-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_itop.py
133 lines (113 loc) · 4.47 KB
/
train_itop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Module for training the SPiKE model on the ITOP dataset.
"""
import os
import sys
import argparse
import torch
import torch.utils.data
from torch import nn
import wandb
from model import model_builder
from trainer_itop import (
train_one_epoch,
evaluate,
load_data,
create_criterion,
create_optimizer_and_scheduler,
)
from utils.config_utils import load_config, set_random_seed
from utils.distrib_utils import is_main_process
def main(arguments):
config = load_config(arguments.config)
os.environ["CUDA_VISIBLE_DEVICES"] = str(config["device_args"])
print(f"CUDA_VISIBLE_DEVICES: {os.environ['CUDA_VISIBLE_DEVICES']}")
device = torch.device(0)
set_random_seed(config["seed"])
print(f"Loading data from {config['dataset_path']}")
data_loader, data_loader_test, num_coord_joints = load_data(config)
model = model_builder.create_model(config, num_coord_joints)
model_without_ddp = model
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs!")
model = nn.DataParallel(model)
model.to(device)
criterion = create_criterion(config)
optimizer, lr_scheduler = create_optimizer_and_scheduler(config, model, data_loader)
if config["resume"]:
print(f"Loading model from {config['resume']}")
checkpoint = torch.load(config["resume"], map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"], strict=True)
config["start_epoch"] = checkpoint["epoch"] + 1
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
optimizer.load_state_dict(checkpoint["optimizer"])
wandb.init(project=config["wandb_project"], name=arguments.config)
wandb.config.update(config)
wandb.watch_called = False
print("Start training")
min_loss = sys.maxsize
eval_thresh = config["threshold"]
for epoch in range(config["start_epoch"], config["epochs"]):
train_clip_loss, train_pck, train_map = train_one_epoch(
model,
criterion,
optimizer,
lr_scheduler,
data_loader,
device,
epoch,
eval_thresh,
)
val_clip_loss, val_pck, val_map = evaluate(
model, criterion, data_loader_test, device=device, threshold=eval_thresh
)
data1 = [(idx, train_pck[idx]) for idx in range(len(train_pck))]
data2 = [(idx, val_pck[idx]) for idx in range(len(val_pck))]
table1 = wandb.Table(data=data1, columns=["joint", "pck"])
table2 = wandb.Table(data=data2, columns=["joint", "pck"])
wandb.log(
{
"Train loss": train_clip_loss,
"Train mAP": train_map,
"Train PCK": wandb.plot.bar(table1, "joint", "pck", title="Train PCK"),
"Val loss": val_clip_loss,
"Val mAP": val_map,
"Val PCK": wandb.plot.bar(table2, "joint", "pck", title="Val PCK"),
"lr": optimizer.param_groups[0]["lr"],
}
)
print(f"Epoch {epoch} - Train Loss: {train_clip_loss:.4f}")
print(f"Epoch {epoch} - Train mAP: {train_map:.4f}")
print(f"Epoch {epoch} - Train PCK: {train_pck}")
print(f"Epoch {epoch} - Validation Loss: {val_clip_loss:.4f}")
print(f"Epoch {epoch} - Validation mAP: {val_map:.4f}")
print(f"Epoch {epoch} - Validation PCK: {val_pck}")
if config["output_dir"] and is_main_process():
model_to_save = (
model_without_ddp.module
if isinstance(model_without_ddp, nn.DataParallel)
else model_without_ddp
)
checkpoint = {
"model": model_to_save.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": config,
}
torch.save(checkpoint, os.path.join(config["output_dir"], "checkpoint.pth"))
if val_clip_loss < min_loss:
min_loss = val_clip_loss
torch.save(
checkpoint, os.path.join(config["output_dir"], "best_model.pth")
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SPiKE Training on ITOP dataset")
parser.add_argument(
"--config",
type=str,
default="ITOP-SIDE/1",
help="Path to the YAML config file",
)
args = parser.parse_args()
main(args)