aCWR7a6h6$tM!O)Npo%pk4_k4Wnbol6r2mlBL z5CDC?cw;PlHKYCg@_m~{cWZ={Aw3g6)`G&0DMZ)MkWoH5dm$~2&6^G}>M;W?!>t&Y zK)_88bPbL3F&L;DK&3x67KsE+J|tooW1-#G)V#=e3z~ZjJ;-=sUW3p9#FvFymG%=5 z^9?hKnlbogP0&wgK*Nk52GGIR157BY=C^#XZ-aO6|A>>D8#9k~*i7H&O8kx)vM@#9 z24o2l(v6;ILIs30h?UbR=>*Ng5Bqw%UA{k(niOiZp?SkXB_^#t<#0lbLXJU<8F@mD zSdI94@ch8!0D-Z2?ya>VWsdW==_XTUZ=afK)_=q~r9n|ajNoiUapphpCiD^@$XXDqi4@ZtXyVtbSc>Sgp9x(0M#gw$qoi2$ezpvQbW3hL*U{Y(} zx1*eXq`0xTO|B{t!a)2*c8yzRtsr=^|DCti{%Bq2RKnqI9lOr3Yg?P&8ZfAsdBT4! z{e2b?DY95G|9RwTia~TsHlG(YBZmdT;@q^49}9gL!w}OK@7dwcKB{Grd-N*@5@9Ps zRxGlbBev;XULsvNrTW~%7u8&^EJh8S$-7CqSJX3DE0KM$MB86{C|{%TXai}G#{8VB z_;fINcxR(3OoV+I@j7JK%|CW{pEx!c7ZP$Z^k}2=U?P1Il|M`CWpMsYi=sT?EY}lP zHLZ@Vpy2vnf$2L5E{jqnIyleYX1pi}q#LgH*<-$zpn8gh|Hk`hhdC-yBhL|W|K#P6 zx_-`~AgE(5U%q1=QX`t4DsDJ3qPF!u_18wNWO*n->Ib}hTv=&X&Ky5F7DOKfExIE-^+;_&JKccOZxH|-; zkx*(OgB-*<@yR-_HDk+ed(bok@DCJO$)fg#`ud=p{w8!0O*LR84E6%2YThsywSXZ2 z-?GEI1>;zv6EPT1T$*AQ$Rc5*-fzXq!t&ZuukRfMcyRvd#6+zcTWSSk={9lfLU_8S`E=OjHrEwCeQ(fjmvZITBD2w6DNdBqo`J|7MKrH)nP)b*?Ao5+ zGO7E1JE?P&rlk8zU51bx%H&Lb>XVjvGW0~UF~Zf#T$yCk4~m}0<(*ZcD>rDL-L`Q} zpm}H4tUTP5=k|nOL|<5L(2h4JEl}}I)v#;uRNC+Mz&oO&p7uBL&iSoJw`R5%hhKL~u_E?cAcf0F&L?Dvbtd1(H0vF-Hbu>aUM2$@$REfbWDLRlG> z$Uo0|>b8fqq)9dO&NzGHZ}9^$`+GGH_Q1Xj4f35l4UiyW6uzGyOdOB5C`@uox)7%r zPWQL=noHJ?chz64f1CH^pJNQyR}P5aTA$JrBZ|-=$eKbvaOIGw=07vQYo5966ewaoX7N0Uz>Jw@e zV+>b_(I_6g#un8v3&LsOWwwTcjWeL>Wyh?#rYk7rYidA^206)GV8iMG47qr!7An{T z9l)WX2^?8m_ZfiS14V7w?KCGwA!gV{g*#SAdGEkCqJ%dL8ZX4N?s@Qz4lZf}5u*jB zXbLfAx-j46>-Zp_l9Zwbgy0!?QoFWM9s`Y{-M`WZAWzyyKa zu5UxfEEgG9dN=&XnI)m!%pwVtsi5wGe`(Oj@7n*FbcJ&HbJ2BYNY?ia#bf;^Cz%$4 z@2Ho)BnUa!77iP0hV9R276DIMfXO&or$_t)_c8PsoLh(n0B@J2iE?I zXssJmj3+Pfk1WHF#r%Bp_20q%lhnPr*PoeLFTOS%FsUVnvim!JAvQ} zTV}_}sj%)2x;F@Tc27WY6#R>M4HbzfA!-QS<>%+}i)j#`P*)DE#gMaOZPxx_o@1BmFAuZuR1Q@Xd zh~ABiN4;)Zysu#i+NAP5|o9Ahw%(j4^OVXxm2&9?E3*v4^p?x$`2eGrx6 z?bl6h&9>0I)h^h-UvJ8J`{k!R4JcH^RN`l$c(FQ=TxudsF?is^yL9yMbIO$mUaPJh zHob~^mi-rXhpHw|aAF3ziOGyC5`OrSb0Rs&Ps#8LHwuhOkr648BU#A$i799JZxz%R zEW=XbYTb5U_nv~&2U1ayL5%;om-BL3LIpaBg-+E>hf}c=K}kH=){;^g1Ih;W=eD*B^gbE051-RKZkAd^T91~ z$PmE65d`x#-Y}ZbGt4kmy(_NFegse*Hq#AR2>#}X(#2izs%K;ywiWwiudP2OA9~iuY^X86FmsS zEgtSsRoCrz-D3@H!Hl~_ z=Ie;uZ{yq{x8lt4-8`78BMp_@xk~u;()N4W?E+BU5F%vcngb+u#ZRSlGFj+-x4OxF zFQB$dcq{t8Dz!)AmNFe7+tZSQ;JLy20`8L`PtMHwT(0@KkrPZ?Tj1=*c!6U71m_MD za=%t6DBQ+K7M;c#E7N?r$$=>#Jpg&FV$9*-;^)Uadut;>Z6fm*9C?PvdDUZORX(D} zP~1eirgP@g=F}N1>)IW6Bl@dsei7uNZ1wN%f4^8c3U!YKe({mq#T5j&NsIyyyCee@ ziTko|OQ_C%yY0h>@Pat$G6O>}UO~AACpZQZ`FDDDTTetU8<9~_q=8M4v2o=JI0yy@27q&$$qP?PzZH1^1ZsgR zjTZ$RH@(P;$aagl-Wija_rF>wNnbP@#a@ zK~qgR3>jnBaDMwc>+R7d;Cr_G4l2`{VZcSfsj@1E;8IKG?hPU3@XSx8e9C=fod3i% zTmLO{Hi+a;$a5jEOwnyBh{kd9W^22aM_@@r1R&%lwfz>0FKa0(vHhn7=u(z?gsq+R zt#U#?D7_k8U+GeQ6EpXZ{IO7AMk%P85^l zxZg6rJoBNWE#pE!Ze!OOtdak+M3tPDNtyB}c7J?gY}P+rDtZ!IFzI;pBC|9yPeT!J zSB22Ta)^5XcD-9o*M@ga9~h6=q67p4ir>6}ZKo86@rx8E@5xvDJ`<}GTe_aM3~6)$ z^Ox6uocz7-IkQ|mw9!(TcCgBR%6Yk{vG4KDXmT?uKF*O=yk7d$-oX9O(?=jHHNCff4@sC-O=W%j_HEbHFME8?C#XlUqsj9wu=RPyxcJDOYL4_84@IDVT9A^6fK&57oM zadM*PS`#TGgaQ2K$B!QXLN3wqo^GC~tw*Nm%1xM51ZcTekJo#ealKL{(LaHY_3*M=*)ZTkz~FhTa!k7s($CHKkZay} zs`>_Qml^SLipLny*w14h6N=oQx zLWPx~4}z;;-6I9l4rc{|RG~Lhi0NU#3)wOB66xLe7$g`tV#s9jG`JK%Yh@ZiCxf4X z!!Oh@0lFhV-S9CccU3?@caw3WBa6)AOkS`Q9b?)+jg6s4&j5Mt?OTqpdv-oujA7a8 z=K?q)u3xVSFxQ10s3x3Vm7G{}-H1yvWC-|SjMRHBxrn6ck`93cd9*>w5P|MO-P<$+?@T2D>QYGay1NG}m2Y%XNo{PDG$GFyNW?MiW|jTF$Nva6j~@gUdpoX07F*Zx z<3u@kqIyUUnk0Rr#n*Q>^^MMwwnjC~2}}sqx1^%XnBQa|1;pK$w3s`qub;HhN@CB= z5vVY<%lOl}Y&7Fuzvx=LUC95L{m{(MmWf{)BrpwZ0Y_J%cAIE9fBE_KMsqj-ebOYa zOy)S8n{V|;r?yG#E&NTa$a7`)7gA^~c@g!aPpkN=`n{_m8?*7XDa-P;ox^cO#zK{9 zQ7&hNs)Z6VeotG|9cJ{qzG~*TPEv?@4PX_}C{qNZlvVATaDrrpnPcWE3vii3? zeDVgE!c0u2z;+@}1{1V+tx7|K$D=&ml^^X)8*@eiwR>+2?pbo4qkD`?QXvo0i22fm zeL_02k(7x8^^xzvwxKW%hXbjqVB&E-1M^<+Phu3nC=I6lin;+#c}mk8WKGV7mrIAK z<2y$9NuH{X^hJ-Bm%Zqjq$iT({>){NIc#d!9SJs$qN1-tKMOP+64+)_D6il-zPXVri)Lz`8T#0C5a}e5vY}SB;}tktxpt#5GBoGBjUqq`#)m{xy!-pU`u61 zh<28JPjH>z%oehfF2*G2wrnw2LZze$SCRkeFs|;E^K1rJHH>a zw6PI1uBF2dHz-DVTjDp{T+*vhiQN!ccfYw>U6<9zHT7a0?awoR(}X%&7OuKr7oBmv zm9E>DOA>rGZ8xmH-k9i^7nz!%Zt|n1O5lXQ5Eg3mxT{3hrN`xri4u+tl)m(W=;DTG z&-LZa9XGk!`9gb3p4|NQ=!9wcShwMe(d(aCG3p8b3% z?G5}i7itNhWL$ZwZ(xw};sv%)?KeBFHZy)SXjoNW<@4gz$GvSqv-eB7mCQ5?^>`w_r3RTQhXa4TvMPV4B((5krhvs0P&b|A536}&-|K*j%qkq zc~$XM*lKcGjl1&a;z?qhb4 zYI;8GtBpu^x+Glvpts?U1yLrP?p-Lq7{iGXK!onKfK(6k4Biz6?N5);#ps(o zLbfG3$F3Cs21xES(L$McOaT3J0oxjbd6JpS3$-W2H|LObtgZ_!e1W;`Q z^8?Aof{jgN=$jtxSnoB*Ne29(*jYTeRxs1UIO)w)bW2MAQ4!h5fddz*!0AALs&axI zOG{>fAiUaor&Q3E%*J37E7Q!^1K` z%Z9fb=o=Zep+Un9G!iI?1QX$2fz=ci4Kiw&Tf)d6Jp<^W;z9UtxoS236R% zv181Fd1OpVHDN8vHG6;T7Ee5JiV>RG-h)yBeqM=5F_?wR58F;Y;IDTbDZ+d5ld{L0 zyRU`PvXda>)oKk_zkPeYOrPjEp+7FjU!^j$#3oo0yf_&1in24`3(ser6jX*==2b9y|rCaJ)N+>+BiEh@x;-Dk%dOpB20q)Ej*e=GIC7HSFQzU!|Xot%Ed>jiR7 zI2x|5u1-#H9$*EujSShjYR5cL~_QReQ0Ia#6BOc8|ffkg}+ z{K)IFF|WY|dYS6-rAv-0qt&oRf{F;QwIosor(Zfgl^Q20sfrBZAOr5kf(wWnz3L1h zX+AVmnfoNZqP7C&A0Dv=pXa^>7>d9PGHmmHYy~uTH!+#`Mghp9r7%MVO^z}41td}P zDr)wt=V3a2x3tK^?gnm}4fr$I*u3erz-k}UF^(s5zy{g!Vg)7hzf++7U&&N=+f2W! zh^Y324|yla&I*N)2brFfh6#ss5n(39sR9Qf8XqQgJ1MgF^rM0lyZobABIrH#+b``b z-7?9bs5v3U^;m~|*!)oXFk_aaTV4Hk_g@<;0F=!ki&K`=?V9&|=R$;v@c z$-?|T-aNVMy4v%;1v4}^i~wJ$K{jefX|Dy)-arx&yP|Q}QSjql__d!D<5;;r)ZrH{ zl*rzwC8gPF*xYS$uYW?!mezp8ohv7ck*YMt9z5A zxXgg3V?2JpOx0_M6F5BBj{9bib#3yJ`?9$u`m;AXC`7q;#{H2{zp~$LxZoh`Qsjal zdc=>ofn3(NKPcOJXm{y!R$+b*T{HQFSz+v!_->@4qyE=iODV3072ocRR1wR|(?^mh z+NQnJHG)>}Z-`^a;{D4x&~J*Tj(h%CbNAbvoCq)Ud)x*`)pviK9da<>R*F~$y)66y z0mK|}-L!Zx+#zjt;xJU3cO>EGR|4CgmmIT*y&Z4Yd?`029L!eJAY4kJy?#TF=9T4# zW?XH>m*^$a{Zbv}Bj4$6=jxQ^sh@5&aFK&C9zQ~Z_T&3^peN}V7zy^`E~J^ln@h^22`-5#;20MUVv z5Nw;uhN*&OM3M^)!NUL@QrR%@e;2p+z__Sas2Bsjo^xT$Y-~ky7n1!Rs`1f`t};j7 zn2D6`Q`8AvgKyY1`AbLZSM#ikPe~j>=}qq8udWsEb+pJj8g940eDzR{GQ`+X`Y@+B zToo6vORz7n8c8%h_By9g8O&o37rTIjA`+1%V^8}>` zKE$nSVweu1~3!He;F=QNp`Ir7x!<{ zI~gc6OlY&R{jTuqr;6tnnInCFS{vy$Y{`cnuCJTg;ze3+HLRT9mfhfGJdTb4fbgu7 zf7ryq3gm*+FezOTUh(ymcw|%hhNWD^&Z3;@ysx@aa8 zLg$~xSXW2t@Wrd-q^j^BSi~GAqi?VQRsh_D)dqIQ`Aw^fVwc?$$ioTJB(WryhCaNe zP?d(kK+~Q4-H_pX)1x+pS}^CsN8-iZ#GvG>mn%ld0>GUGXqB0&nYO4qDB(+&z|jwT zJ#bV4ZxBo!Vqjp3YLo4I*J}Zq6_}fjECVFt^UOLFKrt8?Dgj28EC5P*s%93PM~{sN zp;VT7$;dMBn!_?d)HJy$eTKqe-fASILG#9xb0G;0Fqs1!W%Rb2Rh06PdL z$ET6Wf~KBM1~e)3Phe67!BMbx33`^vi|dAB5E>jB5<-xo;c!ZLLKp-MmO`)}UkA9r zSZKEQd_tRn7nN}v23p*)X(^n14XOeD+#It?Z5!e4*5hQIC z@*R*4ASg!y)4kv zwI7#0AccTgg#uR)O5PJvhjPY7{?f+Z9SrT7dAg+%FQjHzR(Y%sML_752%5^dX>C#B zkLd5p`re~Z0gEgy{3raZn&$dY-S0$QD;xEsYc#-=;q({>+=DL_A;-=+Rz;0xB;8LH zGN2mL`x)t5x0lJTmhmzt>HgDp|L*9Th1TnFr^~hY)E=P>rrb_mn@`>UTUmoM;mEsp zGEzRdR!6jltnaeh+@w{;2PcM{IPq$QA)6;(9=VC-bR}6jHksXHBr9(Y9|(=|@x&a~ zKw&PbYIBSI;qMCV24+*3vqBS4Q(o@+<5M(v8t~qj*i7E~v%xz9yV_x~x(0q41}htc zT{j1^zOczoo9J9qj9~JY_!wb@7O>8`bar#0<)MdeZ2xG}&`{LJ;cs6O;1YW}^JjTP zn->Me)RU7u`@Tobw30TJBS0IDRh97MWA;kE|A6(nM?H{Z5Y2O)d^qA}bF#GQm$<{+ zoOtW6R9zeUkRp2=lNx;!!yI`pf;<3vP*55I!^62t7_N0dfmxNq2hGmb){zD3evxa} zQkA&Pbq9n%KOf!#K09!M0nL^_;T11P7~#f;bzg|d2mG}Ty@8paYt7x7v9zxH@Q*k9^8%S8Q%s~HB_5pQZ~V(iB;${&@)!$VV73iYO>T};sC3T&}Owl zEjSNc(Z|jcZMEkh=`Pnh9eEw3qOc!KN{Yc>@MYn{W?QHJeLgH07)H0|McWf zXYf)kaAsPSM_fOn5cAJRa{fO#*QuZ_t&4~26S4>t!D+vpJf*U~I|IL>1jBiLFU;!2 zW|@2-TvYxUww6Qt!N`!5kNP|bz4Qa~}o!S0I?BdZ=j4uS>ejoE}YK^5s^D zN$TQm#sc{=l!g^9cOvOghi2;IHD^~BeAhr)YF(bh*8w90R15G+OW$O}jdEU+HZXayRi6jfV)xe8M#u;&`d!yZq9-$(@H+t&U-_+ zho>alCid<=GxP9*4||jI=>R`j>u;}l*g|e0aX?kl!Wx83o`buup$ExdN=R+u;bt-H z8U5HhF;RT>-SzIThIzHS*?tx11m&2$KaGipFHEW?PS?!!So7DqJMH-(zNfmgy?brc zr!6dv!8~L5L4fRHx%ezYW;V0qb-tL@CAe!)%BNC4l81aRHjd$(_2?YP-4y7A#{VPs4WMJkOEsVq@ZDS99&=CU4Fh~@NgJEB5OeXBXrjUpg0L!OW4SX{ z-(QGbv{y>ZOq9+F4ld)h&SpA^Wt~iIyml_fzUASm+a~IiovzwmboU*8muPn{!GICO zQD%bXf{8Gn1Zmeee9Hkz^sZ^GG1xgHICwN|5iN@l@~H38VcOQ^z=A^a(d4;Iz7vlM z*&9WcD84^Qv9-AO$ruYtk%E2*aR=?~tP_A4IKhIjxb;5Uvfa$d+4(YaR7?eDL6rk=zlA(w8mwJ@FaBTjD=CkWQC>)^ypdtj-zWKd-AM7eOa3D^Z zqKGKr>mZT_%_AOeMD+h#*VS?0o=FJsI*^}m@cXGuh9LMhak!vfd@b3?&%tzk=r6IF zr84Q76ZQBON9{5a_0Twb%A3iK$-jk}>WY-QbhE>@{GWrth6By3glm3h6x16g9_S9( zRl-v8CI%*;@P$DgNyNz*9;bLV!~`h=UnagPo7~uiuQ*FRgI96v8P1+Tuw*8_0i7?I z#O^g;v@z^inGdrft0YjE7W7Yx!JG@;Q9eD}HdBQQjUAf0Hk232lNMtn{n(wCT@Pv` z&UB}S7BB_Oi^ClB9GYJiLGe}m9a*;?0lS{;YOXe0SXe}dw#-cxF*bFX?8Q-Q{@DAm z9{Q(71X2VpP(MlMCCJv%Zb1R=RI(P`}|J_Ji%+>V)vM)W`2WOg(S8XQHd6_8cbcz?e(QrezUBMqUT! z(6G%okdHnQ-n%jKLQ@pz2A093o-F&c=fg*+qy4!L^34UFd{Qnvd|hfc@B(~i&qB$& z>7Sc^I%~W zj>~-Ksuca6ik4EL+CQt2lD>+XO*-HNDRqxzj+1hD8!=){L4Q z0gh6pTgYE?up?zg_m?%K^aU$Ro4FuUY|A(L#j}2o_X;XU8V+8sl^0uVG2;d~sy@R7 zr%DNh&n2paaw-^uGIO&VY_pOl1qMWMg{MUuOq%=EouLWj(bHgWoi^qr>C7BARg|3-mJ)YX| zNc>5~v@G%39n@tLpNbbTI{YfzHTV7)90k}D6O$(3$<>VmhuaBqR=g`mTza1VPcAU4xJ}YB|B$;%tx|?TQO`@I!#GLpSO3MnX=wbY>SlJ*;*s6dS8Vp{7|dl~6f zzDMeGhZrG;SddesZgy5Z6Rl>+^oRuRh&HT2z#Ema7IPA6rR&Z(Hc8iC8se$-AkTn; zlq>ot{s2JIqcl=I?|CLK5RD<~vTxye$1E(dHh^z`DNzaj0VL5e4VbS3+TJM#4E+~&gbtY=&qpMKMuNpwBuQ)_R?C|t38ne!jITfX!~Hhkjc9q2DMJSIV`h5 zp8=o#%8`uQWB`2>>?nm3!4?&2f(~zq>7Iux)AR5{FeOSJ8jzb9r!m*TZB~;p zKxE+^w1d%8C431u+^B^RWHu?p0EbeCk1Gf^fcg1wV8BdyzYHLE5hd+r|ILKh|EdejNZC~~E9S(^ys)iJPDcbxPEPBx8RJgN#($95J z_i&K=Q3itZE%RiF@?M+K?*uA^rpvJyO8~}rc%V(ee-CkNFgyU(lA!=|WPW}={^jQY z8u$XZS7KW%gp%6LbmCjkKxl_KF@#q`GJ(mZQTA<*iE8(jDssE0t~wOuUp*XB%!gq% z0pIiUaR7U6#@5|)Tr_3JN%aoaA1YJ#-{y}?Ij6NI!j_h5^msIU#5&zH zrO~OUW3>4c4H{%=d&qr3I3WmlA=d0os;HXoV5Op-PYtVKqn+oL2-Mn93c9|-y$w%O zNllsMs2!fPoZi1jF5$!ddtoGkNqdXXkEj07bZ@9!6f-tvL)=O7&hQ(RM&5OLmO#sx zD!bOAINq<+noY6Rw}a_}-^plGw1;iPGu3xU{+^sZ9Wi$?@KR$>*u-jjYARR(p-z!V zkHWOeWPtP*2!Y2*BomTH2Y;1%J!?fnyl+*BL~`Z)h_p1VeWfTMsFcDbIFB0J~$OS|eO#M2|1mW`!I4_dGgT3vU3)Aa6#@M&` z!M|=z03P-W;@aZD3yk6Tpf6o0>x&1$7Jp1W#%DrSfvfMGULk}NLxz3XFofMpq{Bpz zE$RUPx0oYOAQWQY`AF^(q>5F{0?a)Y4NBjH4)}k-MV+)gzp00eJ-S2 z#&n0 z=9>MHh3Sg1navQn{myuD;QhDg$-Rd4=#l#01KM_>&SzizVLkk2+dwRNvem=H#6L3^ zmMi!*5s=i4u{UGB*@!^t@RC;%0-ChX`%mqhtSjuLzgBPi)ffv@7D(xU)gl&6|Ky`F zmN!mu<*e0D)*7#fX93@gv7jSmi^@^YgQQQZq}Ectw$ivP`HQhD2R~m}3DK~Ndl%h? z4T~!M#QEn5dsg}sk6$7BYL>G{N>dRQgp{<}KPzM5NRV+up-UufGf{uHPY9F)A|ihvG%|F#zOIZyd6#{1zS6<; zP9e={Z(V~UpT6*hgirae>LqaY7r)DXa3%`zm~;_` z$xogJ^c!HJ1s(kpxf7I$4;@1Zf5DzIFeUmp# zMolB94|-yJpJ1sQ4=$Gc{IJX(ZP*#ZBoYB6`bU|(@O1%e?&(u6TpCO$1QTI**F7I= zUOj9B<68I?tE$jsM4$kiSfwR8QK%I@zuViZhTldK{!f=%qo?+-wfAWMpEE7PlkfMZYF|ORyFNBUTEznuzPN}B#lg!7{Y)nF6e~$s-OPwK4 zy;DN2)&2kp*UeUT-rAqpi8pU@=E9SNon?JpoTo9Fy@6D0o)TO43sIAn(r!5ndF>XeQ2&?~DszQf?rRjRzIlX` z(Uo)ZQcl9>skL#+S&xQvFo3t_Mhp%Q*I^a~L(|MWw}26}3T399& z%$k~zit_PeP|H06gftTF`@uyRCi_cqMBn5S5NMlm3^Bnd=ouKmy?(5V1-Aait`c{j zF%}G8$ANj^DOSnxkzmJr%OUFyXsZSIkUUyeaTLsTGoBrP&SEeyI#P&%Umw3!mhTg) z85>`4frJw?L73^l(0*|7Y^(y@y_F-ETH!Z}ZHHqduQo6+00O{?RdAl0nGtcmtEjk- zUvh(S5oA!NP{7-YoQCza!vA04N7=%@)Udl8YIl0?WAema&sZr*@ry^K1D`65oZHyP zjy(GgvTPkp`XY}PZyu;Q}{Gvh+T%b^^LQic~?k3I} z;V8s>5R;VXieeG$<+WFK92X7UW+pBNO<3v|#VkP)5nvhN*i=h&s7L}6mF6O}hP2e( zS4J1sJ=oZOcxf#x&U#)6bWbEKUZ-V>^seTM_B&GWyNY6_oOpzwBI@Y%+xf9g;^EOJ zRxy@zC6SRl{_`usE(waa{_JO|{BEadD#?9a9_{R3;wv+BR|?q;Yb?u#73*@vDEp8A zD&o<(AjGhKnZ>| z9Y2&`t=p>PPw{pM%2S(KgOeFZD*@MLem_J&K&~j>$aKB$UB69XAq^jSMIH80y4(qA zPUVklMg(V4s%JC&YiO7a0+9QZ(3=QSspjbl-Y_Wne(T}h|F|J5NfDAsJXy{cySx)dm$R zC>UUE*y>?r_1PE;?Q|;x=)q$!Ak{^F1TH_wN~Dn(g%f})g^`$Hai36KdAVlsAUNue z&mvqsz=U*Y`S2m2Z{bH#BN~ENq>;e<{`Zia|L-9Q{%})W)MuB_mhR1UwA%-tf*&T@=IG>AGFt@D<38`*6aQ=y$BUkwltPY8=fX;x3b42vb*RY)sWJ=1m6&dM> z7>IrHSG3{_E!EHZ0X?HQhBpKxL_aULba!`F_We;@bshV5Eu_mwgGbIvs53)=B%)pW ztsif0;5~so)xfCpIw21@6uC^Xj7wt;f!+Ia505_XHe2rs_(~7!gyw`!N}dWRAOn&D zg5dqzlfS45kdX~_1yF10te-M1WXr2G9Of9C@;_x?n1G|vG3j~rp0X=yxkJw$_ zX+GNT(RimF+))V*2# z&f>G#Ke4G39#6tuox?IYf}mK$qEk{*@Xhxz@&K~6)SiRh6|VBdE$}|!!M$(}4U1tl zZIJ}CRxk!*$hczLjUx_xkHD>7JUAm}2lHEC+c!;adBFs@-^yIq&CE;=uV1)dIRYWfx^NYj@^ygQduIJ+jF}KKtU7AO<~)6YhJv@SgC*as1~@`i!mw`1 z)9^?G$yQ(!ym?T*{GYdkSXsRoJ#l$1Q_WLmvcJ;w{0bo=1x-#Ow!X!1**KVEYU$2^UL`TUPmB8IxOV8 zhdg^$*J1GvCtMBHQ3`8*EE+AdvOh2|cDRzvObww4pUy<>+t$jSQU7p$|3Z-TZAlsg z56>ip%T&W9U>aI>WT3yxpKj;U-OndjZ;G$%e+*45 z_IElpVY&cya-Q-iipc`R9~mUsD1 z27~qYzIB#>3%p^sHND$)gs0E=l)mw}xNLCMjO%@%wBIO5Tg8)$2&BaV^xBr#QjIRO zSvLLXZ=_%M|FJ>B^`tKA^4<76N2Pc!=DImW0S{S`Jp{ry$NBHtEem?4o!`bA->UC0 zaJ!D-7i(*iO_v{hQTllANX~oS&1>Y#b^{lR%yzDlg=TTTJ+I^zlyveaq z)${Iyl@O?sp!A+~0&yz7AvA;4md;(|7?Ili?SvB)$uc$#AGg^DkW^Jj)3;xpR0*hk zr71?fkTPZu7#+&y_8v^Bo4e==D}pq3LT2r#Iic4!ym^-B!ZQw{m?xAE<{@NJHC=+0 ziUini`S~b$*kGhe`uX0!&yAvh6ayW;Iky`4v;uHQh#3x0yg32_?lW%lLP)@QhR|jZ zh6C6~h&eSa4ag(_)V&9Wz*2ymcim?S0nZYs3}IbztQm)U7n=LqD2Avu*fxeXv$R2v z-tqgSD$YbC*)wfk?8}q`QJ{3tv;2JcJ^(&G>3+GMIi3|y6B?Mw8)AZzU)bJbX#;pf zQQ;dM8F(ti)%;~u5A;u9v0BAmCkMJJ7vlSb{s4es3Sf-z_5n|>>h z5<~LjF|(zileM8J`(uS?y##N!E2AR|fAm`lM2%8g_a^PqbbatMk|RytGTj$(Zx(~PJ zZ6dm@4t&bby=75Gl3{xUg_8=uKi_$`W|ACNeC}=V4cl*zW|Z!B4LIAtkM7(1*RTfp zR_-#=qxdd3*t_qd|E(~;*LsGCHCmE7uMy72nJsMbBs_4N^(~B+n1(hj>FDVtB__6C zSmf7S$ng_nRY|$(UZhv(J2gTpUt4s;NNF@p5x}&>flUD3y@`RO$KzEH==w5w0X^Fz z6nSaR6Jp^ceY>x&0{Hi|U6qNC4@if)ySn7L=wjPlralm-%}23a^ZNA-;B@Eu4i6;v zTj#6CpY-K`eW0k}&@0}2WVr&&0*HhT*U3f#6Lq~^hmr(_H8)>}Bm}Vu;;YhTrQE8? z$V&{B2u8DK^3+S?yp*B6M~)MYX3r5O_zOrUB=7>2a?THn$6;g$#+tml3q!SxZ!C!= zoSk`rjtcMH+`0$MYlMJCR1Gm*Bg=PkR6zgNZB?#yo&lbUj^99>g)l0Z@@o}9L3Xd? z8tfk8wll*v0fJ^dxE>>Kx8vh}@xG*yh4vm{vddZv&P+r+&*ab1e+ zR$0)SIE`Ogn)xgBDK)7N{~V;)AC0@mP%7|n6J;k?y{?}q?mLH~Xfl3gK3rFKZO|2L z&3PL4bpL#cK9kAIcE#!S#HvxX(<~$uKzPwrcNzqY@ydpka{8#6g+R*p$|UK2q1H+H zlEKB}$Oo6Z?ku76o{D)G1!&FU6uUY*IfC$k&%KT*uupv=2h&FYX)uOUQc}*$%mC$B zv)=wPDF5Xv~0ETt1s%xP3-aeEWT`@lva# zrvUL*o#=RZf02_%|A*U5QcC`byzg8Z5mYB4m^_|j7ar`-B_vmn2&_LmtWz4brzyC? z#Tebnu{oaFxVdN_;i%~0^%o}T`S~hJN<$TOz^GKoV*6RVd+Dg1yl{9VM{4RyPTby9 zkL9edhy3yoH=^pBzcywK3g~hz2GgZj%?L;F_`-_woWe@ghwL`{GKQb)4@CVWHfKk+ zqK<+ezNMYGOjImLR7{LQG+oF*ki8e#3%1%kxtG`PX2tTm&;AhSZJ*om>OLn1d-&y3 z!i1~QE{}V_pPKki1>?ua*=Y$TUY4JlQ+nb$#p0roh96@5Oe3~ z2myQv2I#u8m~#OE0aH^`sC(>j06~Xj!exJ4kZm^7*Qa{UPidO|v9O(&4>&i86bxaX zwGdM-6GHFu^9|5RIlzSppJjTWs(za^I4JYE7I|xV|00w_1?DVPg4Q?2!?4aZ;&oZ< z%Z3b%y#7US`J1+G->yD`;j~o9!e?2tODzn;C<0(=n}sVebc6i-hHO^PhXu~m9ZXsI zW&aj7u@c^m(%U~4I5x^F`}Ry9CGrJ_otTG$8=D*l50^^6gq?5b&!t>o`dNiN6=VoBt z%`vCC6aOC7PCrk2c}ewtDqq`% zgb}ZGENtZ_=4Pr zsnNwXC8ZFO$n*e?!hard@NCsBg5M4Nc`;N7+EgHefR&EPXBUVt5&!!`x-EhZoU@|t z!^;W3?E6e5pFY7}!Ym0Ub&(!Aakqt8V$a#J4__)Pg?M;?M!-)AgxDJ0o>B|B#ertE z!!6|?y94jL6n#~jQv*Axm1Zh()9Typ!EN+<(-601ODc}>P_kfAetpr%ygHiYHVU#q8c_0p$F$zR`RaM{s1YbfzXJsL* zFQcL$s!@{df|t9P5*x%U12g!D!A}{~uQbudiN?cV=m%PNP*QO#@KeT}srvw?hVL9q z11fJJtf@_tOmh3Ro;*=K^8kb$cV~&3Iz)S)*;0blG6CVhF6Q~y5qg}bj1UUJ~ zxDpbb9RcIFfS|l=;8b= zo6c?=mYwjEv{bGmqs8JPxh2IZZSpy@2Y>D)yA>n%zg;{1li;zK00ax5s!dFYxorK0 z_Z;|~{YGn*%Y{}R+sSRFN}OwJO8WsXh)*1t>(e}D-E>A()xZ!GR7LjGxudHiJ?uzgW)R57}MkL}-8eJHn@mlI8W~St0l8!Mfeq2Elc6h=6g4~U}vC?c6u;nion1<2camLLAs@S>IXAxoa0qo7U5({rnc@ z=In_I;HGyYrUUjQev!snU`A(euh#zsrYAx?wrm)&hL%aBfcHfd2q}!v>O3p9ECUuh zxDJ~ofeV)kSra$#+_AijwWRKgr30-IxG(X>BvRb1d1?d<&9K(9fu+spDlo>k_d%+- zweJp=5qQ3_eE>PXmL-vb%`!(PQ0B3{EJlH3U;r$c^Lq+`A%#@{P@`pQbYTa57wLUo zPtul&FP(Ku8jv3zzreBqT20aeEy}X~I2Q9$p_DY;B&a zO8p=ls~&|%_vBQZ**8o4ujg^q)B+dU(;@w7QG@tp_{%DUw2BO__|g0>Udetidv*=E7#(MQhXbC(_+s3=h4#}HM_Keo+l!$&aYk_L$-&u zwsu(C>{15Qh%-$TvDn^}zJ6bZE@LsSl8^@N4|_h_t!}Urg=&HCrJ9F}i0y+|xwHj9 zo^B^$ip*Ft#UD^aE5o`e_ViMO!%e1 zCMD5-1J2B~pS}$90ts&p2&c8K|CS)s5CT4gQtuGr#Fg7!DRU$bq zKv}M##S6jhop6_jzTN$w;^Vg#H|07{&JwaA3j+A0))4d9#0`?$ zR%b`Y$I!YDl-k{GxYq{TqoY-tEAOO&Ms&3$6dB|vb}@uL z#beUBlehA$Dok`u+$5eKdOx=K*mT|@ktH;djW+!EP(2REuRIKSwRn?dRWE{0-Q$SZ z11#c{s80Wd4meC1(>p6lZHW7wl^6t4mjLTB(Z}BShEk%Fjk=?$sL9GoP00Wvt~N@) zgtf!3|1B_c%6y-Sw?dc2Hw9KVEo3}MJACHuUkQ0n1xBZq&P%@@R;ia%A*^MEdXi|w zg?~`jDoJO}$cjDg#wFJ7JIu7^e}0)8Ta;T!y|Qvxj%ZizQSr2I=!rn>Ef3?prlL@p zwVK@tCHD!3u}b>#LcYif`G#iB5}B(lp4OjSp=;W8t$~I3=g;t>oV!B1xw*lU+k1~r z)M-r{;&Ij3#T}b2r~K3!E7XeH9vKo#>I&z4HGMQj<;i$0-tlG}lofarfq)FXw9Qzy ze1aNS9fm?4Tw)$VLv$vOcof z%Q(4N)>gFT2`}PTV`O-#?T89<>wsf&UNA-~k}@JOphoROg70Xu^{`gL`RsePw%vCJ z2Uq}_)z!mic@w)vMn*s>*|Pu>Gj-d8=r5l>O<}?_Ss{1?!cODlR##Wy_;hr1fY)%m?0e<$$^CP-$A~z+2_9n2d9U7 zdvkFgQ>_Lu54(r2V-{6EUXYlc(;V2RFH;ai=Z^0#SY2f5JvcZR7y!>Fh>L&^N7&R} zvO@KMQ=pX9Kf&Qi1zoKt@Qd{|8WX+cxtZ(MtmF#M zb4;Gd)?brCklnxi*u=uw8DVzHt%|W_nm#(g#29?hclE4e$g$;_qO#YFwdrzob zcAFX!ojl&VXzh!JD@(Dun-0=f+fNo5e?PvwZiVoAJ4k^Tocyx9t+|qPX`O1K6z374 z&BUc!`psBUIEtZ_(|>;2D+$OXTCD$7yBP6JIQB-+^Z~i2>Z{0L+($+>@0-O|X)h1|ZHX3C5Hem)hIav=e zS34{4po4TF$1Fl*E67+YlNF%XJ4ajtbAj<88sEoktSWlZ6coeYEE=~R@oJvnN%VX9 zX>}8oC;XfN1_;)##fN_}h0K9b;kc6~!_0`i!JI6&*(T=>^+4^e{rr_ zreDtWA!2YSxrUC~tNC;Tllw3QJc?~nRP$iAhuzLuOydrKwS)@*(BIk@ z&|8`=9R)x#DweEt{M0MQ)Ha5z-KPfk8l${5| zhlfAAUgW_-gocJfn~}dIa_uU|RVtp@cU=Eu>Trvayu~&ih`pWKyZScOm5N_W4x$?AA~ z7yop}X13q+u8_rsh%a1?8)OJ9guki2+^neEmx`!tIwESV-3JmIO*@{SM!O|^YRpRZ zU&}|&KHDRLmg}%!z2UzyPOr_nv;eT%arIk{fOaj5Tkahi%L4fiOeP@RaKXY{XWiTGQy@WN%-`rF&vJ2?rY zK3rc}0c-{QWO^1XMw$I$J0a5voOTMA0h5GDg9KOd(#`8W)sM%vFAvr3S11K#7)>nP z8dwH!2wp)014)!0G%Vjrs)1z7!?QW%OZ=^5Z22EF>rRf2kd9!iH8CZ1JoM7W;hABO6p^TLwAk#I*o$|4Wy)G=lt$!`8i7CLky+n~9 za(^Uw%7qL|*=%g)iaO}6u50*dG9;^*i=2+sWr?mfgcsn^kv7CxEJCoIfH}P4q z^WQ%z52E4oAsGE%|CF&s)9UhfVd*sz(u9KJt#jP;0Aap2%8|V$r=;J zqpPbs$j=EX-==A}P5@p&J%NN`BrYZ#L^ZJGgxgZA8D{Y2EVvPz=mFq^SJ+?5z}`M~ z!R0K(_k*z(97LE;$OwSs_8=O9A$u0GVxNWK`(hzr;PF$=?KeQTI*dbGwk>iN@FJH@ zN{9!7NyOW8>49SZ&h9QOb-)Ax5?EvyA&q_((`ExQggeRLD``W$ao%a!(HJ(IL0_~z z|3XkRm21%Xek_}SuuMetO|ertCt7URS94?}+87*qHqQc^ zacaM7j6U74B^4p&@@7@Wos`8wi4a%BetnSt?RwPYgFhS8VV~r+6Dng>(`FBwCcMf+ zet)*O`98o%W%!oW>zq~+DC(QaqznUVWm1qV#hUFQD8Xi7|AOImW@3{w{Y8la+ifM+ zI*P8U(|Pez)2(Z}iNqeSNwGbNeLSg=C%wuL9_oi}?Z+&tBb=t-UG|6Q-f@q4RhL8<)}X~+^?5cZY+{C-#}pNLy#!Z*u1#AY?rI6HeK#_5EsPIHz?dR?9R_cK$;ou0=pUL@Mr ze|?PqBwiKD1IXDRpv7@@1Vrq21O&kAfgS~^IyJiMFikM~{i&?2s-i;TR*qW&pLm{y z&h-z2)cu1M;g!GNr$!Q1YDsL}M1^d-x%(EsDAmhx1Nvp%$yugdZaocg*^@`}0^nZ1 zwb4YZ^zfnBMm-Lo%djGVg9UVvgwA3Px2@k0r1+u1ee-Am~^ElvD!KFyK;Ly(O^!Q4LI9i4 zv`u3`u0AWh?+#tjWAGVNuF=K!%Fe!F``pOL$j$Aky82xeh%S*n>&=h|Uufv90-}&|0^W_ zn^h`wp@D5_X))qu>*Qtl-Ip!jYLAEG*x;`*VAl;eSc<4y{A~Fd8n@gLzA_{iH+E$HMfkFP1z2SsDFB_DN9RI46u%V_0Hfuc{QUDrTTI8=Pp;*fV}naqlT&rT zzN}jSVi6(PRCMQ;p#aEEcXk}lBM^XM08F)?<_@4`hkpbKqp;l*={a;4W0!AQ(PVO! zLE)AK6$m>x|0D5oFc*w%siCnqOYS8z6zW0ShC z5__%+Fw&aG6i%)mLI_fZ0<$j)`~SCu(KcnxhSK|k|FR(=;;%A*fh(&w35RU7_blOI ziT@bySd11EyDc$D$CAu`eI@yZ^>p^b4n4*JuY~rGqllxx_33WcxP_ep)GTr?8nBr#i z^b=|m3-eA7&${uy57>LQ5E95mq2tY8&e`g60ene<16>9gsltw)&rLTY_J{Rn7ChoA z_HHkKPS5nkI=T`#bqL6Svlf78+twl-V=g^Q6^3+`f4y~1-@GpNMIr8s&W~v@Ifw@7 z;P$+|HR{3}a{F#rp!en2GOzEErYv&bdQr~Yb}9TmWy3*=;1tHm4i#Dw=WgFIqnuv(%BN4{uwkr6fk>V# z<2FMp?T4{}d@6&iev_36%DZDtQ58OK9&U%E^ms1H*HOpMwoHh|5_+qDnZDZV#3#%e z&^Y|e#*ABJ8{^YbmSQevAegB5mw`Nb3XHv)Ub z28=y{^xFdsA9UXq7K-XWpA`r3JXXJ*`Viml-VWC*PVK$T)W8=5Io9_HS187*MFQa) zj^bH!@2#acsZy4EfrFoBK;Wfw|0fE2i81oFfK5GGb*4iYi&f+j7NT*3Lr$xEC{@8qMFL`ku&bil-iYp_b*jV;CWpMY)?dvzL6vqEnhGD|GNducleGZREv(oq2_OQ$ zNU$1>Xaj3Gi{!KVeXjgTNlu(=L{8)&j#HI%t+z0fGgl(dpnC1=7T^W`OTXj{2zasGk|r20h&4WVcp^QdMo;o z92Nq+QK5jsLb2q7Ts9+8N`zK}>;eP4VxNa&naqGBjex}}jmlQdqBlhM zCIc46v9j4)o{pj!0;3BJ8#@I*x)arVCp_xjwhO@VyKjL*#6xsZyatEM^hoYrg#0f? znP=RM*j#@DbW|d_TU!kBEOwv$8WM2DdD-!yydcivJ63^SaWazi!rNG7@4+vM!?BDn zy|OSQ_rI=KUI4~MDotf>Y0kvoV(Lr@Z+^O4OB!p3on6K0$MvVPhgA_zBE$*FPTc7C zOksLD$KA*;NYoqMORSoxwl&!~e&Ol()!Boe2^-<)U1n`d5$-A4L4nq7??pA{ZFGl_ z-5Btg6ul?*H+#<8Ql7riZs}7XqUrN5V|^sE`v^7%i7Xz0#5BdgU3Ip#A+63Y+O2cA z4YeJP5gkQN35*JQ&u)KI+u*?mxh+wkV0gjMGCn^3y>Mz+;ebFmp;L5k z$`_ddroNSxl)*BV?#E9HKCYo%UK(4>rkb)m{`P{;<8K8%ElO|~knT!%oWuUn->_r> z6Pe`1M3Vnl3p=O5mJ;-40pYG8I90ahOC4Ovw;azUO;6{PO zLYU)NZxC4PC(jxC-T0i}82V8@>1W0Ur=Pbi_1seUA}Rg*tas^R_!85jtOzM|lo#GD z>|XMwu1^+BvvRqE+xK31d|x*t>)^6T5YREoZ7Keq_V~rXEuBjHt=}Dx-rdiC7m{G* zK${PR7G^6TwG26^ki8Pqn^i9O3GTzuOhAN&Zw7|U&N)Z~2Js08IjDu9uLZl8!cH6N zGlQcxTDO<5Ao#o35B(g>TMPU5nflK8syz!JegbXwIpm@iYgAOsCZ}0P1)es0k;zS`45*v|bN${2h7<}S*G3p3@N&j2{kN~!y_ARK0zz7es zVUL@^JXHUAp9!*%&64u-M@q+^^Mh_WPb~@Pv$ntgw@wW&{x5XrDusmL%Xni>4i1oH zOft0DuzxkL8Gl0fVxz`})ms{uHG{0yH>Pg^LG3Kqo_*pgX3JI$Kink^2N7nYa8JE} zhP08aH@g2F_NSVFNxD959Iru}I?LT@3TF39*z^PbrYg?i^GituIEYfzg|`wGOF_5z z_5-Cl%_$16Mq%IoJ!rP~`DP;5QOI`GGQbZcx5UGfZCSri_J9+d?NgrwC#!u3RW)>`ph zks5BE5!}3(P>-7Z;JxdtQMyt#dvEyoo+h@J_jC5PDa)R3?|w&)N~IjNDLwR`lXd%{ z*qSTI*1y!kd0ZlHZHrlvle6V6?;A`e7kdAMMYe_I>RdT%$iDl;!ZrZcAjn6+aiDI4 zw9;;qiwtKB0tcPwcO4z@R>HIor|Ap=Aj0#tECbym0~08cA3j{F)V-CU*snc20?wq@ z%vXv9s_p&=U9jCeTOFZ;$zH53dQsJ8KE_`5^!T@wILqfNDNapbX=QbYVZUI=D_`<5 z*CH;d?zWr`0ixr`3a37DLy!02uElWFORN~t(35wyxvKbS(swUvJ5#i`oQMj1W@M@h zL-*^RntAnaq}*XtoY49x6wBxwppWfu731KDR=Hy`RVRrcOOx)i2ryLWwkdY_q;l1$ zws=xj>(2{O^__^E)&ow(u(wX#wOozaC@EMA1H$m?6%7LXRC>0-%!QgLUEK2|TzKuw zUyd}QjV*ilC2V|-k6#5CaJMFK>ER(D54o-`y>ku|{^IP`<>i}e#m{2Ets5>?_$+)g z>>*NYI=Z?Okl>Ar4aTKey)eWP1+ryB!wRB02FN8FmoBw{mQaG8{z2cy56HcRF~~U$ zo;%>aIt8JgB{4HVKa2hkv<)&LkQSk$ALd?e!npqZ1IB=Gchb^y+1I+e9|EQHW(a&z z5~=W6Ah;^_8)?BW>i^cX{}0UYR$anCIPgS!I}!nbmhg7k3%%x{CB*ZVS-JU{m9Ub-%NK< zkDtb@&=**x9g#1mlIR(vt)D)scf+I{xh@*AYgsB4B|riklU z7v64!Y5IO_qc;1aO8CZf_5FD5D3Xl?@k_v`&Ci0Qi+>ll^?fk?a-*0MCSHXDgT~l+ zHy|&Qh(7=KFPwrdm^RkohD4d;YvG=8ld`}Ry@PKHb>R=K^ET!(PD*v1lw#X199@20 zb(6N=eB4h^gm^$pPp@jV^r^s|JLleU@9B}}iK#a=3gMS&TcLpLb%03&G_&UkaHL4w zm!qJ80pKg)mJYAtHk=;-2jO`?w=h)fhc#={g4j`Bk;0hu-`XB`Qk$-~E}uM~TH5wT znaaA!4ZDul^H)YSFFW(*troj!wd+uI_Fih!YY)ObinD;JDW1{m?R&mst`5vX#};;S~&@ zeV-3;=7r0Z%a!os!C;M|TUD-UdIPl1IvVOfALd>UnQ3Tf0CY2x^}nU+p!I)SrY6WF z%u}<~IhXU9nwS98$d-+uM>b{~d^KC%conDbG$lyZ>_446{R6f_8v8Tkvnc1gl?HN| zkkQe6*+F^=BllpM@{)+Bq-dm!VEdr}UKLHB#`4E7adjRyiRq^(k%-2dGYWqntqWt} z4toh&TjaHx!vaHFDl|qS!bK9OFXXDN!0M6O*isg6vf5|%mL6?n*Fywrt1y`1~i<{q(qhgSqgTI4~X5aprO_`Pr zmCia{{yyUhntZnd;?&wjagh;=D1pVM%ZTrTwRqnBnv+9aB;lR~JTZv2T-UX=B=xdk)8vLW-M@(jBZW_l*;gT%EjD)>Au;kGHBj-TWs;zU6aS zwZYTtZK`p(p>YD#RBlI0gCAL#=`eMT^5zTMomq2E*|HwQ_Ray)n{rE@U$rP*<`z0r%^|wKH$t-!>7GdW*f3*UR4vzt1KLS&d(Utey*Sb{yYJm zFC6!z9N6(Hvo>=Rc9wt${7kr{Q8WamDvgcUJ=?IyRn1=(YT^bS6l6AMvf5GuEJ=13 zV$6W>JG5;48B7_>&|sGa=Ffhp^q!&h-P?-LO)lC$Q6UTCVE|1NLYY`F{K{+D%T1uh zD_zBeTa5alwBo@~8C<8Rb3yZshhq;O4bu!^#b*{GH_?QoQeY>-(fR)tvllv_hrtFP z?BBQv)zyJ-VOR{@LiCwc(3#{(ziD^8HdSduNyW>5I->rPh>&Lhm3{wDUS`}{Uqw?d zO+*_xNsP%m23v*B3H%z<^*hp89t=NLoiw{HXz6vXIl6p)@v_P8?8Z4s9$#8aSN3@B z`YY?c2hMP9kYR#;7d9bTnm5ly+)9Bl`v#U5b(;qKl!T{yJ*S6zkCZ4qk8M;ro5c0V zSg~=rh#!!8&Oe?{D=Q3>ojmWVcjH};r*)DJ zI?30J5wU|pMH=K3^nQKU$6Vr_6cNF1*>gPP2*=em-|+7L67z16ntEzViuTcuz~IwY3{DR&eRrt*r~I1?e|Pk8(1?7{q0NI|@0}vJ z-QhRcSpwS-uyy$N186f~MT4P+%_Qt;;7VP>^F24R1iEsAzP?s`em-z0M!vo{x&PeU zd`ZFz#M5$%R#u`L+4y49s#3bwE=1Y29qCuF=E?HUw|UIdcw=oTl0lSr)26-jbvThq zBE1+7=8Eyp>j%@H55Mk2oD>XQbCQpe2$}P^j9?X6R#_M*r3t+DW{R^T8{S9lt^xcj z8_!friGte@6&uuTgahgBr*qR1>)_~MxR1Zdf5F*JTu@`=^RQbSf0g>Pav|2|Fq$`V`k~| zm0z8)eE=AO(-~19ML=-NGw>V($9$=bbC?h43sh8wTI3KTG5GyEIJE*q>h4~x#(sk| z7`iSLP$NVKEXywW17QME)-MJ&!FOk6MT~&Ll%M}vwyAU#lzh+mA%q!hHt6W?Awi7N zW&?Ri=Q~{52>ED0FVFV?73;N!=Ls8W>FMGS$aJhgbSM{fV49euoVS7pc{ZQ+tX zwiIA9kU@a}(&9!+$n8&gmnN;Q1&U*H6^q>|iSz8apY6V`adN9Szfu0B5DskMmCODR zdSyv8L|_TS*UUw<7n@uVMEd2XMQpX|gOXw)J~FZW1qMBq1^{^y4I40vr+4%zKi z8w<0Yj?L0(jlEcu3@vHru`tJov1Gd6(JDt>%6ywXoMENPU zsu(ldQnr_-`hH&8HFe_#-y^<_sCvnJ)W3C}KP7522$!0?Atw6ku8wBP?ftn{j~DFi z#6tfTRg8O1J85co(|Ul8^=dOzZzV5Ny((bO5a(mh)^)MGkd0;IbXw#-p6@*l-!bl< zZpD^#4_7Ckd-pFw^ao^ekCtjYehg8ukCa5?x=kYJ#3Abk7XC*^A`I__UqYyBm`%YD zFhi*b@vhb!dXFqjqp-my+3k@8TchUT0sH2*_UKH`toZF$PCQd0mT?a)<;uovL(e?T zKv6Ibc7~u=kLmbJD3IP`wH{{@Jox^Igjxzgqj93J%9?>bBdw5M4NheeqR#aGk>*IM z+ZbCE((ZHZm&N$8k=1jpv3mO#2qXtVj|2jm#40}?l1wkQXVmp%NFQmMdzXp{5U37i z-trfJRK4sh0u5~Fm#;*kt$$j6)Zk;cye4`*nyB=qj@DJG>~NaAHh+$$tRG}cG=6Z( z!O3lW91uXiNXxQ?h2Upy)?4Nusoe?gBhFxe*|s9~Roe*s~40hhUa86fP7d zhzOBoBndEpdIwHtOr!uT09DZ4T|3^`?+5Unz%jaK0f4}Q0+3J2#~VwvkBmG4>(p#j zB#dG(sX=)HBa)V9(M%mB+N@+AJEorG3^K?DC}G{()i%!|vGH+%id@0Z{8>zecKCuz zn+<_KwvZo>iPp~46g_;C78cpW6@{aV_UC3&07gdLr}qOT?)irK^@aaH{6%Kjs(Day z+2dZ`0aj*#*%NSC=ckNjf|x1bE!Wi4fL2B)Uzh>=R9QP<_?wZq)B4kiZ4Ej@r1!O7 z_ISt>T7tlxLv>)|`0i4BhN_!J0D6g4*wqqn}3xye8Md)*6! zb-W+qOM<(^d`xfjjpi7vnvGa_LNd%D*Qw%+Lm3s_=_9vIvprKpgS^UHBueDcy=Psi zRz?%n>$+-t-EF6nts`sF4DpplstO-><)-?AXsb2_EV&z|6p3Wo_g@e(Y|zj*oA`(` z+eUNz$e6w(M2X<$BtTnS!?o2{9Kre|oUY586ok4WpiP16cb9$tW0=)v9@^qZAHu05 zNE)dx33g3MexAN`PpMBHhl(a{dGui>K10A&#&XXV0@-JWajQT1%^_e z)|B|Ik9WF$saN&!dXG}4R3CDd0R;osx8YeaMojEvvrb;Fmt(cQXJJh?FaQ;gx(%%T82n1h%7F4&Jlhsu zmAy7IA>~?b5J&Wm*41`$iuE>)QF)`H%M{v=gd2_cEzHb@Xhb79*H-7p72=tt_TMh; z243(mRNfz-(GXTUoqIZwv%}iN4XNRVM}JP+XjAUFIF9>!pH8?V`wX&le8r4j=1YO?q0@?1ooHexiQKtst9rePW@%IJ5X=$s`scB8K>%uE1M%M4&JR zL14GQlADanfIxSrEDzvpBuxGA=G}hae4*9vTgDoO5&jY?u&#c(he0BWtr}^=WKEj* zBOI#@bItFl`N3_Pej7}CrBQ^%Fsdz^4VRwtyARS_A^wRf2dylc1WW1f&btqac=K_- zH+Nr-jlS|}=>c$108NNlfKeC8FysJX@MJCAVK63_7s|8Iyq1k-n%j11)np}`NxAL^ zn-Dx-N$}NhTBAl-f4?9(l`>iBPyqO%tEk)}IC4Yy4!BUCCHh9RRgK>|Tc-W|`P1a{ zVr8KL`pnQB7|81X9TNRe09XxKl#Qk>Jcy2cmZ~WCCw};DF;$YpVWktRC*i>8NM_%g>C+DDSS{0LoggZ3!-WOpH+C7Cta|? z;xfHw!A%jGqm*rsD|c=U4#v|X!G{|q#Wt6coMVO#Sg!n}D|7D#(d4U3K3H6%+pS1U zb&&7P43>!;Edp#Jpa(Xc-gMW#GYbh&*gJ{oLMpSEY=Gfi) zCwD8gpq@rM`Ub%V!Ik4G&r>RY<-Hp5W3HKmI+N4Idzxi9MMSusH>nW~daYQd+l^UP zH%09aCiPBh##5%!rsJuZLZIiNsM%DZk||%ox>o zF$5)GF}O5R*g0?8p!B^m#m?`!TZ`Oq1J&*-XYwDVBF>EDD~JfL<;2UKQOyfkHxtc> zG1Rm56xIP4flQn47^hX^nnzCmlCFhBHRNkrero^uFId)>;??5s)u#^%v*d{lpH45y z#063D8_&5)B|oymNtSauovN#J(1gAuj7MEv{Aik(OLoGs!@<>;V)T-%VU*)6L2IGK zlFl1q>Ci~c>{}mG1#|B|@&hy);>34Etj;-Dkc=Z|Ry35Xzzom(nR?I~Lxwv&dAx&v zi?fQAUYe#MlzYbXGjE{q%N~!lpir~{(;OqK8KNObpCpDZrG{9b6XNx~8 zev^tx>ay>yHDu%LlQgMUwbyElrXPWq?v7sD42cAnHVrif^ z46_5R6=9Qp*lXFW7Jq-B9+Z?oW+bdGGFf9fn5c1?4+r;moeXXo? zxu=W?C2#s()DK5s;Y)fi=?|kskT6*uLG^Q)m~>7u+8(cNQOOmp z{!j0^0?KfIS8RMVU`l1LZ7MasJKtUCg31nzV&nBOEqA=Cc!j>GBCn^zfds2}Z#?() z0+tsJBYhYB+B1CJW-L^7moXWtge7KsYfx+Ttx{aku$_D(eHhDAN7uu(Qc2ONA6MEX zrxjZ-7*GZnsnaUWrdbR>aVdN=lhx^C={Ngg_L~Ob?3vN8X_`w8bds|-n?B~S-&>A< z`<|rdb6B%Z<--ekdRA&5ds|)}6mGKaH~!pNrbW`x(t^1xXhT*VL9JS$4N?zt2u(U; zw9?;?p9>w{^#4vI&PD$)=k%XYH~Lvy^g2)-B#~bF^_lKNgzvGPKyv)bsw~(@l6OGQ zrAhq#+R$UV>h*=)(>HeCOQ=gWML!{$1y=nRt_VIr?eoaN6t(^{B9cS+$_Z5#oe=st zZJRYdW4-DA@7xUopJD3{%&B-+tp7-;VY8}zRnh7aZMx&>H+!dJyFR- zgcCi2h)WVd?bW2GY=LQI%hb7yKn3g%@m}ilp7MO9AxlGOg^U?!Vr= zx!zek7W|yuc}B<*L-9PJij`Q)MU0Gl%l{AvYD%d>ptZWIVicxR?Q8?24o62I-N3s1 zX_@8KGyYcD=g)Ra0}!nXtLHn(H~cW+U=cryfi4f3;Zaw_O27cv4K*z-{3{al*6;_g z8yQA$uDlZ53~u`zAu|xx3)jJ}i5p@M{+!_^Fmab~fRX)~>_jfNzeYEL2R#0OSVoWH zCIlN+xoAHWHo`BG9tl2|_Jp87fh(q(hmtzWCV}+ErOI$r{?KxTHe^}p3}MmJMgYtH ze3Oa=R7p)RG}zhN;{8u4I}}!emB(3qD>8%646Yk!!ZTRZT7;Ix529OO%q%Hk3}IZT zb~G+1NZME;Wqtjxa)YK|TqC9bjo)4AAKLRHU0)OVGIE-zlPhl7k&HE9W;Zlu&AC2p zR;@b^^?hBK+)wmv8g^SdOr2j7l9H;4jc69iTOmQ*+lW5DfQSvX(q`5RexEx0@5IY8 zn}!*<4^W-%;EQctsoUt^#HTA3+X|fc&bh~oJUR8kp+`(1kf@-7+?KN1<&CZpE0M!r zai(>@f&{K{KA^|y&c3cx{&bb-;_yQK$l$P^o5bp(1Vy8t9eLD0FARS(i8~eYB3~38 z=_ihkAl`7q*M;n=u0O^u5^q`s>u&MeCy~9Dw|*(osgJC4gX=a|~$;B<>n%yt6Vk-)+8Oo2z zf-MvkpDwg3OMm`Zs?kMMW_h&fK5cO>@sp2^?JzRZ0*_wU=aTJRqdRoxjXT(jNgpM1 zRZK+STMAX*R+)4qMa>u{Tb8|yk~V%XTHVZ!Q;n8pltc!9=E+0Nhe^Asa>mtdjKz3v zbVRrk&r3?M=6ADg(rLNt$P8SgljCWXQGp!zcw@lLK@ZY7Okp-Vq36k1H!gs{P+wx$ zr3;26rxAI_6B2`WBM}C%?RQ;YOL9;} zRc4Z_Vd;;hGlsE@%WA9~EC)fN z1tyfdiD8+nv8qzQRX&6MlX?~|NJ=1WzO!XR`{xGAOY@}Cni?=D0I}pO1}eR!c z`4Sa?;c74BL;tJvquGcN@1kQB_}-v!zgH}{e0>7s9;nLbZK%@WC{o;vv!ou7S-@q> zQv=sQ@L@aeGZ9$lP3Cruqs@1SdTeNDfD~!8A%L`S>j8h_nMeJqa(H2E3a@qU-ql1-g9wUp82>O7cKwzv}1p&%_gs^_Ym+>gMg2+L8t&yiy z5TD4&`dP^C@yOwTW#qqqRd+o~%daFAGKavu#`tG(uxTN3zsi32*AK>9f0nXudW zpMwWHic-JdzKI~jIEmb2Vr(tHO?v_y<=cXv_98rX^jdF;uDWj-zQlN~ljBZO;xi#< z4n$|3PS$+>vQsB^^7H$)=h*F8?OUOx8LW5ae{A4BN(}ebE^e=2G2V>X&B$vO+7|3G2+*P7LjHDRA86-mEAQmD&tQr+ptyuoHsyD|biyYi`hA*jrv{zzfuC@D`gQ#blODDp zvxI5q6O5Cfvwdv=v2fXfH04rf#>=-zKHFdVw;bCCnvjrjD}fiQ#-zem!noVXB*|EhmbzPxpb;eLIVP9nNZ88&o z8!%IWM65&z7q?cAN|r(D;_4l#Gs3BjO>zICpHv3uU#N*7l&cj3$x5Ub{gnAB)ya&Z z#|GsJnvlT9`sB#vK{NoN255vA+yY6m7Vwi45MX)G2P)@1*nN+Tjm0v7fyQWQ>V2lI z{c2+^Sopx|6r9gshw9rkE{ zHH;^W=l>~@I=&5FD6ppj8STf%oeSI6VLXp-CFs#N*=1;U(7MxbV!c*Sss@Pz9$iG68S#x?_ zDyIR>66Ak9RiN(Bu*Y+CTJ~#@S5vX9!<{%`1VYYC$XU7InyK62*G+{%RxGJZdQt_< z!q*P>C!?u5R!6Nx6RO!2o(GreZh0O=tmLL6rZ#A#H%=LtI{PZ{Tgqx)R9VmHc`oK9 zNvjk~4!`zl z*t;tg_jHs9{`}hd6~i)zzOsh5$y|bBCi^2AKZx&ox1{Lug%I5E;AISRYKUuWiy*IT zA&a7@{2v8jAsmVNsE|#!z4Wm1J1hfr7*RzTXPN2`)-M=iRBOpfQZs_^=S?oA{`PL``2|IN0swaOCLw7Z0nAqCdF1;3iaGrY2`&H$mfl7 z%||Mk;p9n76;4}6BgF-HnsD)p*2T8?#6Rb-%6)y}VCq}l5A2Up3vqA<82#xRYDeD8 z|B%8yhxM9Tv=G&(^$)v(S5KCCaOF6>5=iei)??NcRBkcF;x}qHzsi`ooD<`lZ)wPo zpY@vX^qa+ERLj5U&D!*1|8f$OHgN99>b2GpI7=ez?R{>94lvg8mY7-@{%p4`zkaH+ z`rdr~rN>;q-W^YaqKnddR$WYDqeL|IdZxUWMR!+(G54(T0fBKBruEJsx=vG~nEi{n zOV!twSM^U>fa`sl-JB@3AG{VE&p1Dz@ciVCM=(NHUQ(B0W<&CuO&OEW&#Aw}w7hxY zQu5y1Wkr!brsI7+d#5c2xv+=`ScrvWzR3|37Iw3?24{F21bX(|y{BOL0QP=oM4zQI zcM`&;U!$W=AGL zy3Me&1hjI?mGJC!81-=z$}Ph5Xsi{}fy)4;4d~fAL*u`G)uXTb0qVw$ZbpOf0O&TI zB_MiW2lsw6_`OiRhL3rli8UJnLE_|WzC$NXkAhk9jEW|Q#PT|Kwu8~t01Z74#Jxay zTwfRYzf}^9^31;i&0u<(fdSk%FZpn%KFsQUzg%gU7~vEB)nU)!qd70Ju1?VQjDC<{ zU>#A@^GKDV8qQ80A1j;&0sR1!taTVli-8x>{I0#8#^W^CMA9qjaT2F{q zHPe@AU2v;9?(G^6SML7PtK9m!Zsx=opUs}1_>HDM6s@1re(!Pb=to6U!Q5CCpNkD> z1lpA16*1zX52BuBaE;4DVt-ig$dr$`dg9~{eofP>y~4&y2GPBszk^Pz^9!Df+j-phr~r>8Z3B1TV3?!PgOdjH|_y<>fP4&*b5 z@;wcQjGwt)m6c^J z+3N0NV&YrfnL0E#DWh8zi2d808F8iZvTWHYvT!37Y|E(Pwq|F4jD73FxAbW3`!gO@ zA^zU|S@c(iP%Qps*|@~QCqZ@**bDDXGv@rpO`fDHyr{*Bjyr? zRrm+|JQPVEZCOxvIQl)Zj!v9!L11^`a<|D9L&z!zM>8X>!p8-ftgdNgWo58i2au!{ zLmL4+8A#MQOBNV(5Tzypa_0WNi_Xx~kB>!Y7gAvJ00tnf#bCnlG=2{Hlylz#5IR_6 zV7~$4yf9#uf~%ncI^Gz3qonQwZuHL;X1rjTMw=AKJ_O2UR6CHchn8V6ghGPVl)5@} zwH9{JBS$lVO92-L2WyC}we=74ub72mO$BxJGyg_lbMrjTQ-g67Rw}vuDcf)}yG?Y4 zZY$aWo@8gY4LsZbT+$wVdav`Awsz>&nSBXNtNfJk-|FYTdUsO0`I$?*KFlUe5Me@Cd-W#0*lyZ0@hn@PDKx&s83ZFRjbLmO zKVVrmtI!J@HpTrvWc_zM*8Ttgk3Vr#2Z_VTDBB@3D`jM_B0DN0dqno$t3x5#J6niC z5!tisk%UTi2wBNqzq`)Q>;3!Vd;W2rm&F)^U zjX`$jXl}e(S0K|vI`1zJQ=ifvA_$Ec!zKp(s~^uh=BMq^VCM1PC9CbDBfi7OTf0&M zQX2)nVj&QZcGaL#!$J);OnY?H{>2 z^h`ffCDRA_MX?^I2%VCywC*ZOHEk(bK$^eG;KClY(yIP`5UO@YELkh?+ys-v^|Z$u z&dY*EVfp*>Jxc;Zw63l-?w*uiqJb&vCiH{&31%L*iBIgI$xk7F-Hg{FM6;iaLFD1_ z$g9lB^6#0xn&$~0hEPldtQ7OT_FwETo04XYNtSqNIdAgmLKxZ1w@!YJn@gz8AXeP7 z!rlwLx~%bCb3Xz$Y8yp4mEQ^b9ho3~K?KGqq{}z<77b0Nul3oMa6=VDkq%FYouh=g zZ&o|i?ix<^waZkcDQnG4vtFd6OP08|tWSw`x>{yQk<`KMRhP?F*Cc%o_cjenM;2Vc z1jl#326*Vh3$9v)UjU2b`xe5P2b=otN`)xEnhn#gi zXSeL?i2~T7x<=e5#+GNNNKj39CxclBJiI4AP7{ByRuq}4);2YW$MyK)BbY!tpVr|H z0Yvq4KS;A#)u8q@P#V7{7%s>4n851#J%yZxCsO#B9;g+d2aB@H_EubFM zG9@o7#r}g;YZboG;#4jyDgtFG1_v(f1y`Wp%L4xgZ16mgB2@xPY9l#N}>hh&i6$NVK?L?R*MMq2MA01YMAH*2(U7AU!=DzB_5AtfjrFDH90kdD05X zZ-yxKOK~SVQ@w&g>-VFH7NU_?7@{1;YQUcd=d)liCeo=-N5>-K3xZ^p>drffF&YC+!s#X7{T;|GDP94!m$7>I@dwEBcUKt?y2Vv2L1@$cj-H+VYE(&xo$G8@!bF$bQMlj*;)F=E7Qwpv*ugI^6L~Mx17s?S{ zLNm)MX^L`@&eNErmA~`HVN4@THX>L9g~7_iusSl#4C8gV)_B^WhMUhj{>=F(?~~bjz<4OBK!dhhean^YqQ?vDCWyZ+mG@D z8h!aEX#y!#Ms^wJ!gF&zT_G^7rcX{<>{rD01Q8&?Z#hg^$rkUJPpkH3#oo5Bq@1+> znPu=iopCcwn3r3a_mmImg{dWi{R7_vxzXc=)ZB;fll=o=#vnmM^E{l%QpIXmE~UP{ z5(7K_ckk_Cx^u=7949UNcDhVxXso5i78L0DyN<*uJC8cd8{s zo6Bv#W%!S2m+ukAaIVe!(X&##>9u7|t|4!SYOiHtGjw1pJ=(BkiiBhWCQp$qW;_Hs zHhmv1x?D*UTs*UE&TJXU^D!EaS(nT-CECuTa57TtPHMsS;&Uge!YNA*vKOhB(S98yht^JTqXt z1)?DZ7~~o?h+ny4mO9t_T$nwMa30n#Kns9RzBF9CySocT^s6B%YHFxt-;YA(Bh7odU0<^o}e=1?>I`;_ZoV-<8c`!QdfXao-|pxwVdt$&bZH1tTX9=YMuzyNTwJ+@VmayPo3LB}@kY8C#l)(hvj6SPF@(9LgGI0_#qpS~42Z*Kl2Z|6rrtXzynm%?e~&yFM} zg7i;=(MS#lg{;BIR`e4LYv_~E_xU6&A1E-Hr;ozye|;&VW}9_J1ck_FWdmo(ombwY zZbfr{tyzxniTy5Yju^+2%Q!yCxbkN0-XOm6>f<~P&iLzyWntMJ?Jn#6o7DAVCYmy> zIRh`%TVzJ!t42iZ@B&AQ31d_~xJ8+VIA&D7mVDmzEqKPeGd^v6f{*WVZMxHk1ZVc6 zUG?HN4+s0p2OT*)O7Dlc^xwC}UP>Toz=dR8ANQ!ENOpMqndNb!J!Jv0Pkvy}d?-z! zI2B=^k7=?C8LI-eoA4A{Q=Va}JnM|N8h zs>m`VYa#hE`twcS2WoyfuMa=8MQtZB)T{(y02EYArpVgCS-isH(Z49ADqd;B|eOtoN{1oHa zxxz2HY02AU)LHiI;;6&KcS$+Upz9*O6sY6NBpyuJN#g6%Z^tn`&!~! z*!?bxJmOSay%JLqMT~}H#hV{=30ff{+KwV*l=6ah`eH*+xHHA5Ra{hhtY`SGcatI6 zFKfugI#m%30LjlncA(m0hVTlQEP=z556HDJzET~8UX~>Wq;-g6zr=RDavlIO;2wi| z1u|j&4V~!Q;qks(VgN8Z@-T2jo~R8l;KTw#23D!42m*0#Vg;q704Kp77dGz&zOP^= zcuZlBQ&ACel3iSB2dA%OIQ`$GxxwszdWL7f zwgq`L&`AOUjCuSO2QsPk7MG`&Q3$>}o^jgIJ40`F{7G3- zFEYfD^Y20cW#+C@B<86+LHC`~Y})gK+UN!WR9AXJn^5B!(6hG+YosH=Ps-Fiihqqv z;Su2>(#VxPym=aCoDuF*gug~ckF(lFcGGOijpBC6Uiym-c+CN%Eq{s*hCPN?_cM(47Aww<=ogXY($VCFGAr0RR^^Vr zY0-51@}6@BWyVU`_I26Goa5yvwdn|}*&rG-qAd}`6s?#O>e|bMy79TpxVpE*L$dgy zx4F*2Z+scF6GW~gn}3SA8del_s%}Y^TR{%}iM(C4O^;=&Y1Qe)C6*`BZ2c~{>i~i~ z6C8SOn57SK<@{L_&yPb{=ty;h_P!IhQ){KIU^vhIOjA53BEM3MQSv)=Xj37kyE-)E z0dYouKE>Fb7ktmKZmG;P_tZ&VP{c4NnG)*G#o5lSK#^$rb|-9!ug+`XjO6B5LoE4o zk_=VL6@m8W_^Nc37kOEGWvr5`x??h23koWXpKo}{MBWS)Rli>`*P_+WeAY?uq5_>X zS*HyVE0QGJE>xNzI`sgC~XVW2;)JzvJ7d z#IH8Su6p{A)B`{WcAmshu;?uve@y#3KQFneC+X_9Hz-kqW zL=K(|py2lyKvMt(V|U6~uePeXfrn>QS$o##@oLlT#Q+B(4Kh=j+imONZB?`9tccfj zvsI5qw|R=aOT9tg_S1ie+o~%?CI6pn*RmYOWY>Ysta}HlUza(crd>EmkOIyqFwIW@ z8|ryl;4XlyBLIHS_h+hO$w4af3E+nV0|W3%Ghtq8a}7Muj(q{ThJgn-4B!Fsts%0R zLKcS5@YM6uP$~e%(lkPJ{v@d@001C5C!HRxyT0NmNkjZ0 z&$f*7;km!E;jOQNO@12_Ml$y$T`M(in>?>b7(#@O?4-PrAF93;?|*D;aY%1e^&sSD zZ^|d-QL`Ra8X9U0zO=8_&I|v)ya{7=&64o!hlchYuqR{nx1yScanZ!_b&zai9=6{i6`%Is*-n4e-x@$o^VDjEYW$Cy%kq>| z-CvjYB#hBlHm>wWzTn_buu;81%z%6rt@{xDHilf$F0{>bz%k;jckvNlyRxvdefa4( zeF^qp#~)PQUqiFKt`^fOzZa#nSXa@E(zkpm9Nki*Fo6|nK=WPfkmAF92y_{(VOYp; zrl8AG_)6twfz?!&qm#NA?Be&Ot4JY8GlE|>(eCam<8e&$)W^KQZaO69+nvDQ`X zNd2u>Qq6zGJ`$L@AWChVYK}Vk&iB3V`Gxe{lmo@m&8rgrci(U3IsOgmtGe`XL1{zK z(~LyGM}(F3DiZHE8SXnx`B{EELxei&^_2Xg==3*n8bQWyH_1iJ775Nu)4s3oyz7yD z-OVkBCvPW#sFD5YbF-O&xCOp1{(Fpvhl&-3$(dsfUQbOSa0DReVEHmK0x1`)Xe#Y) zumHQcnFiw6<3B^#3=b8X(r2OGvezdjR8U)$@#rQ370%{lN?s`a&MHxKKCnq?_{lBm zz-Eu>@n@tiyzcB*p5%>;)it2_WY);xVc$8;d(-h~?7?+sT}10!v5%7><2#BFSi0ig zWd$QFh5XI(QAO8h6BDWOB}QihwG$&_e`pnXeSw8lZXY(55HFBH+g#`Oips3QB`4VY z3@vQ}_>durGw-7*aOfl6=5T=63A$o!lP{?oRL2K;#5Sp)`F4ZuYmTz~-sat|D+V`D=nRCTb3mO`w_>(`+UF)(9G8S%6JytsGu>8V_Nw?JxH5l@Rw~m6k>Exq40AD+k9pHtd>{jPNPQwhnCd0Vr`Jmi-#!W&V45+#O@zuX zyG}l}Fu3S^DW}_{`L!@gN6Uq*spDbVFQW3#J09mwrR?p81kSCD+~j2jEub_SuPHa< zua{|w%Wi6iPeeN1lpNvD(4x_j?3)qmiE^FUNYB%JHU+kh^9a+7(9DaZN0!}cI0A{7 z=XTd;ydQ`D>(3}o8!NG8l@u=T zl0&0+rFA9cl?@F?H!^o#E+5c^T->#tG~T8aPJJ-Mn{mf%d`(P%!M(SXt65jAeHe4a zV{q|~Xj-O{YBafg#3P;#2i+L5;J0QHUZc0Hwff1*Oy1Gt4+ROg*K&Wee z0~|QzJl$?%?zNZE!FDIx+juQsl|dmy#AS|H7HuX@um1CMM`ul_bil%^CJ|pN{(MBJ zXjSU2&y^p|FsI{_fvs2)6G9o;9aZNxL}dPI*q`W6Z7&J(g;cLeIvVH68_bW7n$pG~ zIlIPr%-AK>TG9PSijv*f{A>$>Lwc${DypVWQ7%FzU5 zrwmd0i4}EqX`SZ(4KHkHPUn4byRV=L&MA23!5oZ{Exz;WU;M*pC1;+n{SVk=ojBoW z&7i$6S+Yq5A&J3=1pFKjkYc4?%F~vhdZq~Q7?{;B)c}v8?DaoGxsJ}JxO(C&Of;V< z!s!0rRNwKx2)z-vq{Kv+56ERl&wJ$#a6pFTf6|c&f&XpA6ak_qdoxe##6N_RL68wQ z5JS^FQ@oKIgYN;BbC3fLxc+IGJ7@2>!@IlJIoO|Z?>xsTs^D0xSfN?a#q6h`O zKuOA3FF!`So?lOH%%ptwoU6`KE4Q;9MJ6E#q^c}9kRX@=(p~R;bVz% z&Y^4WMzQep@kH3Nzk1=5tr?5DoYcpjv;0;zeVmEEsh~o-LefY7to#{GYvRK%9ER#| zD6}-lw3VXiuUaBaRX>J4Ghb$S<8b4Kkjh^ndVLNu6SMj5Q=)RLX&V|x~c zO>zbi#XAl^ex3}W2!26{BL6V6cRDO{kMts81H>)V{<$f~xMyLO*1R*+pz z`~BJVj*rXtW~x1~okt@4wIdUX-)`Hla-ek=ftuOD>e@3i-@2J*$>+M%)O=$A0lx^V(+rmnnQ}$f_{NG1I zEp6Xw8~)6)Cq}qhuTFwQ3S<^~y1GDOfm1zZ?*a5zaRzwymGh=WA}w^GMvf4G@6(SyA9}ylbJO2F2C7b4g@^IWajS8H!2*!;c z9m)3pc!KO0N4OTbE>`3I=5Jd%qfh{cd#hsbcPlLJmK@D9^&&?c6xQj)Px3=2Ke61#qV$%`RRdr)Y^&8MEBO@!*HZXy&Zu^^Q;i-4ItwB??j z|B{(Sfmq!*0bc0;)%Jq_cisV1F}ejg3ZOx2oFGNv|0`xpBObNWnDN!E$@0^@i1&Zv zb67Zuq4A~GWYJ&&Pykk69|^3QtyaM(^x-ihBxwZr#y6#D(4O&LX)Y@ACo)TN1kZ|r z$t3L%g)m_Py@)x;1fJbt)8Eb~@3@T%eE->ZxjWc;6zViSS`iA-2!i|J0+6#la6ZQI z3Hi@U@!xZ+ql|1C8|>IbF(*BH)06@oVj01TT6^cKXFL1R_lyZiJAWI9ZDMGa223Kk ze<|PfpM12;9x!dCwJl|OI4|Y+-oC{H36bquVmLqX$1hKMElg_9xMFZ2>XF}8N8P9I zZDj3kZ$s;O$9I3+^iO|b-nCZdTJ)gCP+AAS$oDHPrCIj!K=z`7B};Q?{_E&GyMiRf z#F1G}rx15K#qgKcIL!>G2;?cr+T_VXZz3{Tm{xp-1Rt9zyEx0lM>mN-h?K|N))H?M zZTY#W9gzC9K%y|5qw-#Jb}fE?drQd;&KW|suZLoyKNw9_u=L)!CIZw_myaap20uP1 z#(ucFzH-Dg_$DV!Kq-+L--kRu!Ko`B_f@4(ox-KpV9D{OC3$abp^eF#f}H$oqhAzk zuOcXY25$3}@50@bg)VwaU~TP)enogE2ll31r&j6Z+Csn@8UBP3W3Syox`yrT>b%R}(SZma4dZZf1Xf zy>?JvM&tb*u0!C5#c2FuK(ZE8P2P_@5w}}?# zpDMT#n-RAQrVulun1vV&U5c~*rv-?D_#>6U4>VvM2artd=AV=$8HX`5+wWDU18&ny z(_RmAV5IL6t3<j;9DLFt3)y}c;KkuGJ+A7`ScV~jv20J{ zPZyRwDwo3^U5zx5A-=5?U6T-$5j`e3DTI%(#A-9Ih#5Xjjp5 z)_ms`$i`4I97)}9y+LxhI74?CF*xo2Kp_C-IwaXV?*$*QHdo%#-f=5K+8O=Ci4c?H zqr~zFmlfxgy~O>kky4}WC5xJ?xfY7#7n*OH3SceFo_}l>;eBqaqn2V!ZotV-lHE0n zEeY)Av_+SEc*!K&hUO5uAoQ8PXZVUleS;so+S@DsePew``-g&q!QtAt7d=v1s_Fgh zZeu>%E5)Uyqm{5aS*%$BQWogPPd1O5n(>CE!WW(islw=#AaLFDcg>2UNW4Xg%Zf-O zCRnTJM371gaW$A$evZ7s1tB#4{So^17*G;QrmMB`yWUT7DY4e8&;zMlwf81h8x8bt z&~oG*QNq#%{;9>N5jpc96$EbrZT}<%qm|$qHiMGnULp)f>D#^LQmniOH6Jc|i$7i^ z#>a_Co`T2(Oe|Iaou!Qr<_R;%B5r0P`$?l2 z$IovmciElhNc$ywPmwdxSkW-^47Sty)XFNk@^;f6e;KCsX2P_ADCZV`qEy9Ld~81Q z)unv-){xOo;azIW&BnhjQrEY?kF@gn8&>fih&sMik=n#R{4%e`wlvbP(|zM`MG<+n zUak^&C0>rIl=3vYq9|IHjW5K6yiP2f+k1|d5v0kT3*YOwT$sP-Dm8yXFp3;825r4c zG@7__t)-b-3Gqr4e)}I6x$_BTc?x~I_Dc7)c~ntp*6UTXMP72(&hy;zf3M7QbwTas zz)iL9ja%9H$h!{A6@xPsW|QTb5qL=`i5wF?xm^}Oq+yFBAjz>ypEghQWY zOLwrCZzryU^J}MwxyjF03~kBDi|F3N=XZ}M6OtUBXjo2>S<$PIcfM?oi$nSGo+?SyDj_t7ghiF;BDEi~- z*#h^4sDodmLVeH6D^m7X>uM`1fT8IR!*U>trKF^Qx2fk!e}p3IXr)9yFeSjQF$F7i zk@;VQo~D+Tis&GW_fqkDo^FW7t+eyWfOMxCaYxJ9x`tpX)g#W|S<4+KbF9l2X{PAPm`&OU0JTsEGQy*=8V$T+@ z9P8oGzZQa^0tHGgCyC62&<-w%hKRZ?s)vR+v9OU$D+$_f$P?<{7@M|bCNUfPVy-jI zy1w3GWRv+9wgMpnYO(Ss1gXPy&)2Y!I{+Fk@X??wFbTz+s8M0TUvF3t4=(@yo*v_f zT#oP=2)PGhn`i*wwn4{lSq_bfzyG*UuSjGFrrLl60VWrW_}^DnQYz@`>MF&e%zoHZ zAjVc!?HhH=%XYX=koa=f6JWio%gYcD48E=diZY(F%&}NF-oQ-VKD4P2qa!)5z>EV? z4+0PnEu92`#~A1PBV{}~I%giq6yG60+U`kaM&)ok@4fIiNMOrP>Lj|D`Q(@b*x|Vb zv<`6kH}Pio8*(_nkOHyIu&JrEBYh$_S}D*5s&+I)j(|DyayOB=Njq(*_gXq0p7|kO z-I*YabRh~qM+EM)1UTWRrQzTs@??l?7$$5IpMnr&%mdkC0xjskGNs5!WkN#!foK6T ze6&pN!+k`WfQe@Eom9$uJOt0v1WojTZB0u56xQa5?_7K{Y=)(F9{F+ZFDU=XQNWL= zVvCZzef*i4RC16giOXh&^x7ONA%V23)}47i%v_g2w?iV^Wisc`-e{MjsgbLkQ%In6 zPbc*Q^*LQnry(ZS|&z}~8F z+iT~Gcze%&O8H-K=WGr!_~L=7`pmK-PJU_VRGC1`J!j<`tgQQfgRsv1{k%A_)R^E!W;dd%xMeW6!JId$IB9q(f z{x>OaTcw?)eVU9HDD4=T-uuS!+(SRC6DI?g!Q!x3M9NP^_%5$CNnGWM=N3;{t9)U@Ld;WXh)bV=1xW7F0@LSb8E|p`J!-;X*3}Vjb?;Hj}|YJ<$CMW`7aju zzrIl)>FM@clgC(GPz}}!kqXq~Mgtqw6$b#;(YXrb%BHYxM3*M;W|B-#~vcFM1bXO&u}IXIthy%b)^yq*?jOkVUjoKUP^yunKB&oipaa7TsNDI|_5Xdf(kYkZoVG1m7qO8bQn# zIrF2=>$Z;0Ng^=}6ymj*<;%Z8Kc9JgFb~53gOS7ER#LY(&jT1AB*;ZYPIOB(8Qrtf zBKh&ku>b@C%nrX#_G%V1tuZ}{ZD z7r#(S;lC^4%NgxUan&cKhyHt&!QZZ8U@pzsYN=s{kH4P7qLCSc7khYLX!aQ>6U<41tJSlc)yJ#G6i_g+C^CMWLoZfRHax#Nzr`tRj&s8&IzOGTT z)^;S?J*)JpaewO#UE`Knd=u;SqZA{P^USQ|O1<*?yXEqa?{<7H|BbxBjqHtD<+%%rs~Rqxj%PpL&|~tb^C`%= zDqugHohE}a3oqm;_M2YFObcL6>Xr0e`$X$b|EsUJcdRks7(_BKNIdaxgER(yy}mEI zSLjJdN`fi*n{6T{7}G-2N&zR}cNlQ>Xo%rI7iwRKYKMOVhohzh6man83`^gG9l5-m z6(=GkWdsB|ad879BZmq-;cH13Jpw!w#mK_~8#$yp#z&8W_~Y?VNbokHCnLTzPWBKW z@~iAx6(dXakB{vt99dFOO2F%b;DuQJqtuRvSwcv(_2J>?PAT*(sB-5F=l3RIzxczf&e8NV%PhP z?#p_y*oIa33#tLE(w{%wd=#=7{(B1$B?93|SiC^zYF{TO8P59#1|SXAH!u()HWQ&+ ztWo21qq72r5Ga6{A*~v4{_}Nu#gGm-wB$A@}Ez2oisY0F;tytgL)2a0h6~ z@@R-`npsbFS=m2w6mg}y5sPh0woV0eD9Cv`<~IN@DWV_BVck+ zYzBcC0eoyAi&{szdbSK1?-+C7q{JB4%;g`c>>;c@jyx`&nOXilG&H?O=6#B2zMlc& zivc1e1B37z6vF4*yisRaUPww(jiJFHOsFE2XqNg~=24f`zy90RFEe9^f-p=dYW&wt zccZ!G<6otJX#Mjl!NzjdkeoeUGq=EXm_B!tk=CADb8F0rBrb)lZm;}!dThw{=#2kC zKv(1DsY1hteI>`^-Hraf+ituf2)d7~jkKO|19#*8WB%J4f6wiHeo{w|!zi}&?e-SB zhq=02oXXHRD2ish#e^l4qJ6_6#eF(aRaxrz&+d^EXDB;S zf;LySo#U|lo5{{I1UH*hh{Q=KZ^gOP7@ImXP&|9elwCx3?TohO3XlF3;?Xcyg`1>~ zWi5Glq)#d2by%r4YArULU(hZ8Sur-?N=Dw8){%tzngW338kscjB?Vp#(-)dVj3Xkg z%YX2)iM=-_eeksKt7l%fn(?QT>uq}G56J!;is~4kMTIlhy$!lQ9d>Z6EgX3b+|$HO zPCH6*J&$Fxn)BW7@~$oYctrWfr^t;E*O!xFTN1&W=DcN1zN)0>^|@Z1jWadknQ2%E z!Bwk^1CNxy;wQi%Y zykBzErUE2txdZnM4E~CP*!>)syg;LJf{$ba-MJ{TyDE^mQ^phC}Yd(4B78Dc%GtmY36;D9T~zJr)3cXt5y zawl{d^Yg0?RxWp%v*0>T5XuUg+TNx@7ub}hMfyNvaj*kx$HyjLE0?_t3kErBfcyXMfJMjjsCPlLJgjyvubyW1ST3m-EdoJKmzPzW&RVo_)eKGXy#R%vqT zU;&vzRJ1XIr;YH-K+Awc2Zo;FmnKA_)Ae6Fp8iP16#qc2YN(kBGalP;EmlyW;`U~smK)JjJA&9QAU)6p>;>8tV1TI8b90*N1T3*!f8l@s4Texj!}^HGw@Cioe) z6Ek}+MvSOdaMq6{miL?F_W2^pvnlIB_XZ6$1s@fEqYv4e`LL+sLf@!2ET-9${^E`n zucwjmMP}lAYw}6-+dW43<0QJg5%r$jdpf?5|mIn@Ie^h+4O(&pOlU z$1TOtTOUbPa!*d+e((KC%cH@Ms~MeNX=XTx0T)}~MK%v9@7vqk4=cV;O-(_H3C!?* z{O~>45isLH2gB3OggzN6wo(A-1i`eggRsbiCOoI3EUkMMcI9AIgIM+SbO{NGdasSS z>#KEF{@LB6(IAM2gD)F;QkdQ|GTQc=s9c^C*K5gD7Z?CMVv#)3moJVER5XHQa zBD{K=eyhDhzJbD~(zXYq^O?H}h0sj7=L!$)RlF$CzmP4@WZ(Phn|1Luql;1PH6`Gv z0YK2`7Eqc&=yP8*AaaCo&lARUBDV8{bOOvbM-d1=g6|hTKahpAh!Dt!1CIb3 z4x-*gBBAMqux&VXqobo=ze3Uid~QxkB27vNX{f4tFzWt(6m0FA-svZEy$RoqUf?mM zs9` zWiY|u=@ulGLl2l!>_j?UWWyWQnS(JvSbi2xj_zX_mf2G_5WW#jE<&UY#Y`TILZRhP z)!jfeqysft>;ulP+D^@IoAY;fUB32q=R2p2%!>hRj@}u^Yghpiwn$7MGHw2lbk%2l zV*cTA_btA9tkP%b^?W(a8aD=|Pi_|$il7He3+j@3+L%Du^En|-C0Dl}QUCneWFD1t+7)0rxSk3AW`sJlM<&4Y|k|}4?*{QnT)5t6?9ZK znJs$`>r4!_UZ{K>S_(QTB7br-V;&`PMUF%wgG*W>ror6~@w^fS@?#6x1^70Z@x{w=I zPR%^~PY9Y?!+7N0-Xvr~X{15!0)=@mx?Zh2?lN1PaC-qkLltJzx7fanUs24uo*u2; z!9#p6dEP1Xtr~H2!M)GifzwzKPILBV=CAozbzc97sB5t8!N2;#_l>vI(NgAN z_U|?W-G1GhF#zSlD!bj^&Zu&kSG)GyZ@FT`9`wJ*M~9&F2PN#QyQS{6V=%3MAT%uk z%D2IH2E0!)!M6v3J;PE+mJ%T``#qav1go{}l`)VB+Xw-Z^CCnPRL^I?6cI*N(CeZF z=tyQnEF*MIyx_8EC)Tfwo|y)`LKNrsN}5t4F(8V53M< zU^1zYO>Gj~TQ@-K{w_^WEc4zFaoU9(UW}|sb4u~$NPITdh1}*Z+bx_PuZ9iWicjK7 zpbs!=@U7M>#&3drQgHVbYPX#1PqYgEPBs(BhGLZvjKTo?9>XvI15zsxAwfR*#5QN1 z42B5@A;)br1c>TjEY|6S!L&Azdn0ltzIzr%A$MNsyc)vD=38%hOAHEitEXjVy7a+5 z`kCMC!L1&T_1XCff8>gsMsU_N?I`xtU~&>Cx?2Fc z2@Kpudor@cB4}0_evMd|5aIKmLhw+6cvQHN_aTd6YN}s6LS$$6N3eNMk{@&Lv&MC) z;%Ku)88DAUH{^uYFU`(0*7k54^+_JL!ChJAue-+}yykMW;E z6~4I4*ZT+ibV`y$})8I z{u~{8IJ$Pwg}Se=pr(OIpXcFrY%=lpkF6W}XjXF*WHOCA93TA>i-+_QA(X1IcjNP- zcF(C`kdAO|E|k(MKaENOMI@`E>?N8bXfV`pg3$ih*xy!R!)s&JZ<&RKL+PtSAFf|2 zJTfVND~y?3hVbW^PVJwMAKrHUj=7&)Sjw!9uXCQMYKApMag6LdzUFM6ERN#JYB_I1RarV>?~Hv zMuySWU!a0|qdj*gjq0Xgm|Gl)enym+L6541AJ;3D80Nq6Z2FF0lDQ(a0wXh1I@_Ry zv;L~6^yX!J6y7T(*YGcc=C0?wY9_zGGqd0tf9KH|b3Ucc!gQQ|Tj!zW=jEl4y098& zkbWNs2Tabj4V#NIoV(HNN`ri{x%#(&xb>uY*Vp$s+yrOZ9)xXGR8@IGF;`hRC!$tw zNE&QxVG-iOi*uy23JA#5y3oE3E&`C>_Vo0?*#Sfq45+|4bK%*^CKGmhE&LE&1l6=y z`tXt)k_>AxP;Hrzo=D96ubg_MkqZ zOD>w5_D~X8SZ?SLm9&5D969NSKmLS2Xqv7CYe{v~xmx14*IM1=a)1GF-G<~q%~RK* z1l1g|Q}GH``^$^U-xznbbK(UbHZZ;V`(bR}K;B-SZP6n~%Wzd_uR8X;TFyNp7ezeg zj>MidEXz>xmRpc~!JsHiK8Q~%#X?4sqGr6`Gzg6U^$Fy%5K9XRBY+BDio**OiQL}W zYT>7pg{%kJY<}2G(vh5NolJXT@^VRx*&M{i84wP8vibi9Y{NzC6$9>OY<2t0qo5Py z_WcpNQ9ueqCWX=A;$7G^xZbylfW0CsP}gLD(C91*7JeD{x(@+!{Cjy>QyCOWc+%oz zkFznR;tWqrz@H3`UpiPx_)1Eps0gV-ymY>`cLpe=p0rN&^bjMz07Di0|K^Ae|2IdB zU)`sf0nYeXl@oy(c$;A7<6c{`slY3AX}*s#9;;hd~0;b}AUfiV7yg1ai3DY2psU%BQl2U!K<8VGL7$Pkw4Sd_nBSlXeBCgCBc0jFN^F-|zU%C}L^aTR$b=MQ0P<%HfYaAEMP# ztwEXc2u;5gI?MMEpA}(2%M8`6W|BNEO3^N)J{8V#Tlo!94D0yL{Mc$|$nk8;DZFf& z#i+=h(zTM<3B3suD;K-mS4_wprvaX5P>%kpUOKHuI^ih-G$FHGJ~=(B(OHe2ncSR# zzG%{C3k>0Qkx?AC$nUHRJY0;rOwXLG<3aVaR;NB8hJY&Wh(AE2#PfE&mKzOqh06Qo z5s`Ts3QV+4K3nTpruOgY>uCzruYafA*bwE~i>p&mQz-eu_<_(vxMU8Wk-6ivBo))J z%n0q5|7ih)%hCH8)HMwqO@Gt6X}Jaa6VjUV-)a_yFVLw!Cc7>-5NyBCLx#3;pzibK ze|%3s`Ih0*E1pW7?SaLL#`VEtFR$S{XxK6_KksG1iOfUeo@mi_uiC(!4tTs!v>G({ z?*9GzH!kzwCv3of|Neb+Bnfi5ydo~>Tk#Q?PCxI3IXqJ3u?o4$uxIe{s)pyYw-+8T z__Ng`OA?!3Zo?8huCs1`r8eK1T=t~P0M&V$QY;v2E?xBKdpu%mQ}w7V_kLTl=(gFg zvg`K@p3>KDwPQoRo54n9#vpWOp6r*6)iDtN5x^7li-c;gkM4jFg_J30>~rgFD*s9F zm~Ga4*?n7~tIhdHYM;?VZ4~uRQ|7#XR(re`1*1q24^^vmDB*=I#Sj}_A~Rgzl?=`Y z%r}D1@?<}VUc+tk(mkTQ5#w-omj5QDY7uWznZv&<+Jmf7a9lxnAzFZ#Ami)5Rtm1kvXUie7ygk?UllE$EcHMjq|L<{4x%mV zR9O2>tO9OeXh^5s2{sU4zpnWmFTbBSVg5l3wK&8uVwGSm*~0I;ke77r+BK{aPqXhn84*$jaU>9ujJwOw%wT#7av)dG1ezpqu2!LA-^OkoRw-ltTcs*z2s@40viqn| zuXD9+YX0he$ zD@--E_mg@)XI~*_njBqj^xtg6Ls5QQE9OW*m?F%ADRg5|(wL8B@&i5y>VPnU3{j<# zL!%X&szr*{edS!anUESCE&KIC=EO>wvjS933_4%CyjDdDI$JqM%s+_IJ;`l|BqSs5 zSj37K(L~wv8U$2X3FjAaE&Ct0*Rz~LLR5uk-elJQh#Ym#{^ER*fu4vLqlo-u$aGjZmIb=2n8t z-JE(!vk+pLd$41{UaWWgdhu^XfFrR~Vi2`yE8xDh+d zmTavR>iL7Hi#n)R^z&bSzH{CzgM{2jFos;3Wy*X=l2)KvFhGFIT;S{_YPr#z!yu!( znhrdPuQi{~&`vXwi?8g+U9v1+vp>AXjKX6I|M_}Oh%Kh0;}^LW$(~<*4xYQqi1Ny# z;G2mpg}4Fwrq~pm*W$;wcPE8a-qPzhh>pEX=2LrIdp&A<+VNZEGFFLF0meG(pFfkI z3<$uS)9&OuVPs%nD|7)`X87HJt~qkX*47qh0)AKk)jSY_2oWY6n)x3>1}a$)ErS#n zMqO|s(p+>C;q?PUU!GPo&2t!_gPs|J#@4}{2s~oDQHW&>2naASnTi!ZpDljj8OUy7 zS_ed&g}#R=zU%8Y+10oj!5wWbHs86w)S@BH4 ztqVdhoeR8zhm6fhzv8Z^7a%pO=>hQ^aoP(h(T?-7Pf)W->UN z;E2I+0e&#CSa1uU$b>+e0AZ+_@~~oq#e}mnBpXO(lD57XT=-&BG5X$tJG=~9iJF=s z4&_)Z@Ri_FjS%QA17d+OKX|%^Y&L)X{5d@hS_KLyTa+3>@*fAJrvGy8AF3Z<)+f8&84JYdE0{!UH?x)=gzYu5QvoPa9De+!7bBjW#?J}T#Z zuJ_pvW&)>Fq6M4MpPh9x1x=Mf;?_^whn?oIa(TfnDVS}Ps7Z|9P<%A?O6n{Em&81% zkpi({go;Hxgn=St@gP!az+;9@6MiruUK1f-#`Iw~&kS0fx)W&y!E&rIC|CX`lCwg}^;DW6GjPoGyJD-)&yY+4@%&et*Am`wNA)TJtkR)avFM zKin1X?WCQS4G_w(yh1BXC!QBj6rCBAcpMc_^mnvzZ`d7{*nhvj*jpzX6u8#nNcT}` zSTN`+u}j4OqCm)V8{zGe%`iH6KoiW9T5NJIusa`nKJX0YT*|~V!t=Cz965JNvY|XL)P5E;E?4>~WVj9{arv!{Fm?c?Vo5tX*jndF?ZWWmi4_(c=wgCBvoL z2^oCy%)H&L;erf`-xIp}yzmMY&#~Ct)qYQXKlX>>>)EUBpTf9Li7}wI%%v?9&wmd8 z*|bTf=*>xC__Eam4-@-TqUgfy731LGAa%FY`ri=@=dB}MqLhA?&3EL{ULZYojJQ1b zgY6v$`{8V!j>j64Q5|gA^7V?-($ksYg@oTv90rGBHWy33!<7IIL|Dc(HkK~!LE$jl zodiN;NC23*7a$8iLM58VRwuUmEW=Vrz6KwT?KN1g)3sNF0l)kkd_f5*DfQS78!(wy z1UoIb=P}5eva(og*isG6%w0pT5X|(xKM==Gcwn$U1Db(*t>5g{MsNAke+9TII_1OS z=Rqm_*8S7Y20K(mF>&bu!ZpX1bORHIk23%Gp3P{AKTJ2Odgos+&&DHPJ#x{OciTf< zN<4D+daduSb1b%~ zXuQF%_M0uNW}z1V{*Q44qm=*eni8xM+#C^aVNL*t9%2m6kTQS|1WKhE`02gU=K9AP zfF4YB5Ql-xJr9rf8XP+fQt4^{>84aDSt5DT>MLn<692vjfhpFh;2?njBk(2QqJ1U% zMZp;b7dHY?my*B&Kg%rMFNX#}GtJ}G{nUImC46-zoWTeX*{cnBPll#6?QiWyWzjfr znQkpE+QeeV?C-{6aT>AMd}|im|H_H}tp7$5iv%`e=|x3*Yg2M3#R^O*^oqx;oaABw z>PdwP%D0vcJYe=eL$%uW5i>yM6yl7 zO!x>unq?59?^Ef5_efY&UQ4pbHwmNd7j>DV^G*@Ut;lN=eI`^zF)7I+#&}kA=P-IS z-fD(_h(E5eQ`pXJ9fdx8Y@_X3Tf))yaZ)H(SLQb#%|kOmPTf2!ZYh>_@0pTTXIqo{ znj_iScBz8{zN0_-em4{cv`5NuZ$ze8=Q)xx3n+(d+7@V2JjvMVcWG&3!Y9X41x5#H z7;`9n(x ze|xRtyVUDHQ&l+e0xytSVhfjMGQH&XdIa^$%p(S_?RB)R@iNmOmxBI(M16NW)qVf} zA=MG-kaS2{Co9ZAzL=td!}QrI`$43$;i%LA%rAJvPsBJHow>DzVGkPAJ@a< zx?FW|KJWMI^_*+TMSgXc-aL)u=OiNLxquT~r;fRvjcn~VFS=pcAM~w%W(5;-5@D-oU-lrbDGP#@OTlGHhSrDt>ew1qJB0+C6{ zSk2BY_t+rK*FlZp{Z81(;g7%GalzmV=9ngaIYh)dli+{gEIP2z^13;|t`obYj4Fg46>d@C=41ZZ$vLr1hnMh(=^619H*jPrnf-A6bbIwFxEZL|_d zg<%AU^&qLNQQIeWc8z=csnAM!fldtk&p=528&%?Z%@iKMF$3gWsi8%rj5du;Mk7fyIKEgjvP!W2vxMgaypkTa;UBH;k3;2<&mjZf2t zd<0ilSAH7MnSp+gH5`7?aOO7}K>6?gAWMt?lRJW;GrS{vRxs`}Yxw5g;r@PIVc|MN zHk2$c)g603Te;%I^RR4wii3i*$roi2Fg0);fjT56Si6XjHz6d7VLL-lfxxO`lpw(9 zye8$vUs-x5YYp@(JGX!TRT$Ay70;JoM-IsFlmb~UERow_qnkM8^w$c z<7-{K1b_}EMRQA~)4wcLk{Z%yiEVJ*Ae|3qS z;XX1vSu~s&UptBL-|lz7?Hut0upVvglaMmo1tI z8Ha0K{I#SW)@;!Q4gxgiHF@H#z?pta>vRBjD0iD9?gOsU@X_w`8ee}wrhtWtBIf-> z?5~bpR&~q;EmtFTj6$4|=5tT-2re;c&o;k0-wmTTmVf5_+^l2H7i1@!>u_;6Co474 zT*xm>R|yu2VH*ADFxiEi>6a+@iPBWW%+Z@tzA&HW>le@ba(;ie zl+^fqGI<)uee$xw_fc;46H|9H&Drkp`)lJ=hz`@7>AK~69Qoou52` z8w;Am-0J&;#6?B*4Gm*v!S)x)BLWfdIjox^T+y?)Cp?&KucCx| zEJzEVW1r)nPV1^dE8S-N+6ULZ;=z$vCs@lzT%XZcUjK4|D^dO zgzlu-Z|h{YhfZI8&|c-&g;5^VIL2XVc_-5?8@2 zcfksu=}c>QCvm4Sny1r6|B;%Ecw6(Q@B4#B2T}LzOKRO2S=4jrAAS#wL#e!O?~nI< zCXkOyC+I)=IQ`%m`MXOv;q#x6Ad~Ajv;=K z?i?NL#9}-TcQ=0igft#Kef_BH58R{(XsMM#4s1aMHx8q&wGBY#{x&`p0Bpn1wGNwj znlpGQ>1b)y6ahyoSzdqdAjq$>H8=Md^o2n8(V2YDiM=QVF`fo`dXcjp=H|f~)_~X- z6&02j0l-c!Ocy{>6X2nxvOM5|c`1QuuM%R$rKX&TIM5j8-#?QOyGL*HlN_EQj z(@8L5uz`+`XQibiiO!yu3BO8;l%IK@L=^H~kTI(Mps)R^O~&%aSuu-D(bB57_Mhn= zyB}KU-a9xjV8DuaZb}b9r;Osf(-h3?)XV;g1ERkTeA?K><1qZoO?;lmH5qBguXEaO z2L_N6*iF<3U+yhE`qT4Clw;PrVpN$@Mn)aZCVaEaVn@W~oI#|i9tYLHz(B1G)rI2= zEu%@%PT>Y`%hOId^rJIl#z!3_O$DCZ`xvtf5YsoX3VF z{Ga~f!hb*8kCZ}QIu`_I?R5o;F2|g~mvMv=v|S1~m-_Kuk>jzPQ!yQg^+%qUPkALJ zWg*26gD5$#V-c<64&za5JS~J3e zFvRa`iONq(XHk<1tVWnxr;EEP8_93d_b+@m?P8suzFh3Q%vsm9JZ$$AiQqCkK)H%JS>FWM;R>H&}f%1i8KlSYSOA*!!BVB#FsTj|LZ94k1LfdDhTEg># zSkGLYCcoE!umzGVnEOJb+mYz+NhJqOJ*N=bmq@msI$iTZtqiQY1-1<*IYmm%P4;sGBc&QD z{lbdmGbr9hDWUf$xB+b4R@}^fF}~dwd=>JWM05A@ztr8 zgYw+Ju^Y4&kh2JPnqV}bn>{_}aw)--FN>rOHrAnHn1j3R!5iP*X;2mU3Z%yOnsuT( z(FRaP3BU;o>ptoGFkzmX6eL{vnSS3b`9%f}W-d4Xs$0Df2jS=+IBC**IT6UfmxbVp zzFYdSoWS|sgs`fik#}OxeZ;r;g+iouH1owwz>K)fqC~QV$ z7AwmcHwBl5WHueMZ2CF8ZLaY5^i1xBJ}dBQJK@`@;2VGm=RXoqA0Hnum>IwO^nnl| z`PS65PB@~CtqvG@AFvQ*;_Xg-zuC?YK_82tk2 zKk-L_*|B?XuePud`#h1$5L~q-#l?N*eCm`VU%$fe2%PQeL}Mx*!-g93#NL}!BsvMu z!VLAFco53N*||cuxUPf*QC9+8b@{O=DadDXguidc7vH1| zXbX_yDBg5cGaYE_b);oc$Szz0BInI8h0I1yj2J9$Fm%CP(L4XS+U`FLOZ@&dqW^L& z$pY!Bv6$q61^gn+mJ2XU(;62Q$zslyukwi%`7!mG!;8iQCmKhe=I^YZ%i%$hn@))s z$C)xR?s5{fOnWm(6HOsnbQnoODaa8xB6Nfdpv3_!aRkhTm`!en5VCJHAAig-K9r!f z4E#A8Zq}bSi@Pdh<}bU6GX2m;E7wUpfBGDIC-1X>Y>Bo=$Dv1p;baJ87S?HN_tDPN zShJIch8x7ZWS>(1F2(My3GH|-EZC&vkxRkRofdn|_h{L3(q1Li|AcP9xkC$!-T2kB z)&KEhILGYQx)il%8Y7>h7q)EkZ^%<{{&cSDG2s?j`uG)NZn=Xgy?mdFiLo|a?S?|2 zG^GyV)E4*4mWPZ4`Zn?x&PPjZvSjf_%qMuco_=E{J-`%){q%{OkaI}>Ipxyp>kOX* z_YUq|F@E3|*%9@APQ>8--Dj6O+hmv@ey$hsTd&!Br@-A7zS{3gS#vY))^<1Rr#J^7 zdKNP7{HbAO(X#syRsPO}rnLXf)PQWQdcoZ_l@EJ2G)fcW0=E1+yap&6C2n0Bh;o_z z!|p((P(N$;!P7bS=pB9Pe-9(lz`WjQTuX{#c(COBVV&1jF0*lm@H$u)}#oi0a^Fhzo} zabRm{yN;vRzH$32ENz{gXBG}cXHgWpqSM>~wCDCo7;?DsdX)z^$0cq(mc$_FM+4av zd6^WFjMyWE@6)K0=?%vzk4m8l2qUu^bkX;W+!vr|Z}?v@BxGBxxLq+lT+Gi@%^!l8 z#W6P=1|A?NH;*=rbS%?`0R}w_H@`t?2oDIL)G3Ma-2|Y(Sn%XBY@(DY(=E=($bd*1 zNS~vL0=JMsZBr9xykf0hzhl}R_f_a$fRSiz=X^U#h8)n0e$cvfcLUH7_t~Tj4hz0? z)rgMl!ooeDjHW=;xpovnWPl0l1LriH3blF$`ubq7F;tIRblC?D2@D3wc|vGX;BgTz zp>;T-!>{=Q0`{}afxG`%a=z>^OZ?}vfl9E1VH9#Ti1EL}f7$tv*GmbGQq8mD_Fi-j zyM7xcM;i;@PY{SudRcW26p?%jQ2-0^EH)Gw;4ESGmhsg8v;g?PcDnHP8%UD4_BGQm z`cREy70N!U*exBsK1-f?_3K?!z3(iU48L+-zrquZn6XibPn>-n-zRv#t6V0tMNb0B z_nbn&#E0W0s|m9lO&caVl3<$FsGC5qPa5gC>sz-V@cnF{M88t%+Q*aVuJNw9N%r5X ze`7Hon~x!pesFE=^^!uZ2-`dRJ~5A@iQC5qC-aoXj~;l?9>fmTrnB+U6qo8$gjuGR zm58{vhcq5j8jpQRm6FX&!O%J*)OdMapQ``dW@22YANZO!YF$&Yp!M`wA}dS9(u2Hb zul2MN1yngt-Io&8SE%k*M9ao0T)p6glNLh#IY3(&W)Ni<*l^`&V_jW;&6`+FQ^)5U z+cGI(S$`4+^wrrS)%&UHavmGY+ESE+y^u7$7kBHt4Z8`c z@0Jks&6a!gte6Oem7eCiD?0FD0aU%;GCOQ(m)wOGG#~IDI}vH5Tcv+r(0$mf82)#N zUT^T+d1oG4iEBz&XRaB;Ji+5KI`4zUp?r19y{63GdDdJk3IXxsbtO9ozGKzRTj^_1 z5dhui&COg2I5VAfs9TwbTGtFwZviO7$^}OUUYYHGat!eQqetL6{^nHM@a~<1{zH86 z_)&FRE)aNF7z56gIgmd?|eu*poz{y&F=Q8|NLKa>hICcc;&}9R0H+STMT3X z*Ec9fC+f4i4g%)bZo$~a+fDo1TdgV&zCXIzywN(zV?ri=ytW|jvyThE#JDWehzPyk zgJeinK7+8X0uL6F0pA_Er1ak84NK=YmHAHFQ?{&%-%}jel;-p*xn+?EQzC@Vov<$Hcbz07 zRPuV<`u2=wDyuXFi~4jgySks99+VPThQre2NnklZ`Iq>tqh3IOCT*^y4>^ z%&;_-FJ{DF^On3J$n7DN^dGu&;+^|h{P`>Kh)50 zhEkJl3bI%z?WM_ycw@Tc*Kdc4nX1ju`mBylr?4`z|9Cf1M`s=rYjcj20AcQOK=g*8 zewTt@Q%*m;~zSde!DuqcXAmOWSg|#wg<6Ld;KQA)lP6pu<|0;xtt*8 zdB!p>a#7NRWt;6csmhIcL=o*J3$8DGT<(-m>KQGF9}J2AndyiCt?-@b`<%d?uG$K` z!50PYHLVG%zSi{Goa=56xd3}HbT)W5X5h1q&jkiFEkj0$K`B@@YbLywq4iQ3hi7Bo zXmz6fI(&d7=q^8m$GN-Q2ZD}(Sb#WGTY>q9h?n^8bpXc>e~lV-3eR4y!(mPJ9!V^lCDWuS*-S$U@hatj71cAxHySf#j2>$!( zE;3ca4&*&4g4XvEoy7?Zdvc7ZUkBUXyrJD?K9S`8tVee+eMwjAs(YSWYuewRrz?f7 z?ep`UZ-?^@;8T5^o$o`V{P5C9^Ra8>22ikg0XKj=fKdP|F+Q$8 z#19RIpyIHoNH#{N9MRJ{ze3F^g>$_l5k)P)DPQUO=}R`u9^>t z+ge&tvuM*FD{i2g;7p9gqY>ag)#gA*jJV>%V}X0}`SXh$ABFa%T}Rs7Ocnf{mFDSPU76{wu?1I!o|hMAQwx5Q3*P zJR6{IIJw>2{{9+d(g$hh9YI0X*USMICh3lc)($;)Pr+$`pz2DZKSxNehI^ky|Aqr! zh;2%6EJWttLMf_k<1_f>xt(=viw2MSuMX>O^i7kPO2!4&9ugu3roWf7dmusXLvc8Q z+dOLj@#SE?ue$pMH4I&fyFSVmD?v@WnX8+PGfA4xZ z_;hxk?5RxEG_CO%rJrAl9M7NM%^qgvCUMQa$@=$lR%gOamk-(0ucfMrk4%V$ucfNG z;|1>txMk;yhSRgvZ+V0PF0#C!F7$DIa}~f1AFCH?KF8BxzmX;q#P*q+cM*Z z2K}M*+%so;J73+gE~4a7T#fiJ@*sSgm-NS8!_L>#ovq}KM(+y{J_^C^rw~=THxql$ z8#>Zj`1&3#EwSSzn6W@^nAYkEq^c+`_Vq>mXLS9xwga)KFw6pf4-T&dv7OoulNY`7 zpzXt9hOMM6A;GT=g!e(suW8n4# zQsDFPC-ag!dWnNCw( z9bC8ovLYP({4y}zP<2{bS~_B|_qV3`2y~Qy6FzuzE47cb9b(sE$cVmwwYFw*pTD_! zUBJ^sNdv>vCb*DfB$`7IV9kbn`Q>95&sC-+<*V5y{t^fM^0(rAZr%^LgjH8d`u0x8 z;09?)r>yETp5JS0rw~$>Vwp8#b^}|m6G4d0n5_UYL$#g%{$f6`#o^hA7Jv>sM5^r$ zHfFnEb)iCl_5_w0>?iz94X+E93eY}T^0Vefme~p{ANb)g&^MDX4DQge}+>I_BO?y&tw~#pkN+u1CcDR8rzt(&GSm z^`n|`E*~+zrUzzWXG-K_5lCjFA_Gl9RQwf{uxIEqvEMWSFIAwhOVyB5MFu3RJ*2!G zh`z4=iWsTJj5G_r6iq-sT_lj)l{U!zhey{)?~1^mY%$t*TnlRTd&@yvlkaF2vyV%C z51w7PR?UGxw!a;=2AmbL&U?z&+YPBNzY&M_(|mW28J4hnZ%@;kmDd-t3p}jo|5Jn- zlgv;#AMaAez3|u4vQH;CM%3C!b0LkF?CJ&9z=RS6JpfXy2)(^GZ!s2`jaQ5^7HhCcAG~X{d#Y!w6)JMZL@1eAvD>Rus%Za9>14ou#??4zo;21?%DoK ztxHaoe8P6GFH9|oD%fRWdoz0?tmypDs?cvYBAzkaR1o~(;I~ln`)ptXj>$7Vm{|DA zbdideU5zFWj>yRgOUcU;e1|L`_||!@?@XmSm)n26^~v{e=0ythe-F=&!6lIdO5VHD z_UNqn>nXC%z;A!@$vTrhWWNeTJbxE%p%WVc`aR3r>=WMsGL|K*k}E zI$AC2ahl=P{uASa{@z3`p!e>i1HE`HO4hz<&m6#iO?G%GFdom&f|6@!hFs0DmB*;JMm40InCA1z0JlKp-6!y3V4aqTr9w zc+8LJeH#I4#XJdphP^{v|kANercn-OtrKuDyXGC>>Rn(tFXnJ zQJWT7eedjqoNveuOd7zeO0lT_p^p>)hd!F8Fe5Be++1Df5By3;?o*lxq_S<#sOXai z3r>?Zi617$9Md9L6?W;GcSr*0BYh-M$l%Ek36#v#bIitg>)97Y+aGD(v4ATKOKuTq zqC9mW_R+D|Nq~cqf6Z}M^^c2P?)*-|kGsNf(NS}+M;aI`7U39!#L?>7QIoRnK(}Rac3xFw2%gxms->7 zDWhQvHX?h9_`uJy0#o$;74@-<%4E!w(P@(L??-$K3zy-237Maxw$LH%9?T5j0otAZ^Z`F$BR}03HwU;M<`B_kTjlUud5DcW93(-sPFfs0V%JkEn zu*hbsTu%x?;&StJ?K`)$%eC19jz*jplg^HM<7PGZ2cq4Em~ka@#)@8#VJrj<#xOPy8}9(M(&W=g2NIbU4oh&esnhE}Tkseg|=yh;NZ_MR;Y z7iRnOnR>%#TWJfEUu1gsv}LEeju;0l_^9_vk1r>z-2_?`Hnrj5OAC4<+g^<&%XMqe z9`Hy%`o37RKQlgG-BwxH}OD0Ljs& zlBn>G8GNll?>vM*u1~d^ltHE=8rrANB8IJp`Bf%&Odt9|-hzxeEm;US7~X+*nxCee z1G3Z!TP7y1nMOLRBKLM@V^oIX%xcwG)6z3no~!_uCY3cM*bi~fFu#DLX?wdW&k7C` zNfi7id^#IcMHq5W!I(`cGsv$pR&7&7<2Mgau2|+pDVpRTi z#J5mAYekqgKTGLB-*>&yq>rua_ru` zby+ZwbyG;{YGV`C-(%zXEtwiV-a>>L-L>fF31(u5eA-ip6VXT$#umC3p`+APaq?i} zhi_b~zPIm9+w`l4Xy4W#H~w<}26~pl<`IX3B-`foK5S6rRFE>GNVE>ysU-QrwD;Ke zQnn66X)K7eyPYHGxA+Sfg%JF`Qz*h)O;6nInqXg_C@ znk;6f6Lf4+xA#3rZ{GHrt#dY_iK082i{0qy>G57`OzeIv{P3RNp^Z3m8ym}o;~D?s z+mF1(^TM8VUBYan3favcuZU+Goeob53OirYGU*WbI_&KgbBe*sMKby{@=}aSFABxV z*eIz{pjkqdQ)na7jDCDFPdi2bHok$m|M2n6rwZcOydd05Ppb5LPOw;54=ul2dmRm}^ zMbf7yqm3IDk-`o68Gg|uD>GmZo@gs4;fU@tArFwdFHdRsDM>nI=+Vgc8BO~)`(t%C z+3(J}RZ2gYd~VUap6Mf$Ii%Y8494G4TWI~2RwoK*HR4VN^#F1ETX;q@Goca1pmYb^ z(^ym|belk80z3zMKG3NKvY$o+xJ?ar+b#nZW(O)x4}nw$tc!k)9khlE;OV#sxY_BE zfPJqWz|hcyXA-ou*mBXcZuNHazb9O(o0}&gOggG_e%_2yrhOX407*=cXRpk5iO3j4 zMRs=hpzE*D$?6SR^H)_SAbtU+11PZD@BoZdJad3f!~>2Gc>2DtR2LSmxIIcRQ?zO{ zkVC2~l1srQxvp5I{c&MS0r#By_)qEKIV=O>J;g#x;xfg3wTWu&fXFm5+M+a`)qdXV zHb0V`-V@$dY{P_}5-t7qt_`UqB|LX~d-&_hX3>L3hQduRhSR2{UK1b0!%zdA7pZ-$ zxgdEhez5%KkBfzc9AyW@#=aR2q^HLgm6q0*fHSPMwH229&fTS@9z3qd-HF2hsR~+e zo=#O&)vqHXrzO`#2Jr1Qx30xF*Z%na{kv1`;Rcj7j#WdPY?N$xHki=5Su%H<*6K>K zStH8;BzO(=6J;DXqGy2T)E+`;h< zf^V0MQHtR|9w>&5T}c|&_w%d~F^P;QOp&_tSE9dc!$!s-G-5Y2Qom1nU17>}1##KEBa~N! zr2NOxtDr>MR~h&3hW83(cAAgfm|ql$mH$Q)b1Em4BAtkkITp>4Mo;cSs&q!@R;f}j z=Q)z;>i3$c2IRe2%ooxnVb)gG*Q#Hxk5noA9y#*?{kZqJbdzbuM+>u>HZ`j5Zob77 zIWq)`o`!iZWc36?|3qh|W2MThp|wp6*ONLt;bKgV`GV<+-~Kd}ukxBqTfO>jRI5f6oKTwg^hc{Grzm-W>UzY>yZY%sas)2v}Y; z97mAJa7jiT!dfBkiQwg+B_hCXERqM`)#O4O0=Ud+Ev=kQV4@CEV_o(&=Y;GS`K)8nkZ6 zw*QpG9;_T{JsCW1T)emur#W(D44WypdPNClUSp}zk4z?b7sz*Gv^xQi~J&puLY zo`jkTd}5{jlP7SRfD)T8IkIFKS~E?^yEfnli2ptpYCxX~zasFEL3l*MzyjXZz6=3) z!yq%`?yMUxDOpB?5Xn^^SXW2dvyzaG&)Uno;Dd)I{&C7pYi|nwYZ24<{|5vWPbd7= zLB31OVBfF-l^T==VY9pI>)g?^nFXtKM5e|KJ_jo`xAG5eXZTm>Q%oOx+-mzNe^?<} zk0?F-=-pgN-=m=sA{%w;J<{-}K;gv!ZPn{fPjO>U6Kn}8Ah<1*QKu2|sBXpy7C}{9 z{L4wcC1lnqXVYGx4y2iRSIA!~gag^Et*NuiZ{!V5PQ?upshP;9dR*oTxEixabvBJW zNe&wY4kI%8+#eP|lOX@Fn$r@>Koy@cABULwL+|le4TD^D-nTsjOt~-pnI4mOGQDo% z6a8ve-~7imD2SAeH=IqLFhl00!!;JY_zg@zTB}@y#B=FRp+q%>y8Z6b39{f4<)V^$ zs?*wSeze_ahiG#N$63tcncAwhj&Tc%!|9;aX#Jj-hH9t3x2D`KfP9G z+B{(&fN`r!$i8L_Z*1Z@)Q7zuu13Hd*Vmt;J_8C?OocFtB$tZlXe;MXgom~tkaB5t z5m8ZJd^QznGZ?3h(NN3=jpzIOx(V~JE=TgfDDV-jgp;Q17#bRa)>uck>i8;%MY^Q| zRt13e6mZ%JK|EhwuQEV27PPwHr35R`dz&BE1U7W|fG26&OMj>me683|`}wqW#I8{xGY3%5ZR z*$C>T(aMk1BOF@1r?bw@u70Ur!Q*$qCCiAnH8o)V;!XYtQC&V_mx-o-{rUwj5;T;5 zzuVvk`RfY8Vqy>nS7mnqE03#dJXFPB(6>VWPYa+4`p5hs1}s=m0o=i&On-OBvMAuV zJAEb}YE`MRVicVIsZnH*$*TD{416n~WWv*!Xj813KP}m_)$VToT@KIw^@X+Q_V?av zJ|~N#r*}&XJ(nRb%VP4Nqsicg_xMwT8+GH#+^0#=r*d07r6lRG4zfbQ;B&njlKj2H zHlxf=N`A6n*!~b+3QHX8CW_GE0K0 zu&Hhj&->??9Ey&W7jZRV^z?`iZy!gp>4X=Cnj27Den-*iOr7~RZ`t!U`F!rZ%O!rg zoD7U+>H$K3B`0WnHPmK}U#2ARW&}}^pEuUO-v5Kob>?i$a|yMD6%68 z;x1+I^R?gpQ}n{aXHGX_;IEmfnc&+G9~*Fp-INt)?h-0l%f5E`OL(r$m)3U z$o4f0sg6cyl$%hdhwY8j16JLiGw(!nKcsxV;-Palj)sn>GlxN@nsG` z0391Rq0qBnjDq(s_^dMrn*ZcNKY-=fUk?$o_UF!=3NQ#m+cg9~12YF%?mM8L=$dt` zA7_TzxOk9W%H}w_xKzGTa^~9_4k;xGY(YcOGYkd7=^!7t5$@#Z2$qqq*)ppXNVx)j z?%>bRJpfGs@4HGQ30{aZezj^CYzyqIg3*xIy6~gC2x77SO+4_b!Qn2J=?{1ZJ`oO< zk(!#@v}DWMUiIVfxcb5jqbR|7+~Y4NN@p+~dg1G9p-aC=eYh-&7Pki5-rlmm7FsU2 zs=N@JYu+Q&sd28h(!&Uv@#Eyqzdvmel z>25vEZySWL}{o zkZQ+I1K@6WHZUf1*RH{nd|koG**S+*@wF!8SUqc{$J3wqzlAj%l0s2LbtMnkFR4?; zVyI)fz!6H>0nn^st`u9kYJNG#ql6$3XR?vrRluR7s_iUzsS%&}RT9hq=zUzPr<+h! zUr&O7uhioNQ%OPL_a`;*L*wYJYi!gqq$UfAl0C&h^xvi9MCyNvYYr)7uT zB)Jp<<{ikY5R8UMZwtbss>L9i(=jFXGu-D6J2DGaCb0dOjp>64L;vLkL-9SsE30oy zwK_16VIyRUXyG{%faMK*5x|r0$Qbdf)7sb1Gmc~TQa?J_?RoT`_>0AbH-En2OUAmBDw45ZP(rE}s}@i| z!Ic>J>ZJw|B}sIzy>l^P<>~9;^wy8|0xlxZq`+$c^IArCW+0S;2YW<#pD3df}Gpk;XRG#4JX_e;{-Jc)P zMCgQ_8eroqK@k3Se#)eM>&&;l6${SNL%rKQ42XCP3A>wRbz9HSbD6(indHR83uX|4|>Qxon5?rb}z3v}IREUiK)xY>P-JpLR;;OwM6fJF$DBd%d&5 znML=^Z^i5fhv_li&#to7YiWsHtF3CCOJ>FOz8SRc``wjlZ6qS}rou>@+bz(cc74>L zL|wxzJ#5!*n=j+*P8#)H~`<~BJ6u| zv;(nMU@w}OFhCLEn;^h>B#^4lnTX7~Ah!EY2T@V#Gk*iD0=e385TS=;n0HFn0K$%# zVXbio{wFXynwsW}tvq@1B-nTt@{k!w+d&u216gZg%?)T5@9=CjMRB#@r<-$f29ni0lClb6uS ze|Jq}+yvI^G@{$zbL#XP8R*;~9lNg(ulej8wPpR~;B3{B%h{3~nx zR8_B%Qpr9@jrs9yQ=ojzdo#lr4FC$_-`p|{I>#SBq~Rg@&u{_w2(;D(Kw%GfI*W^M zN_`lwcQ?}!6BFxy%nOnxI6@&sdv*1vQ!R`G16$JSwgRbepX+hL=5k5`MHFoOs}4lq z6V_Gm2X=G>*+IUAY{LAa3v}k#3S1;=#q$)6+8nI831*9Rsz~B?6oZSOU(%6+<+7c#nNC&EZsC}wAdo~Q?RsN)qX7+8_I}y#) zZOcz1H?GCpl=01*@DvpF_+2GrMn@Bs#iz~Lq1@?!WlIgp$mok8QGXc}$(<~-9f&|K zvWJ^qYPx_k-=%oGNY6J)I>Gy)vHIoECMp8JxmHeoX_=|bj3-uNq@B@qIH%i`goB6 zQ(#LLK0`|&nC;vxB&!|QE*K{i5*kj|Al!L(+;x#+tdM6yum*^6F8E zJe+8$3*|J)oQ zJ>L`Q_bBNy4!vPlV{2iav8#PtVqRL*$`?}R9Vy4H9?H%WIyUs@9>m}CnpJ)`_PM_< zKIZ-l=46*epT2=?`f|IS9>u1T+K7WU;?G?-lD8)F7Nylxsn>!AZ^e)J94O}8KyowU zem5#zF4Zums2d5il$LyHeTIr6gE;H%ukdh`qDi7UEhk^$gQTm?`FH$J{5~HRp9l|A zPVU%^9skOSf$Uh=aRIrk;9$ZcAX8G<^!Gox6*xFR&>+{e7LkoaSf$`gsKJ{FO}rrY zg^gm^y2BBlM+v+^VWCwDkQX9CLU7wb>oui}$`EU=PJ&Q$j@5VI4M3O><9|2{px^Ak z@k_0y^9U?zV5@MLUFw4)t;!IX93XfP{t4hdFe%dNq=7HBIe0rU3WOk85?m-Os-)?I zVFyk*ka2c69=6jRueUxs3%N6JWozNtVCc942^97dP%O3re5A9xyV|%{^hof?LCMWz zTKe&Y=2PmV{vB^Ok26cm?3YV%Mm*R0DD`F0T4UD{thXbOl4a%?^^~QITbn(pUi{Ot zDs=iEQGwE=@~pS(^rsrshCDiDWKgG6ZY-ubN}>Q!aAZOfA_Rqm!eG#s!J=~iKz<-l zrLo}bjM8emM+q`)fP|J8 zag(y;)|GSt>Pjy4fxnNV7cn(Aht;Ul=73eSQ(HZ*!z8P43G9O?qH>OdrUCS`D`?Y! zEwHEpY6RzDZS$FPkdFbMHhoeak_J5a;0U5fZjmza&7G|NzQfV`Sn`i{n@}xiayK^0 zZe_-@zd{~oq9l~Q$Yr(j1RA0z{niZ;E&jV3YozZBSw7_FrhETnAo%4mo1c3XY8|k{ z6fxvKE=HL7Q+E|{eKC=Vz3!!Iy~YuvQr5y#7dZ1lbJeEgy)VtQIG3B-UQy&=`PZVG za#l38fjlW4-q#aR{52Yg0;<<5Wx8RyTl6*zK{*T)!`h)8mBFGiAHDRR;)Hd*6p9~& z_XVlRB1KIa2N|ElotAoDfZb?yNr{YrYE!P#v z(!7c-jKR_=4e!y{)Fb`bK7&y?vIeOEa@f;4Ipm;jAQxK+o*G#`Z zvz;e@?(vBSWEzL2jjZ`ttlXyD-VqNd7g2jJrJv6UIcGl+60GFcv($!(!m^3tzt?5f zS<9_6``K0f=FrP2*xy2u{~mj4y06)SMXBjrv=fYW21^7~T@3MqFbYr(2bhGGmu(c; z78(XEf#ie)A;1ta2M8d3w4u8Bj!$q>A263hldWPM@E)KM3DI9 z=yBTIMw^x_LzpHl8Cxy@RB6uoBg71V4b400fH-dIHcAT6Z8ZQVjv>{iotysO0id^9 z8Y1pdL(L3@ zl?;9t_VQz|+|k%$tQL}8=R>Q>@t%2c-hb$Lc-Ef~;lD6?;=?UYs~|&)x*<3v^1KR_ zb>^E1js5=6jX^aXkK5GWq|eK9VA3MO#j^V9wp1&T9Yq#_(nhBSNUU~4;?olmlMW>s z>YtHY78Sa=KO?lFgpp5|rA2198Gp7HyhWIPeDOhPT{voLw^hvI3;AONW|P0fnwP4y zAecZn_O|Q`Z$_tvk0d(9($9!)Ma6M9-%flOi5Bc4Vx#!zOVwGVMkPZv{K~ewOvEXX z_H9p63;`*Z0Ri&qGuwARNfgCA*qE@Q%=bnztNp+4O$+ z>(ZW{_HGSs-Lp)P;5qWebsmL4m*Unol)>2(Y7(!st`6JbuMr~cW%aCX7Z{zh*{(D> zpXSi|LndGLE$oOd_Y<4&i2Tj)EK{CVr8#ZAFBOVuK`jmEmw|ybRhta6l@q9;9khHDqP1~&l4UYDR&2)vVE35v!7N(6TCnA=7ZEaV@^UwG=mo+HzG%-U>$$78Cu4Z9Fu|&*P z*Ja`?Yqd6SHdpJq`N*jeJ!UL^^*UHDG;*)D5B-P}tlEjNq>WZsz!6{?ser32FE<&3 z!T}I005&lGB*d6Cd$Na^fL-V#_H?azGBMBr@^1zY-zRy9+&}_)#0yzmsuR0|F zpHLVaoHZ+`li=9TmaBk6Lg@bYv9X*ubDg}xB}@Lok>zrZ9WPNlM;l1*bG)}OyRmCy zc#u+9sDOj+BanVVM+kl(I9SdC<2k;hha}wD&(&3i?P?70!Qk3WbQZ%mt2N2>h;q}# zeP3O;yxT}-%F+6^x;ih~{N&xi>RNP$f3Du4!S`oZ42K^yFQ1<(l|bmLJ-_%A*-Q_E zo4A+9Ve{=qV}@$e0Jj|}?Kot=@Hy=U2EmA&^WGdp|l6+)7%GDC6;$zH$na)0jcU%$^k zpYHqd=vKV1*ZXxI=W#rb?w7B?{nb9Oe*cMQlOR4udk-GMgw12W^SZg6xd^Vr*P>9B zPTSj8Hs0iShleS!g)(SesxPS^m>*!MDO%JmY}u0O#=evqfYJ3BN$S{=FvTdgrG_*f zc}<5&=zDEkub0l*g%Bxx9ph&-h&6-`-$a;$$>i~s^YmEzd0BUG%wjDQwX)ZgpO2A> z35LWalngs0L;PAUEgQEIYwA6HEBb5FOp#Ofg{h4xH2*qERghdS zxPJV?{5)4jI4<5h@N?dwUKdivRuR%mz+j+Qf(N;wA%y`KIwL*;01MQ4_*{VG zz|e2Qw}UR<(Mi-m@8-4NDnnf8ai*{~8(Cm9%*Rj(_q?{Tf)UvXT^0#)U@wF#2tQRT zh-G0t{;?+7cx+6cfxUa%;JH8Px>y>6meVfPirAT0pqD;S1Q*sHy;bSW5v70Ke2 zxqbM{m#uGK>7~f~!Wj-=-VMIq`k4(g?Y$rUB=7@u7#_U>E(_$vSunVKb_1YV7srCX z1oE);9O674EoY!tEl>ij6N<|MqUXwJPM9;kH8gFX9PU5`gH=tm{(D=`v4ZnwJA*lu z$HiFZQ9)BTKDQE0ut!fVQJ)Z8c3?ITW55cb#UiBYn5%#M;v5SxDR@#~z2J{UO81Rm z2uDMKHLOsGh&Q1i;X{PfOw7EGM<#71<`=6DWoc=b4RzG=e1V+RVl1)k`ZjU>bsQCm z;%i)y?}j%%UHR3AJE1}+8;5#N(A|#k!^UoR$HXyYJiEkv8SydNy8_qGughvCQ&COo zEuvEFP2nNcr|u{6m*}XhG;qYkD~1G$)zuO2NQ0Q^!u&MKCB)7B2`j?XcF0b!U$xPa zJ{@-N^`q?;aERo7vPxyF`>L%Q2wXoUJ1NdAYTgH%J^SKOEyuu)`Sj{_zIyH#-4av8 zsBvY^$k+u{dfuA)A3@zwg)1Z~-*!4U$W4(WcjQ!xGVI~SRUI}@%;{On|5!A9Vu{OFhtr7y$oH99>M1_lN^y{rkLv`B!LXlTss z3uO@I#eau+1BzZQMrBax%SuYH#UWyV@kX_fHc;mEt1(zw02&^^D!!F3%r8E^s&bSO zm(a-n-bpZ5>>p?Oo;4Uz(D2ECUd}+Qz8ui;^{eJv zWdQJle1L#r?F*#Mh1W4XJ^dZP>iQqicz08fU@w3zb8M}8W`h<9=NfuIgI0}luuTju zm;0WA&tayPC9g&&LNyeH>8DzlYdJkI0G1Ug5K28-sPoiSAaMn0Pg1E1pr+IC5}Nbqc+?*rcqt^#Tw{YwMobZ04**25wD z&}@DR0tDbs_m58@fNr9__jhfq+_1UgAtl66fKBwg=?VgFG(b_#+_qxZIFHw<6p*3kxwyM2slKq^Ck~KHOUt#AJ9E8Ip4&=y`}c zE{(p>9an6m`ImO)jE`z6Vp0LaNwQ7)TLB++7(xTX1QVp#K9VSJ`Ne7aQX(+?)U)VP zE0Tl9tW4J07jAPSGCpjPU`O*UQBhz~ec|#~NHq#2&b?=kBTBA$ca1#_mK3wWXZ_YhqwmG)RV2{)H1GiWd$6zf8<=k#= z2e6;R5r^d`#WOG?#OA^{Up{enaC&xD`u?Q=a8kcsN>-g-bAiug)f7V@LaboS=)Qil z8xi(P=Fk_vzb&L=AzCY1TJDBs8&SYLH)Ls&cL?k~plONeyZ+||KuN@Z26f-KfL=c1_W)JERaDHL*+k}MKQ+<8z-ivQ9d?6LmHFQ_UzlT9X8{dCA;u{oH zG?UwbH`H8v@1H5KWQxefR`g~;I{)A_{2L_8XYUC|SDliAvwt+}NnL&r zMk`Ca_ERrF(K_BSrRyVpQKFUk!mme+8vFUhW_6*KR}@rfgWB0ws&N zdL7uvkp5O7+?Q&T1o?DWwm)3OBgRt+Rr{fp`|eSuD)YVW>@0?wyouWxxtDgXA=;^2 zFlEx{5QMLr?m?Bbk3Ubh016u^PCp#@Ztv9iq19vAP|iozv*pT4#4-Y_4~4C(rtf85 ztIwxrA$?4%ec3OPo-|>L?7{C>9`BGE7RR#LcSsWQ*nf)1BZU(s?>t-FGpkeirE{eD z>uR@5#iEkDHyLBm(k(rFve95xLTss|2CaGCJ%gutx-*^2>&s^zHAxGlHJVhxcJV0B z!_w@EDb~HAzbb6y)*9{(Et+=;h{(*B9?&m(?ha^;)=BT)=`MUazNmby=uYBsi}8DL zOWXhyzaOWx#1&Kg8gXLt4?H2Jcy#_M#Kw+F*F>m$T@p=|?nY!yxfI~hA_`V$Q7`_qAyza1qJb7E8>=h_jexNXU_`95 z_1yegwzoO^?PazTuc`DlV|t(Cw>6iUZ@n$dbLvXVZ0E`fC!S} zn2R3tV6^DlgHY#~e!Ra4(60aS>Qm*>lPJeD-cO&_h!>RAM#WFxUA4yR3aPhEK8)pTA)hS7^5=&J>-7TSkN*nGJDA6P5(EsQ6Z(<1(ZA}f0#AV2pDKL@9u{3PMjUgQHPEfuDyF#lP znv?mWT3|W@%C>f5 ze#jG@^*#&k%`JYFQ`ut0CUIxEOAC@4ikz6B>5 z8&LkQBZR$=;#GA@HK9TXHWTS;a#d_Ib8~$Z5C3-`7zy}4^>Et_z7oV|*#=oj@zCwT z?8wgFzwJ=iAcUa5?Mslzg~+bS6!(@s>Ec~+EnVH?rbzWfHSzAc@gqmh%YLRe%+hhG z);6T=`_Gq8Ob4zTA`)@52VQn@#F`7W;ohgt^jfzL+r$#{_hX8tizLD%Q0*3YB_@e0 zRk?}J@`!bO@zR760a8JBfpye!I=SMHAXA(~E`Q!f1WskL^QfXLQ+iH)1WpC5+cm1( zlXscB9rx75)1<$Ad8zPEt|mh~7bX<~;|;@7$452O5^_qG%cXu=y=+g4;yJ|^b;3vj zE5k<;Rce?W#C9u%>#`SF1q@nsbPKa5T!HG3IJv>>+>406-hpJnxN7>5OZw#Y8(!MC ze?|nG5bZhit6L0>cO38#Qg-26B?Iygg}eM%oB5@f7+fzumRBgfecnf=Q<&I8aP#Hg zcBLrmdShuqQ(K*ndpJV!QZxz)%FfEh17e|1o5sJ5Fg5*C_`0RQ+%qEEdS*gAKYgZ7 zvCT&2o{EX<5?@$SZPXQ``99XA4_Br7CV0r^zH_s!9(YV$2?-8V$bVlU_te*0RES-p z7THi)nnL;I^By-fU#^GRjQ_H;Z0U=iPbu|wuiR34q`J{QC=vBDh~a&N^i33EByf-J zHTT`ue_5HohIY{+HKo{06Retyt$<4OBOU!lgAQILbW1E2V%5vq8sY-HgO#wggI&9Z zhQMkdYQj}M59BTIQNCQ_2U1kSQ(_4K8klfH+B)A7ScyEnI;DwdQZuylK%JkRjZHHU z=6!u>o_({c!!UgD;=U{hm1JR3{+p|mdl+-R@atep!IdX8r0f^&&T)Xe^%{J% z;4{mUIn*3>ZJ$>e>;OQaL(pHKG8AkU#CaA|2KQif5pd17jJ(4{qvggXqb| zYrkm@%zGN+0IoOMl=}Fbfh){780A2CexJ!~G{6@_S0v*=R&L&W`i2vk-P@ulcC(0@ zqGy-$5`TNJYcTh^xrj=URxwzYjK7nia;0awqa(go`pM#5Q@M}nQic#;Ettr0#FK~2 zfC&j;7NkFetUoO~Ip~QG#8Z zplj6P3%VT#4m`LJps>ey!4`r>c$sP^<`*)^hI55GqL-NfiUEr#U~@PLxO&GaVcHnA zFbuC^>!P?UZm12l27&*3?`M(xHx5`pu2iSg=THCbU?VCjDnz@RFl6N$UDp#CWMKm_ z#@h>P(pp<`wqlhs;qbMd!-gu&r`k?^`;0uN`(OFyJj{Hovy!3@W_mNZ-upgY8#3lt zCh%Dax*u$yp7s00jMBAiggi| zm?N{(l(_sYc5Up3CISfByi1(7dNgbMy6c(i6TWE8Pv~k5RW@pv?7Sl`h`|)rv3-rC z9YU_a;g0MtQl%q6u+5AGeKM7LNJ8-{Z-^`O4&!L`lAH?LPk+kXP)V-E zK_RZiMjKd{38PKLa80f|v~_x852RyVZVP38IIw$pm(X~Nd^Yko*F43`Zc|Dj3i0lT zNp6?M6ilwwFJ@b0VSDx@8D;mfr(7O0Q{gmMQBw)k&M{WFtM)$0g7xvva`F+&toGpp=yE6B9WxSR2Np@oRSrzM8#f>#4RJxn%# z8gKE9Rq1*d)xiM6%;)$->;3F%(#*3%kCBNaZN(#G4V3f`<_)%YD9b~Kn zh&Te<3#jerdL^sW{35G1^g|UG{k$oH3&u(C2aK(OMe#9M?LgqFwS|H`tC|6{I}w&p z4tf)u;Sk84+m{EG-{L;VjNX87fjfc<>FN$V)kwN6LzY=IuZX49GvOcMfJ)Q`Z`)Z-Zb%$9NcWTb+nqN7M&?GMCz4qByknd5gKU*QEtZhF0r*0T}wFp#Le1x&$XMIYZc?} zlHql7*SnZyN$Mm9Y83(v=>>QOlk(%r)uF=gIc8asV3P-CDiQRQ0ul(yY5i*{T!ui? zgayo+3mk)B#mxQ*dY?Znubr|StUY0j(VGBF#@s>g{opPmDCeu23Fw&rTB^J33!%r_S^#OmS!zVlicWljZw%kxP&?6f21bm~Y&b1Y66kPM@ytfP zCA`~l#Qm}W=IBVp(+k8XvM_`)GwEmEym%=2)GW@kywS@)$ld1%|Giar*rh=E1&Fp4 zwoT(!|A_)4A^%+hc!v*1M~NhuL$hg-p!`x5sI%gTi?P6X0v9Y#&n9$hDQq~#tu~ZB zDzvD0(}K+C6vt>I^`V#3esf%TlZJP5TJ}Jw=ZR5r=M`W@o?j-W4LdeS#VQd#jUnA3 zz;G}OR10Pfi1(v#>{iZ2JjV$aOEnD@D5$_dDns_Ao~^f0DvZFBLe(%mpn)C`w2s~% zF+R6AYsdB!NAwJ^Z71%Anl;F%IrQ>lgkjLmw_|A0tBL`U^ruHE?;sCxm)tYP!Ft=N zJufD!D}#zI35`&drK^*v@KCA~@#$T{Qu5VZ@fNlU(gh>Tn7}x02@4D*#v;titK(3aM~J28~>J;iZ|Q-S;g&>l5(vwx)O44TZ(yShhSJIXypxq^4m9#AtD?W z_DOfBZZC0?FmelJH0Omp<2f16iz}VL)O*~yrAjyJ(C|z?IN?L+v_poq#^z70#Gg{J z_1WJr%cMKxWra{Uzmx1dk2ncE)lECzj4Ym-@>!KXM;JYCyt^?eZZE-jy?<`1aX-&k zfH78izBqF&9(#0*ILK&jPc4<3@mOW6S#{(W(v}(L(!v`(Zki(U^;2gkA8;O2% zK5qhjU2o#_Y`?7y!~syZ+khH)U=CY5valdpWX>q_U}Zo67TQn`mqXw))q=^&^XfAN zq=2w6m=x(4WL0Z)M1+N5DfKuOcrDkU)2xcknv+5+v4?^ulpA3({e$@IIwD$Op!qfN zGJ|G&?LQOcwliPvZOqTl|2S|nH;0G-%$^9yXCppY@WS40?JxRui;1qyo`s4#7*1if z*gOUks)WiH8u}>90UvTKlf0iwNcjwPArF$(ADQl!C-%m)Gmxjeqvp+AjTaYp$G0-;36XW7Jp-57L}$`h5)# zr_Yh%87N@jSjb#mYXpcLpuHhF1b&;kndNjqW0h(G3xV#($q9I{nL{t|ZYbEEkV+k* zJ=@`-rF9-mK2imPuXt;CJvgGYO0aqfLFucR2%w^qBoD>IsiR9n#JIn z2E0waB?=oRF_rj>{2I16a5$f`|KH6&>c0;?`|#nyf>H4}SfvLmFBUnC-`VMY9M7GD z@Bn88Wb{SB@;W;U3UR*Wuo+M9B&;dm%L8tbJqcEjXJ+dZX>Hqb?v@|VcmHAj!SYR6 z?ZC=?N9Z@q04K)B&kp{~b@|GqIG_H|+dZfX-7L6nLK=h3e>ojvk@*_GqTeMJEM?(H zB8DU4Tip_DOqUR-VlmD|*RVCd#$TZn&Ic@(vmfyW39Jhro&TL!i!^=yV+e6gu6K=| zllSYhb__p9837|%X(ZuN`=^9Zaoa3QZlw}x@f2wk`Eo@@JONj@Ru!AUh`)5h`}eTW zej#A1SsF-Ad2I?`b>#7&t%|Au4UY2^A8`YX0bfEVuggquI_F=lQ?Gv>gml%6mt-KH zI0vr~6l&*C^3cxtyb{h&HW{!UD0=B{R`rpwMVTr|IgBX8Os)cD>V~m%J8>tQR>fL# zLTGL_<4mMU`PpJv=5>l@!743rt&CI&c@4cqAy3_@-4e>ojGU?#Q ztjOuB1geEX~i;4pxGd zhJxVe^b8X3fM>`OcE`N`A>!f!0qclNpFg)$bVBm()W=jH>Hf6L3Ndyx@UCh-S@mmc zoxS2^pfL`)A@{sCdEc7NGsCu{p#_Kf#zsLZLKtdEr9kz;(#D+Gx0e-g^WrEkf>g&vFvPOiTdm z79GQYH6dK@AVm*Kq(84BC^1y8TJe0^+(hmkTX4^}FPOJlS@qQ7v7am+ADG5cqo!c1QMgSVg44^C8g*ePK53JZ;~Al>?SewKd2le9E{tmlV20s>31kR z(oAu7^Lc-C_}xGPaa>hEMSEp1P${~-utIN)OP8>U6hVP-xK#O?jpNQ5!)pmW>2#hH zP7v-s-h8V`Kc1bO_l;0Zihd*2AH~b+6w4VF@8SHljEF`?Px&HE`aWVdn;p@`KRynYjQ;hkmB%^GW9z{OGbT$csiQlEU zbR_fXniCc!QF6(lPE+!gk!i_JYaew>){gM=_oCldsvPd%-+sE>xbn;LRLMrM*0knF zrq>J85%&nZ#R@iDm3U2FI@51M&joPwu5jsKpAC9wr=$g6`(Aq>BrmjZVzd(JnxZ|X z-C2ZmZ>M`k@5fM7(=o3cua2Fg-$plATb+L^Ve6kM340N$!j>PTiz}G zsQ1AE>tP+a$;@KUet+9bO12_>gQ$p5GJX};JYGt+<$R>vK+Gr3ua1(d6NAdtJz`N^ zxs$w{(w4D7Y6YJ@&59h4#Jr4UcpDEVpTTjB!9%2;o}LD40(5Eu#ukPu(<#U@KzbB# zZGAMpUXY&#v&F~`YzfdMSpa^fj-rf^E*RTJ*IoVf5CMV18~g(3R!o~2;I9BSvp`LS z6oMiD^a9|ecw7PrTLJj%0fZCkxCZ}t&v6pyO>5D@Vr7(xv?&P@_*A%(T#ccyb3kCXW038)VIz8{@NL(og7bB$ zF%W?=V*Ij1;)Nd^KB`DK$RQB2YyoVSUX6yoVimMBi>P@2fM7LfWYZ1{ahbnJ_pC(hV5Nb`{1izk3t$UL-ZOBu@+}7Rn3gsO0IE~j9B$#vz0lfk`+Ji9!aQPV54}1 zJIbA#mA{C2Y@bl6D|-0pF{>Q~dEjvK(e)11A;YoZYzKcLPY-<7d>@AS-GqwooiW<` zSYJXjoDK66ya1t1CZ=JZ~2Z9YQA|-08 zR;@aE;>eI9lc&R1@|(34`wB;hGeflf=zSilE>Cb6w4I+FcP)Hs0gG^%<#gJ8dl(r_ zwP7eQ3s;eY1^3~hz$z62nxM0pi^i?c?^-|;biJRlf$k3AtIpJx0Tq@Jop}VeV9ui` zg)wYDaQ13z#xg(|o@ybyq2N&>kx9(oB(M(-CSAY7`|~2}1P)gT z8L-LH27;2-n_RXI8E(gPcz6$5%b5q@zYiGZGXvQNp$%?#$#KN)c@4ar_+Ts|h=Gmt z8K_l|`1O*6Y&~e%q>OU#?NAJ%Y_t`lx1i2XQw=%Ex6+CW(|Yr4rpb%^GVBHB_8U!0 z#T9IW|K6JXX&r{)mAJ&;3j2xFeDpo)891Kx9taEbDvs?mgD$C5K+?AjD^J+OdF}(r z0MramPu;|2S|k`V`j)mgX6mZgnwpyd)&z}r1!G&iP7U#=_YH3+nqFf$-Bv)@BD!jr}TO1{+q7LQ0%T9T!AP#62uQd(}JP;7L zz^*{Ap?juzDpS+w#&eMoEX0KCJ;i|kL_nJVL_nAL&p>Xt`ru>>xZK=yCXn6)PZ;>W zx+r{|&W;v(^%G5p%+z8TF6uEp^OmZ!!qtzTN)w&I)V+Sx7xwk)gd;~KQ^myFR3@48 zJh!dN^FJf|%zH#wgl+A7KjdZnx*pRV$b(MLue)#K*ExmXOQ-qE$uLxVfb&f}NvIe? znme568C9O2n*X(6iC8+rUQDlrwY|_LefJk&pl_-nrqK2!Ka!@`f7H2W?6wo4>R zxe!tPKHLiLEBB_v6I=-yo?NzV{#7kb1b%7J=Iw0yOR}lI@c#JM=YJ&6{Pl==$gP-F zCA=7i>$q()V3T6z&oSpephv$rYFN#j@l4U5_2k)^ZuOp-WYLLNkWqh>I~j7bM~nbj zdH(t(HWKr8WQkaC&ZHk!vfLM{qRG&QA;kT8iGzAhFAS!>r#x9{DSWZAH>+gd_75RT z7y-j%v`GqTWR(P)=X)G>CpUAUQ)z38JYN3n{y!nV-xr!>5{=378HTUcY!3w9cVFt* zVYHo$VhTD4_conX9qgC&dt~XcYxDO_y1c94=kV)&w}hjd{1K5Ep|^v_1jwldE^B+r*{n`qJMMS%a^8^YvwOUn_0&KkyOT2i zg~*MFA{FUH!n5`BKXJmvuF0bXPFV+eO>L1(WokC|!gXANYu=8h!?)>a-uXD3s;5!i zq<&8#%y%gXzqopefH}i-gl~rOKQF*R=072$7W2PeF4aA{%SJ2rpkd7eWjfO0ZD}`+WJtx{DyZ z^T4SOO%?+QcL=(2$1D*t48)118R_Y8Lxx6hxjd@A4srlME}2z9`-0E&=ZXC$!y_X& z5I%v~?onLy014_ze=Y~@gC^mx|rfI`xw;k(_{Pd^nV#!{-;9SAfLhjgz#I6pMd zDv9FMHVR`i#+c_8$VOmrA~A5@Ads|~X8wK{^(6I;3<1)N`cJ>uK3++fol=$^;C&NQ zpQ{*7s+-AQrKS0n)Mi+=Ax)LXoT3*k*;#L(vBh&^3qJ+8{y(M$;nsBXi<` zmVl;JKut(M$3>gO?Llsd549U^!hpKx>J>+A2|osa9N??lgO;3w-?LokJkn6{^E{3CNm+ zJ5OT!a{&-uQBy@ng!xmiMQD8GiP|!0Yyj;CfsfS62ZVdKI_%#fS}{6~nGu+8w))KE zb$^bP0%!5VHBUHw#R>lcY; z!?fqvD&A5>lE;u z#ysA9Zz482uC%_LH<-jw@xk#aeCX;%b`E!EiLXJ7euaEJ*H?QzI@&3WV zL0*zR5Q$YtC1ixDALpsUi|8Q|KE-V8>;skIs6}@lPKu{sY~&1whmbmIe}Dh(AUDA? z(5Zn7Syo0Lm`x6PdyNk8mR~52<;HttzT!YhTnYf)n};ArnHh3Eu(Jq6b#X2`9YU!D zw6K(UF7;l4io+enyt#EfUAvJFOc z1j4Rtc2dVg3FFC?oJ-r##S3VQhO(yW zYS00=Zvej=OiW@hAM!*lffW=ynYQG3K^DAt2-pc+aJT{WG`O5SYSHjCvd0+kIDBcq z%|N&DXlZFFYb2mz6`0`Pie}M7NP`kd3Q$jYUJAyb)(*W@1|S9-nRVR^#WN)O3}7Zb z;xVGVI1fGf|g^HED1$_MMcu|F&-@-?^J00v+L2i34K{Aq-urg=mHUFUia~# z4v~Ztw#=aIx4XV%qWG9r;`dqxP4$Wp!73nG-A!Z^{lgNpDI?rT+Arpc?T27)zKWrY zz!n4dFXkJ>(EuN2bmZPs|H%d}IroNJ;hcYNhBHs%JV5$^Ec36l8IdS;$8>+zIWQAj&}pmdx6?TxNI z%sBoJ%5v#mY)$61gP{~Df|pZPE=792JbA4t`XFW1o+GjCOW{JwDy123o`W!}kQKu- zm&TpM{kQ3#Z#`@!(eq({*Hfxw9a%iy^HnmI^#SJ_{3kCo8Ds^8g}uNgaI>$$X?dWt zQ=(2ci}I_BPSf)Zo$?o%TG|+XPy$=@3y7Yu9Gh5&?8)Z*=J|v4Ik`>JzX2q6Leq2h zB!QN@l?^O{Dsnol@ga;>W9bpY>IH*aoZ~gy&C0{nGposr^c)|E7};-!x030-rlFw$ zv8{_!T|){z0_WxBbr_1)hVA>GC$$)$g^R<^~ zo6|D%;j!13$s;S+*7vGLZqm@mGg?lTZMwB3k&)kcp&yaZHnPeg|0^`#5=2i}kp2BE z4~1?<$!1VC!4s$~n2~7O01%}r?JiC-a&l<3gtZ|oF(9Q0#?ZI=<>XO)*Mqmc=bZHd zw>KYWvAxHkc62ZbIAjcq!SKVi!4_LcLm`6fv$sUAI);lmIb|Z~*aRr4Wz9M}QwP&n zHTYjRkpsea|l`w zdUObrq)*LgL?F(? z-01*?K8ql^2d1BCgfj`JNYo8-r8ZQVhU7Wy$DO4v$bE+&XEg_4FKHrOq&T?bU z?tk#5RHSGp+npB*R}7ew&Qc)xowH(&#pJdLZDB=6=-8;aCBlAz|+J`^1 z=6La)I9Va>IK89I@vCZqBBA^!DvtFUobT#dL(5a`Ns5C}@@D43=6RxdVl1XO3FJ#8 zsSBsi#`E3wK0R67WiLe9_}Y;2tg|FgQYRCT zeG@#Izdl9S$;?H(+A z5}AL@c(|nV>ACG=m0q=5GWk;0>Jg^Fy(X6a`SekfQ#CRr)(T|Aok!7M8-Ioq4utT_ z4Q{j>Xcgm`eK)*r{QMPUD8CgX6Wt2U;`r?OYxl$9D~$|NyFSdHAh zaf@T!-n;0CYp_yy1dQjIt9RMisc+tdN_i2azX|vCupV&znQH&5Nw;odA?Qqi4qZGB z%2?aMVi@4nPEOK|l0m*wEd;k+U1jB>dnQ2ALEKgtg8>_YcibsY8(l)sUS{ya1JO(> z2KDE&Jcl9^iImE(T|xAsZyAhlzae&?GdejvO&>^l=USb1TBK6rj=KHki=1DSA}!T5 zG55C(AluVP0kzWzF?a=|*`u~TFHNWP%b$SpcjI}X`X6s!AT=SNU~_5;0~q(9tisBV z{A8N^&Jp8Zh7MES2|mB`v%`_7xXAhIOp(~sc@(n&2xfQ+H}N?GywgzJzZFP&-0n3j z3Q*58cX7TXcTu|RgHpH=aMivS($(3cKL zWEMcXTfK&6&TtBW^HK2;o!J>2}=c2^%-H-UHim9E#4^w77lC2TL4 z@vBjkig0G*IeiS&hf+L)M2Vj&EJo^PHg-M05Gj~p#tj)JHP!^<3JM7%;-bk0d>t1r ze!QTw5{iE>0e_#|?B$13`ceSo(Q0dxE7@_ETe-n($;p(7fe?)m=EFq3 zHb=bi^Y7;_Sr2vVZ2VI7{_ZftCB+q97DCQ!eUzbsuqR&0jU^9r+x+C*WTYsCsY#@u zH)F-u-`4%f{287^`ZjA^Du%`<*L$NC|Fq_~GA({Y##Y|vdMCs5S``K`ObLQ)Qf34y zu-Q-UsKAT&*(pxkd1F*x+}nX1lNk|tCbQ}K*u<|n#?_+lq@?UhD0@C+OV4nr=P8*? zZw?VybG3fNa}gyX*`DHellXS0(H7TEgV|TgepV^BU_(<}$E|dBD zuHJzj$i4?>j(v{MQsAyn+9RLD4!(bQTRSzRLzXQ>61uPT^$GoH6Xal~yDB<+5^!*H zUpXl;VcRSH&JW#`sVmhkJNty^c|z(qN+D90o^Ypss7N-79qrJ*s(IjlQ|OCz4p)W}fPXVUVLS9HW5z=$6sT!v09ycR5p3ZJ^yH@k9TJ`q z@DIVC>3T4<%}@j{@DJB+z}0-Zc8K#Mz)~(sZ_6gu0mP~S2`L}|R!zYMA>R^SdG~>v z)*C?yJT|n0LA5a6R2%380Ud_CH-Lq%z!axih>gTRI8K-L-hAv!h3nEjKV(I;ueAP- zKCkcA-=zvkB3Pq~(t#TZuw-yV+3QVzRv4;Gw5Ww}HU+8)TR77;j^3NYA+oM>Lcc%=Ol(($fj}k+y=n8k)+pnc*D_2Q!2VU=UChyb-}4*+l`}!(+TzqTT}+ zH~wWOVK}LHx;SlSG)bWmwBH0|V+L8UHCD1^Lg$4sYeJD`G0?Cp*;GhHpxE-D)fcv& z_4N?+`ag}}<^ME-Ih>~xa1OxVtrz&4a1j8o4R=a9`o4z^-*+E2GO$25Jhi(Rk4|oF zAFOh746Qm3R#r~gICStThC4D4Z+iouyY1*#v2Op5(DX@T;@UfBOr}ipoiBn7PBxxk zw4-qPtLJrv_m?}j<$Z)cOTy{UaSZpe{e~|O97?0So`+c|DCqMXwl@5g>RraA#t`p@ z82hc*#|%7V6F2Qwc3&DkRLWzP{dg&pUF$>WfX}?A4+3PKEoLLHp-%xp1eqx%41Y3d zn2F=W1n<4L+qM5P!m%>1$;u?>YkFjZ3}4)e;lPga(5 zoQRz1k{ZTAv*(oAzE^$_W@}2+65@|uLxC$X_XPFh(7ZED4)>S5e2+e`?BVd)KKd-@;hJJP1&{;x}Nb(I?+m*n`hSM)?!bKv+-+ScDIP4hSOPZN^v5r1{6TvG$bUk85f^URN*cH>+ z)-<)u2X_8PN+eg*ah9_0o2oz_H-DcLL@?RKQf`&(>q z3Vkfl9+9Wo@2Zz*%GEn$=IrRW4J&$|g&=aUR2g!<8@Fu4 zw+UY=u(`5v8l;P0NMeVI?RHdU}uhV>*SB{9klm{s+g5FHE{?mIpFL12BM59F7-JEM(daNIi}}Z`qRQG3*Q~~B$y=n98ni4A@kqWF0l)h z@a-mM*TNR`+=4F!A0Pj_-9#mulnQrBxa|x76yIiYmMxKPNG@+!sQ=}uQrdm3Y@ML93*{xDL$El;bk7JfPdzz zAYWC$i;0ALfgj@Ca*phqjI|xT^X{$hK_1IrzYmJNdrca1YayXSpwsK~E3dQ_NziE-w zNTWWfZRBW)UjYv_R`MoWpPy>c{)pm7*>nt21PX^X83EHE$Q8^8+Bbe;oDcj?ut|`F z&b*y*6_`vCvG--&*Svg$$MPDKmhi5R4~{NkjCWHMMowP-fLc=F<_>nG6UgG)9?;d_ z_nc|*;agO?5oXoA@XJ!;Im?7#ikBW^LhEsm)j&#ebLd9BNimTnr%T`DwLdY=8LQkS z!tcqKzs7y|(<&M@x3zhGv~czG@5m3*-5lZb<*T!i$%bDthi%a(oTrB$GJ&a&Dktx)&6RzsKQGOYb6F~p z29L256~yrM(HHN%;o->j##&o+5Xk$87v_4w42id5NO7bTJyD-ynSKlO)f04qv#>%- zA#oY@hovPY(9}9Kq=*3VE^-O@KHzdwAqDRaG`zd&sen#R64nET2Ys(?XiKxAkS^5( zJ0pzDTU+ndS)ukv_rAS~90=Lq>3hOTHP#T5%3Os>8VY1ac1*OTk>KOyvg5rGBI&OR5g>^8(;{J=*b2+{vn;H) zX@p)vfvEg1bu!qTg9n!ovJgI5vi5{5 z1wJpL8#N(l2p{qe@@#U*T}@4;&>|t>nYauJ1olhIR2cE~babpB$*hV?_xE6X3GP!i zeE5hF;T^b>^qWsmn^tKD8=+Ip{X5MIL5E($mB6uf)w_?x3SQ(%)$NKW`>;p0 zGYX?*k8zL$U4on=RbQnIQyj#W|NWSM%DRe$RtE8cTJh0|{? zxPrc3g8BnLVGWJd9k5k{xO@Iu@9^8yl0pA-ci(E^`3uYi@~uZpYjt%l^8i3_Tm(}T zR=O%;c~TF%L0_IrijECGux`1Gp?vUo)%Wa|=*e2`+(7GDzcb$E80PWd^g;vAo+Sby zitRUl-*<7jw7_~X97k;4=&Q__rGHdjRGFUn(RpA;JNHiRDx;9)UFH|%EvL8{mUvAC~_p?d< z(DL+Q3Nw4b{}HJj;G3SvF!%7`220Gwf=e+fO5pqElCeEG_hP;MRlT8`iC_Nd@Jb9j zk{@5JxY-=stMjZqH~Y8SN?*Lp{LhBmFLCikT`c%V31`{DTV{Amuy z?OP)wj@v=YIYwE7c!>58Dw2+>S!_i9_ll%lEV0&Ar%>7#T5YK7w+8z=K#h=60l^y{ z=kJq~wB!^Zt)0W00bR<3O^5WCcDk%7k~Wt0qT>( zOO&y;W}!OhN5DWjH~>S9-ULaAq%gJb-=9!h3HAm6KPL^sjk@vodU=}?nyI7vq&B}v z=SQUsy<~L4Cd`K!sVEL>nzE{-d2~yX@zhHD?twj^^r!z1Ar@{ z8A@^e486%l$>3bPkVw9)xxg!xJLRu84V{aZmoU2AIcC*8n;8}gAP~0WghN(23aH5N z)`p-aYXWp`jjb^dhsfnQ!IG`Al0I~CZOsyjeMupF*z+cYDJL{r@?FN3A)sa$HCeNR}Cx(EHMQ_=A@{IZ4g$* zA(9ef)n20K{XZ6yjw5`(Ht%$;$R*m<#F$w_153UcX)-s=@N=JT6;MronaQ z`xT$JW>H(T%Z$i!7Y%j>G+n5&>$v%>wllO&V zuADQFpvqaWWHz)kndX4NQEjNMH|@?7eV@bS)hu6Fvu*x8eqVK3Q?*3Xdi3%0=g(_v zg(L|nkG(jvWKe#uml^|9a-*$J2F$HCYh>>~EhEL8P2~Eoo_kq15nCKu31c^yo+o7Fi3tm>) z*tOcd{0Em%?R8y8VO%@rms_i9cH3H=H?RKEwN-jtpzia{GrJe|*Qn+wOj<;S9EG28 z_OxyNCxM&HxR#Td`FC)wSELthc(19b5l!p?@l`NuL?{C`V6Z?PV$!A79R3V@!i9=ZsMP!NE)z!V3`CcJ?^`*Kz;8|LeN1uKT*WuX7up&-?uv&*$Tr zRYV)O@yTAsz<_XWxh0QeKWDFXJn-Bh83$f(X`$WJh`2=WmH-S!DjDcPIsW2@>eb)^GFe%v!C)Av69$e<4(!r|6VW+R=p|g zXP!9Cp8L*~e&RHl^f44tn|%4DXd^P1LiRzEACDO+63vR+of7y%wWJpD9HD5+zm$LP zQ-nn2iG{w77fW>W30FHlbSF9JUC8`XLcg3cDDE8d-S#d0l)Gbgl8Q!Txryehq9=?D z+PWUKhq-hCN#f_^NW$$^J%wJ3h8{GFz7NKn5l`iDilf@t=#4o1sc7i>p}QwzU(44M zLMuP1xXN708uzm@4q&rX9ZpI)lRf-*X~T5vn>YMMrI<|}#i+INdj{fzJZ#-9EiH+` z#*47|sjU2*5~WoR+vXj-%!-3R(4Ye&ap&umdQSM2i`4mm*IKDk68y>0w~_-lqO)SR zC+FsM0>q|p0;iwdlGyAQ^gkG4__!Rmg^4ql`on1?!7SwGTl*NbFZ)QPmQK~Cukp3J z<(Erq)j1790kdaI=pc>0|LvWC@p$|cxR9_YIkZX8!A3>~6W$dRfgqjZgjn_Xc!{_Z zA*`vY$_bzx(bZkt+WVht7!Hk*ieqvho<~7rOo{;9w?4l#n2E?(wq-w#WOUt2%QcVD z)eYEQG3QEzi~&%>W2WH28F7^&&Yt3#uPJk!>Dv)Ke>o%HTB7z0ulR4+B9ZFVr7F+n z7ehAP#i+?W>7MnYA{unHfLkdk5n?>$JX-0xID9!~)eH+(VmJxHIPHV>%c}iOjZ-Lf znFjveX&rt5fK^|@VSvB`F0!8K2$fMzZm+P%-q(U+ex;*psn1Tc2_Vr%E{;+Pv)Cf5 zFOfU9ZG7&HW-3l5NDC1ZCmK`$7p4jton|bc(naaR&7}Z~fIdV1plAV1hWh*k1-{_g z1hV09MPY#*yv*u((3FF28$z?-8{=V-=48y>=XRMZHyA%GAe(7EH7U;HiQ-U#cBr60OIbS~9L`r|WS|@`(MSDnEin4OwSX~n#E@ZKsg)0X z9XJxy`q1*Zwr-5@br4t50}SzsNy-YEPk|TF&|oT%0;yZSZkeSu__y!9B5d0XhWYv0 zc$R#B9uF#^SsX$9+hD2IcNgHrTM4(fuTfuo%P>@4OpVv*V%wkbtq^$-#KQ6|*N&y* zA)(A|{3Y|g((T|o4QrMaD!)i`Zi#Z-?f-QR`Lp?EUP+jx{h9Pk!kF~VVSW3#XAO%r zBtGtRMslho$A4XWx+`*{=SDE%MyT3(GDOH0jVRrR3r)w~ojpc+`UwSk8+ie7T$Tj+ zikUUO>5AELBndf54my=U$7~zjeJQ$Te6rUsaxZ5mxjR;8Q7j`iWcxzM6K9Hd-#e4c z3$&S~?r!yd61zcdC5Nthab<~3ezuuYckvbC{@)JaUqe2rGv#KPPqIBN952{hEBJZ- znPm)V-v`b}%3oZ)i(&6pUz8nlD7_~4ZSF_!pULd%q<6IcT+5booa(m2tLR?SuH9T_ zE-c~<^;%Uqk+q|<-w;AIzqRLrJ#4uty%uyOF0l5)J04}=+WPOTL6|FOu)v~bkUR!C z2uFaPr&{6WnNqkAV=&B~yj-~b7Xml}#v5=4zZV*U1hq8(J*0Y#xstc*9P0lOHDh6CU-D?jsSmY zLE31HWhHDRA;Hq3VNacqwf#NR`2oT-?r^wiH)6JIXJdgX^!7il4emak$c_1td zR<%NH%k_IpV7;;uR?6!Gfj1U4z6F~NHKhc|yeiTECsj-gdFI2lY#r9!wVa**euiokuiKIc&%s^gc93Vq)ds4l5ceQ81cX> z!Jv-h0&oe3qK`}mt*l5i3^##?jG>T+=_qh!`$U=WI2f3s*I{N=sUntD6_?gu=y@^NG>H?u<8) zJCtkP&fS~!ji-jY_gP*Ah?8|bW?!Lr*zJu*n5i1Yu|k+VoVijxewkZWK8*Sc1XcZQ z$Szm7`pk7D61e9b86zEe;b(mJXZfOKqwQ#6kFzQYb#yqWcFg-8zE>Edg-UV_sWz&IrG-A@KglAFdm_YVeq8N1@o+2+b^Zh zRk^6x-nGm~*Y(!irAx`KFfY#%U3q?7(>1SpRJdpNzEQ%OomiW2jP!S^PyF~0hH^6e zNk)N7zS+H0Af$z*(D11$}(q9%QNDuJQrx$I6ybJcL0pRqe2qqdkV$_Ft0+iSd;+H z=UFZetkPaJutPplt}@~^l`pnWFW@uo-uYpW+%?-fb`WIv=;V1thjMPR3olC(RT+gs zPwn9y_LVqF>hUg1Um zb`R4ArjBN8)roeiwZntG6aiys@FDE6W9AkI>Hqa+sE{mzN^)n`o@{(2hUo?`pEIHPH8CKcy|-9#3~S>dX8T zRxL5ZI6nIj4zT5|^{^&_xX=0!@47?aPHXo1$Uqhq|E#^&EK}i0!s^)FB9r`&3V*2X zO5jBdTB(%-eub;1_?VtOT-sc=k0B#SlWhJx_$4^A>HIRd@yhKNXP@qVH@5X`;=NEQ zD}F&MAUc-Qx8~#eCXE2iAb}zmD=ahXqn4Jo7ZQ#(6FGDH1r3tI>hsDap0F)!GAW{3 z&Z<2kn6wQ=g$_ZW!y8XLren1|ye558eCzmjy7SvT`VO)c&G3m+9nnIaSkDxh&&px5L#_{g%Sjj0WJ zDm_zE(H&edK4>wO+QhGxpl?%1X)0~#SFw9>spnuT$+UZR9roeGU6F@m5B0xs7iNO2 zRPpNsaK9QB@At}xH|9NS=;!O}wOzt;@OgRAbd4!K8o9p2@kH5$RO5hEj8Q}MVLsN^`KOvT)s1k= zR|!#`wNNAb`@^dR$`TA$hB}1D1HCl#wm?dm<6hDolTR2K-+yx;Bt9O3u#7>csdDwm z5Nd7Hpdjy?2L<_OPv`(Z8OM_YY{B2Sdc(p^-#XYHE-x>GH3u{_w>UhES>o}6b^j8; zUk}!V$Le{r>pQEfLh^4wMR&>6!r1+V1~?24Pv`38+2f}))!X=Ic)($_Qzt0O?VZ>m zBi70id2?u0N3g|4aREArtYjFYOEqJGt9S(Uo>%=7dDwva8sW@cx?^*(;hmEaXDEoS zFySv3e7!D9+o{k`yqmp2jhEl$IN+{a8%*nw~P*nRwTr`DQ=YbM4{I z#fJWIYLAPBZR5}S8~%7oOOYvP!c9`Tsw<=Iuu!58Y=M%{a#<(_6gh}FMKf>8dn@;I1RKG=#0bzWaFne2tEkRpP) z^%o_gK3)iMqch$IJ-70pZ>~z|p4Y#^&grSVKMWt^f|Sv(>e}-a(sIBBH5(>-IV4fu z|A&ZTf`R6sKI=7el0gI&M*(nEe@mF0sPv-M-P0DK72$qJ$`;t7Li*xerT@KT+V4?L z@4U0gsedk>JW!SxVHjeFe*P%$X2d0m)}SrwuB`2=`GE}t`z$t(e*-f%G94)CHxM*QTLnO=4qbSPz`u4R}H)@t&SBQ`bZidKNa9^n$U>y55;{06k z$1#>#18@2+e0a8bzLxZlF*|AV?aXhC?xl_5;*Ej959h5)VGw2T12%`vSeW@UodPgH zM~YxgQHLudk%bNE9KhW@65VrkxQWseVI(FdOI|fcudphYP#fHd5Ja%xDgSwGt#lR_ z!V3Sr|J-#Ja3TVl2Qvk0=cBdM@NgP&i;NN=%4LlV4b#-~VAotuh`+XdD&fDVs=84@ zPoD$Hy!m!>ZyRqhqsCR22w8H9;A7Y{Rt05&=Hy!jx*v>Z5_sFp+ z_STEC%=8rA3;eAs*GajtzXHZd5cqG*^*dogPhz-3Rk?yn2r3SC(OyrdhXuch<`L)N z1qHOn!>(`*$gliLH*Xx}C+P82oC}Av65B#OkS4<9&ihT}>%!QR(-X>m394Jyx4Dpq zXTq~t$zxrm@W+gm+djO(Bz6b#Mjo)xzua4OU!6$WzSEz}629WesQBl>iSZK~r`=%IifW?f{D>P3cm7Js zd|FtRq5f)rn+Rs{8*ks=RWz%-s7Q||dZPKG+sc~9Ar_A!#jo0I20zavWA#y9asG6d z>%~-Y1TBIzKJ%E)BZ)_>WaDkOZX(jlW>sj&t^9vx)RG{~krQ_jpYDb{z7s@GDrdfO zdZXZEWbTT~^&Pa(UN%c_;3-Z1rY`aYk6gLz2eY_v^SoL=11gimP>=d0wiSIW@SSF?nXhf8?lQa7)l0@oDtimt zvCVDi57+)M$`2A;_gLyW4{yLGC`lRSOkfFoTh-(*nLWR|Sa-8kRm^EbR1H)odT%$N zdnfAr)N96mh&q~^zx;OpT~QIKtQ2#D$Gp~*cGhrd^3syblOJnE^Qa^fI|-2m)s+Qy zCgHwK{hX7_O)5#Rr&6zGnIX)?o|hP~xg5l#cu;ty^eOQEgn*UgWS>mx5HlQ(Nb!Yb z;oKY&Az)e$BM`1c03kwg;g1OihtMaGHGoH<*~QYbc`E=KVg2Ot`g*4kuW~~ON(R}$ z$Rc|vz`sS+62aqZG+>QsbA4`;iGx4ymE|u~6PH`hGc%8en56+}@Dr9_psg>`r+C1< zJE-v6GSCN9S1Uuc$roxUKFLRevU0Jrbtn`UfW*f==>wXcb>cX36_ULLQY=db?~B6!EZO>-=%Tnfs2KGjhs**dlk9K= ztkqqY{qIcp7|V*R`1sM45t2Mn&F}l|s)}G7={(|9W#q+}H~XidcQ<-Vwp3Y=Dnz#L zAAGk!rHY$so_K7I=~+k1)0m0il|(Eas~=@Zs%vOK6$wS24qqw1C5G#DAIQaWgz=q< zcWNe1yzP0@w^@o;HvD7Wd(}M``ODJJO8C-2S?AZ|*R~04GEt@t+I}tvB>ow6lPf0! zN9ueBRBAdeDevLcUo?8(AlZ=H&#@=WEDohdo2~6WcGZ>Dd926J9gXE`5H*)1ke~<3=V2g=3V4WwE+Z zZ{;TeNe=1XA*@CNjvt9DFbGD`1%MAGd}w6E4``tWTQWN`w-#`PmxcbG=U)91_;I(_ zEt)a-WTgC;t6rE$-I}w^WwJc_A`d6;-~EU^PM1if;c;?0ky1J%TL^U`1kwB+ZZM$X zENsAicv>F705Ams2r9@As*B+75in3l@3Kp)sIP}31QuhqyVKJ^Mbp)M3e$ABMIZ@e zd<$~ap|-(xRyc;Rg4;@3+QiV%%@~Y?(908<8^sNWyZ1#CIBZ>AzrA;m439K&z%l}o z+o^JAy3>nv1Ss%Egw6#!sG}gJwp;@Q^XoWl~GLL!%bmB!Y-xiJF__k1Xs{W z6%SCE{T5+K!pnHc?~{EQddCs?u8{DgA7C-D7pa#-CF1_0hC@@0!wre5mAg@Jd5pPp zfB5}635yEYreH&ae8jLVT=+sMymSijNt+FUd89Nug+Nohw5&oruG*`APg}p*#t=8< z!stEo<=jYxMBH^GiENz-yuR>Fq`^VQ-x0!UhS~g`?%dtg1*Rl80>JXSzV6zmuXxNcTxY02JoJP^DcszDeAz=1gv#a^ViL8tamo~& z)*i-pbT1!u7+`52Rt7sJ7g+x*6-FrJ0lo~LbMy^xxQK&LD;7TmaNGork;To{N`im& zn!){A^6pxGh|-99m1_(25b-0A4tO?bBSTn0Tn4?$K#{S1x#3Zt0~IHXYcSz#O0evZ z%HmzV65UayulsZ&YM&^a{XLUZ5UiMmo7$PplIh75!SOQCvz&OFRqwsG#7T0f&C2qG zqQs?!b#&@(LR8T!G&Kn;;$M6Fm+_a}{J$HuWt1}t=<>&;k`f84_gBVk9~>X2plZ4F zr&q03JvhZbP!NT_^854axcBJ#bLu3AfhlR?=IAExlc&k?_0(mk`3uY0!eN`)rh+JM zhGF?abVZv(=KM%9DcY?ptD>au*#Q|d?#wpYEL(cK{<2Rl8U!?Rc2ey*hCkzkzFwRp z{hjBAQ(5L;3%e4*w;~i}J@=UY^ZQ|p#CbWbq{rr@$*=G$zDfJ76~mEKJ1H99|EC3* z)E_t&b(+WR#mN)$Kh=GCGncn07uym+;{i@^|5`dyqq`cae>)Q`IWI(0Z{bst6P2FS z&ascwNuLiA4n_53yCsMDPe8+(zINh9>m5JEN`~b(vAuf3IK~S_XcNWD2XgJEz_e>~ ztu=wjb*zj`kel0DW>whrkx^~R?1*@(5FhY4!sduW2_j4zA?f2t`~%x<=J=kjE&vMz z{fm&Y5TvTfBTtiS7U~6z(-A#uNCe1$tPS987+Ex_^F7!6 z{%D8~g(!aq@k}r__B6gT;F)X$cqKTmH^-)jW}|L7z!?(jmDa!^O&eYEj+OI_@FxC1E&@3ex^<%UVypR0n562} zjQt!Oob##yWNBum1%`G#s{SuAm08`4eVy6=0=el!7jh()@d0JfF_KVLGdV%=9t+)2 zwzM4I->n@iZ;}A_VNM?liHM-sLN$Ng3c$NUULsc_U%)}@Vn$dI zRYQ!ML>vI9j*{QOeawi5H8K#d^7^ED$Pj9M2rLE#k#)qg1@GE~g*6s`2QZX~r!r|U z;3Ilw;ZBE;33xC-7R4KNJOn(Da07tJMDD*D;`0{G|N06sv^;c+6^{04xjaCrhqzl; z#&C1kKs=dv=z3A^^&x}1x{TdU2ZT@_WxJ*2Ld1^zeJN%TF%mPbzZ3NuDaxE96%Sd# zKuIijBFyz0#z7v!kr2jdS2&(4Wmo8MG>(tS#+`x^h2F4ZyQ4suJ}4YTg{JEHV$F_ZKkxgv-#9d-=j`pq{7}mP7vJ|v*6?U z>G(vOpPv*59YhMnyTuanG!CQ?MGIZwx$85Ycr5UN6iI$_oN?x(>v*Tlp`kH#8|^$54r zn4$%^z0Rr;KSnKZ&FK77eJexM(lMH5H7-N0yCle4yXUW0%~plaYl+7^=+r<}NZ zzh@CO6$74aZZD~Ww2{tKXt@w7XDX80NVeM6imX-2%sZQEU6W_uVZI1!PVzD%;BDmZ zsP*0W14>XjT3R>-@UCD8sBj$Lq6%rm{sr43tT$l(8+n7Y`91uEs;VRy@qkQ&5rvER zzW`I3R>MNYgx9udMDX!Z#KLd!CAdZ)3c-2^>XNFeDlE#{AXAm=6%UNIO5eTW0mQ;o zC47$Y0AQZa0b4CR*LEVG71@M+ZEHxQ02=c&3c$bT+k)Vn9SNPfDwl|iOb=EyUq@I? zgf^Nj6sRR_Z50328j=3Rr~hk5rWae*Yr)ZYL~GC2X~MoUEToY83Sk)2@_XMB@l=0$ z+K1xH4AOE>%bR0B=tMjWjs$GU)+d`ALAX{4(b7?1bkBk<=N0Do%W7qg=^X6J^WXaSuI>|A#{B~U0=HJ;nnfYE! zS9tuFpnE0rIi8p?=~OY9b*JoaR+|!XKU3}S(>CQaW{aet_Jht1WFp@Rv35!950Yd5 zLglzkfidIcUw8jUnb6qm?KsDVv(r#jwqitm8erX4N5}2ypy~+tves9QBl7H!Hv+%L z@G=9n&W>{L+hh(~OSmRuwz?qkhm?;nKHI63v=e%vL*vaDXDmOhLGI;ruIU?J8kBjS z1>f#i%#HE6sv|s4$9ZE*mop_P_Qz=Z>lBR{VRjQUx7b64YMwHYY9U8g%vI}hk7vC` z7u2Kq&uRbD%scX{PEy@kdN4s z(cj$4()erkbKHV;>stKD0ffD`raKuj63vqTtS>fri+FV%e|WpM;P3v61DEN)mtVUX zW%h_(apvwxge?hZObQAhH%C3Mtg`Y}<>A%dovs_ZNeB31>7a7pPf2Fz@P(P{AL$xk zI?sp~LRlL80M)>p!JNCvqhoQXrN&58wHC4mR=f>N>fZ14g|ZkuUZ(x@%H%i5vC=Hn zxz5*a+4Bqq+8arx+X_F*MlT#%B&hoU|+|fglZ-#gQfk! zTL&5`Tqa0v!p*1GcVHQM@lKH$Mp2Un?;1Ddllifs0Ve$?n^}?UsOt)vMMhPVM9wPY zp3*45hw8lr?XNjTs)tezfxt_yq*Z|Ua$)0Eg8$TN%G=$8DUxn?(bHv5BU992pgpb3 zB9xYe6ncOboEK4fbT*^@!Ni+vmn7junJ`dbp_)<6;2ee`z<;S~77SW^NibVXY!3}k zMu)EYbYfw&45a#ppMv?GP-(CEs4$!_{RagsnLbPQ{^OXtWU>gfJTkcP#`EDm?V%g9 zAM)bW*jf)dhXs3vll48$DLk>3ptU^04W#9Qxg1WTTM404J}Wfg=71G}B`A^&Y+a~q z9y=f^IXV`Cm%7ikXPp@o)D;!Ls)Hc{eu`Y~S*`&O4I-b<3}pgG=WtDc1fCBTv?f#nr zWlbGScu)3+5RtuiYFFri*O^IwDkA$Eke`kgBS%dSvHRkRvXEltM!veu0|qPjAEf2t zGC@QKs(Gn#2Qj4tsjFA*l|{BG{3IN3-dD1E_QIyQ5C6pz`fHDk|E2T%z1B?<0>mnF zo<^5TsC3uO<3ar|-gM@;Owa~wS1&#zL7-G9cF5iBz5UF<-ms)`LU zDHcS+W(Q29ZSjX*&Kq+beS`?hs&5|CzTMCM9-z017)*{)GS=H?MteDFXGx42ZR{de zy2F^S@2+H+>;Ey9p>e9aem?$~9ORDzdP6H8+9))639Rt1sxXdAq?Amz=os*YYd?$7 z(D|#ZWz6*L)jdAk=V>23PMe_{iY0AJgX(xKz2Ub!t>NEdxF^AP`?B&`^xNN3S(DQ* z6D!U_)W#y`TDy_WU~x+nXZBA{I-JiME_;p>?aqDAacwT{>lZD@V!cNe_ z;aI!r;|pGYP(3RC*J_?i`M5uAcpCEcyv*}1MMc#YnPV?@4?rxR#6i`J#k+!xKZJE~ za1hz-a@kawk(ue7wxc#77`BweOw?=Zog&1C_H1;k?~yjy!Bqv|%3Bj>r@0^&{${pjm67yO zYS~4aOhRi8%M2HR}OS2reiaf~Um~-d3XlNE<)^UkQ$| ztvzT=)&mGIC54xl^$`p)`b5u0k|O|Coc7y63^oIb;Ixiagc>TM*{)o2FhKjAuBckG zNPkbJhKafz+d0Zk+A~#7d#DqaM@}QqA^~V}wogAio0B=~`_j9U`Y_=M?lMxI%^=+9 zS-+nKg8}egz2X7>1Qg;=IKaG#2%Zuj@bokWN)d34P|Y{k**ezl0ABe9yO89am%n`L z%UJh{ESo-txRA4%`4A5d(r&JR(2m>K;K48D0)vBD90(kD{4-y@ zfzrdbZb`fw2E@I+2|Q8F6WGM|TA;_I<$e=2F4Q|M4_?P4<;Yh^M1^A+KPc7#u|7Hq z4ha~V5(igbW`w1}V3UEyyP}#AX2Pj30Y$@L9AYJA+=hJY#L^*Ob{p7t;Dv`DKioW_ zM>`JoC(C4{M^lZ++6>mvIOLX+8qXry+Pxkbux?sDxOU3>4ozAjzSkA$$5 z>28njLV^uXT^40?McU@)xapj+*RMfdSd>=MYgR~bgOpJ~e1MG|pkDuY_A*D~+ih_{ zK@B-#lyChyl#v8pDe7|dZ!G?SQ#NOdacq+3PjF8S;w!pw!w;RQ6HC3U*}6(st=1si zC`tJmZViT85*Mu7ins20Q@Y$iG8_%n~Px$rb(Xbq0kam z077@~C;t1X8OpB)>Du}|B%&?WS?+GJRR-*BiUlms?AHkP81MX|l<}EW=Q2O&K0M4k z;V+ObZ99)DzdxAj!6#)uMY2BcEk)3VXBZ+^TOAyitJiz~{XD4Y&xmb)kyO-Dr65}6 zQo3Ma!Ape{U`7S{tuPQ4DG8Cp)jM>(FdI)wN`mrm-h;m*t?M2T)0F}$8u1^?=U+b$ zptY1H?7+Ui+(-bw?$7=NygEtB2Y+h<*W&lGu9L)^I#=B|q{n*3f4swW>R=i&cH~j` z5A}99U#UbF(YHOStmHB)eN?=`E??+>wCMc2zpksL+Yi!Q1k|Cq^Khqu5(@#FeZZf4 zj=>jlGoBgfjHk)vh>2)0CK(Sr6`RyxaBlpczoZEg4ivgE3a;Jvm@1E$ae zbhZ2Jsg6>}Kml*|yLZIP4uA|GFFAS5<_Pt0(9MIXXWqtt8H_m*BgT+3bqa9|BPLv0 z)+V6#vi<(kl{b=sO%}WDB>KX$_NnF{i0o^@8n-15ay4<%!AD_@~~Z4 zlY)(8Z?6`ly{8aeWH86$P`WhEP0GJOTeos?WpPLRddNxSp%xPHh}P*?;A76W!OeGt z`)L-sfmTyDurLPUNh>Q@=J+e=Y8|Ei<6BZ1$urz)Qcfdc3YrB4 z$3q?~=eRI(D`{yyJ<7N>!?LQe)XPEU?=qpLRLI41n<4N!>#q?P3S*nWW{Z%>B@fs6 zs)hin>pJUBm51`ePhN(wf(0F(++5pxlWVY0F4S{3{%BbEpW8QK8afG(rn?V~!f{b( z65!@K_wdAc#>=U=xD-OyawPuds_<2+Nz8-&5(TdN1nrutc&7?1O*jHsA9lj9l3wEj z1=xPHiU%MP5A@+MSo%`a`&Xx(g11%Yi~~EjmETLP&oejE3i#}}c+c{goa<0~o1x6v zvq$Hu_n9&^`6n-D^dFteQf09jm(thIRro}uNeHM+>MYkrAk-;rbW23nxbuyU-}yF} z+Gc6tJuK*k%R(kNgydDd6q*cBpW0~Z=(pm6w9O!xo)a=zAizcwEq_OFKxQjaspRo7 z`O&Ld7{1L&jT1Djxo4KN%D3JUI>u`n4kXq3fSCox*6R!`d)&nbYrk{eCg=v31-)FC zOw&qCD%?4A6{&lq<>jh})ruZ%*!kB`Z&U@ISQ=oW|(6DZKzjl?0DWVJuNKIj4Vr^?ceDUDWMyFU%0sZ^+fZ+ zpQ#}bXKf_-b5G?WUT})Co^CoV(OfAmbE4Bn0GH!Gv$FD-qg_1@GScMdU>#~C0R0bC z`uwzT+d+8{um=;10nyl3JRz(QwE%vr{~TNJOP7|0cLCUg(8`LX3!$!~Ljm^;tAlwD zOH25;k&1?YIf4`7fxt3Y^uVZpA?xiU_30?H5^po#D)Xl!!eXk5agkW?z;!T#1Ik_`J zQw@pMYJDNBR%JtaZx#AH-u4fVjyjYZ!tsh&iSw?#-uGercF_4DtdkwhvFCG*A1y-P z#lK;_@jM$rik!GqHh(U!7$GZl$%X2N5L0-zGsn-wUuT?M8E4@@1X*2}`~;xl^!e$- zHTh}JhfBb2$aQ~i?veEnfMf&(1<4S^6&4JmP3!%K)}@lIVKogEqd>|9rni=g5K6L?Y9{gfoR4G2ng_ZkOl*MF+-g=vbZOiaXbV~{(u#Uz@~SJs`;%= zD+#BfLK=xP1=T(nj0|k3=UqTHIf&ggG=w(-yd$7{6BN9g+*-;nKbLBg`OS08bIeG9 z@;@mB`}h^|{{|Ykz4Nh(;&DWWFW4~$JkxT8P#^??gX+mG)=(dbjlDWbm1}v=yZka! zZgBvbj%X{{tsl25zn=yJSyVG?sQ>tYXqPK+dqLT2JkW}Dz+!GCz=I0FU$JzxX_2p2 z$;b{3G2!iz*}G!?BE!^#`30Mmj4(Fg@1h9qR|U_blv4do?2Q=h)FIu{5(DkGZ=K25 z#Yo&Y;v5!Brk{LGLPCk-Y@wGu4hN+~5JVqN|Lxo|-d;kZy#$M1Z|!Ttvi$r_n`R%ji8rS%2%p!Gc2Q5D9nbV!_ot0N{ou6Kjh%`Qmy-IV z1o02eTwP20=8bB+y09@r4zxf@E6mt=*UM=0R%>c_cenVUtd?V`DzI#<;qV*v2cNaM zRyxyKxKhIb(-6M~mXRTtRywIBH>Dmf$9Yk`^I6Io~2BQ+M4l|T$dpEGoxTwx(3p=h4B9LZP>vvFi>FZiGXi zE!Xe%7YhgqE>r`pgen9c26N1CMTT+?Ob&n_0Sg@9-{Ge~WRz=5d;AzELRdpp@1>RV z(G5zQvP;-A9LmTe$ercHNy#yQ7qH)7q2z6gjMOn*B$pnz#zby{mi+wXm7LdOfF-gb zLm={@qZB4F!i=Y8fB%Mcg@WdWFKFvRzY>R;gq0Prc|dH>04LG{<`^(uz@kFYa%f2E zt^yTIjuyO`rLd_i;)&w#z=Q)-7YHoy19A|9NIzm(rjo!h;EBtWxq8*z_{t7U72q7H zaMYv$83izw0Z}YP&DP>N>LD51Y7uS@now5cXBj^a_IQ}R-b#3CojO(NBNd0%(gg!9 zh1}y?96*lY@A#kE;y~_yYKtuJXjVH3q`=wo$E&7j!HHNJvPH2IOE6)S2sLB3MS;E2 zsyO03KdgLpbgd17uYyT7ZSWoZQ`D**o=+^BtT5qKH@vV6_hwLC ztE!K>>s@r73)*L-x);q$B$?#7Zz<%xNJ>^Nu3b~EPe^%2eNJUZhR~GNp5(r*$B(S1 zsbt@7uoVmIIRHWz0{znX^=?#GD-~0wWZG-#RqTFidLC-N`O1mY^a4)5PxMzm{W&rM z;XM%iRVBEZ>$s}^F2_r__W9Ye3^Ncf$0_E0!oDa&nJ1iAU6M2o;g0VtGrTP@xnsQE z&UvpD1$joDU6IvS3?}HpcX>EDBidSA7fbKVVd{+d(yh*($&$PyFx<5%@9!j)mOIzt ze_L-#QfSk!EKs2H7fNo{vM0mD=^ae20D^Kf81jl3(~mlhWd0bLnCu*1L3`rDNa64) zbBXiFduXq+$esolV?|6p&lm7^>FVb26!gs_uiBR-)!eMX@05S%@l=m{U1cBk`+DgB zON%&VG-nI{)%vd`IjKo={Q6e_^YfoXke^mWtxPNb-ySg#g%J-yP+*P>hs8{^sM=K| zp>eJ4Ln_#~h)r(Q*&FG1o^}71x7Ee^^`}YV02(5we01^b)!PCbA`#AI~wA_F}2CJWy zFi^_Ua>L9aP>C+Om5V4Q6pw?~6Q+3~tbaCqkG!9l@WsD>KNAg23GG&BaDRwakhF7O)Q$0`=2MH3xjktqNP`28F$7)?0GH9U#;b752@W7&tJB94 zR|xQ8`k&Z(^G!OhRCTnPI_PXj@hbKUeop_59MV~{S=78T-^fAOg|GFG!~GV{K>wEw z_VW?t$#4h2Z4Z7+0}!0smH(+0AVM!JFazKK<-gN~`p&<1A-ibYAH2v4w)~6Dl26q7~5kJV z7+9`Du94o`)PTOychP$8((hKdr+xB{Y2;L+9D4qu!*8jrr}m8o&T6I`%C$`MXgh|o zA&t~Ub}>x{jT>wpO)iutWNbfFzqAQAK|bDHk+?HCc{MEh#2MS4H%^?PdWQ43l=Ct7 zU3BZA*4()aqxSi zUduDqygs_JA7?IK*~lG}%WCDJ-kH(aL0xut1Mv!8-|K?WpJxYBiJHBMU%y}LI2Rz0 zq^4$6&Od$d;H{6PSledAfkg#U*u+yg*Reb|Lr2)QiuPPKE?U9r*4ckg0`a<%GduL>Y_k&Pteb|wvsshRRV3{xwc1D^X+3)7sUWjX6S8_5)<2d=2NlJ2X z0%dzJ<{sKT&M9-pO%T>3`8trNlxs^a2Q|l)D=?vgk+Pv7bk)Ehhw>RN10>s>^U#E= z^nLIyG)_yhA8Wvj_th=c-J56f>~X2KyJDAY_%^ zU3H-B$DD7G>Tvg5zgT06BkYY+YlNA<;rUY5BModxP9oN8)@xw} z6FvcymBnMl72i7@Uhoj>>`ohLcO^Y3ZSDZZQ(9|M*6Zd$s8_NYFrqD|wB){^$?UIWWolJF;k9y3DUeZ0N+xhnk6b{$(#l7GwgEC8qnfat zup_D;t9D#vr+|+h`{8Xj20iY~?{dxi94Z}jiLXd1AAcMnGl8LyY zELtckDq31xgt<+9_VcZb)YN1*@Zh3JLmr02LZ!U+@mr}sbJY+?ali*j&${(=yMWbl6jQD+sHb>zZ!=UE;Ug$e_n zfV_Z7u8yu+slylUW68%52Faka0lW=yD8?IgCLR{X)0r@%K{el|Ng@tF!C0#-#SD#V z?z}43^#rRr6K_UtlgFt)BG37(cusu{FWxhCW@+}OWtuYN$rwri4x6jfvJ*jqOV zbF`2)2joQht%IwV+{MCS97}FW7jnHasC1hWb-v8gFBJ|kDlQ0{FtFxEH6YtGbCAx@%0urT)Q4u@D_;bD+W8Vhs9Kn9xmuU-Z9zoe zZL4L_DDSM5o8bOR&o#+wLCj_Nj}2%apqmE@ohq2PLugI0HzX-zi_VMV&g-}0ykMoC zp=iMK{8*QR2H)c~onC`zHB5-Iz4|XRiC3X?9t!c?lUP*vws>-E#(W_^@5A4T(m|@C zn8Y}Ii)&Df)(yjy+_UG*2NPFU&vc6Dp6X^(xhIf&i55eZ;}W_qI*{f?o9J$%T=p+9 zdOilU{O(oHZPOAsTxkauJ&UKV)YZ>&`^Qa{&JUK|Z5=1H%vMRdfmBO#T+NM9cj47ag(_t8yTv_KoJkd_M;aoEPX z0?5G2)^;AQ*$v;iF{g#<`jV2<#O559wlG*AmxKMRK0oM_!J?Vgl{-i!n`Pv3F>T>Ka#P|>uARTs?}-Q|a!{E+*(m(#l#P+eq)(nn z;5db7HDb>&ezDDgfRDza?iT8Sy&=TR(Qy%mIOIVf9ztLxKRe4xj@nsy>gZ(d@kW$eJaWhBac4A#8pW@>arty3 z>zyayYf{Vx-K2shSRNDD`Q$Nu(7;h%>*@1^>FYO9K-7cfOpTZy z1XJd}e}VpOj)9U0;%*#AV9}9lTgtDZ`IJM62={#L6|qd1pa#^qD`Sdsj)~vm=tZ?|JS<&DE_Z^;Y`bY2zryST)yXb1hOi0ysRPoa z{nUTaEbVnGgU(-=YGu!55_UG~>LQAr2)&21TTNc?YoDeTTh<4Gn%N;}oX|fMEmPjz zu>VjHB0|p1Cb#)fmt-4f1UhdDD5iyK>x7H44tpuCDd{w&xz9K5y%%zkU|l%kp$kK7v6Y_qShP{SUpqT94Py zS8r>qxzf4X-MQx8ZGZb@^WzthcDL;onEKP6khf~7^4|5glEH0W5ad{xcly||?w{9Z zps&9|BrLst{r$iXID~Ev5wRuwDZVpK%dYEFN=1b{j&WzlJr5GAnzZtqe<(|Fb$~+1 za|}#rurizw|LNrARM;>TTAP)rku|=+JKNVvr?QAw_9~HjWc+XaA>Uo+(M1OBzKg2P zD}5iHR`6eZatpF(GKp5|iiU=U_wPZz4Q@E_lUW-;g8|y38gGrh50I$_>(9`~Yi|;9 z8ijpM=hhUEAqQ7$+GU?Ho?H#nM`9Q9Bjtr9%pbBl&F4x!AAS%k^jalcoZYDJldZql zHw*j7oatUz0TeBmV@#^tj)9@h5(6N0V))IvR7WXLbaVS`^L2XR8nQ(-1Hu|Cw+-W_ zckha*xr;OYYzWFSe@18G0|soUjbX9}YZ#N_EilTUC>|ba!!-_57Ej}?5(`0BtA_D& zEiIsry*j?ry;*0v%ChnB*+MFZ-U~|0&o(Xk{!|G5GNx!jiK6Ab2T!N(Rd<;^6x##)0rlvL_(#Q-BbXc$z$C?=`8u$d%`bqd6F@{b&Xnjo5TnQ-tS458i2Uv;kH0;81 z7%1gLr2qd1XJYC9bI}HT1P{zBp5cl*BLRQ_vfW7FI1&nrr8|n!!_Fx}YmfAH=wnzy zA(gliD;(FQWKvaibYUMI^$IxN#9?rCQS>WF2Z9w64XicOa*qh5ee*hh({RjnvMWpk zMavSAv}T#;)FNayR}&5E4S#A)8dh@Ai_5k0NfitSnstUVxOyEv5dRB**s$m-5~{u7 zFONX)Yd&f|xbmYW)tHwB*RVRG|7muLj$}%(cBlE@)#;E4+#zIn0Hkm)VC-w)PCD40 z)9SFfw7Tlb{sdBW50%qLa9P!ifmNh9 zFYfR#!jxC)4SVp?dzNuE1E$zs$N$IEdB;=T|NsAxN~Ii}5X#6nMpi;4D`e+b*?VVX zkBrQ6tRj1r8A1q=QDj7%bV8CnPDW<3`8|)%_xkn6b-P`++jZ;WocH_ndXC5A{wTEG zxge0B&i~N8SXM<`w&HDGmmp`Zne~^ye2m#q!M5~$Z~gO@w#u@5Y@nzRP6Zux76H=Q zpiA1{5155l2rxhZ-`&`#E?f9QTv&no%+~gC4w}g0{vU)MWL`P2%7Cdo6bleR*Y7~l z3X}&mJfLHfyWwm>2!0KbQ{IW-{CYQtuq(MuD@6Od;w;}wdomk01=IB(hKy!p3fdO8 z1m0Y9sSwe0@DLqbzi?c`=;u!x`dL^E9^pVBh1gLPwh~~zgxQf(`qaCl$UboNz>M+z z2#5g%qx~iCV!m4q?4I9WK9O|-A$r-h?8G782`U6h$e0*oV-}ynmDb)!omSKC)gOKZ zRisyqH=vm~FAucPBa|pHVi}^zU72J%+uG!XQz2u3=#Z0_Rpd`*B;v%uVhk!+*t9)U zJX(T-VPBUQXno!A-ioN5l!469bR0oH37|(5tw1N4akC$WlnuS|K}f?XHbA4$SlI0s z7c0j@45(;2>`Nf09o05y8Z;uJCQB}lK>%zV&|U0GP0N5@kLws@HWd(!U*FEi0jH{Q zNxxkhM3^o?25|Wxe6UH@jSvFxA9{}~I^qbwD?3(-lD}~7F$`IaP zLtuj2^(+El2KCS&>4iYHY}|QyR}iby>nDY>z!Eu&kXir<`Mo1a@WiL5Iu+xtg*2qtUfd)aEB*$*3=_ZX!%10KJ#<)h%zeA0rTPfKNt@{yZk z%te(JXcj$_EV^y2er0w*SWTO8*zNl4U!(3?#!;uwpJ%@tm0v^O>nb^@taGqkANuT& zMk%Z;6l?5p?S0*%X=BS0f9SQsRYn=#7jb+R_apQR)>hT}f7?G}`KG@){W|BbJZT=a zfaf+w_w(!Ig-@pF#mG8v;Fk|3e4gIl-2^eG)Xwi*&=0!{G{Oj6z@z~#{k3|PLzCzr z=98JbyHm{jd-&8;)85q0*wDdPK70QVwq4*p0Lme`JEp@@4G*tdA(zx@-ikH0<(b#H z<^jXT@`p_V%G(1u&xT%Z=(Fo5ijDFZ`B!h8pCD8V+&A57p@XHJ*ZY149b_256(JYa z%M0jvMEkiLlUS-M?2?Jm(wo=SIuen}MDo7|Xb7E+Jed`$> zUKGUb@#9Skys29um8s-sRIFk=nFo`MIIgH4AV>MU*2p!*eHjKdTjG->kBm8y#csQ|2X@!Y6FmZzz+u@fv|G+_6``6 z0`wQ^bXoy)I(;IgXl1x$Z?11x^cn{~cO@2t=U}O#Q8f*@I1o&8MoJ@_3wwjtv%CB^TXa$;E zu)%cCX!_a<(!-V-&V!>A&F$^&*;&qZJq!wHIZ{FJ25@7EF^kV(cSdZaYMj6om8pKQ z1I+Z~tPuay!5a3exNCiHjRU&!AsG3BNf+T^3`(8YDF|KBPl9zcJbM0;V4kCmQi^~6 zic3WBh#1{a>EPS8v|1r^K(NbZj}jAXOPAzEuD! z-6x7ri25?3nwH26Ot4NxwyeV)0Ge2E))mZsGyiAPZ6g9oUw@s=z|nNo=Y1+X~-4mBnwhEBl5aVwp9uiy6La|CirG*vc8 zQs!{-2albHN0ortkWh-Et(Ug8A)!`DHyrV+rf%hnwwxO0_aZ4A`!~8wg^?mu_~H#` z#U_!t*pmY|zYMUi->lpNbC_5|jKI-($1DW{m9UAu=cS_)>4Sd4LJg>vr1F(AmQ!F~kpCOD~x z??1dnfph!iDKy5*{Kj~-Kh_=H7cvVcWxn+BT`&EeP<{U=XMRE*ukEC9(5I@5CHfj? zx1uMujIAXHLf6$f6JWqH;wlg3r1E9a?sdrt4YxcPu)mAvH{ z?8A)s3m10a7eu@`%JHszZLJT?tSkax6@h~VlOT8z$YlgRszjK-GK|{^J+x9|7S2*9 zB@H4ASzbXdkkEPWuBegUTi=YXw&hdBZM>~J$Nof6J^kXL{Gk*f{+F2`XiTBzA%-$( z5!rk<#l>Hsu}F(yFXA1z+PFCip9H*?+C2IAIo*;(9AS4qkSGuI6k#|YB_A!Mh9{2S z$_KHK=?5D0B5gP0+Q9`5>Qflh?!Kff{Pp@t;0~BveMj(3vL34Wvm1ycD_ekC4z7Gv z&OQ}v&WZ#W7~zA2u&}`e#0z44^YE`V zg^`&n1uOaQI`^g+s)AY^>|gTtO%rBp2ZyX?M+nRCBz>?<_j9-x;Q8HdZF!}6JH2^3 zwejw`p6Xv_9m%!9G}6-JaT6yWB}poe3*U1LtP?7qm#RK=fg`-UMJn*h=9^2yC{kD9 z6zIv1B2Peg2C4P1sRQONe=;CW_5+*2NA*D=V2bXbSAgl|?#g2-M7ZopsvWY1`It53 z#BgywAzfEN11xsFg5qjlfvheAjw|wQn%w8!9B<@^z2Pkzd9I879$#KRw;!K%`ihB& z&(JMab+rHzlLVg7CmsL%_oobw3)RS;p6Ki56Z7-MM(C553sZRXnr`WH-G;{UlVp}D)|b7 zQs{>75lMUx8?zK6O@sC}ns>*F<~%5ZKe)}<98Pr`uDf$!@QtBYW{T^IldR+|KvfMX zgH^UT*l3(Ylr6w)4xWg_l%ORsT#)_zISYO3Yr>iv^g%e~L+262m^kK4T{lLD>p!J3 zXT17HSHt|e%T5xLckR+ZGN7XaLIv2}-oLMcB*TjUb9-)XuDv}1)Qf7c0S3!#faUIY z`mKlsho}R*XwaPthE=F?H|z^a4^4CSr?yr9v)A+l_xSvT2J zoTH#JJUZ#fS>-X%hlAr*;?iaSGh#Gg(>NMbC(terZa~T5^&OL?{r#6hLJHWS8R$*qQ`jwEXU6~28M7?92ABapDA z@y*%9NbXlY<2y$v{Y8M zP+Sa*0V1vex;KWHr9YSU_Q36tC!C#CbNT9hy%r?PnKza8F_m&Z&DH&pZlojUhY*zeo4MQ0`>0t`)itYOm9AH0IA_TnN`rFMdX3U-Rd z-Hcyo?VZ%li0aJCD+_#QzfsuLU=nw)r2nHC+*$CG6R&V!BaYR%Kc0Gb1WkfE4FGWV z^TSiijOQZ2CB^*c(NrI$b)EPhPWdF3Y{WhJEf1mU2Oj1_<#dU8&y5Tge0WCFH=>-& zKG-~XhDn~!5o0dx;J)@*!%?5dc%zJlCHr5m_wN`VxeL8_^skku*gOo>vNeig8?=vEo*Q;)b{ZD#aQD>#dUCe26k|I;gwLEjINtmvEM&>&(~q{GSeg+O3ypDCbL?x?O+4i9#IjE5(DV z;^3eua8B?43Wo{T;PUQdY#;MT?^s;aYUi|#zJzj+{Xf&7tnDJ$ zB*JpVq#Uwu)T(q#dI;;CD!@#vb0+}8ztJQr=f}bZ><43e`h<5&zPtDq5Q>8bjCWjd zW_lwgQQX{fN>AibDrfr08O7LB`oq7${u=(6Hta!=;y~tvrlN%%82!Ps2C+jcZw43o9j?Kp2DFFaFAPt`Q1 zls6`3Mt7_#cC$~hwS2%+AjrbZ!bIk{q;^-}yeO~-IO2?(K2Ks&w>6}liZFm0A0>bB z(j`*qBJHjjH{xg^ATV%g_W(%YKa2b&_97pNOW!e4`1I-6oySt7AD35=3zzwAHYYeN zdldA_uiJmu93~HT2};eeGR``XTaqfU$sy7?U~SSWD1l?7I05j%zT7(y&(=yQ)$nk$ zY@t2}4Jd<&2R^V5h76;qHVGUs%(#<@%yRhT;U{{gD2I6tYvv(G1;{lRSZ{#AN?ZpN zH330jW6>;v<&QHY8Pr0!3#{YH2iq)!Ko*(>Ha8jpCD4IE%s33yh@rMbf$RyGwztv` z*WAif7ix!Ka~}CC!;nK<-uN$Vc^4{O{M_ro`(vB1!21tfe3$C~0!y0SgFigU+S8c0 zAGXJffHuAi0E2wwA)wV$WQQaYKp#<@h-U}>A`3Zq2ce!U#6tiTkWrIWh|Dus#J~I1bnF-3KY3WHv-42^{<$Hr+O?x7Lhv*`(d@lEon~$w}3jO)JN;Y~|iu4I|0T zB{{DBs7{vbfc^<0jmGEH$3tEg!G4TObO_>#M;KN3b*9XqpsJDAeAtWST;rcQOt&8_ zU%i9D)Zh6h#Uup|TPG*hFa&~C4(|cMC`^Q%oqCh3?Md!($cx?$T+n-iXZQau~G7ZlNag3<{wB{G+ zxA=AKYF@{Pz5tC94NJxc=RDE+WG6<(RJ+rb#cXuDQRcTW)d7X?7YWm<9n9Kn`7Lpd zDEFH&3RAgplJyTa`4LAxRzQ7BimR9O6Kxhgd$1(|jfVTeLGyZY;H^swKa<{nbr0GX zI0!9DeVG64YSL7Zj$X=~@56t+`(GR<@)|)x1g;@=VrKRgBGa}L8vcHV!@Yy%J?j~| z9!$e#bzg?_pb0L9pSH-)@tsK<)}kiq;lDVBnx#lrR$bM-_)Yh0yS*(q-$16jP~T&- zzO^MzJjCe8WFWi}M}U@{sl)TVF>W2gNg$ZA+^@cI{!8xlwzLJe{8yOvhU-JPg8pm5o?l1v}&oS>6^I%$M6PU|LS@j2*}>K5X;+krw3)DI;5%FsJO z9;P5YU=e*J%IppDHLt^tfsYm<#|rF^?zU=!d^G4TD)@$p6H&+9KCl7n^uw_N8`@Q$ zmm0t_5`n7BudxY?H?Zb`iOY^dws_XUiKay}I`@Ye3$?z}H#&O=llvdhU8P9|;leR* zd3=NKvPxX7a%oy;XcJsbHX1ZOnlYvoKr?T|PY{Rael;LF2QB+#p&quO$=xF(BZYUf zFE!fui|kS${=N%|lxOnk6eams%YuNi&9*&9*f4pP(9(Z4`@rmp04^(AmD9}o!a~7atMt*oY^_(u1bh1*Gmcj$}w0w5Yosn zNPC4{8DL_;b_co?XkFauqLDXl-sDa0Zdx{k>L6r!7X&>04)70!+zM#*Gu4mc3bb_2 zvwk8jAmN4i08y@xT!!??f?+y+1Vly@7gNhluKK{>$x0aLg5aCzIv)n=pfF?_$mGC` z3&lkv*?$Q~*#FC_Vds0)}ZG#wOn);k%&SB4)SK>?s6u;fR*VSXq$_)!QdM% z3wiQdsKg!{2wy{kp3XO`uz0?$Exf=U@=zqRq3|B`JTCJ@A(x!>I+gDf*U9GfT6{e# zQ?^S#Tg?-RYuHoc2#O%%)eqoD%Hft;A$dB~ClqrGM~9`}JCsHQZbmrcFxb=MhEFIF z3W!IK<4R~K>J673Wcs$^uF4fIN&x5JI zU=HTQ_6_Tsii_fNsh9j|NDUC`(iy6F3GrAQ&-1%`j$z8}`KC98B-r!~aIM?<-Rbv} zXN8-04rZF)RI@%I)qKEVd@FG6SLJKX0!1y=fGRKiJ0Xe89O-9?Ay1vk{p7i8-|A+a z=9a8m{GzEToTT)&a72%#y4s{Jlq$;IXyE&oCec?mJZSlsNm`M~H=;&;Zk^XNnVrsv z?~}+(4wvY<@;i|U^V6&Rm2-zhUvBPYIMd_e0HJ{fkb)E72FI2`833=s*e1*kAGfaJ z_7>mheet|$8)3tIvD9^=x%~CvY`;#S!H`zNhxN|wjme?8t&R6}eV=i~C#3=)YXg$O zc@l}!gW)pp3be6ZIZrt)HrBYaG2giN=S^Q=2vxgS+zumUNs@%Ivbs+h2C#Y8qW$>Nwzft*) ziK_%1Oo#T_nag986x~jnbRyv&43`3S#x_Y`UrFw>^Qbd|0Sy#gM>{F_Q7(4Cx{BBh zxcc~PO}0hBgb0QT{*qGFf$l{ICv%7B11W=DSmi!(`kxFLyMsWof;}8{TEd4rbtFUW zNwR@&fRM7D?P_`mS#sk+GyV3xUdaX^lEU8#cJi@hxZgmX56HN&O*racbs6ju;oE{3lOm)j>c-ig$Z@n9Sfa?1XlFX=v&p|_w1%&OI zl;6Td5it$s(V&q9n~pJF`E}?PVQbM<~AT@=`CSSV%BIP#sJ)G7?i_y1Y|dt zpD6-{5t1LK>YZzc6Rq_z)AI{~>r}JyvtAJ9I^BsRHljKpb(o8#bvBq)$6$*DK8W=PHEpe z&360#a|}LVTjXQg8R2z9u?U_S8v_+&m(ryamZx=VgPhF|UDnkt%E)S}6Nlbq7&Yo; zjg&S}Q?>b3{xtEnkFCoTQL%W*cm9N322Wm0g{Y}I&Gn69cdf{Kye3(lR>E1=3QOH` z!i18}>thuRqiPzS=j5P#^5}76s%c7?i)D|6Slg9=BQC_96nQGQw{wRq`mInlQatuO zK>mh@A=QeQvkfb^;{IZSFH9`!%K${KsQb@3ofeVE>;FwiYVUr~#z~v1bek%gXVe1x zgw22bj}YC`H|TcT6G#vTEj5z#>ex26?n-#)Wsnj<2TYdGTqoFIXYN&nRt?z%L@9jP zzBi1Np7MS_B-L@Fe(GFIPpvY|_t-BMBbN8Sdk1+E=qB5n6O(x$MXS+dd1KJjn+e<^ zFrOH%X{@g1Aa8+-Jm|2A;0ub`*2GKOrT7b+1HX*e&Qb|pyR9mJ>hT`i75lxn*Dqb| ze%v%a#NYBmOoC5KQycp=o<oh5oWPyN=)J9#W_ht zu!{_W>;OqR7GfirTj?Bf+Z{K!!<%7QgnD@BxLG?ib`Z?GMS_4eGvs;hZ;mx<-K@{7 z?s8sQRN;~nu}a;dp3-mP9a4>-N_}!iVzAO?NrKD9E!wK5!xiTu&vgQ{t+FD+e{;O3og?HLKG4;89JsOj8x@KpL%5pcl++59KzH2I<{f-Gr zF;9?at&V8)d+XoV{BvTSon^?V2LDI&PHBvPrg|0q6x($9V=)zX9d%UWhw}FB&@uWTwQj3A@hB- zk)gKRREdTcqVO&vVfUPCsUM{`IYMAs?!l3fgzdC?6qNysb?oGnSq}EBhPV zYp6E3!~L>=RHlZ{A~ZtR6Nbc#08bdC671A{p0^lc>dO|ydktM0!DuU-`j&5Ddz}D| zG|!RH&||oD4`Ud1fdB|v>qKSPKtR4x(BZx|&o!oVSGuvszwCrwwYY(h)}uTxe$L%f z2{z>tcQzx=m@SmdrM_?^k=^erPKh$EEtr{>c)wYGxdL)gEGoWw?*ILZvh)W|YmqiZ zD^k91b05%6b#?GYnnKE)O;uf0m1T8D)Yv-@OZ)gVwrLXS&|z5;{{(e1s?6FG6fG?tKnBz730B3lGis|`RqadbXtqBxW^-;dCeecar4u3hjQ{rox7KCQ+H z05QC-5+g(W?@yyy6Jf0m>M`v<*S=kYQALQ}Wkt|^nxb=YS0^){8 zmGhnel`I6O(-$1Aih)wH+r+LE)s{2j4EcFPMrqjpR3I;<&WQZ)7}+U%jD&QFIgd2h z9Mu4r;b_!E4zawrz%(Yid?>xoyX%az2TV*m% za(tXsmS*gX-G^XCG77wt0XNn0nmE$m7xr3iH=P^a6fg3eao;H4>W^HZxE!CE)oWUs zfPhz4lMU^fB1x=%KmBz3{Zh0X@0;}9{CYT&jZGdEqm<+ElP#2JEZP;GKq2OBu2_gT zOa(S-CfoRPV;mQZMa>4&3MwPhG?(}u_Q|~!TP~@OCtN*i=k%%A(7;LYZi4%aML@OA z$a7Eoo4R7p`t|?01)i{6^mD#qa-pof$Nr`O;me0EIW69Y7iV(Mc^Q_dCvxWnHM9`g zZWi4HaWl*@V4V+1e-;%(j=Frb*7_jXf{ZnggTWkd-oWzUo2l<}^;0=E`y9{H3xvmj2i%q zvvHThRPkRVN(`E3#K-Q(U+e#>zCbBDaNB(|A#v6+@VgzaPPaD=>h=s}{QkO9eOd!m zbFpZDze7H{>)$_71a!rq_L*^m)i`9VZg1DID;*_=tVxXdEh`VHP9m5_Qk#A=9t*W% zk5tT>>a+J7GRYIIjL*=EOQz^nEjacC)7r0yA3!U=FEH#m&wUAo2Y?B76usC{q+0?X z1k}q=dINGa$r|ccmkK?&@mRoX0b>4d5aN!CUIqRsalOdQ1nR3}coF?1A`p6cjNqG< zgCBTIe$ zZSjlpbxd?~dxr_hmn+HL4%PJrrIPz|cPURClU1x5veKu8FhyX*@9p`!xZsY?D#Qz) zf!%k$9S0Tdl!vtoog4_c4`1ix#uLz4t;?)1>;LHO^JLwQ)!B1`!wK`|@synrwwTJ$ z`_n7i1sg=$y@YHFQ_@E;9gS*(!U`saM?m#t>uv8qf_Df}W(BV`1TETJ4g30Vxp8x4 z;x^&~J)ERRprVVAmsMs`9;a|w2aL2!8-5VUMP&Mb=E-xU#wiJod61VOAjO&B3%inP zgY70MrgOf;3OQtf?J z)zmJK4Wa*oh7Iww$L4>vhQ{x^7yk=$21SSy=+u~*0j9tZ1IPgclod(V;Mx{ZgI2&= zzr$5H|GQtKjZ8yB!xzGOR9lF73V1hNji6OgOUQWz08VY5egJB>!#7WCaV~ZMqY)&t zfT=9-)gNlxZVa_uHsxn%8654=K-}pvh+&Ipc^-QqqT;EV>vP+8Ot{O4lXZ9mY{1%N!F5o|dNIAELdE(w_?$I%O%GKf$-m2bLEFsP+ zV5N^@?yWj2dS792i}_ZUTOY5oM2J>;~p7K;LP$E z_bAu??5R(s5vF1n4^EHeR2!}gcxdzGvLieHCy}qYr|KrpH|y?itvf2Y8K)J%q8ajg zU~p52UzKoicVCAV0Z~l}`iEm(2aCAH^QR9igto^+VOinx z^yj{JcGIS}7tdEF+xDyO`9n-ujg@U|Z$qhIomtY~RY}a#>8{K{m+F?7l&i%5ZD({@ zOdSqdzjwIy?_W}i&>gzV5EM>CJXyP|(VX+2&~=*p3^VI<-`>&_{^Z-=ctr2$HS$y8 ztO+$uUrCip6T_-e+~13LA3VG8m8bEaXT#~G(Z=D04e-*CjKhWjWG`D=TNAC1ldORR z3dD62@fCaeptxCLsmN+@TYoEuzkZ1`gO^`J-wstC&ZbN$pE0r zS|45!=+Ffh$Ak87^f~zyRjo%Mvg}$QEPL{+*Hbj2aM7^jjH$m}xiio94})5J27v*& zp>0e@u8VUo=%~P7H#9^HX0}Gajw{04$ixJIqz={oW3_zU>k`I;sl9I7Gn7yMkRk#! zLwA!AW)@VC$#)7t5(Y)b9?1zg1mZSgtX;*hz?me(++B80M`8m-vgj*x3Ew><%n(D0 zXoqln1gO#r>@P7f85tS<0@*RFfMJ*u!om^;YRm$AcyG%VlDcPLaf(5y;X%ej9QoRb zw9rG*HsqLegfsxw+tJnn^q}cIH)5}5<6ue*NzRV~o57qz&iYfOk`MlKhiV40U~_s< zdRSV97T67~ZFcyHxvg44md9)_#Gp|LTxF4?>FuWS z3Otj_7>nIr)!UWiVYZ&k=8L6Q*A zhb-RQop06u!Nm}9?CtJ%U#_B5E*DP|=>CPsrsQ8pvUwIKv7(oj$RezFj>e+J(>TJ0 zcJ|xvp9iEj7aqk}NVb$+)8ej*Zh4;Ezv_t0JiI}6j+LDyEKV0~;wof2aiP#xmrsk@ zqOn4qW%9+=kJL)-Lb1=kdQQc?pAWss`vt#0%EFbWq8T{fJCgznZJj69KmK;6qTIHB z$U0ZwtYpFIR>_HcWYN~dUJm%>@l&VBaZ@cpZ^lA@x%@0H`V@BRCzb9BsX(qxdzCA0 zA=#^|Gh*-V(t+Lq5h(|sD~O&TNepIiqUn$wiU11k(2pMgs6M(U0s{|f54tVnd>r%> z^(5RjJNLd6YDWWBCR&aSjBITd`MPGNMg`}1@Q;eNvo^MJdvj^_b`I(?ew`@Z$!W+*`#yf{v)*H-_Z4OVF*L$K3R{R{1xCwprP46Yd2e_-@s)&6!8LUcb zK{4=I`zJ$L5or(7@0Q7p`|hJzoXSeZrVH*d5Ytp46q9J=f5YfFm6dV%$;Ag!O`bp= z0%<4)g^m=r-jBWuTy^y`I@o1`Z2Ny*kZT4!ylzr(oXW?kouDM+lZJTGHl@LSJTgp%Th5o3b*R@BqWw zsiBlYG328ej{AFerGg|@_W6m5F8HeTlkSxy@^$ldYoe-~n?X1~=C?qEq!#nYW8g?8 ze`&;@++zc=jNI5X93fMk03Bkr0R{yEvg0yfyNxhUDFFBgT=PCzkc8V~lVCk0$0mdS z3kMC52#jJ2fFKB}UWo2g!$WdYO(_~%Tnr6Hk}j>ze_DWsFd+r<<1!jW+6b0siZDJ^ zFNBUSV9*n+*8yWV!a9^OLypk>vZJ*e3Wa0nkiZuhEGBd^bw|xXc>^2S8Mfk3*q3wh2yz+TjRu zM;8~$$E{Yvu2T30M9b9~$y~z-#q=AkWzqN1mEE*F_urPb% zbv;eg>G2d_N4|BN>qP?;d5nD8iRfe9ZEVZE6k*5s*2Z@(-M%dU4=soB7~fTlen)X$ z%((kZLw=pI@~QCTTPp#BcOKDWD~!@PN$$7{Ns0<8T<5q=uh4!fpp3EL;xm01W3NvB z?8?hLL6Z{3D%8RzOHNn%vxG5@tn6wuYSf7Lc>g%Zr>fxfeb-V&# z{AK?X4zh<*F{7Zg zfTtds<*{YTv=MDKuhH0s%Dcy?if70QED0kl!ln|xr2lw5w6#6S`WCh%hi^_2Wa1Z3 znWqG$Zg=m#?s|QB;rIOf`;v!#Wt*c7?nB3}oS{FaK&!~|^68b^in29KM(uJe!MSMm5;c>Fz2&k^s@&54n|vLDBjp5Dfq9d<5X zrI-SMFhmE{xfc#DI5|7B{eH;26mVl~8h6P^z2Hnn2-&f4>XHr3A8zBBDgIp#BZ4-T z9?U4DPOogmA9S`Ku9bG04*&AukDUT;A`3ah+S=1cz@@+4pj$#k*0-=>Qtyis_ZaKS zmOh<*iSiXAsq{CNb3<5ZX``nc56wBdH8ibz7=)-TkJsehe9iOj!Q$xAX28D;7iO;r;9KL?d9-rC{h#5U2pBvHvIPI@P%YDX7scX z=5Nmx(#{K?2}t)o|lKGe2luLJG>>VA{KkdZnrif8uZ(l33P z)~q?#4L_^*6?{U7M?WMJY7hTC5C`B?uboJa{m$B2ybovWlwV^YtSK5BV<3hFh)7tA zwc{A0-B679)sI&T$5t4}FEA5UI}0q&_>+(}u^&f}AV^q_pELV#?>3U>o~Du5Gi6z7 zE(CK9VmEf@E?MJmh>3xsRL|HLfF6&KP@9QU+>V_BI;=JiUpF|}7-HxneD}6idwXN2 z#9=;CR+g2W4QVmMHBg*X=>7Wf1CC}9H6Vjg;5~1t;a7behrJ5%N<`iZ*z>w)fJcXf zb)bIILOl#sVL4J}PM-xlZIH%;gPn;0E^P7;=UQGOn4sGhdNdGu5SQu>V5kNtlSmJ{ z5_yQvTz)c0W?yQsD18&8K*`HMlWhf~x@;*slPUMM#kxcM{g&64IZTXeIv!l$ zvd6Mj#CPm<(p|SZiHWXP=6+0OPa0n#$vur?3iW3&q{X&Ae_0_Oi6J}5Vvhb2=ilmX zEqW5er$iG;b!E&(Y2cJmbO?)L0{cgycW;uftILvbrXRPQEi5~Ui070pTPs^KOypoj zr3fznlR%}BcR!_c4`-7W7Kc(sOE|7e)(R&1JmJv`q`H5++Ki*uQLyw)v8ZX6YSRhc564whT^I+4 z=Q(w3GI-#I;7J$8Ndz;`aR`oIjl{=_)1HyUU% znGcnVwolM zp$9_94p)DlzrSZo=?22n4?A+RHPhRk{Te)xBr1eq8uG6wD2yVH$uCGT`V^D7wz2Pu zdR&J^UOcvz)QL&~H58%uB2jz*C}xP4g214YL>pgiZK1uvQZ?3dTTndfL>lEShL;+s z#cK{Y=kdGxk1eYB}w-TwQNfF45%P2D&Xoz zJc9H9_!!1EjRym!V#L0QjEs)Lv4Cn5q&VC94wPBe`k*%T1ctEXuory<*jrqg;FxDu zavUE0`IAjaGsUkeE|7tpd#h6Z>gi-|oHRc8x)K8Mm7*ojt~{MqMSkQ#JW86v+McvB zohx9bjxfL)R&8(=0c#LzeVFgWvo~%G7!t2w_>RK9dKy15cWGEvSh#Y&nF(dLZ1c} zAR?YUf!$m`$v1)kO5N-9@IJFDQOh8W2jwxqOeQYV6>hZ(s>ZW}zLf=xc*Kqq0oVii zKJi#8GI(v}`xX|61WScnnRqL(0qOvc7A!49F9Ji@3iM@AR}pm;a5l{1&XN7^gb+3b zTx@Z1k~I{$>`FQ4wE$E6Taf(#o&k*l^6HT=1Ul4jVk!>mhJLx*I`EM3C!^#y{0K1$ z5MKc|4D?@UEJ}XD_Y#cFK7lqE7IZH)fYqC*ERPI>06uew1Od7tv`fQHGg7-^%mK(} z`EGw5?pz!_h+quF{qdg`sk|NW!WGr7^o7ci{&Ay{X^#A}$@4O(x+T!sWvT^N2brr}9@R2={4Nu^j)n@sGQo4{v zEh>%Ku7hl zRHo5iKe^O$lFA#Xy_YBn6#8zm{wi|%Pb8Rziph4JrmGp%!_jJe*RKfqcN(U(tvH^d zEg01{3#+T{OsEsby1({G{5#4p*3A8jMT?EpJd!(_^YZCJs~dxZk9CxEX56g8(##~M z@0w08Pn%vDemkgX_{WP;7N9`>l3;6tD3P@;UU+dprwZNCM^}F^N}LWCp9tLQ7_In| zI+bCzlHa@`28uJjSURYGZ)Ac_i3r`L?pV#-Jly&_O&Hz!^;zd+z@N5Rx5a+9s(cw; z>|gh~rQthw!evQhkorkFI@e(9qNAS#=2Fa~zc&V}Gu?c-q$Ew(c%V*RBya6l@Alr| zeR%#}M%=@M{y#bfEMdu)-Ci4wFv~I>I7|f{u>Q4W4TFct+B%7>$KGpC*;k7X%pe52AMJXe`y6aGQ$V&hZXm6zvt zK2};KoB-}(m+LQ!iWK!iunapnU7@(GMx3C)9&&I25*WcZ(a_ZNPr}99TMWyVWDS7% zsv$Cj9Oi9xb^jl)^YYh0UXi1SlJBmBOd7>_3eShz!!E(>$4$+JnZ-WQHyh0io)W7- zgtYr~U%lz@EK*Rf(><21ovv5o#>Kp#-I+}h37oqzcvf-iEMfI!WA&aTBhJn6ZImte z5!Jy{>`FY>XR5MyzKDIP>s#Hbh?-eAYq|)2?&5aDe)TtIWaNz z<*&qDo&MUfKt>{09h=hxrEJh)dkkZN{iHaEVnOu>hI(uL0TGBER*wJfTqcWWQIP2ZA8kB)aq-g9QpiyqA)G3ug(MyvP*nJ*vMT|(S*Kq-Rt=vA zg0g*(*@?&AuZDbMP`zVwWM2Y?cfE40FFXA?!*qtk_SeUf09YG1c;2x2bDki%IScqd z;3ENmo=B37XJ?iQgfA9`LLe#zp_F2LbWW!$lT!RQk#HpVvqA2}N4p&G;CRPsgPw=K zmtC}$(3QsWfA0sgeO5gvNuDt8kV_*Fo<$CRNsK;dET;^qUYG(m>P5ZfBas<94- z+&M*YEQLLpPkZxNoSAF1Ua*8Wm3sOU19Z3KvrxMyeyi-R%D&MypGQ{zJ-D%$xjA3Q zLu+2`pU6p@y)btz_(IALWJ?&?)qppgC2^N98%|%JudffW6~wcp4JO~XH{PW?RP$Oy z*>CBECfbtx*Mt~F2ffkR1;^tAa>H7z|HpF~Wdr3iys$NLvyN^rap<=X$sM;~eB2}J zE}ROeFmjl!QM58$ya*D~2y@U0d=m-S`CF8O&LYHgBxLU~E3k9N6|yRQJ)GGbEib+v zF+?QtLY^DuyI?fj%utMgk_`FTm@=Vf18eD#m0>R)`{RTCYbyE(|BvtoX7dtL;=O-{ zYXPLGD>CfUyCi+> ze|CNB-Mv%zU=a=Z$33zzeX|2MgbONOc(*f#)5juEoXm!6zTA7)-SV?LBOk zb*%FL!19hJhQ`}M6BYja>(U!jfqsoAv*AXHWMB39=(#cr)PKM9{q8S59O#@_0EuO= zq~fE6aU)=y1?kP`Az7Xw<^$}QIYAIkTmn}eh0!u}4 z&_cuGW=|vptH~Q5fW2!@ZO zTpN*V10M$#8-{ZsH2z`ZXnT9Rt>k(tES_OZty^*&F)n^iB zrBuk6%I$;GY|s4J7Q3mdse*e*llC5%`l!&bl~L%g)$V+R@e@^0CJLmDkHhSNR` zR>DFQT4+>KcRrCJ=L-UTJNP}&Sb)QZ+6wR9Q zWqM}^eOJZCu0nh&!UP$C$dh5pvuAtie_E3?-u>Y-f*apwQUu>v^kfRB9cgPWy8^eP zM5b$#w3$a(J{l`ceTN0F?ceyh<}rj0i%57-`r2%J7t%far$4jsR%0nGlv?X6 zcS&B-^ro(6M!TTuAnekv$6i%SFi!#FI6VdAK3=~*G&V*jzj~y>hYYueCM%YQjb|#% zo0D;b>7cEk>d7CGQ{vbhkR==O>*$;(3!Zuh{(t66mz+xx;gZZ3@^_R~&V9?DH8tX0 zpZYvnpi2Fq=+MS;`Td!2S*8vsquW6$$+748qF>&26E74jn~mhDJ+PRG!R_0Oj8q5V4%%Jz6e7$)b~P|S zi_H;HTV7m*F)23ZN8ZfI(5aTP`TP7jHnd4p+pOGpG-+uR2i6kbP4&L+gzNXT^mnSC z)X}AM65g5;Ig!E>yOOa}7}OQoC=gqtq2)9Xng}F9bA;dKX=M!*6=Me4{aJlF(}LdnvP&mTHD+EwYkr(B!QzL>cC+i1F5hXnVHwp)yP?~ zIY;YOu#pQ=0C3ydx6X*TvpI58wh99Ay=sV^JO@7q^fr@n!YvvylJ3f=Hd5kCZzVk8 z3yfq?vJ%52MAY0RF5OQ9QUZ(~D)d0OC##4-#ZD>3KVSlUCa5!1Il{u0~SPnegy4o!5&0OI+F|~P4QkswLK;vI(FsYkbm;~*6 zVspC6*Plcok+l+0oOa=fPGh~8c*c6t9^7l+tZt=ucI`OpUi(1s=aPK?5TOuM?rD6;`>Q*5C}tAXDrjL;5ylh)s{)O7va4()WzXu zoX|C5hZYQ(oNe!YD>J}3`pG&pB*E~90k`S*vmmjRq0VJzJ+&qzM^z82Ee9SkOFcp#O5x zlHA8VBd)}pePx}x`h8y(jsP?>#3PVG%OHU$%&r8c7x>0tM?4)S z{-lZUu!#_KSlV3vIYCdJpYo((`S(){rXF857-M+Xrw!gKj#;NN>FCj1mTI^6*&HpM zSaow<_-NrufZGl#8serRD(96s{gJla$P2oij_!8V*R!uHp53l9GEON z`RqyyS4OBtU{M zXvl0^1;H}}`hSX6Y4T8(cR;|0HC&GkHb*gDgr0&}RK3tFLY+QtJa}9NOl?qad3t&Z zr~arh=1EkH_h9PS41f&I?r$P$N!AhON!=Xs7*Oz5^1UwuYybNZNV3jB--w0r1%Gl> z4!JBj0!Yl7j|^vvMhU!lx`&`L&wsce~DF0ydaF8lbWA7%K>> z%OTQ6j)Fn+(8VTzqLiYi0K^fBgW~qY1!Iub0^Ft1q}-(ZW-J(wHBjJ6gmsVx8hpa3 zs$?>d!YU~U1HQ>O__>C6666B6*=4?oeAM`I&XKxslD+q8-BLqye2LJbSaa(3mo)Ds zK6Afz+)0vNJrh{;#&<;M!t-{tl@0E>MuFlt`4Rst!*?oVx5?sbFFp?TkciPjCJ*J< z*7=Gydt58-{Qh;`N2tgWWKUX2+~30UYf$bv*RL^UPz#xhFeiuQ+T@kV1qdPd|{n1=y{GnuP7iJllu-oJ>Ty0_|s=<)0XzR zgeAPOV`yF{oLoaj^x>BGdE8n)rRZWEDhw)3)IdJxl%DenlGK>a>F87wF$cxP@Zj99 z{t3!rYkg!3$gec*_j8+#x26l1T%44-3d=2iY~%JkB41u1A5zE_N>zn)1eP$kVL?lr zMUWv+@0kUI7o@^&q|{0t+#Oh$key1Ds5Y32i@UV=J$&13Z=w0tK~poUU)CLrb|W#` z9cub40=!k7l?_Jx?sZHGA3pZ?gVrN(n($C+A`si3^LbC1=XIoJOuF~qk^WHoucn%_ zlciscZY+40JeO7#i0LY0+WyS-BdEc|e_~Ec3Y!B2R{97KQQN1TK)hk%n)&q0&&+E> z+B@IRL@IM)*yHp!@#uHh-!~_s^~NnF$Zu;a0523Vj=DrCVV-DuZ!lmC?g?mGC|coK z1r1B->(^kA26^%WKqEHzx=UumABZ3!x*}v@sr$%W4@m}E2M!{zaN@yMD$c)sbN^VK zs8ddYkDas@?@f zJX~FnKkV(^j7OW~ubD8gHE+uaW{~+)-KhPTJw0K1ptSPk(W|hh@{>>RTwJ-6Hy)*l zh!>F;;(7a#E+2uAKmL@O{@J%eh8A{29^+iwb{l?wU<8gAAOidwc7e*ugD8gq2?lTC z=?+%}fa0^dXJBjO>*~s?^v$9|5&w2@VY_L}xz@Hy|D^^bT^88G1s}Nk2e`Q$O2A-7 zV<8(u7KEXpKwg$fvL=7&G@OIxRDw|l8oTW;sYKmfiN;csnY*|M#9ES1_)FeFe)@k* zeR({T?f(B@Xp(BuR8t9Ql1faPB*{()Q3zR!Lb4@Pwg^R8Ls3LUh)N-3Ym%f$5+2Ex zB*~VL?f1T&^PKOmf6nXlh%s|t*Y&yHYd&=D-7@O>?$U|S;~+K6n*OcG>0uK)32|rl z;w?lprF0sqZA3zm1`iqs|3$=O#U82V3s6k1zS+O!g4jQ1ExtA1T?cv!yMLA6Nr2wMQQh$vrgK62)j4 zKyObo)O{FhP%vo4L;(k}C*Bc5+%-}40;yVmQBv=~;NbX_k3iK%O{62h_)DN3z-ss# z@>WR;iHH9w|27@NW`wfE6#2<2kI&`EGJ{v>UyZ(WkwFsH61k)tXQkcFzqw-AJkI9$ zCo^l?8}AMT7HY+dY235lvMjZCa*^}q?INMKDWT%#SFdPVZwMjzheu92Dh0jdJ-piF znBf-5yp2_^ZW0QOC$<m2Rt&;0>j#hGt zN-|aKwEmv&N=)ou$el!VEFi=#XFgD=4LUDpxY)22D5rE3p(q{D@?hzdQ^xZtAHT7s zFDUI_x+EXo{3J2z={M54Zp!hoadZCS_2M*M`vfVzCj|xLwR;93NGb)m29njsXPxr( z4d*>gKkP|o(ccaJT6KJp-|5(bTaS!$eC|tl|LvYL(=#3Po0|eK1uHZ2ifs!(XH>u; ztJfiqICr)wy!LaR+$TSo(mwHd@Z{kqr;nMg^i(S17DPZ*C zihVslc;(22W)7Wh{Z|XH$8^_p&Nn}`XjC-da$RT!hbLMUR@eU7)%L*S>4ArP`L_A_ z%75CRvas)>s<4Xe^29?yEA`ot*Fu`#e%#P*Nk6nJzkzen>YHiy0m8Zm4xp=oO5RO~ zM%%`b>g2=61|)&r2)Duq1dE6ulS8z|K6gyf@YJ}=LU5_c&&SrF@hClN_-y6Z|JY;h zkg!fgGUM%>gh<4}>yb0OV&PqkjT^Rb_=huZ_ssOICfP@)ZKUaR%Xx`Pud|cgOp>fp z9;sKkDl*adV`Q`{W39h};q`{)9f2q0UZ>b!R2Q5GppnS_H1CC+ioDv__fv1`E*?_b z>?K<1T;&j<-ST`|H=4AQ&Ou^2Y+qBWN878Qur#0pVm4?$z#o8K04@#ughZmOuX44f z<1rXNx7W~cG27V01o~chh4rt6g)P#ImaD@eJT1`MkUYy`GsC;@XNGorNyHNoAF%R4 z4=kS?LIwCa>~*DErY09>g(m8AQL~AAf@ABi@hO2Ss4580d%D=0`~kEM4tRiE0rEKm zFY`g#8HB32x^7Rdv-F*`6{xDKtJ938k*(zf;Zgl}bQt6KcXUwTQKnb97PP{9%cw?# zg;PP|J4^&J;fZM=TF6Sq<|c#9vKwwQYK0dT-xOCEd9qw~@Ne+nZ3@Qf%0+wS3f7?& z23#y=Tw`$qICGG}4OPj*hp6KrW~qy*_Yp^lvO>*hOjN02GrpEY&=5@xqss9o2;rBA zM@dPl7;msO@i#j%Zu%|r8OG$e$IoZ&h5Nfa&Iy(9wNVaOU6w4muwPl~5@)cLV|y@P zxEIn>R-F~ENV7NXSi#A)Tw7P>O zteEunOkUCzVMEP4@gsL%mM=2vpxt}%`Fhydg&*$vW)DW5Ja#N~rNPCDZEfVR<}Jpw z%YKKmhA#gZdmZ)XE`$62x-E`JZ(2AM8funFeK~z7*!Ow(t|I-1#orG%OGP|NbAHUo zDwb7Y?l#K3aKvt9gYG%AveIpB9?Oz9O&DcC(zKrP!V5KGXHm|`S_4uE;4mPBf>r>D z&PU=5Gk(o|j}Us}*77){p?WxEuG2Hm0P26K0?IjlP;AZ*ZIcRUlkQI4+;uBtNIuZ1_RgRrI*^z8=1M z<~u!*C~i_qNtf7{7=3D5w8GuqzWd)gjp4&?>u^RJ(S5PLY_<2!6ZRboFL4;Vi*~fL>kDS~64L=W zQms2uNnnVZ03W*#(l+=k@?Nd(vphgp?dh@**Jv*zRW1_q+LzDiMlbi|^nYMw+k>)0 zB{XTMrOsD6{8-Z&EE=5#O2GBBYB~6M;V}d0NJ4Hgn!ceN(`g8;?82wq?lay7B_`3p zO;y_-eoTq#-M%!yN=^`xZn!m4zdK5!6{P9uHITX#FaZ?_i)Vx#wNakesfVe%a%OfdTWusQ4>gjD8#UJG^ zyT0gTic9WGt<&cv>Qk2&Ax5+H-k(1cm4n_X>c5aE;Vvf#{{xfn3Anex@vur1noIE= z!*mxa63rO=TsYcM5g6e&-AyYQJv7(7six-)nZvhy?vCZNlk`mkxXSe+ls3L5|5Vw~ zi$%z!gLn?YZZiqki;z8C(}VrKptZzrZWe#O?Dy;Mp6lAz6naSGp>F)LO#2h*Rarap zC5|QgQN3N(Y8||TGU?t?>@)cD@WBJ5Ndj>yDCm|+l3ayv4#CQt=FF5|-%#%->4Ny- zXHS!=DDFe<(#0PtwQN~yuMN7%@WwDteaVnrG5hzj|4ji3168jk@eD--V1j)|S! z`JQ>D!V07*a@cBXmxOoQCjcFwSj$VUC<~e#i4p%63{P(rZxR2U6k?yfu?WX@RF<^8@mXsszUexNZQfozGZc}j^HW^T2T*~ z>y38A+}vD%nZ!JSMg}4w=nzq%IqZW#gYSjCNl&=U*+ZcdF)gddA}Nw) zkt7fUb$4BP)tI~o_4&D7Df$nhvLdc(UY1OyXx%1jrS3Qxb>c2d=Z#r)*z=6NTOaZ6 zbF)vlo>Wcc3%266xRJ2qYC)#`Zub}F&#cvroOj>v$vo%iBDmpT7c;@&#>l}V-x|Di zG98M7^L=PaXG2>zzuxS2Zo4_B*vCs={$eMeI&WKkMLGW4h(N5C_={!yoL!H1Z*$QK zkNaJI?XZn=XGx6T^gn-2O8g3Y?&SiJ^q#?+Nl7b{afJuV4}!YkX~1?%eve`Z6i6g}+UnrGv2)@zyaDg~ z+>Mf9!c4A1NmtYdqeTtBo`2Mn4VwOYc7f_bFR#r*0)+*Y1%q>eM+T>gv1B3frm2}* zS}ss}^!RZK8jdvq6hmdm>F4b&P&FK~#jkJ2cggdm`#&{2d*@tYHh$&Nc~-ujickvq zj^+xbWaG&q;l^h*yF&iHAGz|V=*YyqAMJCe;}w37)JP)4e{>pKOJ`@w`AlcNue+)@ zc!#MmS)9v~d#`5HUh|^g`SPLCg@eQLq9QHvuCfy4@pbW0HA`6qWHnnhok{9lp$3)i z*tvBi7d+c97D>WdRBhwt>sy=q6UV?&_QGwF^tTG0)1PWKStpzW-?x^7t5h2NBFW!M zw}Ye@!b!Q*P16cv@CZYXXc^7?I7*AH$#5#U$9O;O~X)#EK)Nha;F z71QON`B<&PJ(De?)z{;@$EePabGv_lr(LIuufePkssF+wfXdel%I(CdbKGWTeL(&c_ZxmAgW5>9B(pm=) zg(pVyZpTiK_`QF%1A8z0%MYFeym(cei~Yzn`?v{M%TzIbGUVHKETVm)Z=R@WV8Lg{ zr~BygLQctdD>M!)N}Bt0v!}$b^g4RsTBV6$T2M%+{h2Gedp(NH#a9xWhnZnxrwasU z28NZca+>^LPY)mVY2Qb+!Sg610E<~t?|dX=QGXF!gbYnSHW1q}nC}5(qfW4aRowOq z>PrY&Oa7RqH|QU6$ZFN#rP@JCPSJzWp{(F1lSx z>li0{qbXlk6(wBLy&1Od+^If0TVtAi#gO)%TvxvMPoq;Goi5yzyWYnY*RUG0QPXhK{xXDi&O-h<_mc4+yGjiV3-Hkb!>P$7D-m9ti3z&0*V(fe zPoT)6lA{?g7kN*xg-Tt!|2&-D(KS#YpCTrywfpOjEt8V7Th8=`zkctL_W}B@T=8`K zzmQQA*=11-`+2Yz2se6vB_)wkN#rX%HO+=lC-aBhMY)}&J`X)?j#$f`Kj-OpOs?CI zV{STd*yVvw!>;!F^rZ`Z3+lnf8i~=6rVL*)aSJd`R zX?J>zRPJ#{cWIKjhKs9596Ar~l{eBlvb&D2SuXFd_vDW@YuB9xKNHm@XR<%d74MP0~nL{I97-JU#35ef87W5lT$A<0Dnl zcU7*6J20GY4n^t_aB2wgp-ItKcAxBZIA&F<4ENj| zYZd{aQ9sJMksNyWP@%NY1s_+xooKP&Uaku$?Qghq3OCm11{vx36aNFLv z{M*rM*QPnVcsMLyisT$S^z_p5FwfrmBg*0rvcKd$U0v5m49$J+nR1}8Wx^K)_}iLL ztf^$M8fg6>AZZj*vzhh@h+{!UOlhf80)n9rG~lUCN1{y=`dq%9{nC(rU|kggu)1Z; zn}{GV4mJJIR2=33!q8ddp!Rg$DM2JZoRU|GW)QXrUD4%yY!`tOboHh)!PfBUA!-5& z92=ATQ)`u|Y$lZ)#kkx%38VK_^@Oy4mu^4b|EPTxr~$=S*7W4IIEJR)7Ypq@s~Ig5 z9#hu~)d1RI`FQ57J=r-q0nWw$_>@j$SW1cSjePU@`-iFUvO}eUi&qD?w6(!M3l}G( z_DYc~oo*RXO{w@Aa|;V_jKUNQf*9b%S1M6)>f;7RM_YDgrqLFhz39xePr&k?@5n(z zfLfGz4c;>BU{H;wia|OAj*EFkEHpIrY3l&WZG+caq%2vpAPf<%lYv1czkMQ--^UB> zS+66UjfM2k8>N+0RJ(kx6{swpdo&>pzeG_^ zf$6pYVSFkORv2X^&;CxIw~++*?muy&q)DM*s%$1X=IDhuxAB}D-7T@-$|my0Q(sfq zk1CJCCdWqj`Uw;)J39};O@I}KH^rKclJ4M?R57`_x0c&SeJ^!6$vtt{`T69p{eyeNT>I=;Xi267yl0t<(SWxy`LOoz zT7mXBb?hseEgdg$K2|@`s4&6JVV$h4>s;o6E&hF&v}LAAl1$jtod(?@F|mQLyAgE{ ze>WbnB~eSuy^>_ST#6?BL@fAy#@GxI=Gx#Z5bbl9xY71zcJ8n6Sw6>l7X3CQ~RP> zw(!C&rKb;RInUG__S?1j)%{yr66{FxtbDB86*ZEg5@+c@Zn%md-Wf` zfo%!zR`{~$D|op{iX|4~auL?ov$D3DH?78e2=gFA6GMMzXD22Ephswa4-lSjhrLqO zef-G{#=?t_8XaI8MJqE&5vYN=xf)fqfu*MZs(X8|btob&(Ey;Pf2G^&v2pncoUOVL z?|_8J1-=TznrQtY;3%{rnn~=_r+FcBZ^2SQ6w?8#j%EZ3i^bO@^+NvtA9nL!oa_wG zzc|@Lh(k$=ck0WTS5l!{2XEfgj{-z{UKCUAr&S`D9wZ8y21ciM?up*gm%2#%q~^|E z$~9cI!12|MiiQ4@zm4cb#X|we@ZGLjhN z)$N)`BpIiQeR9}o-h?=19K9EZu&n`t1&{0JH-{E1Le+?75~6$+YNwi9(2G^B`KQ1Y zNyM)Ym+b1hJUcP@rsjubD}?X$+g$xLbWZ+u;NLjYUaI|6=D>byekC${`}YuzC9b<% zWTMZg)P>3MoOs^cZCCsIZOV3|N;ghyhx`5-chWd3cSq-ORsC6aQI)Utw(#ccuYoxy zH7%Y|Mjdl57`^&s(D04BFp@vx(#W&H()$M!3U2Q4xM2N)5i2IJ{L!qp=%Gr>9j6Os zhG%M`P5;b(o;n|-+&20GdTO!I@bGX9Vdz;ZHWsInFCTM1-|G`0XkI$`O>(BeZ&t8w zbYo|(nZt`ArDYw8D#22n=QuZju|=scohmmM)u#y%!7< zH_3_)Yyb!>pum5x8R;|Cy{eiq$_HHSLro6n%3WTJcGD+KJ&Q0}No+)c(y#wlpF>bG; z(1UibJ#ufdR~?lU;0xghho(u`|87S4p9Np9sN20=U~u(G_Sx3&Qe9JM3g{mLsZ*4L z`SU&Ns?UXQrIUpP&7`v9uUy6MHS0ONu1OLDHDm z?eOO1KLfXYguIn_`L`{dJ*Ie&OtPw8|0|_gV7tYX91!s7Wy_RRBcq-RB75CW?66}* zj!N7<@#wQlM`xlQYwEkOu5S$m*^zC8LY-Xk1L=rmnirCZg(_3Pe-*cZrH04_!j|!w zgBj%YAJ3qU6kJ4gt~OPbrUr>MIJ9zztgPw8ofsi)Mu!i_FrbCOSzT{;TTE6kV(nFR zqHhFPFa^6Y3HM*&i@0RU2_ofCCR~`J87&|rL_i|~RfReIX9WXF4x| zP&of1#kDC7R~njoydZsh?pMH_b7wpcd*VDa^fYWA-@dnD^xM1h#m5P`LjWPR$PLnT*yT-NK z#|_)e8yn3%4dWyuw;j5xtiM%}{9}C7OHL3-&E&9g9QrMYipAd1-E3z5DXd_G%xEx3 zND&NTThr7+*qzW1aqVjf%+58?qfU%S9$%TI`I_%t?`b6}Oz>d)ToH#?ZS#U?po28a zD61uZv67yQ0Io8v1E@biB2=dfokE6Kq@b0Xq(|FHBze=6s3-rh}k9a+m zM>}1fwK-u=VKXTKx5apsBIj{BtR6~0^WZof-M4g`zO%g_d3pNOxqb$juvcJ7&1EPb z_uDKF@*5mtXGPpzI@TnzKSaACzQ?H_^{siVUB#dZaaJtzQ{DOTR{p59 zypVeH^}TJi0jlL8RNs$HtxHmugitRn-u;zRP0zA9HSUqvfNk&<)y+7)_a!*tC^h|s0wCCK+pu%~Np}&WI z-I9DYI@y%gkac{&_h5;ySo37Zou)bq$K6KjFC~X4Dkvs=kQQ;CiU^OGi=Uf}PfGSd zkoc9fcC=3s5$JDvMi4Lb>>1#l{8Ok!(O|d;#1kPtmKGM$YZlYgb|vb_2pl*0gYYDM zT7a-!f`q{An@tU)W)7zo1uadgTeWq=i@O(`UQU)Dy|?0nb&3m;pKVP3OnS%Js);O9 z(-#Ysm6a_jEfwVB5er4WAI@Dx>b0*8m315c5z@Y$T0cGeUTR?E$w!M%>sK+h=%3B6 zqkV|Z`(E12wR{Ov{+gl>Eyu}Sc9}NqsNeg^;<@ml5A>2a%ej+9dL9PUz4qKc z$fo>s$Qisl5a73*?7xVGhq(L#uZ1gzfB91C?7o$+)w(5FHWs=6Oc~iK@^M~(eMly} zHNR~T4WCGY!R>$E#IB|<5=9~TcR$l$pr67d4kQ{3%HiF(QUIvZj7}9xdA~%TsDDJrbE=q51IE>vHx7A_UeJS6#I*FUb<4oXQ`QbKW;Ejl zsw&_tY|DKx<14B8VS$kM5H4$Rw%kgH>P8nAL_Kv#LxE&RGa60ESgI(2Pbzz$*Ma}V z${kI|SdG=v&__k0g0Y-n)0tb{GCBR+RFIm zX;$@gF>Ul@aOj5XT%W_6w>>JP(%fD4oj$YIQO$kJa@_-WH*={S{~@9nxlH`Qk#k}+ zU={~$Kdir@Xp?oyl^$cTS%Yjv+3tAgw%4uIE1!OVSo|?mCG|t5nEF`yEuEiV92U(!vFl)VuwFA3b~(e{M6Lv5x!zC^s(O(C>6f6 ztX+lb?&iixie&WRLo9AvLK?d2?2AXpG+UH;<5kB)5obT22MM3<=xEo555~>jmW<|; zko;4>kAsxuzNbP#t@4+LcZs{>uJXSZrMO6u!4C3<)9VIMPx8@kErtB6-Fb~Ty)UMN zcj+rJ?lu((?Z?*krNNqxo3@m@RvW+nl4wWc7JamF6y@HCC(HcDArCckGaXiwe!kC6 zUR9C!+N9GFkZe{hToI8zwUT=8PB-JW5owpzVow^+!plQ(YEp}f{W#2qZY)2$x}MaY zmT$jkn!3vSO@PZHQM*%|78lBwem9OR5B;M%y5Rk_53f4D5ARTJ|Ek^KE^tClaDOzJ zsZYyL6{#QaK-ThnPzb~-Xni923u{Ox-g;xlL@sirjnrdt)HA?W<0Xd_O6kO_wkDaG5YyJ=I<|f~)5heZ z2OAnTo>|9!6fbGHCb%Nkkti4k4U8X4LB7NV+PFgHmzby%A>nV`(VYrqPJWWKo!0|3#b3swDfkh8S9^1&Iw`h#3`S@)QyS}C% zS=Y1U>*YeqhJqxU^V=My7X}~(CjXS=%00uiWI< zLq9~FWcTFmIJ|S42HD`y2E7-s0L9K+Um74Rp#CK4x6xr`RWW~VPLlE3{o7Y;(H^e& zZeR}VKF@M(IDoHQAy!3VcmO|wjapYr+biPNEPet90wH&@p$TNJBVW^=>S`zJ{$ zvuw6$YVi4J81?Iy&o?Vv&Xl#Yncm*s;+p&c!kD(uizl;pZzaV$jlQfh{GNvBKMf@0&Tp$}}eo=9ipql0cA|uYsLktyp zwE+1cUN*C6{nVv>akiea=s0jYe|{0$1rGXj0L3UW;$yRPkN}IE4uB6t4I~Z-z(p{5 z;HGID$4$bs9Nuk)7}Y$4dpYDGA4FReyaTSOE5ih;AT|-Eu$e^9N>Pg=!U@O~`KR=0 z)^veKc?9JE77XguxZ z<>lu$I67(8q{HBEb1ER>svEUMcL+vckSFE9}< z?+4Gask)^Rr4z+-&x%|B)JfimIY!GBF(W)EBq;-n?9 z&y{g1Ev$k9wH~4Wz)q~`h%v;4jrje4PE2^oC%1q8EFd889`%g8d~9@q{QL>$l@*gh zxnM%eVt*?oeO=Lz?Ke1ngQ-pJEWE!`%6hANLL1Lw5b<~p#*sr?~b3&Gu`X+mxh>gaHC1un=k<7nPR8^z?uoWFgG;#d_vMY zf<=QQ{rc@k!;Q)&gY4o++K&d!W~l(}Xk|Sc_dM#Gw=r4!kJI{>$ zat_*RCTCFOyWM~BYx_*6HDmR6AHUaI86vDd>+rwLpl0(kvT&}J8i`lQ; zhTo0mPn8^JyR0+k@>AFGwv^Hsf6BR-#Z!Ec!qXrEX zs3t86YF2bNE3Ri9AwMs)UvQytCI^(4btSARIZ{I<4|eusIHOT=fv-->kIqL+pLh9j zKX)Sc#ayHXK$dowyhtKL1JY+R^9p1$DGaaEgfkArN-V$3&_2<6*DQgX6H)>NFra{!Ck& z)2gfL&|_l&0hz+2^M$a1^gc~wD8zf8n5#v0)W)XsJ0{$zH|{3Y11NKT>h*sSp3S%uit(BZX>^B$q6%syR2QkU9rh6>61^z zLi21+6}LeNi5`Q5H1tG(wTXbWuynL`4+wsRiNqCE+vF9dgsGG$j?VVkwH#$-7p$#H zk`9PQ>0L^DAyDp)VJ z$f(9VqRFq*fC&urFD48ktRBI+fV1q8&W{K{&4XgJbLc=b%3|r@UKO*;Z}e|*S>xej z_xLvE?3C!*`Z8`H%Dhgv&2~1iefpc^^b3qXsAvqWOw9y@fZ9PY3$QV3Fo31TWL%37 z)^50>eg_BnfJdv4@XPaAM~bT_GJmK?G|7C9kk}*jsYkX%&@;hcqj_xJi<7P*mntZZ z-;WPgvfeK6;qcxw>NC;PeznE9QonYyRn$(+i_>>Hsq6KwZM0gI%h$SzY`)-GIk)w- z=zwh*=kuPSy0pq=prlywd`~9NM8-8f{%N}CsKiTM^JWf`jM6fazer@wfzBJqZI{Vk zM6&9okrXovJ3%34z2>b1eUB&(>FXb_r{|b1@PhB zSE`PMcfaTyI#+`61a+_afLN^PN$+6IoSd1R@on!PORcvPrh>P{`i;Je$1toCQgCbI zXoi};QPv72Du`F%OKyeO9aKede$f%rKKSbwI7t*BxXZrlar^)7qM!eF7hR6scRtgC z5Ni(;s1Ksbk?GmI6?r5w0)RD>de>Dg3{plsV3fwh%MuemB3qsdy6 z2TQAPu(fy%;-lhgxC50ym#}78;6iB~KpH(F#@-#r zSAaW4-2mY+>HGWF)UeS^V*C?kk-6Ea!>`!--|W_zuDT(&FYO<;u6K>cWBtonr&=r^z|OTEt$w?W*2XyA7-d~jVTKmNp;E}C2yp$;SQrqC{Q#}mFE#kd~R zY&a%PotF_vN=`0A6SP1Tx^J}Z9X0ucvePs)jzf-(oVqjj7!8dA!DBo-YBs7c5jaysnq9uB4Yj!`^}_(b=ys-{QQufbgl&87)xjAfwmRpKaU;j;Mn1H zRg=HUrkA7_b2pL{Vi!0bmgWLZw5{rzzV?dpbZ?&bF8iznjy#>&uiaBFw0<5TQt