-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathSaccadePhospheneStateInfo.m
525 lines (474 loc) · 24.1 KB
/
SaccadePhospheneStateInfo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
% SACCADE PHOSPHENE TASK: See Chen et al., 2020 From Methods:
% Prior to surgical implantation of the electrode arrays, the monkeys were
% trained on a saccade task, in which they reported the location of a visually
% presented dot on a grey screen (with a background luminance of 16.6 cd/m2)
% with an eye movement. This task consisted of %visual trials and ‘catch
% trials,’ in equal proportion. During visual trials, the animal maintained
% fixation for 300 to 900 ms after fixation onset (uniform distribution). At the
% end of this interval, a circular visual target that varied in colour and had a
% diameter ranging from 0.2° to 0.6° appeared in the bottom-right quadrant of
% the screen, for 120-150 ms (uniform distribution). The animal had to make a
% saccade to the visual target within 250 ms of the onset of the visual target
% for a fluid reward. We used a large target window that spanned the lower right
% quadrant of the computer screen and a portion of the upper right and lower
% left quadrants to study the relation between the RF of stimulated neurons and
% the saccadic endpoint, preventing biases to visual field regions through the
% reward contingency. To calculate the saccadic end point, we calculated the eye
% velocity and determined the mean eye position in a time window when the eye
% was stationary (50-100 ms after the peak velocity). During catch trials, no
% visual target was presented, and the animal maintained fixation. On both
% visual trials and catch trials, reward delivery occurred at 1200 ms after
% fixation onset
%
% me = runExperiment class object
% s = screenManager class object
% aM = audioManager class object
% stims = our list of stimuli (metaStimulus class)
% sM = State Machine (stateMachine class)
% task = task sequence (taskSequence class)
% eT = eyetracker manager
% io = digital I/O to recording system
% rM = Reward Manager (LabJack or Arduino TTL trigger to reward system/Magstim)
% bR = behavioural record plot (on-screen GUI during a task run)
% tS = structure to hold general variables, will be saved as part of the data
% uF = user functions - add your own functions to this class
%=========================================================================
%----------------------General Settings----------------------------
tS.name = 'saccade-to-phosphene';
% if 'training' then show the saccade target and don't stimuluate, if
% 'stimulate' then we hide the saccade target and stimulate:
tS.type = 'training';
% which pin to use for stimulation
tS.stimPin = 11;
% includeErrors: update the trial number for incorrect saccades: if true then we
% call updateTask for both correct and incorrect trials, otherwise we only call
% updateTask() for correct responses. 'false' is useful during training.
tS.includeErrors = false;
tS.useTask = true; %==use taskSequence (randomises stimulus variables)
tS.rewardTime = 250; %==TTL time in milliseconds
tS.rewardPin = 2; %==Output pin, 2 by default with Arduino.
tS.checkKeysDuringStimulus = false; %==allow keyboard control within stimulus state? Slight drop in performance…
tS.recordEyePosition = false; %==record local copy of eye position, **in addition** to the eyetracker?
tS.askForComments = false; %==UI requestor asks for comments before/after run
tS.saveData = true; %==save behavioural and eye movement data?
tS.showBehaviourPlot = true; %==open the behaviourPlot figure? Can cause more memory use
tS.nStims = stims.n; %==number of stimuli, taken from metaStimulus object
tS.tOut = 5; %==if wrong response, how long to time out before next trial
tS.CORRECT = 1; %==the code to send eyetracker for correct trials
tS.BREAKFIX = -1; %==the code to send eyetracker for break fix trials
tS.INCORRECT = -5; %==the code to send eyetracker for incorrect trials
tS.correctSound = [2000, 0.1, 0.1]; %==freq,length,volume
tS.errorSound = [300, 1, 1]; %==freq,length,volume
%=========================================================================
%----------------Debug logging to command window------------------
% uncomment each line to get specific verbose logging from each of these
% components; you can also set verbose in the opticka GUI to enable all of
% these…
%sM.verbose = true; %==print out stateMachine info for debugging
%stims.verbose = true; %==print out metaStimulus info for debugging
%io.verbose = true; %==print out io commands for debugging
%eT.verbose = true; %==print out eyelink commands for debugging
%rM.verbose = true; %==print out reward commands for debugging
%task.verbose = true; %==print out task info for debugging
%=========================================================================
%-----------------INITIAL Eyetracker Settings----------------------
% These settings define the initial fixation window and set up for the
% eyetracker. They may be modified during the task (i.e. moving the fixation
% window towards a target, enabling an exclusion window to stop the subject
% entering a specific set of display areas etc.)
%
% **IMPORTANT**: you need to make sure that the global state time is larger than
% any fixation timers specified here. Each state has a global timer, so if the
% state timer is 5 seconds but your fixation timer is 6 seconds, then the state
% will finish before the fixation time was completed!
%------------------------------------------------------------------
% initial fixation X position in degrees (0° is screen centre)
tS.fixX = 0;
% initial fixation Y position in degrees (0° is screen centre)
tS.fixY = 0;
% time to search and enter fixation window (Initiate fixation)
tS.firstFixInit = 3;
% time to maintain initial fixation within window, can be single value or a
% range to randomise between
tS.firstFixTime = [0.3 0.9];
% circular fixation window radius in degrees
tS.firstFixRadius = 2;
% do we forbid eye to enter-exit-reenter fixation window?
tS.strict = true;
% CATCH TRIAL TIME:
ts.catchTrialTime = 1;
% visual target
tS.targetFixInit = 0.75; % time to find the target
tS.targetFixTime = 0.75; % to to maintain fixation on target
tS.targetRadius = [8 15]; %radius widthxheight to fix within.
%=========================================================================
%---------------------------Eyetracker setup-----------------------
% NOTE: the opticka GUI can set eyetracker options too; me.eyetracker.esettings
% and me.eyetracker.tsettings contain the GUI settings. We test if they are
% empty or not and set general values based on that...
eT.name = tS.name;
if me.eyetracker.dummy; eT.isDummy = true; end %===use dummy or real eyetracker?
if tS.saveData; eT.recordData = true; end %===save Eyetracker data?
% Initialise the eyeTracker object with X, Y, FixInitTime, FixTime, Radius, StrictFix
updateFixationValues(eT, tS.fixX, tS.fixY, tS.firstFixInit, tS.firstFixTime, tS.firstFixRadius, tS.strict);
% Ensure we don't start with any exclusion zones etc. set up
resetAll(eT);
%=========================================================================
%----------------------ONLINE Behaviour Plot-----------------------
% WHICH states assigned as correct or break for online plot?
% You need to use regex patterns for the match (doc regexp).
bR.correctStateName = "correct";
bR.breakStateName = ["breakfix","incorrect"];
%=========================================================================
%--------------Randomise stimulus variables every trial?-----------
% If you want to have some randomisation of stimuls variables WITHOUT using
% taskSequence task. Remember this will not be "Saved" for later use, if you
% want to do controlled experiments use taskSequence to define proper randomised
% and balanced variable sets and triggers to send to recording equipment etc...
% Good for training tasks, or stimulus variability irrelevant to the task.
n = 1;
in(n).name = 'size';
in(n).values = [0.4 0.6 0.8];
in(n).stimuli = 1;
in(n).offset = [];
n = n + 1;
in(n).name = 'colour';
in(n).values = {[0.8 0.3 0.3],[0.3 0.8 0.3],[0.8 0.8 0.3],[0.3 0.3 0.8],[0.3 0.8 0.8]};
in(n).stimuli = 1;
in(n).offset = [];
stims.stimulusTable = in;
%=========================================================================
%-------------allows using arrow keys to control variables?-------------
% another option is to enable manual control of a table of variables
% this is useful to probe RF properties or other features while still
% allowing for fixation or other behavioural control.
% Use arrow keys <- -> to control value and ↑ ↓ to control variable.
stims.controlTable = [];
stims.tableChoice = 1;
%=========================================================================
% this allows us to enable subsets from our stimulus list
% 1 = saccade target | 2 = anti-saccade target | 3 = fixation cross
stims.stimulusSets = {2, [1 2]};
stims.setChoice = 1;
hide(stims);
%=========================================================================
% N x 2 cell array of regexpi strings, list to skip the current -> next
% state's exit functions; for example skipExitStates =
% {'fixate','incorrect|breakfix'}; means that if the currentstate is
% 'fixate' and the next state is either incorrect OR breakfix, then skip
% the FIXATE exit state. Add multiple rows for skipping multiple state's
% exit states.
sM.skipExitStates = {'fixate','incorrect|breakfix'};
%=========================================================================
% which stimulus in the list is used for a fixation target? For this
% protocol it means the subject must saccade this stimulus (the saccade
% target is #1 in the list) to get the reward. Also which stimulus to set an
% exclusion zone around (where a saccade into this area causes an immediate
% break fixation).
stims.fixationChoice = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=========================================================================
%------------------State Machine Task Functions---------------------
% Each cell {array} holds a set of anonymous function handles which are
% executed by the state machine to control the experiment. The state
% machine can run sets at entry ['entryFn'], during ['withinFn'], to
% trigger a transition jump to another state ['transitionFn'], and at exit
% ['exitFn'. Remember these {sets} need to access the objects that are
% available within the runExperiment context (see top of file). You can
% also add global variables/objects then use these. The values entered here
% are set on load, if you want up-to-date values then you need to use
% methods/function wrappers to retrieve/set them.
%=========================================================================
%==============================================================
%========================================================PAUSE
%==============================================================
%--------------------pause entry
pauseEntry = {
@()hide(stims);
@()drawBackground(s); %blank the subject display
@()drawTextNow(s,'PAUSED, press [p] to resume...');
@()disp('PAUSED, press [p] to resume...');
@()trackerClearScreen(eT);
@()trackerDrawText(eT,'PAUSED, press [p] to resume');
@()statusMessage(eT,'PAUSED');
@()trackerMessage(eT,'TRIAL_RESULT -100'); %store message in EDF
@()resetAll(eT); % reset all fixation markers to initial state
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()stopRecording(eT, true); %stop recording eye position data, true=both eyelink & tobii
@()needFlip(me, false); % no need to flip the PTB screen
@()needEyeSample(me,false); % no need to check eye position
};
%--------------------pause exit
pauseExit = {
@()startRecording(eT, true); %start recording eye position data again
};
%==============================================================
%====================================================PRE-FIXATION
%==============================================================
pfEntry = {
@()needEyeSample(me,true); % make sure we start measuring eye position
@()needFlip(me, true);
@()needFlipTracker(me, 2); % eyetracker operator screen flip
@()getStimulusPositions(stims,true); %make a struct the eT can use for drawing stim positions
@()updateFixationValues(eT,tS.fixX,tS.fixY,tS.firstFixInit,tS.firstFixTime,tS.firstFixRadius,tS.strict); %reset fixation window
@()resetFixationHistory(eT); % reset the recent eye position history
@()resetExclusionZones(eT); % reset the exclusion zones on eyetracker
@()trackerMessage(eT,'V_RT MESSAGE END_FIX END_RT');
@()trackerMessage(eT,sprintf('TRIALID %i',getTaskIndex(me))); %Eyelink start trial marker
@()startRecording(eT);
@()trackerMessage(eT,['UUID ' UUID(sM)]); %add in the uuid of the current state for good measure
% draw general state to the eyetracker display (eyelink or tobii)
@()trackerClearScreen(eT);
@()trackerDrawText(eT,'Pre-fixation');
};
pfWithin = {
@()drawPhotoDiodeSquare(s,[0 0 0]);
};
pfExit = {
};
%==============================================================
%====================================================FIXATION
%==============================================================
%--------------------fixate entry
fixEntry = {
% show stimulus 3 = fixation cross
@()show(stims, 2);
@()trackerDrawStatus(eT,'Fixation...');
@()statusMessage(eT,'FIXATE');
@()logRun(me,'INITFIX'); %fprintf current trial info to command window
@()updateNextState(me,'trial'); %use taskSequence.trialVar for the next state
};
%--------------------fix within
fixWithin = {
@()draw(stims); %draw stimulus
@()drawPhotoDiodeSquare(s,[0 0 0]);
};
%--------------------test we are fixated for a certain length of time
initFix = {
% this command performs the logic to search and then maintain fixation
% inside the fixation window. The eyetracker parameters are defined above.
% If the subject does initiate and then maintain fixation, then sM.tempNextState
% is returned and the state machine will jump to that state,
% otherwise 'incorrect' is returned and the state machine will jump there.
% sM.tempNextState is set using @()updateNextState(me,'trial') above.
% If neither condition matches, then the state table below
% defines that after 5 seconds we will switch to the incorrect state.
@()testSearchHoldFixation(eT, sM.tempNextState, 'incorrect')
};
fixExit = { };
%==============================================================
%====================================================CATCH TRIAL
%==============================================================
% what to run when we enter the stim presentation state
catchEntry = {
@()updateFixationValues(eT,[],[],[],ts.catchTrialTime); %reset fixation window
@()trackerClearScreen(eT);
@()trackerDrawFixation(eT);
@()doStrobe(me,true);
@()statusMessage(eT,'CATCH TRIAL');
};
% what to run when we are showing stimuli
catchWithin = {
@()draw(stims);
@()drawPhotoDiodeSquare(s, [1 1 1]);
};
% test we are finding the new target (stimulus 1, the saccade target)
catchFix = {
@()testHoldFixation(eT,'correct','breakfix'); % tests finding and maintaining fixation
};
%as we exit catch trial
catchExit = {
@()setStrobeValue(me,255);
@()doStrobe(me,true);
};
%==============================================================
%====================================================TARGET STIMULUS ALONE
%==============================================================
% what to run when we enter the stim presentation state
stimEntry = {
% use our saccade target stimulus for next fix X and Y, see
% stims.fixationChoice above
@()updateFixationTarget(me, tS.useTask, tS.targetFixInit, tS.targetFixTime, tS.targetRadius);
@()trackerClearScreen(eT);
@()trackerDrawFixation(eT);
@()statusMessage(eT,'SACCADE');
@()doStrobe(me, true);
};
if matches(tS.type,'training')
stimEntry = [ {@()show(stims)}; stimEntry ]; % make sure our taskSequence is moved to the next trial
else
stimEntry = [ {@()timedTTL(rM,tS.stimPin,2)}; stimEntry ]; % we randomise the run within this block to make it harder to guess next trial
end
% what to run when we are showing stimuli
stimWithin = {
@()draw(stims);
@()drawPhotoDiodeSquare(s,[1 1 1]);
};
% test we are finding the new target (stimulus 1, the saccade target)
targetFix = {
@()testSearchHoldFixation(eT,'correct','breakfix'); % tests finding and maintaining fixation
};
%as we exit stim presentation state
stimExit = {
@()setStrobeValue(me,255);
@()doStrobe(me,true);
};
%==============================================================
%====================================================DECISION
%==============================================================
%====================================================CORRECT
%if the subject is correct (small reward)
correctEntry = {
@()giveReward(rM); % send a reward TTL
@()beep(aM, tS.correctSound); % correct beep
@()trackerMessage(eT,'END_RT'); %send END_RT message to tracker
@()trackerMessage(eT,sprintf('TRIAL_RESULT %i',tS.CORRECT)); %send TRIAL_RESULT message to tracker
@()trackerDrawStatus(eT,'Correct! :-)',[]);
@()statusMessage(eT,'CORRECT');
@()needFlipTracker(me, 0); % eyetracker operator screen flip
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()needEyeSample(me,false); % no need to collect eye data until we start the next trial
@()hide(stims); % hide all stims
@()logRun(me,'CORRECT'); % print current trial info
};
%correct stimulus
correctWithin = { };
%when we exit the correct state
correctExit = {
@()updatePlot(bR, me); %update our behavioural plot, must come before updateTask() / updateVariables()
@()updateTask(me,tS.CORRECT); %make sure our taskSequence is moved to the next trial
@()updateVariables(me); %update independent variables, and set strobe value too
@()randomise(stims); %this uses metaStimulus.stimulusTable for stim changes
@()update(stims); %update the stimuli ready for display
@()resetExclusionZones(eT); %reset the exclusion zones
@()checkTaskEnded(me); %check if task is finished
@()plot(bR, 1); % actually do our behaviour record drawing
};
%========================================================INCORRECT
%--------------------incorrect entry
incEntry = {
@()beep(aM,tS.errorSound);
@()trackerMessage(eT,'END_RT');
@()trackerMessage(eT,sprintf('TRIAL_RESULT %i',tS.INCORRECT));
@()trackerDrawStatus(eT,'INCORRECT! :-(');
@()statusMessage(eT,'INCORRECT');
@()needFlipTracker(me, 0); % eyetracker operator screen flip
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()needEyeSample(me,false);
@()hide(stims);
@()logRun(me,'INCORRECT'); %fprintf current trial info
};
%our incorrect stimulus
incWithin = { };
%incorrect / break exit
incExit = {
@()updatePlot(bR, me); %update our behavioural plot, must come before updateTask() / updateVariables()
@()updateVariables(me); %randomise our stimuli, set strobe value too
@()randomise(stims); %this uses metaStimulus.stimulusTable for stim changes
@()update(stims); %update our stimuli ready for display
@()resetExclusionZones(eT); %reset the exclusion zones
@()checkTaskEnded(me); %check if task is finished
@()plot(bR, 1); % actually do our drawing
};
if tS.includeErrors
incExit = [ {@()updateTask(me,tS.BREAKFIX)}; incExit ]; % make sure our taskSequence is moved to the next trial
else
incExit = [ {@()resetRun(task)}; incExit ]; % we randomise the run within this block to make it harder to guess next trial
end
%break entry
breakEntry = {
@()beep(aM, 400, 0.5, 1);
@()trackerMessage(eT,'END_RT');
@()trackerMessage(eT,sprintf('TRIAL_RESULT %i',tS.BREAKFIX));
@()trackerDrawStatus(eT,'Fail to Saccade to Target! :-(');
@()statusMessage(eT,'BREAKFIX');
@()needFlipTracker(me, 0); % eyetracker operator screen flip
@()needEyeSample(me,false);
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()hide(stims);
@()logRun(me,'BREAKFIX'); %fprintf current trial info
};
exclEntry = {
@()beep(aM, 400, 0.5, 1);
@()trackerMessage(eT,'END_RT');
@()trackerMessage(eT,['TRIAL_RESULT ' str2double(tS.BREAKFIX)]);
@()trackerDrawStatus(eT,'Exclusion Zone entered! :-(', [],true);
@()statusMessage(eT,'EXCLUSION');
@()needEyeSample(me,false);
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()hide(stims);
@()logRun(me,'EXCLUSION'); %fprintf current trial info
};
%==============================================================
%========================================================EYETRACKER
%==============================================================
%--------------------calibration function
calibrateFn = {
@()drawBackground(s); %blank the display
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()trackerSetup(eT); %enter tracker calibrate/validate setup mode
};
%--------------------drift correction function
driftFn = {
@()drawBackground(s); %blank the display
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()driftCorrection(eT) % enter drift correct (only eyelink)
};
offsetFcn = {
@()drawBackground(s); %blank the display
@()stopRecording(eT); % stop recording in eyelink [tobii ignores this]
@()setOffline(eT); % set eyelink offline [tobii ignores this]
@()driftOffset(eT) % enter drift offset (works on tobii & eyelink)
};
%==============================================================
%========================================================GENERAL
%==============================================================
%--------------------DEBUGGER override
overrideFn = { @()keyOverride(me) }; %a special mode which enters a matlab debug state so we can manually edit object values
%--------------------screenflash
flashFn = { @()flashScreen(s, 0.2) }; % fullscreen flash mode for visual background activity detection
%--------------------show 1deg size grid
gridFn = { @()drawGrid(s) };
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%------------------------------------------------------------------------%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%==========================================================================
%==========================================================================
%==========================================================================
%--------------------------State Machine Table-----------------------------
% specify our cell array that is read by the stateMachine
stateInfoTmp = {
'name' 'next' 'time' 'entryFcn' 'withinFcn' 'transitionFcn' 'exitFcn';
%---------------------------------------------------------------------------------------------
'pause' 'prefix' inf pauseEntry {} {} pauseExit;
'prefix' 'fixate' 0.5 pfEntry pfWithin {} pfExit;
'fixate' 'incorrect' 5 fixEntry fixWithin initFix fixExit;
'catchtrial' 'incorrect' 5 catchEntry catchWithin catchFix catchExit
'stimulus' 'incorrect' 5 stimEntry stimWithin targetFix stimExit;
'correct' 'prefix' 0.25 correctEntry correctWithin {} correctExit;
'incorrect' 'timeout' 0.25 incEntry incWithin {} incExit;
'breakfix' 'timeout' 0.25 breakEntry incWithin {} incExit;
'exclusion' 'timeout' 0.25 exclEntry incWithin {} incExit;
'timeout' 'prefix' tS.tOut {} {} {} {};
%---------------------------------------------------------------------------------------------
'calibrate' 'pause' 0.5 calibrateFn {} {} {};
'drift' 'pause' 0.5 driftFn {} {} {};
'offset' 'pause' 0.5 offsetFcn {} {} {};
%---------------------------------------------------------------------------------------------
'override' 'pause' 0.5 overrideFn {} {} {};
'flash' 'pause' 0.5 flashFn {} {} {};
'showgrid' 'pause' 10 {} gridFn {} {};
};
%-------------------------State Machine Table------------------------------
%==========================================================================
disp('================>> Building state info file <<================')
disp(stateInfoTmp)
disp('=================>> Loaded state info file <<=================')