diff --git a/.codespellrc b/.codespellrc index 854014b6e168..1f3cfdd7f4aa 100644 --- a/.codespellrc +++ b/.codespellrc @@ -1,6 +1,6 @@ [codespell] # local codespell matches `./docs`, pre-commit codespell matches `docs` -skip = *.lock,.direnv,.git,./docs/_freeze,./docs/_output/**,./docs/_inv/**,docs/_freeze/**,*.svg,*.css,*.html,*.js,ibis/backends/tests/tpc/queries/duckdb/ds/44.sql +skip = *.lock,.direnv,.git,./docs/_freeze,./docs/_output/**,./docs/_inv/**,docs/_freeze/**,*.svg,*.css,*.html,*.js,ibis/backends/tests/tpc/queries/duckdb/ds/*.sql ignore-regex = \b(i[if]f|I[IF]F|AFE|alls)\b builtin = clear,rare,names ignore-words-list = tim,notin,ang diff --git a/ibis/backends/tests/tpc/README.md b/ibis/backends/tests/tpc/README.md new file mode 100644 index 000000000000..ddb463a0b95a --- /dev/null +++ b/ibis/backends/tests/tpc/README.md @@ -0,0 +1,25 @@ +# TPC queries with Ibis + +These tests perform correctness tests against backends that are able to run +some of the TPC-H and TPC-DS queries. + +The text queries are assumed to be correct, and also that if transpiled +correctly will produce the same results as the written Ibis expression. + +**This is the assertion being made in these tests.** + +The ground truth SQL text is taken from +[DuckDB](https://github.com/duckdb/duckdb/tree/main/extension/tpcds/dsdgen/queries) +and transpiled using SQLGlot to the dialect of whatever backend is under test. + +Some queries are altered from the upstream DucKDB repo to have static column +names and to cast strings that are dates explicitly to dates so that pedantic +engines like Trino will accept these queries. These alterations do not change +the computed results of the queries. + +ClickHouse is a bit odd in that queries that contain a cross join with an `OR` +condition common to all operands of the `OR` will effectively never finish. +This is probably a bug in ClickHouse. + +For that case, the queries for clickhouse have been minimally rewritten to pass +by extracting the common join condition out into a single `AND` operand. diff --git a/ibis/backends/tests/tpc/conftest.py b/ibis/backends/tests/tpc/conftest.py index 442cd29bd293..b14bc973e546 100644 --- a/ibis/backends/tests/tpc/conftest.py +++ b/ibis/backends/tests/tpc/conftest.py @@ -52,9 +52,18 @@ def tpc_test(suite_name: Literal["h", "ds"], *, result_is_empty=False): def inner(test: Callable[..., ir.Table]): name = f"tpc{suite_name}" - @getattr(pytest.mark, name) + # so that clickhouse doesn't run forever when we hit one of its weird cross + # join performance black holes + # + # trino can sometimes take a while as well, especially in CI + # + # func_only=True doesn't include the fixture setup time in the duration + # of the test run, which is important since backends can take a hugely + # variable amount of time to load all the TPC-$WHATEVER tables. + @pytest.mark.timeout(60, func_only=True) @pytest.mark.usefixtures("backend") @pytest.mark.xdist_group(name) + @getattr(pytest.mark, name) @functools.wraps(test) def wrapper(*args, backend, **kwargs): backend_name = backend.name() @@ -94,17 +103,25 @@ def wrapper(*args, backend, **kwargs): assert result_expr._find_backend(use_default=False) is backend.connection result = backend.connection.to_pandas(result_expr) - assert (result_is_empty and result.empty) or not result.empty + + assert (result_is_empty and result.empty) or ( + not result_is_empty and not result.empty + ) expected = expected_expr.to_pandas() assert len(expected.columns) == len(result.columns) - assert all(r in e.lower() for r, e in zip(result.columns, expected.columns)) + assert all( + r.lower() in e.lower() for r, e in zip(result.columns, expected.columns) + ) expected.columns = result.columns expected = PandasData.convert_table(expected, result_expr.schema()) - assert (result_is_empty and expected.empty) or not expected.empty + + assert (result_is_empty and expected.empty) or ( + not result_is_empty and not expected.empty + ) assert len(expected) == len(result) assert result.columns.tolist() == expected.columns.tolist() diff --git a/ibis/backends/tests/tpc/ds/test_queries.py b/ibis/backends/tests/tpc/ds/test_queries.py index 856b6908511c..e04294ebf854 100644 --- a/ibis/backends/tests/tpc/ds/test_queries.py +++ b/ibis/backends/tests/tpc/ds/test_queries.py @@ -1,13 +1,18 @@ from __future__ import annotations import calendar as cal +from operator import itemgetter import pytest -from ibis import _, date, ifelse, null +from ibis import _, coalesce, cumulative_window, date, ifelse, null, rank, union from ibis import literal as lit from ibis import selectors as s -from ibis.backends.tests.errors import ClickHouseDatabaseError +from ibis.backends.tests.errors import ( + ArrowNotImplementedError, + ClickHouseDatabaseError, + TrinoUserError, +) from ibis.backends.tests.tpc.conftest import tpc_test @@ -1072,7 +1077,7 @@ def test_16(catalog_sales, date_dim, customer_address, call_center, catalog_retu ) -@tpc_test("ds", result_is_empty=True) +@tpc_test("ds") def test_17(store_sales, store_returns, catalog_sales, date_dim, store, item): d1 = date_dim d2 = date_dim.view() @@ -1388,3 +1393,1821 @@ def test_27(store_sales, customer_demographics, date_dim, store, item): .order_by(_.i_item_id.asc(nulls_first=True), _.s_state.asc(nulls_first=True)) .limit(100) ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=AssertionError, + reason="clickhouse is off-by-one on the result", +) +def test_28(store_sales): + quantity = [(0, 5), (6, 10), (11, 15), (16, 20), (21, 25), (26, 30)] + list_price = [(lower, lower + 10) for lower in (8, 90, 142, 135, 122, 154)] + coupon_amt = [ + (lower, lower + 1000) for lower in (459, 2323, 12214, 6071, 836, 7326) + ] + wholesale_cost = [(lower, lower + 20) for lower in (57, 31, 79, 38, 17, 7)] + first, *rest = ( + store_sales.filter( + _.ss_quantity.between(*qty_bounds), + _.ss_list_price.between(*lp_bounds) + | _.ss_coupon_amt.between(*cp_bounds) + | _.ss_wholesale_cost.between(*ws_bounds), + ).agg( + **{ + f"B{i:d}_LP": _.ss_list_price.mean(), + f"B{i:d}_CNT": _.ss_list_price.count(), + f"B{i:d}_CNTD": _.ss_list_price.nunique(), + } + ) + for i, (qty_bounds, lp_bounds, cp_bounds, ws_bounds) in enumerate( + zip(quantity, list_price, coupon_amt, wholesale_cost), start=1 + ) + ) + return first.cross_join(*rest).limit(100) + + +@tpc_test("ds") +def test_29(store_sales, store_returns, catalog_sales, date_dim, store, item): + d1 = ( + date_dim.filter(_.d_moy == 9, _.d_year == 1999) + .drop(~s.c("d_date_sk")) + .rename(d1_date_sk="d_date_sk") + ) + d2 = ( + date_dim.filter(_.d_moy.between(9, 9 + 3), _.d_year == 1999) + .drop(~s.c("d_date_sk")) + .rename(d2_date_sk="d_date_sk") + ) + d3 = ( + date_dim.filter(_.d_year.isin((1999, 1999 + 1, 1999 + 2))) + .drop(~s.c("d_date_sk")) + .rename(d3_date_sk="d_date_sk") + ) + return ( + store_sales.join( + store_returns, + [ + ("ss_customer_sk", "sr_customer_sk"), + ("ss_item_sk", "sr_item_sk"), + ("ss_ticket_number", "sr_ticket_number"), + ], + ) + .join(item, [("ss_item_sk", "i_item_sk")]) + .join(store, [("ss_store_sk", "s_store_sk")]) + .join( + catalog_sales, + [("sr_customer_sk", "cs_bill_customer_sk"), ("sr_item_sk", "cs_item_sk")], + ) + .join(d1, [("ss_sold_date_sk", "d1_date_sk")]) + .join(d2, [("sr_returned_date_sk", "d2_date_sk")]) + .join(d3, [("cs_sold_date_sk", "d3_date_sk")]) + .group_by("i_item_id", "i_item_desc", "s_store_id", "s_store_name") + .agg( + store_sales_quantity=_.ss_quantity.sum(), + store_returns_quantity=_.sr_return_quantity.sum(), + catalog_sales_quantity=_.cs_quantity.sum(), + ) + .order_by(~s.endswith("_quantity")) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="correlated subqueries don't exist in clickhouse", +) +def test_30(web_returns, date_dim, customer_address, customer): + customer_total_return = ( + web_returns.join( + date_dim.filter(_.d_year == 2002), [("wr_returned_date_sk", "d_date_sk")] + ) + .join(customer_address, [("wr_returning_addr_sk", "ca_address_sk")]) + .group_by(ctr_customer_sk=_.wr_returning_customer_sk, ctr_state=_.ca_state) + .agg(ctr_total_return=_.wr_return_amt.sum()) + ) + return ( + customer_total_return.filter( + lambda ctr1: ( + ctr1.ctr_total_return + > customer_total_return.view() + .filter(lambda ctr2: ctr1.ctr_state == ctr2.ctr_state) + .ctr_total_return.mean() + .as_scalar() + * 1.2 + ) + ) + .join(customer, [("ctr_customer_sk", "c_customer_sk")]) + .join( + customer_address.filter(_.ca_state == "GA"), + [("c_current_addr_sk", "ca_address_sk")], + ) + .select( + _.c_customer_id, + _.c_salutation, + _.c_first_name, + _.c_last_name, + _.c_preferred_cust_flag, + _.c_birth_day, + _.c_birth_month, + _.c_birth_year, + _.c_birth_country, + _.c_login, + _.c_email_address, + _.c_last_review_date_sk, + _.ctr_total_return, + ) + .order_by(s.across(s.all(), _.asc(nulls_first=True))) + ) + + +@tpc_test("ds") +def test_31(store_sales, date_dim, customer_address, web_sales): + ss = ( + store_sales.join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ss_addr_sk", "ca_address_sk")]) + .group_by(_.ca_county, _.d_qoy, _.d_year) + .agg(store_sales=_.ss_ext_sales_price.sum()) + ) + ws = ( + web_sales.join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ws_bill_addr_sk", "ca_address_sk")]) + .group_by(_.ca_county, _.d_qoy, _.d_year) + .agg(web_sales=_.ws_ext_sales_price.sum()) + ) + ss1 = ss.filter(_.d_qoy == 1, _.d_year == 2000).select( + "ca_county", "d_year", ss1_store_sales="store_sales" + ) + ss2 = ss.filter(_.d_qoy == 2, _.d_year == 2000).select( + "ca_county", ss2_store_sales="store_sales" + ) + ss3 = ss.filter(_.d_qoy == 3, _.d_year == 2000).select( + "ca_county", ss3_store_sales="store_sales" + ) + ws1 = ws.filter(_.d_qoy == 1, _.d_year == 2000).select( + "ca_county", ws1_web_sales="web_sales" + ) + ws2 = ws.filter(_.d_qoy == 2, _.d_year == 2000).select( + "ca_county", ws2_web_sales="web_sales" + ) + ws3 = ws.filter(_.d_qoy == 3, _.d_year == 2000).select( + "ca_county", ws3_web_sales="web_sales" + ) + + return ( + ss1.join(ss2, "ca_county") + .join(ss3, "ca_county") + .join(ws1, "ca_county") + .join(ws2, "ca_county") + .join(ws3, "ca_county") + .filter( + ifelse( + _.ws1_web_sales > 0, + (_.ws2_web_sales * 1.0000) / _.ws1_web_sales, + null(), + ) + > ifelse( + _.ss1_store_sales > 0, + (_.ss2_store_sales * 1.0000) / _.ss1_store_sales, + null(), + ), + ifelse( + _.ws2_web_sales > 0, + (_.ws3_web_sales * 1.0000) / _.ws2_web_sales, + null(), + ) + > ifelse( + _.ss2_store_sales > 0, + (_.ss3_store_sales * 1.0000) / _.ss2_store_sales, + null(), + ), + ) + .select( + _.ca_county, + _.d_year, + web_q1_q2_increase=(_.ws2_web_sales * 1.0000) / _.ws1_web_sales, + store_q1_q2_increase=(_.ss2_store_sales * 1.0000) / _.ss1_store_sales, + web_q2_q3_increase=(_.ws3_web_sales * 1.0000) / _.ws2_web_sales, + store_q2_q3_increase=(_.ss3_store_sales * 1.0000) / _.ss2_store_sales, + ) + .order_by(ss1.ca_county) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="correlated subqueries don't exist in clickhouse", +) +def test_32(catalog_sales, item, date_dim): + return ( + catalog_sales.join( + item.filter(_.i_manager_id == 977), [("cs_item_sk", "i_item_sk")] + ) + .join( + date_dim.filter(_.d_date.between(date("2000-01-27"), date("2000-04-26"))), + [("cs_sold_date_sk", "d_date_sk")], + ) + .filter( + lambda t: ( + t.cs_ext_discount_amt + > catalog_sales.view() + .join( + date_dim.view().filter( + _.d_date.between(date("2000-01-27"), date("2000-04-26")) + ), + [("cs_sold_date_sk", "d_date_sk")], + ) + .cs_ext_discount_amt.mean() + .as_scalar() + * 1.3 + ) + ) + .agg(_.cs_ext_discount_amt.sum().name("excess discount amount")) + .limit(100) + ) + + +@tpc_test("ds") +def test_33(store_sales, date_dim, customer_address, item, catalog_sales, web_sales): + electronics = _.i_manufact_id.isin( + item.filter(_.i_category.isin(("Electronics",))).i_manufact_id + ) + dates = date_dim.filter(_.d_year == 1998, _.d_moy == 5) + addresses = customer_address.filter(_.ca_gmt_offset == -5) + ss = ( + store_sales.join(dates, [("ss_sold_date_sk", "d_date_sk")]) + .join(addresses, [("ss_addr_sk", "ca_address_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter(electronics) + .group_by(_.i_manufact_id) + .agg(total_sales=_.ss_ext_sales_price.sum()) + ) + cs = ( + catalog_sales.join(dates, [("cs_sold_date_sk", "d_date_sk")]) + .join(addresses, [("cs_bill_addr_sk", "ca_address_sk")]) + .join(item, [("cs_item_sk", "i_item_sk")]) + .filter(electronics) + .group_by(_.i_manufact_id) + .agg(total_sales=_.cs_ext_sales_price.sum()) + ) + ws = ( + web_sales.join(dates, [("ws_sold_date_sk", "d_date_sk")]) + .join(addresses, [("ws_bill_addr_sk", "ca_address_sk")]) + .join(item, [("ws_item_sk", "i_item_sk")]) + .filter(electronics) + .group_by(_.i_manufact_id) + .agg(total_sales=_.ws_ext_sales_price.sum()) + ) + return ( + union(ss, cs, ws) + .group_by(_.i_manufact_id) + .agg(total_sales=_.total_sales.sum()) + .order_by(_.total_sales) + .limit(100) + ) + + +@tpc_test("ds") +def test_34(store_sales, date_dim, store, household_demographics, customer): + return ( + store_sales.join( + date_dim.filter( + _.d_dom.between(1, 3) | _.d_dom.between(25, 28), + _.d_year.isin((1999, 1999 + 1, 1999 + 2)), + ), + [("ss_sold_date_sk", "d_date_sk")], + ) + .join( + store.filter(_.s_county == "Williamson County"), + [("ss_store_sk", "s_store_sk")], + ) + .join( + household_demographics.filter( + (_.hd_buy_potential == ">10000") | (_.hd_buy_potential == "Unknown"), + _.hd_vehicle_count > 0, + ifelse( + _.hd_vehicle_count > 0, + (_.hd_dep_count * 1.0000) / _.hd_vehicle_count, + null(), + ) + > 1.2, + ), + [("ss_hdemo_sk", "hd_demo_sk")], + ) + .group_by(_.ss_ticket_number, _.ss_customer_sk) + .agg(cnt=_.count()) + .join(customer, [("ss_customer_sk", "c_customer_sk")]) + .filter(_.cnt.between(15, 20)) + .select( + _.c_last_name, + _.c_first_name, + _.c_salutation, + _.c_preferred_cust_flag, + _.ss_ticket_number, + _.cnt, + ) + .order_by( + _.c_last_name.asc(nulls_first=True), + _.c_first_name.asc(nulls_first=True), + _.c_salutation.asc(nulls_first=True), + _.c_preferred_cust_flag.desc(nulls_first=True), + _.ss_ticket_number.asc(nulls_first=True), + ) + ) + + +@tpc_test("ds") +@pytest.mark.notyet(["datafusion"], reason="internal error") +@pytest.mark.notyet( + ["trino"], + raises=TrinoUserError, + reason="Given correlated subquery is not supported", +) +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="correlated subqueries don't exist in clickhouse", +) +def test_35( + customer, + customer_address, + customer_demographics, + store_sales, + web_sales, + catalog_sales, + date_dim, +): + dates = date_dim.filter(_.d_year == 2002, _.d_qoy < 4) + return ( + customer.join(customer_address, [("c_current_addr_sk", "ca_address_sk")]) + .join(customer_demographics, [("c_current_cdemo_sk", "cd_demo_sk")]) + .filter( + lambda t: ( + store_sales.filter(t.c_customer_sk == _.ss_customer_sk) + .join(dates, [("ss_sold_date_sk", "d_date_sk")]) + .count() + > 0 + ), + lambda t: ( + ( + web_sales.filter(t.c_customer_sk == _.ws_bill_customer_sk) + .join(dates, [("ws_sold_date_sk", "d_date_sk")]) + .count() + > 0 + ) + | ( + catalog_sales.filter(t.c_customer_sk == _.cs_ship_customer_sk) + .join(dates, [("cs_sold_date_sk", "d_date_sk")]) + .count() + > 0 + ) + ), + ) + .group_by( + _.ca_state, + _.cd_gender, + _.cd_marital_status, + _.cd_dep_count, + _.cd_dep_employed_count, + _.cd_dep_college_count, + ) + .agg( + cnt1=_.count(), + min1=_.cd_dep_count.min(), + max1=_.cd_dep_count.max(), + avg1=_.cd_dep_count.mean(), + cnt2=_.count(), + min2=_.cd_dep_employed_count.min(), + max2=_.cd_dep_employed_count.max(), + avg2=_.cd_dep_employed_count.mean(), + cnt3=_.count(), + min3=_.cd_dep_college_count.min(), + max3=_.cd_dep_college_count.max(), + avg3=_.cd_dep_college_count.mean(), + ) + .relocate("cd_dep_employed_count", before="cnt2") + .relocate("cd_dep_college_count", before="cnt3") + .order_by( + s.across(s.startswith("cd_") | s.c("ca_state"), _.asc(nulls_first=True)) + ) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason=( + "column name shadowing requires rewriting the query; " + "this 'feature' is so annoying" + ), +) +def test_36(store_sales, date_dim, item, store): + results = ( + store_sales.join( + date_dim.filter(_.d_year == 2001), [("ss_sold_date_sk", "d_date_sk")] + ) + .join(item, [("ss_item_sk", "i_item_sk")]) + .join(store.filter(_.s_state == "TN"), [("ss_store_sk", "s_store_sk")]) + .group_by(_.i_category, _.i_class) + .agg( + ss_net_profit=_.ss_net_profit.sum(), + ss_ext_sales_price=_.ss_ext_sales_price.sum(), + gross_margin=(_.ss_net_profit.sum() * 1.0000) / _.ss_ext_sales_price.sum(), + g_category=lit(0), + g_class=lit(0), + ) + .relocate(s.c("i_category", "i_class"), after="gross_margin") + ) + return ( + results.select( + _.gross_margin, + _.i_category, + _.i_class, + t_category=lit(0), + t_class=lit(0), + lochierarchy=lit(0), + ) + .union( + results.group_by(_.i_category) + .agg( + gross_margin=(_.ss_net_profit.sum() * 1.0000) + / _.ss_ext_sales_price.sum(), + i_class=null("str"), + t_category=lit(0), + t_class=lit(1), + lochierarchy=lit(1), + ) + .relocate("i_category", after="gross_margin"), + distinct=True, + ) + .union( + results.agg( + gross_margin=(_.ss_net_profit.sum() * 1.0000) + / _.ss_ext_sales_price.sum(), + i_category=null("str"), + i_class=null("str"), + t_category=lit(1), + t_class=lit(1), + lochierarchy=lit(2), + ), + distinct=True, + ) + .mutate( + rank_within_parent=_.gross_margin.rank().over( + group_by=( + _.lochierarchy, + ifelse(_.t_class == 0, _.i_category, null("str")), + ), + order_by=_.gross_margin.asc(), + ) + + 1 # add one because ibis is 0-indexed + ) + .relocate("lochierarchy", before="rank_within_parent") + .drop("t_class", "t_category") + .order_by( + _.lochierarchy.desc(nulls_first=True), + ifelse(_.lochierarchy == 0, _.i_category, null("str")).asc( + nulls_first=True + ), + _.rank_within_parent.asc(nulls_first=True), + ) + .limit(100) + ) + + +@tpc_test("ds", result_is_empty=True) +def test_37(item, inventory, date_dim, catalog_sales): + return ( + item.filter( + _.i_current_price.between(68, 68 + 30), + _.i_manufact_id.isin((677, 940, 694, 808)), + ) + .join( + inventory.filter(_.inv_quantity_on_hand.between(100, 500)), + [("i_item_sk", "inv_item_sk")], + ) + .join( + date_dim.filter(_.d_date.between(date("2000-02-01"), date("2000-04-01"))), + [("inv_date_sk", "d_date_sk")], + ) + .join(catalog_sales, [("i_item_sk", "cs_item_sk")]) + .group_by(_.i_item_id, _.i_item_desc, _.i_current_price) + .agg() + .order_by(_.i_item_id) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=AssertionError, + reason="clickhouse returns an incorrect result for this query", +) +def test_38(store_sales, catalog_sales, web_sales, date_dim, customer): + dates = date_dim.filter(_.d_month_seq.between(1200, 1200 + 11)) + columns = "c_last_name", "c_first_name", "d_date" + return ( + store_sales.join(dates, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer, [("ss_customer_sk", "c_customer_sk")]) + .select(*columns) + .distinct() + .intersect( + catalog_sales.join(dates, [("cs_sold_date_sk", "d_date_sk")]) + .join(customer, [("cs_bill_customer_sk", "c_customer_sk")]) + .select(*columns) + .distinct() + ) + .intersect( + web_sales.join(dates, [("ws_sold_date_sk", "d_date_sk")]) + .join(customer, [("ws_bill_customer_sk", "c_customer_sk")]) + .select(*columns) + .distinct(), + ) + .agg(cnt=_.count()) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["datafusion"], + raises=ArrowNotImplementedError, + reason="Unsupported cast from double to null using function cast_null", +) +def test_39(inventory, item, warehouse, date_dim): + inv = ( + inventory.join(item, [("inv_item_sk", "i_item_sk")]) + .join(warehouse, [("inv_warehouse_sk", "w_warehouse_sk")]) + .join(date_dim.filter(_.d_year == 2001), [("inv_date_sk", "d_date_sk")]) + .group_by(_.w_warehouse_name, _.w_warehouse_sk, _.i_item_sk, _.d_moy) + .agg( + stdev=_.inv_quantity_on_hand.std(how="sample") * 1.0000, + mean=_.inv_quantity_on_hand.mean(), + ) + .filter(ifelse(_.mean == 0, 0, _.stdev / _.mean) > 1) + .mutate(cov=_.stdev / _.mean.nullif(0)) + ) + inv1 = inv.filter(_.d_moy == 1) + inv2 = inv.filter(_.d_moy == 1 + 1) + return ( + inv1.join(inv2, ["i_item_sk", "w_warehouse_sk"]) + .select( + wsk1=inv1.w_warehouse_sk, + isk1=inv1.i_item_sk, + dmoy1=inv1.d_moy, + mean1=inv1.mean, + cov1=inv1.cov, + w_warehouse_sk=inv2.w_warehouse_sk, + i_item_sk=inv2.i_item_sk, + d_moy=inv2.d_moy, + mean=inv2.mean, + cov=inv2.cov, + ) + .order_by( + s.across( + s.c("wsk1", "isk1", "dmoy1", "mean1", "cov1", "d_moy", "mean", "cov"), + _.asc(nulls_first=True), + ) + ) + ) + + +@tpc_test("ds") +def test_40(catalog_sales, catalog_returns, warehouse, item, date_dim): + return ( + catalog_sales.left_join( + catalog_returns, + [("cs_order_number", "cr_order_number"), ("cs_item_sk", "cr_item_sk")], + ) + .join(warehouse, [("cs_warehouse_sk", "w_warehouse_sk")]) + .join( + item.filter(_.i_current_price.between(0.99, 1.49)), + [("cs_item_sk", "i_item_sk")], + ) + .join( + date_dim.filter(_.d_date.between(date("2000-02-10"), date("2000-04-10"))), + [("cs_sold_date_sk", "d_date_sk")], + ) + .group_by(_.w_state, _.i_item_id) + .agg( + sales_before=ifelse( + _.d_date < date("2000-03-11"), + _.cs_sales_price - _.cr_refunded_cash.fill_null(0), + 0, + ).sum(), + sales_after=ifelse( + _.d_date >= date("2000-03-11"), + _.cs_sales_price - _.cr_refunded_cash.fill_null(0), + 0, + ).sum(), + ) + .order_by(_.w_state, _.i_item_id) + .limit(100) + ) + + +@tpc_test("ds", result_is_empty=True) +@pytest.mark.notyet( + ["datafusion"], + raises=Exception, + reason="Error during planning: Correlated column is not allowed in predicate", +) +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="correlated subqueries don't exist in clickhouse", +) +def test_41(item): + return ( + item.view() + .filter( + _.i_manufact_id.between(738, 738 + 40), + lambda i1: item.filter( + lambda s: ( + (i1.i_manufact_id == s.i_manufact_id) + & ( + ( + (s.i_category == "Women") + & s.i_color.isin(("powder", "khaki")) + & s.i_units.isin(("Ounce", "Oz")) + & s.i_size.isin(("medium", "extra large")) + ) + | ( + (s.i_category == "Women") + & s.i_color.isin(("brown", "honeydew")) + & s.i_units.isin(("Bunch", "Ton")) + & s.i_size.isin(("N/A", "small")) + ) + | ( + (s.i_category == "Men") + & s.i_color.isin(("floral", "deep")) + & s.i_units.isin(("N/A", "Dozen")) + & s.i_size.isin(("petite", "petite")) + ) + | ( + (s.i_category == "Men") + & s.i_color.isin(("light", "cornflower")) + & s.i_units.isin(("Box", "Pound")) + & s.i_size.isin(("medium", "extra large")) + ) + ) + ) + | ( + (i1.i_manufact_id == s.i_manufact_id) + & ( + ( + (s.i_category == "Women") + & s.i_color.isin(("midnight", "snow")) + & s.i_units.isin(("Pallet", "Gross")) + & s.i_size.isin(("medium", "extra large")) + ) + | ( + (s.i_category == "Women") + & s.i_color.isin(("cyan", "papaya")) + & s.i_units.isin(("Cup", "Dram")) + & s.i_size.isin(("N/A", "small")) + ) + | ( + (s.i_category == "Men") + & s.i_color.isin(("orange", "frosted")) + & s.i_units.isin(("Each", "Tbl")) + & s.i_size.isin(("petite", "petite")) + ) + | ( + (s.i_category == "Men") + & s.i_color.isin(("forest", "ghost")) + & s.i_units.isin(("Lb", "Bundle")) + & s.i_size.isin(("medium", "extra large")) + ) + ) + ) + ).count() + > 0, + ) + .select(_.i_product_name) + .distinct() + .order_by(s.all()) + .limit(100) + ) + + +@tpc_test("ds") +def test_42(date_dim, store_sales, item): + return ( + date_dim.filter(_.d_moy == 11, _.d_year == 2000) + .join(store_sales, [("d_date_sk", "ss_sold_date_sk")]) + .join(item.filter(_.i_manager_id == 1), [("ss_item_sk", "i_item_sk")]) + .group_by(_.d_year, _.i_category_id, _.i_category) + .agg(total_sales=_.ss_ext_sales_price.sum()) + .order_by(_.total_sales.desc(), ~s.c("total_sales")) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet(["datafusion"], raises=Exception, reason="Internal error") +def test_43(date_dim, store_sales, store): + return ( + date_dim.filter(_.d_year == 2000) + .join(store_sales, [("d_date_sk", "ss_sold_date_sk")]) + .join(store.filter(_.s_gmt_offset == -5), [("ss_store_sk", "s_store_sk")]) + .group_by(_.s_store_name, _.s_store_id) + .agg( + **{ + f"{name[:3].lower()}_sales": _.ss_sales_price.sum( + where=_.d_day_name == name + ) + for name in map(cal.day_name.__getitem__, range(-1, 6)) + } + ) + .order_by(s.all()) + .limit(100) + ) + + +@tpc_test("ds", result_is_empty=True) +def test_44(store_sales, item): + base = ( + store_sales.filter(_.ss_store_sk == 4) + .group_by(item_sk=_.ss_item_sk) + .having( + _.ss_net_profit.mean() + > 0.9 + * ( + store_sales.filter(_.ss_store_sk == 4, _.ss_addr_sk.isnull()) + .agg(_.ss_net_profit.mean()) + .as_scalar() + ) + ) + .agg(rank_col=_.ss_net_profit.mean()) + ) + ascending = base.select( + "item_sk", rnk=rank().over(order_by=_.rank_col.asc()) + ).filter(_.rnk < 11) + descending = base.select( + "item_sk", rnk=rank().over(order_by=_.rank_col.desc()) + ).filter(_.rnk < 11) + i1 = item + i2 = item.view() + return ( + ascending.join(descending, "rnk") + .join(i1, ascending.item_sk == i1.i_item_sk) + .join(i2, descending.item_sk == i2.i_item_sk) + .select( + ascending.rnk, + best_performing=i1.i_product_name, + worst_performing=i2.i_product_name, + ) + .order_by(ascending.rnk) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["datafusion"], raises=Exception, reason="Unsupported feature in DataFusion SQL" +) +def test_45(web_sales, customer, customer_address, date_dim, item): + return ( + web_sales.join(customer, [("ws_bill_customer_sk", "c_customer_sk")]) + .join(customer_address, [("c_current_addr_sk", "ca_address_sk")]) + .join(item, [("ws_item_sk", "i_item_sk")]) + .join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .filter( + _.ca_zip[:5].isin( + ( + "85669", + "86197", + "88274", + "83405", + "86475", + "85392", + "85460", + "80348", + "81792", + ) + ) + | _.i_item_id.isin( + item.view() + .filter(_.i_item_sk.isin((2, 3, 5, 7, 11, 13, 17, 19, 23, 29))) + .i_item_id + ), + _.d_qoy == 2, + _.d_year == 2001, + ) + .group_by(_.ca_zip, _.ca_city) + .agg(total_web_sales=_.ws_sales_price.sum()) + .order_by(~s.c("total_web_sales")) + .limit(100) + ) + + +@tpc_test("ds") +def test_46( + store_sales, date_dim, store, household_demographics, customer_address, customer +): + current_addr = customer_address.view() + return ( + store_sales.join( + date_dim.filter( + _.d_dow.isin((6, 0)), _.d_year.isin((1999, 1999 + 1, 1999 + 2)) + ), + [("ss_sold_date_sk", "d_date_sk")], + ) + .join( + store.filter(_.s_city.isin(("Fairview", "Midway"))), + [("ss_store_sk", "s_store_sk")], + ) + .join( + household_demographics.filter( + (_.hd_dep_count == 4) | (_.hd_vehicle_count == 3) + ), + [("ss_hdemo_sk", "hd_demo_sk")], + ) + .join(customer_address, [("ss_addr_sk", "ca_address_sk")]) + .group_by( + _.ss_ticket_number, _.ss_customer_sk, _.ss_addr_sk, bought_city=_.ca_city + ) + .agg(amt=_.ss_coupon_amt.sum(), profit=_.ss_net_profit.sum()) + .drop(_.ss_addr_sk) + .join(customer, [("ss_customer_sk", "c_customer_sk")]) + .join( + current_addr, + [ + ("c_current_addr_sk", "ca_address_sk"), + current_addr.ca_city != _.bought_city, + ], + ) + .select( + _.c_last_name, + _.c_first_name, + _.ca_city, + _.bought_city, + _.ss_ticket_number, + _.amt, + _.profit, + ) + .order_by(s.across(~s.c("amt", "profit"), _.asc(nulls_first=True))) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="correlated subqueries don't exist in clickhouse", +) +def test_47(item, store_sales, date_dim, store): + v1 = ( + item.join(store_sales, [("i_item_sk", "ss_item_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(store, [("ss_store_sk", "s_store_sk")]) + .filter( + (_.d_year == 1999) + | ((_.d_year == 1999 - 1) & (_.d_moy == 12)) + | ((_.d_year == 1999 + 1) & (_.d_moy == 1)) + ) + .group_by( + _.i_category, _.i_brand, _.s_store_name, _.s_company_name, _.d_year, _.d_moy + ) + .agg(sum_sales=_.ss_sales_price.sum()) + .mutate( + avg_monthly_sales=_.sum_sales.mean().over( + # TODO: add support for selectors in window over specification + # group_by=~s.c("sum_sales", "d_moy") + group_by=( + _.i_category, + _.i_brand, + _.s_store_name, + _.s_company_name, + _.d_year, + ) + ), + rn=rank().over( + group_by=(_.i_category, _.i_brand, _.s_store_name, _.s_company_name), + order_by=(_.d_year, _.d_moy), + ), + ) + ) + v1_lag = v1.view() + v1_lead = v1.view() + v2 = v1.join( + v1_lag, + [ + "i_category", + "i_brand", + "s_store_name", + "s_company_name", + v1.rn == v1_lag.rn + 1, + ], + ).join( + v1_lead, + [ + "i_category", + "i_brand", + "s_store_name", + "s_company_name", + v1.rn == v1_lead.rn - 1, + ], + ) + return ( + v2.select( + v1.i_category, + v1.i_brand, + v1.s_store_name, + v1.s_company_name, + v1.d_year, + v1.d_moy, + v1.avg_monthly_sales, + v1.sum_sales, + psum=v1_lag.sum_sales, + nsum=v1_lead.sum_sales, + ) + .filter( + _.d_year == 1999, + _.avg_monthly_sales > 0, + ifelse( + _.avg_monthly_sales > 0, + (_.sum_sales - _.avg_monthly_sales).abs() / _.avg_monthly_sales, + null(), + ) + > 0.1, + ) + .order_by(_.sum_sales - _.avg_monthly_sales, s.all()) + .limit(100) + ) + + +@tpc_test("ds") +def test_48(store_sales, store, customer_demographics, customer_address, date_dim): + return ( + store_sales.join(store, [("ss_store_sk", "s_store_sk")]) + .join(date_dim.filter(_.d_year == 2000), [("ss_sold_date_sk", "d_date_sk")]) + .join(customer_demographics, [("ss_cdemo_sk", "cd_demo_sk")]) + .join(customer_address, [("ss_addr_sk", "ca_address_sk")]) + .filter( + ( + (_.cd_marital_status == "M") + & (_.cd_education_status == "4 yr Degree") + & _.ss_sales_price.between(100.00, 150.00) + ) + | ( + (_.cd_marital_status == "D") + & (_.cd_education_status == "2 yr Degree") + & _.ss_sales_price.between(50.00, 100.00) + ) + | ( + (_.cd_marital_status == "S") + & (_.cd_education_status == "College") + & _.ss_sales_price.between(150.00, 200.00) + ), + ( + (_.ca_country == "United States") + & _.ca_state.isin(("CO", "OH", "TX")) + & _.ss_net_profit.between(0, 2000) + ) + | ( + (_.ca_country == "United States") + & _.ca_state.isin(("OR", "MN", "KY")) + & _.ss_net_profit.between(150, 3000) + ) + | ( + (_.ca_country == "United States") + & _.ca_state.isin(("VA", "CA", "MS")) + & _.ss_net_profit.between(50, 25000) + ), + ) + .agg(total=_.ss_quantity.sum()) + ) + + +@tpc_test("ds") +@pytest.mark.notyet(["datafusion"], raises=Exception, reason="Ambiguous reference") +def test_49( + web_sales, + web_returns, + date_dim, + catalog_sales, + catalog_returns, + store_sales, + store_returns, +): + in_web = ( + web_sales.left_join( + web_returns, + [("ws_order_number", "wr_order_number"), ("ws_item_sk", "wr_item_sk")], + ) + .join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .filter( + _.wr_return_amt > 10000, + _.ws_net_profit > 1, + _.ws_net_paid > 0, + _.ws_quantity > 0, + _.d_year == 2001, + _.d_moy == 12, + ) + .group_by(item=_.ws_item_sk) + .agg( + return_ratio=_.wr_return_quantity.fill_null(0).sum().cast("decimal(15, 4)") + / _.ws_quantity.fill_null(0).sum().cast("decimal(15, 4)"), + currency_ratio=_.wr_return_amt.fill_null(0).sum().cast("decimal(15, 4)") + / _.ws_net_paid.fill_null(0).sum().cast("decimal(15, 4)"), + ) + ) + in_cat = ( + catalog_sales.left_join( + catalog_returns, + [("cs_order_number", "cr_order_number"), ("cs_item_sk", "cr_item_sk")], + ) + .join(date_dim, [("cs_sold_date_sk", "d_date_sk")]) + .filter( + _.cr_return_amount > 10000, + _.cs_net_profit > 1, + _.cs_net_paid > 0, + _.cs_quantity > 0, + _.d_year == 2001, + _.d_moy == 12, + ) + .group_by(item=_.cs_item_sk) + .agg( + return_ratio=_.cr_return_quantity.fill_null(0).sum().cast("decimal(15, 4)") + / _.cs_quantity.fill_null(0).sum().cast("decimal(15, 4)"), + currency_ratio=_.cr_return_amount.fill_null(0).sum().cast("decimal(15, 4)") + / _.cs_net_paid.fill_null(0).sum().cast("decimal(15, 4)"), + ) + ) + in_store = ( + store_sales.left_join( + store_returns, + [("ss_ticket_number", "sr_ticket_number"), ("ss_item_sk", "sr_item_sk")], + ) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .filter( + _.sr_return_amt > 10000, + _.ss_net_profit > 1, + _.ss_net_paid > 0, + _.ss_quantity > 0, + _.d_year == 2001, + _.d_moy == 12, + ) + .group_by(item=_.ss_item_sk) + .agg( + return_ratio=_.sr_return_quantity.fill_null(0).sum().cast("decimal(15, 4)") + / _.ss_quantity.fill_null(0).sum().cast("decimal(15, 4)"), + currency_ratio=_.sr_return_amt.fill_null(0).sum().cast("decimal(15, 4)") + / _.ss_net_paid.fill_null(0).sum().cast("decimal(15, 4)"), + ) + ) + + return ( + in_web.mutate( + return_rank=rank().over(order_by=_.return_ratio), + currency_rank=rank().over(order_by=_.currency_ratio), + ) + .filter((_.return_rank <= 10) | (_.currency_rank <= 10)) + .mutate(channel=lit("web")) + .relocate("channel", before="item") + .union( + in_cat.mutate( + return_rank=rank().over(order_by=_.return_ratio), + currency_rank=rank().over(order_by=_.currency_ratio), + ) + .filter((_.return_rank <= 10) | (_.currency_rank <= 10)) + .mutate(channel=lit("catalog")) + .relocate("channel", before="item") + ) + .union( + in_store.mutate( + return_rank=rank().over(order_by=_.return_ratio), + currency_rank=rank().over(order_by=_.currency_ratio), + ) + .filter((_.return_rank <= 10) | (_.currency_rank <= 10)) + .mutate(channel=lit("store")) + .relocate("channel", before="item") + ) + .select( + _.channel, + _.item, + _.return_ratio, + return_rank=_.return_rank + 1, + currency_rank=_.currency_rank + 1, + ) + .order_by( + _.channel.asc(nulls_first=True), + _.return_rank.asc(nulls_first=True), + _.currency_rank.asc(nulls_first=True), + _.item.asc(nulls_first=True), + ) + .limit(100) + ) + + +@tpc_test("ds") +def test_50(store_sales, store_returns, store, date_dim): + return ( + store_sales.join( + store_returns, + [ + ("ss_ticket_number", "sr_ticket_number"), + ("ss_item_sk", "sr_item_sk"), + ("ss_customer_sk", "sr_customer_sk"), + ], + ) + .join(store, [("ss_store_sk", "s_store_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join( + date_dim.view().filter(_.d_year == 2001, _.d_moy == 8), + [("sr_returned_date_sk", "d_date_sk")], + ) + .group_by( + _.s_store_name, + _.s_company_id, + _.s_street_number, + _.s_street_name, + _.s_street_type, + _.s_suite_number, + _.s_city, + _.s_county, + _.s_state, + _.s_zip, + ) + .agg( + { + "30 days": ifelse( + _.sr_returned_date_sk - _.ss_sold_date_sk <= 30, 1, 0 + ).sum(), + "31-60 days": ifelse( + (_.sr_returned_date_sk - _.ss_sold_date_sk > 30) + & (_.sr_returned_date_sk - _.ss_sold_date_sk <= 60), + 1, + 0, + ).sum(), + "61-90 days": ifelse( + (_.sr_returned_date_sk - _.ss_sold_date_sk > 60) + & (_.sr_returned_date_sk - _.ss_sold_date_sk <= 90), + 1, + 0, + ).sum(), + "91-120 days": ifelse( + (_.sr_returned_date_sk - _.ss_sold_date_sk > 90) + & (_.sr_returned_date_sk - _.ss_sold_date_sk <= 120), + 1, + 0, + ).sum(), + ">120 days": ifelse( + _.sr_returned_date_sk - _.ss_sold_date_sk > 120, 1, 0 + ).sum(), + } + ) + .order_by(~s.endswith(" days")) + .limit(100) + ) + + +@tpc_test("ds") +def test_51(web_sales, date_dim, store_sales): + web_v1 = ( + web_sales.join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .filter(_.d_month_seq.between(1200, 1200 + 11), _.ws_item_sk.notnull()) + .group_by(item_sk=_.ws_item_sk, d_date=_.d_date) + .agg(total_sales_price=_.ws_sales_price.sum()) + .mutate( + cume_sales=_.total_sales_price.sum().over( + cumulative_window(group_by="item_sk", order_by="d_date") + ) + ) + ) + store_v1 = ( + store_sales.join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .filter(_.d_month_seq.between(1200, 1200 + 11), _.ss_item_sk.notnull()) + .group_by(item_sk=_.ss_item_sk, d_date=_.d_date) + .agg(total_sales_price=_.ss_sales_price.sum()) + .mutate( + cume_sales=_.total_sales_price.sum().over( + cumulative_window(group_by="item_sk", order_by="d_date") + ) + ) + ) + return ( + web_v1.outer_join( + store_v1, + [web_v1.item_sk == store_v1.item_sk, web_v1.d_date == store_v1.d_date], + ) + .select( + item_sk=coalesce(web_v1.item_sk, store_v1.item_sk), + d_date=coalesce(web_v1.d_date, store_v1.d_date), + web_sales=web_v1.cume_sales, + store_sales=store_v1.cume_sales, + ) + .mutate( + web_cumulative=_.web_sales.max().over( + cumulative_window(group_by="item_sk", order_by="d_date") + ), + store_cumulative=_.store_sales.max().over( + cumulative_window(group_by="item_sk", order_by="d_date") + ), + ) + .filter(_.web_cumulative > _.store_cumulative) + .order_by(_.item_sk.asc(nulls_first=True), _.d_date.asc(nulls_first=True)) + .limit(100) + ) + + +@tpc_test("ds") +def test_52(date_dim, store_sales, item): + return ( + date_dim.join(store_sales, [("d_date_sk", "ss_sold_date_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter(_.i_manager_id == 1, _.d_moy == 11, _.d_year == 2000) + .group_by(_.d_year, brand=_.i_brand, brand_id=_.i_brand_id) + .agg(ext_price=_.ss_ext_sales_price.sum()) + .relocate("brand_id", before="brand") + .order_by(_.d_year, _.ext_price.desc(), _.brand_id) + .limit(100) + ) + + +@tpc_test("ds") +def test_53(item, store_sales, date_dim, store): + return ( + item.join(store_sales, [("i_item_sk", "ss_item_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(store, [("ss_store_sk", "s_store_sk")]) + .filter( + _.d_month_seq.isin( + ( + 1200, + 1200 + 1, + 1200 + 2, + 1200 + 3, + 1200 + 4, + 1200 + 5, + 1200 + 6, + 1200 + 7, + 1200 + 8, + 1200 + 9, + 1200 + 10, + 1200 + 11, + ) + ), + ( + _.i_category.isin(("Books", "Children", "Electronics")) + & _.i_class.isin(("personal", "portable", "reference", "self-help")) + & _.i_brand.isin( + ( + "scholaramalgamalg #14", + "scholaramalgamalg #7", + "exportiunivamalg #9", + "scholaramalgamalg #9", + ) + ) + ) + | ( + _.i_category.isin(("Women", "Music", "Men")) + & _.i_class.isin(("accessories", "classical", "fragrances", "pants")) + & _.i_brand.isin( + ( + "amalgimporto #1", + "edu packscholar #1", + "exportiimporto #1", + "importoamalg #1", + ) + ) + ), + ) + .group_by(_.i_manufact_id, _.d_qoy) + .agg(sum_sales=_.ss_sales_price.sum()) + .drop("d_qoy") + .mutate(avg_quarterly_sales=_.sum_sales.mean().over(group_by="i_manufact_id")) + .filter( + ifelse( + _.avg_quarterly_sales > 0, + (_.sum_sales - _.avg_quarterly_sales).abs() / _.avg_quarterly_sales, + null(), + ) + > 0.1 + ) + .order_by(_.avg_quarterly_sales, _.sum_sales, _.i_manufact_id) + .limit(100) + ) + + +@tpc_test("ds", result_is_empty=True) +def test_54( + catalog_sales, + web_sales, + item, + date_dim, + customer, + store_sales, + customer_address, + store, +): + cs_or_ws_sales = catalog_sales.select( + sold_date_sk="cs_sold_date_sk", + customer_sk="cs_bill_customer_sk", + item_sk="cs_item_sk", + ).union( + web_sales.select( + sold_date_sk="ws_sold_date_sk", + customer_sk="ws_bill_customer_sk", + item_sk="ws_item_sk", + ) + ) + my_customers = ( + cs_or_ws_sales.join(item, [("item_sk", "i_item_sk")]) + .join(date_dim, [("sold_date_sk", "d_date_sk")]) + .join(customer, [("customer_sk", "c_customer_sk")]) + .filter( + _.i_category == "Women", + _.i_class == "maternity", + _.d_moy == 12, + _.d_year == 1998, + ) + .select("c_customer_sk", "c_current_addr_sk") + .distinct() + ) + my_revenue = ( + my_customers.join(store_sales, [("c_customer_sk", "ss_customer_sk")]) + .join(customer_address, [("c_current_addr_sk", "ca_address_sk")]) + .join(store, [("ca_county", "s_county"), ("ca_state", "s_state")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .filter( + lambda t: t.d_month_seq.between( + date_dim.view() + .filter(_.d_year == 1998, _.d_moy == 12) + .select(_.d_month_seq + 1) + .distinct() + .as_scalar(), + date_dim.view() + .filter(_.d_year == 1998, _.d_moy == 12) + .select(_.d_month_seq + 3) + .distinct() + .as_scalar(), + ) + ) + .group_by(_.c_customer_sk) + .agg(revenue=_.ss_ext_sales_price.sum()) + ) + segments = my_revenue.select(SEGMENT=(_.revenue / 50).round().cast("int32")) + return ( + segments.group_by("SEGMENT", segment_base=_.SEGMENT * 50) + .agg(num_customers=_.count()) + .relocate("segment_base", after="num_customers") + .order_by( + _.SEGMENT.asc(nulls_first=True), + _.num_customers.asc(nulls_first=True), + _.segment_base, + ) + .limit(100) + ) + + +@tpc_test("ds") +def test_55(date_dim, store_sales, item): + return ( + date_dim.join(store_sales, [("d_date_sk", "ss_sold_date_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter(_.i_manager_id == 28, _.d_moy == 11, _.d_year == 1999) + .group_by(brand=_.i_brand, brand_id=_.i_brand_id) + .agg(ext_price=_.ss_ext_sales_price.sum()) + .relocate("brand_id", before="brand") + .order_by(_.ext_price.desc(), _.brand_id) + .limit(100) + ) + + +@tpc_test("ds") +def test_56(store_sales, date_dim, customer_address, item, catalog_sales, web_sales): + ss = ( + store_sales.join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ss_addr_sk", "ca_address_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter( + _.ca_gmt_offset == -5, + _.d_moy == 2, + _.d_year == 2001, + lambda t: t.i_item_id.isin( + item.filter( + _.i_color.isin(("slate", "blanched", "burnished")) + ).i_item_id + ), + ) + .group_by(_.i_item_id) + .agg(total_sales=_.ss_ext_sales_price.sum()) + ) + cs = ( + catalog_sales.join(date_dim, [("cs_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("cs_bill_addr_sk", "ca_address_sk")]) + .join(item, [("cs_item_sk", "i_item_sk")]) + .filter( + _.ca_gmt_offset == -5, + _.d_moy == 2, + _.d_year == 2001, + lambda t: t.i_item_id.isin( + item.filter( + _.i_color.isin(("slate", "blanched", "burnished")) + ).i_item_id + ), + ) + .group_by(_.i_item_id) + .agg(total_sales=_.cs_ext_sales_price.sum()) + ) + ws = ( + web_sales.join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ws_bill_addr_sk", "ca_address_sk")]) + .join(item, [("ws_item_sk", "i_item_sk")]) + .filter( + _.ca_gmt_offset == -5, + _.d_moy == 2, + _.d_year == 2001, + lambda t: t.i_item_id.isin( + item.filter( + _.i_color.isin(("slate", "blanched", "burnished")) + ).i_item_id + ), + ) + .group_by(_.i_item_id) + .agg(total_sales=_.ws_ext_sales_price.sum()) + ) + return ( + ss.union(cs) + .union(ws) + .group_by(_.i_item_id) + .agg(total_sales=_.total_sales.sum()) + .order_by( + _.total_sales.asc(nulls_first=True), _.i_item_id.asc(nulls_first=True) + ) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet( + ["clickhouse"], + raises=ClickHouseDatabaseError, + reason="clickhouse can't parse the baseline input SQL text for this query", +) +def test_57(item, catalog_sales, date_dim, call_center): + v1 = ( + item.join(catalog_sales, [("i_item_sk", "cs_item_sk")]) + .join(date_dim, [("cs_sold_date_sk", "d_date_sk")]) + .join(call_center, [("cs_call_center_sk", "cc_call_center_sk")]) + .filter( + (_.d_year == 1999) + | ((_.d_year == 1999 - 1) & (_.d_moy == 12)) + | ((_.d_year == 1999 + 1) & (_.d_moy == 1)) + ) + .group_by(_.i_category, _.i_brand, _.cc_name, _.d_year, _.d_moy) + .agg(sum_sales=_.cs_sales_price.sum()) + .mutate( + avg_monthly_sales=_.sum_sales.mean().over( + group_by=("i_category", "i_brand", "cc_name", "d_year") + ), + rn=rank().over( + group_by=("i_category", "i_brand", "cc_name"), + order_by=("d_year", "d_moy"), + ), + ) + ) + + v1_lag = v1.view() + v1_lead = v1.view() + v2 = ( + v1.join(v1_lag, ["i_category", "i_brand", "cc_name", v1.rn == v1_lag.rn + 1]) + .join(v1_lead, ["i_category", "i_brand", "cc_name", v1.rn == v1_lead.rn - 1]) + .select( + v1.i_category, + v1.i_brand, + v1.cc_name, + v1.d_year, + v1.d_moy, + v1.avg_monthly_sales, + v1.sum_sales, + psum=v1_lag.sum_sales, + nsum=v1_lead.sum_sales, + ) + ) + return ( + v2.filter( + _.d_year == 1999, + _.avg_monthly_sales > 0, + ifelse( + _.avg_monthly_sales > 0, + (_.sum_sales - _.avg_monthly_sales).abs() / _.avg_monthly_sales, + null(), + ) + > 0.1, + ) + .order_by((_.sum_sales - _.avg_monthly_sales).asc(nulls_first=True), s.r[1:10]) + .limit(100) + ) + + +@tpc_test("ds", result_is_empty=True) +def test_58(store_sales, item, date_dim, catalog_sales, web_sales): + date_filter = lambda t: t.d_date.isin( + date_dim.filter( + lambda dd: dd.d_week_seq.isin( + date_dim.filter(_.d_date == date("2000-01-03")).d_week_seq + ) + ).d_date + ) + ss_items = ( + store_sales.join(item, [("ss_item_sk", "i_item_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .filter(date_filter) + .group_by(item_id=_.i_item_id) + .agg(ss_item_rev=_.ss_ext_sales_price.sum()) + ) + cs_items = ( + catalog_sales.join(item, [("cs_item_sk", "i_item_sk")]) + .join(date_dim, [("cs_sold_date_sk", "d_date_sk")]) + .filter(date_filter) + .group_by(item_id=_.i_item_id) + .agg(cs_item_rev=_.cs_ext_sales_price.sum()) + ) + ws_items = ( + web_sales.join(item, [("ws_item_sk", "i_item_sk")]) + .join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .filter(date_filter) + .group_by(item_id=_.i_item_id) + .agg(ws_item_rev=_.ws_ext_sales_price.sum()) + ) + return ( + ss_items.join(cs_items, "item_id") + .join(ws_items, "item_id") + .filter( + _.ss_item_rev.between(0.9 * _.cs_item_rev, 1.1 * _.cs_item_rev), + _.ss_item_rev.between(0.9 * _.ws_item_rev, 1.1 * _.ws_item_rev), + _.cs_item_rev.between(0.9 * _.ss_item_rev, 1.1 * _.ss_item_rev), + _.cs_item_rev.between(0.9 * _.ws_item_rev, 1.1 * _.ws_item_rev), + _.ws_item_rev.between(0.9 * _.ss_item_rev, 1.1 * _.ss_item_rev), + _.ws_item_rev.between(0.9 * _.cs_item_rev, 1.1 * _.cs_item_rev), + ) + .select( + ss_items.item_id, + _.ss_item_rev, + ss_dev=( + _.ss_item_rev + / ((_.ss_item_rev + _.cs_item_rev + _.ws_item_rev) / 3) + * 100 + ), + cs_item_rev=_.cs_item_rev, + cs_dev=( + _.cs_item_rev + / ((_.ss_item_rev + _.cs_item_rev + _.ws_item_rev) / 3) + * 100 + ), + ws_item_rev=_.ws_item_rev, + ws_dev=( + _.ws_item_rev + / ((_.ss_item_rev + _.cs_item_rev + _.ws_item_rev) / 3) + * 100 + ), + average=(_.ss_item_rev + _.cs_item_rev + _.ws_item_rev) / 3, + ) + .order_by( + ss_items.item_id.asc(nulls_first=True), _.ss_item_rev.asc(nulls_first=True) + ) + .limit(100) + ) + + +@tpc_test("ds") +@pytest.mark.notyet(["datafusion"], raises=Exception, reason="Internal error") +def test_59(store_sales, date_dim, store): + days = [(cal.day_abbr[i].lower(), cal.day_name[i]) for i in range(-1, 6)] + + wss = ( + store_sales.join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .group_by(_.d_week_seq, _.ss_store_sk) + .agg( + { + f"{abbr}_sales": _.ss_sales_price.sum(where=_.d_day_name == day) + for abbr, day in days + } + ) + ) + y = ( + wss.join(store, [("ss_store_sk", "s_store_sk")]) + .join(date_dim, "d_week_seq") + .filter(_.d_month_seq.between(1212, 1212 + 11)) + .mutate(_.s_store_name, _.d_week_seq, _.s_store_id, s.endswith("sales")) + .rename("{name}1") + ) + x = ( + wss.join(store, [("ss_store_sk", "s_store_sk")]) + .join(date_dim, "d_week_seq") + .filter(_.d_month_seq.between(1212 + 12, 1212 + 23)) + .mutate(_.s_store_name, _.d_week_seq, _.s_store_id, s.endswith("sales")) + .rename("{name}2") + ) + return ( + y.join(x, [("s_store_id1", "s_store_id2"), y.d_week_seq1 == x.d_week_seq2 - 52]) + .select( + _.s_store_name1, + _.s_store_id1, + _.d_week_seq1, + **{ + f"{abbr}_sales_ratio": _[f"{abbr}_sales1"] / _[f"{abbr}_sales2"] + for abbr in map(itemgetter(0), days) + }, + ) + .order_by(s.across(~s.endswith("_ratio"), _.asc(nulls_first=True))) + .limit(100) + ) + + +@tpc_test("ds") +def test_60(store_sales, date_dim, customer_address, item, catalog_sales, web_sales): + filters = ( + _.i_item_id.isin(item.filter(lambda i: i.i_category == "Music").i_item_id), + _.d_year == 1998, + _.d_moy == 9, + _.ca_gmt_offset == -5, + ) + ss = ( + store_sales.join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ss_addr_sk", "ca_address_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter(*filters) + .group_by(_.i_item_id) + .agg(total_sales=_.ss_ext_sales_price.sum()) + ) + cs = ( + catalog_sales.join(date_dim, [("cs_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("cs_bill_addr_sk", "ca_address_sk")]) + .join(item, [("cs_item_sk", "i_item_sk")]) + .filter(*filters) + .group_by(_.i_item_id) + .agg(total_sales=_.cs_ext_sales_price.sum()) + ) + ws = ( + web_sales.join(date_dim, [("ws_sold_date_sk", "d_date_sk")]) + .join(customer_address, [("ws_bill_addr_sk", "ca_address_sk")]) + .join(item, [("ws_item_sk", "i_item_sk")]) + .filter(*filters) + .group_by(_.i_item_id) + .agg(total_sales=_.ws_ext_sales_price.sum()) + ) + return ( + ss.union(cs) + .union(ws) + .group_by(_.i_item_id) + .agg(total_sales=_.total_sales.sum()) + .order_by(s.all()) + .limit(100) + ) + + +@tpc_test("ds") +def test_61(store_sales, store, promotion, date_dim, customer, customer_address, item): + promotional_sales = ( + store_sales.join(store, [("ss_store_sk", "s_store_sk")]) + .join(promotion, [("ss_promo_sk", "p_promo_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer, [("ss_customer_sk", "c_customer_sk")]) + .join(customer_address, [("c_current_addr_sk", "ca_address_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter( + _.ca_gmt_offset == -5, + _.i_category == "Jewelry", + (_.p_channel_dmail == "Y") + | (_.p_channel_email == "Y") + | (_.p_channel_tv == "Y"), + _.s_gmt_offset == -5, + _.d_year == 1998, + _.d_moy == 11, + ) + .agg(promotions=_.ss_ext_sales_price.sum()) + ) + all_sales = ( + store_sales.join(store, [("ss_store_sk", "s_store_sk")]) + .join(promotion, [("ss_promo_sk", "p_promo_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(customer, [("ss_customer_sk", "c_customer_sk")]) + .join(customer_address, [("c_current_addr_sk", "ca_address_sk")]) + .join(item, [("ss_item_sk", "i_item_sk")]) + .filter( + _.ca_gmt_offset == -5, + _.i_category == "Jewelry", + _.s_gmt_offset == -5, + _.d_year == 1998, + _.d_moy == 11, + ) + .agg(total=_.ss_ext_sales_price.sum()) + ) + return ( + promotional_sales.cross_join(all_sales) + .mutate( + perc_promotions=( + _.promotions.cast("decimal(15, 4)") + / _.total.cast("decimal(15, 4)") + * 100 + ) + ) + .order_by(_.promotions, _.total) + .limit(100) + ) + + +@tpc_test("ds") +def test_62(web_sales, warehouse, ship_mode, web_site, date_dim): + return ( + web_sales.join( + warehouse.mutate(w_substr=_.w_warehouse_name[:20]), + [("ws_warehouse_sk", "w_warehouse_sk")], + ) + .join(ship_mode, [("ws_ship_mode_sk", "sm_ship_mode_sk")]) + .join(web_site, [("ws_web_site_sk", ("web_site_sk"))]) + .join(date_dim, [("ws_ship_date_sk", "d_date_sk")]) + .filter(_.d_month_seq.between(1200, 1200 + 11)) + .group_by(_.w_substr, _.sm_type, _.web_name) + .agg( + # MEH + **{ + f"{name} days": ifelse( + ( + (_.ws_ship_date_sk - _.ws_sold_date_sk > lower) + if lower is not None + else True + ) + & ( + (_.ws_ship_date_sk - _.ws_sold_date_sk <= upper) + if upper is not None + else True + ), + 1, + 0, + ).sum() + for name, lower, upper in [ + ("30", None, 30), + ("31-60", 30, 60), + ("61-90", 60, 90), + ("91-120", 90, 120), + (">120", 120, None), + ] + } + ) + .order_by(s.across(~s.endswith(" days"), _.asc(nulls_first=True))) + ) + + +@tpc_test("ds") +def test_63(item, store_sales, date_dim, store): + return ( + item.join(store_sales, [("i_item_sk", "ss_item_sk")]) + .join(date_dim, [("ss_sold_date_sk", "d_date_sk")]) + .join(store, [("ss_store_sk", "s_store_sk")]) + .filter( + _.d_month_seq.isin(tuple(range(1200, 1212))), + ( + _.i_category.isin(("Books", "Children", "Electronics")) + & _.i_class.isin(("personal", "portable", "reference", "self-help")) + & _.i_brand.isin( + ( + "scholaramalgamalg #14", + "scholaramalgamalg #7", + "exportiunivamalg #9", + "scholaramalgamalg #9", + ) + ) + ) + | ( + _.i_category.isin(("Women", "Music", "Men")) + & _.i_class.isin(("accessories", "classical", "fragrances", "pants")) + & _.i_brand.isin( + ( + "amalgimporto #1", + "edu packscholar #1", + "exportiimporto #1", + "importoamalg #1", + ) + ) + ), + ) + .group_by(_.i_manager_id, _.d_moy) + .agg(sum_sales=_.ss_sales_price.sum()) + .drop("d_moy") + .mutate(avg_monthly_sales=_.sum_sales.mean().over(group_by=_.i_manager_id)) + .filter( + ifelse( + _.avg_monthly_sales > 0, + (_.sum_sales - _.avg_monthly_sales).abs() / _.avg_monthly_sales, + null(), + ) + > 0.1 + ) + .order_by(_.i_manager_id, _.avg_monthly_sales, _.sum_sales) + .limit(100) + ) diff --git a/ibis/backends/tests/tpc/queries/clickhouse/ds/48.sql b/ibis/backends/tests/tpc/queries/clickhouse/ds/48.sql new file mode 100644 index 000000000000..a9ad4c1e9464 --- /dev/null +++ b/ibis/backends/tests/tpc/queries/clickhouse/ds/48.sql @@ -0,0 +1,41 @@ +SELECT SUM (ss_quantity) total +FROM store_sales, + store, + customer_demographics, + customer_address, + date_dim +WHERE s_store_sk = ss_store_sk + AND ss_sold_date_sk = d_date_sk + AND d_year = 2000 + AND cd_demo_sk = ss_cdemo_sk + AND ss_addr_sk = ca_address_sk + AND (( + cd_marital_status = 'M' + AND cd_education_status = '4 yr Degree' + AND ss_sales_price BETWEEN 100.00 AND 150.00) + OR ( + cd_marital_status = 'D' + AND cd_education_status = '2 yr Degree' + AND ss_sales_price BETWEEN 50.00 AND 100.00) + OR ( + cd_marital_status = 'S' + AND cd_education_status = 'College' + AND ss_sales_price BETWEEN 150.00 AND 200.00)) + AND (( + ca_country = 'United States' + AND ca_state IN ('CO', + 'OH', + 'TX') + AND ss_net_profit BETWEEN 0 AND 2000) + OR ( + ca_country = 'United States' + AND ca_state IN ('OR', + 'MN', + 'KY') + AND ss_net_profit BETWEEN 150 AND 3000) + OR ( + ca_country = 'United States' + AND ca_state IN ('VA', + 'CA', + 'MS') + AND ss_net_profit BETWEEN 50 AND 25000)) ; diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/32.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/32.sql index 66d3f9e52dc6..58973b533d95 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/32.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/32.sql @@ -4,13 +4,13 @@ FROM catalog_sales , date_dim WHERE i_manufact_id = 977 AND i_item_sk = cs_item_sk - AND d_date BETWEEN '2000-01-27' AND cast('2000-04-26' AS date) + AND d_date BETWEEN cast('2000-01-27' AS date) AND cast('2000-04-26' AS date) AND d_date_sk = cs_sold_date_sk AND cs_ext_discount_amt > ( SELECT 1.3 * avg(cs_ext_discount_amt) FROM catalog_sales , date_dim WHERE cs_item_sk = i_item_sk - AND d_date BETWEEN '2000-01-27' AND cast('2000-04-26' AS date) + AND d_date BETWEEN cast('2000-01-27' AS date) AND cast('2000-04-26' AS date) AND d_date_sk = cs_sold_date_sk ) LIMIT 100; diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/35.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/35.sql index 91bbcc242779..f5188e9b31d0 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/35.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/35.sql @@ -13,9 +13,9 @@ SELECT ca_state, avg(cd_dep_employed_count) avg2, cd_dep_college_count, count(*) cnt3, - min(cd_dep_college_count), - max(cd_dep_college_count), - avg(cd_dep_college_count) + min(cd_dep_college_count) min3, + max(cd_dep_college_count) max3, + avg(cd_dep_college_count) avg3 FROM customer c, customer_address ca, customer_demographics diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/38.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/38.sql index 1d4fff5e9ac6..94d7ea483c60 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/38.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/38.sql @@ -1,4 +1,4 @@ -SELECT count(*) +SELECT count(*) cnt FROM (SELECT DISTINCT c_last_name, c_first_name, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/42.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/42.sql index baf37fabee66..818dadfe8759 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/42.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/42.sql @@ -1,7 +1,7 @@ SELECT dt.d_year, item.i_category_id, item.i_category, - sum(ss_ext_sales_price) + sum(ss_ext_sales_price) total_sales FROM date_dim dt, store_sales, item diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/45.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/45.sql index 6fdfccaba829..dd1c60a331c3 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/45.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/45.sql @@ -1,6 +1,6 @@ SELECT ca_zip, ca_city, - sum(ws_sales_price) + sum(ws_sales_price) total_web_sales FROM web_sales, customer, customer_address, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/48.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/48.sql index 0afa3ebd4cb7..acbce3960656 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/48.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/48.sql @@ -1,4 +1,4 @@ -SELECT SUM (ss_quantity) +SELECT SUM (ss_quantity) total FROM store_sales, store, customer_demographics, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/49.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/49.sql index 9af6939fba95..9cb80cd9d38f 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/49.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/49.sql @@ -36,10 +36,10 @@ FROM WHERE (web.return_rank <= 10 OR web.currency_rank <= 10) UNION SELECT 'catalog' AS channel, - catalog.item, - catalog.return_ratio, - catalog.return_rank, - catalog.currency_rank + CATALOG.item, + CATALOG.return_ratio, + CATALOG.return_rank, + CATALOG.currency_rank FROM (SELECT item, return_ratio, @@ -63,8 +63,8 @@ FROM AND d_year = 2001 AND d_moy = 12 GROUP BY cs.cs_item_sk) in_cat) CATALOG - WHERE (catalog.return_rank <= 10 - OR catalog.currency_rank <=10) + WHERE (CATALOG.return_rank <= 10 + OR CATALOG.currency_rank <=10) UNION SELECT 'store' AS channel, store.item, store.return_ratio, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/58.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/58.sql index c92ce111cc99..6b1e4bb1c4c7 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/58.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/58.sql @@ -11,7 +11,7 @@ WITH ss_items AS WHERE d_week_seq = (SELECT d_week_seq FROM date_dim - WHERE d_date = '2000-01-03')) + WHERE d_date = date '2000-01-03')) AND ss_sold_date_sk = d_date_sk GROUP BY i_item_id), cs_items AS @@ -27,7 +27,7 @@ WITH ss_items AS WHERE d_week_seq = (SELECT d_week_seq FROM date_dim - WHERE d_date = '2000-01-03')) + WHERE d_date = date '2000-01-03')) AND cs_sold_date_sk = d_date_sk GROUP BY i_item_id), ws_items AS @@ -43,7 +43,7 @@ WITH ss_items AS WHERE d_week_seq = (SELECT d_week_seq FROM date_dim - WHERE d_date = '2000-01-03')) + WHERE d_date = date '2000-01-03')) AND ws_sold_date_sk = d_date_sk GROUP BY i_item_id) SELECT ss_items.item_id, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/61.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/61.sql index 508ea83459ad..fb65ef9d5997 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/61.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/61.sql @@ -1,6 +1,6 @@ SELECT promotions, total, - cast(promotions AS decimal(15,4))/cast(total AS decimal(15,4))*100 + cast(promotions AS decimal(15,4))/cast(total AS decimal(15,4))*100 perc_promotions FROM (SELECT sum(ss_ext_sales_price) promotions FROM store_sales, diff --git a/ibis/backends/tests/tpc/queries/duckdb/ds/63.sql b/ibis/backends/tests/tpc/queries/duckdb/ds/63.sql index 5104d3cb516b..073ca332c24f 100644 --- a/ibis/backends/tests/tpc/queries/duckdb/ds/63.sql +++ b/ibis/backends/tests/tpc/queries/duckdb/ds/63.sql @@ -1,4 +1,3 @@ - SELECT * FROM (SELECT i_manager_id,