Skip to content

Commit dbd04ae

Browse files
[REFACTOR] Update the readme, code, and the script to support new FlexRAG version.
1 parent a7c50e0 commit dbd04ae

18 files changed

+299
-87
lines changed

README-zh.md

+114
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,114 @@
1+
# LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers
2+
3+
本项目为论文 **LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers** 的源码。
4+
5+
## 概览
6+
LevelRAG 是一种两阶段的检索增强生成(RAG)框架,结合了多跳逻辑规划和混合检索,以提高检索过程的完整性和准确性。其中第一阶段采用一个高级搜索器,将用户查询分解为原子查询。第二阶段利用多个低级搜索器,为每个子查询检索最相关的文档,然后将相关信息汇总到高级搜索器中生成最终答案。在每个低级搜索器中,采用大型语言模型(LLMs)对原子查询进行适应性优化,以更好地适应低级搜索器中内置的检索器。
7+
8+
<center>
9+
<img src="./assets/LevelRAG-ch.png" width="80%">
10+
</center>
11+
12+
13+
## 运行 LevelRAG
14+
15+
### 环境准备
16+
本项目是基于 [FlexRAG](https://github.com/ictnlp/flexrag) 实现的。请参照以下命令安装 FlexRAG:
17+
18+
```bash
19+
pip install flexrag==0.1.11
20+
```
21+
22+
下载本项目源码:
23+
24+
```bash
25+
git clone https://github.com/ictnlp/LevelRAG
26+
```
27+
28+
### 准备检索器
29+
在运行 LevelRAG 前,需要构建检索器。LevelRAG 使用了三种不同的检索器,分别是 `DenseRetriever``ElasticRetriever``WebRetriever` 。除了 `WebRetriever` 不需要构建索引外,`DenseRetriever``ElasticRetriever` 都需要先构建索引。在我们的实验中,我们使用了 [Atlas](https://github.com/facebookresearch/atlas) 提供的维基百科语料库。您可以通过以下命令下载语料库:
30+
31+
32+
```bash
33+
wget https://dl.fbaipublicfiles.com/atlas/corpora/wiki/enwiki-dec2021/text-list-100-sec.jsonl
34+
wget https://dl.fbaipublicfiles.com/atlas/corpora/wiki/enwiki-dec2021/infobox.jsonl
35+
```
36+
37+
下载完语料库后,您可以运行以下命令构建 `DenseRetriever`
38+
39+
```bash
40+
DENSE_PATH=wikipedia
41+
42+
python -m flexrag.entrypoints.prepare_index \
43+
retriever_type=dense \
44+
corpus_path=[text-list-100-sec.jsonl,infobox.jsonl] \
45+
saving_fields=[text] \
46+
dense_config.database_path=$DENSE_PATH \
47+
dense_config.passage_encoder_config.encoder_type=hf \
48+
dense_config.passage_encoder_config.hf_config.model_path=facebook/contriever-msmarco \
49+
dense_config.passage_encoder_config.hf_config.device_id=[0] \
50+
dense_config.encode_fields=[text] \
51+
dense_config.index_type=faiss \
52+
dense_config.batch_size=1024 \
53+
dense_config.log_interval=100000
54+
```
55+
56+
类似的,您可以运行以下命令构建 `ElasticRetriever`
57+
58+
```bash
59+
python -m flexrag.entrypoints.prepare_index \
60+
retriever_type=elastic \
61+
corpus_path=[text-list-100-sec.jsonl,infobox.jsonl] \
62+
saving_fields=[text] \
63+
elastic_config.host='http://127.0.0.1:9200/' \
64+
elastic_config.index_name=wikipedia \
65+
elastic_config.batch_size=512 \
66+
elastic_config.log_interval=100 \
67+
reinit=True
68+
```
69+
70+
> **Notice:**
71+
> 在构建 `ElasticRetriever` 前,您需要安装 elasticsearch 。您可以参考[这里](https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html)的指令来安装 elasticsearch。
72+
73+
`WebRetriever` 不需要构建索引,但需要您事先准备 Bing Search API 的密钥。您可以访问 [Bing Search API](https://www.microsoft.com/en-us/bing/apis) 来获取密钥。
74+
75+
76+
### 准备生成器
77+
LevelRAG 使用 `Qwen2-7B-Instruct` 作为生成器,您可以通过以下命令使用 `vllm` 来部署生成器:
78+
79+
```bash
80+
python -m vllm.entrypoints.openai.api_server \
81+
--model Qwen2-7B-Instruct \
82+
--gpu-memory-utilization 0.95 \
83+
--tensor-parallel-size 4 \
84+
--port 8000 \
85+
--host 0.0.0.0 \
86+
--trust-remote-code
87+
```
88+
89+
该命令将使用 4 个 GPU 来部署 `Qwen2-7B-Instruct` 模型,您可以根据您的 GPU 数量和显存大小来调整 `--tensor-parallel-size``--gpu-memory-utilization` 参数。
90+
91+
92+
### 启动 LevelRAG 评估
93+
在完成检索器的准备后,您可以通过运行 `scripts` 文件夹中的 `run_highlevel.sh` 脚本来运行 LevelRAG 评估脚本。注意替换脚本中的变量:
94+
- LEVELRAG_PATH:您在下载本项目源码时的路径
95+
- DENSE_PATH: 您在构建 `DenseRetriever` 时保存的路径
96+
- BING_KEY:您在准备 `WebRetriever` 时获取的 Bing Search API 密钥
97+
98+
99+
### 启动 LevelRAG 图形界面
100+
您也可以通过运行 `scripts` 文件夹中的 `run_highlevel_gui.sh` 脚本来启动 LevelRAG 的图形界面,在图形界面中您可以输入查询并查看 LevelRAG 的输出。
101+
102+
## 运行 Simple LevelRAG
103+
如果您不希望使用 `WebRetriever``ElasticRetriever`。您可以仅使用 `DenseRetriever` 来运行 LevelRAG。得益于良好的多跳问题分解及子查询适应性优化, LevelRAG 在仅使用单一检索器时也能取得不错的效果,且运行速度更快。您可以通过运行 `scripts` 文件夹中的 `run_simple.sh` 脚本来运行 Simple LevelRAG 的评估脚本,或运行 `run_simple_gui.sh` 脚本来启动 Simple LevelRAG 的图形界面。
104+
105+
该脚本使用了 FlexRAG 项目提供的 `DenseRetriever` 检索器,因此您**无需构建索引**,直接运行脚本即可。
106+
107+
108+
## 引用
109+
如果您觉得我们的工作对您有所帮助,请考虑引用我们的论文或 Star 本项目。
110+
<!-- TODO: Add the citation here -->
111+
```bibtex
112+
```
113+
114+
如果您对本项目有任何问题,欢迎在 GitHub 上创建 issue 或通过邮件联系我们([email protected])。

README.md

+51-15
Original file line numberDiff line numberDiff line change
@@ -1,36 +1,43 @@
11
# LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers
22

3-
Source code for paper "LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers".
3+
Source code for paper **"LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers"**.
44

55
## Overview
66
**LevelRAG** is a two-stage retrieval-augmented generation (RAG) framework that incorporates multi-hop logic planning and hybrid retrieval to enhance both completeness and accuracy of the retrieval process. The first stage involves a high-level searcher that decomposing the user query into atomic sub-queries. The second stage utilizes multiple low-level searchers to retrieve the most relevant documents for each sub-query, which are then used to generate the final answer. In each low-level searcher, large language models (LLMs) are employed to refine the atomic queries to better fit the corresponding retriever.
77

88
<center>
9-
<img src="./assets/levelrag.png" width="80%">
9+
<img src="./assets/LevelRAG.png" width="80%">
1010
</center>
1111

1212

1313
## Running LevelRAG
1414

1515
### Prepare the Environment
16-
Our code is based on [FlexRAG](https://github.com/ictnlp/flexrag). Please follow the instruction to install FlexRAG:
16+
Our code is based on [FlexRAG](https://github.com/ictnlp/flexrag) project. Please follow the instruction to install FlexRAG:
1717
```bash
18-
pip install flexrag
18+
pip install flexrag==0.1.11
19+
```
20+
21+
Download the source code of this project:
22+
```bash
23+
git clone https://github.com/ictnlp/LevelRAG
1924
```
2025

2126
### Prepare the Retriever
22-
Before running the LevelRAG, preparing the retriever is necessary. LevelRAG employs three kind of retrievers in total, naming `dense retriever`, `sparse retriever`, and `web retriever`, respectively. Except for the `web retriever`, which does not require index construction, both the dense retriever and the sparse retriever need to prepare the index first. In our experiments, we use the wikipedia corpus provided by [Atlas](https://github.com/facebookresearch/atlas). You can download the corpus by running the following command:
27+
Before running the LevelRAG, preparing the retriever is necessary. LevelRAG employs three kind of retrievers in total, naming `DenseRetriever`, `ElasticRetriever`, and `WebRetriever`, respectively. Except for the `WebRetriever`, which does not require index construction, both the `DenseRetriever` and the `ElasticRetriever` need to prepare the index first. In our experiments, we use the wikipedia corpus provided by [Atlas](https://github.com/facebookresearch/atlas). You can download the corpus by running the following command:
28+
2329
```bash
2430
wget https://dl.fbaipublicfiles.com/atlas/corpora/wiki/enwiki-dec2021/text-list-100-sec.jsonl
2531
wget https://dl.fbaipublicfiles.com/atlas/corpora/wiki/enwiki-dec2021/infobox.jsonl
2632
```
2733

28-
After downloading the corpus, you can run the following command to build the `dense retriever`:
34+
After downloading the corpus, you can run the following command to build the `DenseRetriever`:
2935
```bash
3036
python -m flexrag.entrypoints.prepare_index \
3137
retriever_type=dense \
32-
corpus_path=[text-list-100-sec.jsonl,infobox.jsonl] \
33-
saving_fields=[text] \
38+
file_paths=[text-list-100-sec.jsonl,infobox.jsonl] \
39+
saving_fields=[title,section,text] \
40+
id_field=id \
3441
dense_config.database_path=wikipedia \
3542
dense_config.passage_encoder_config.encoder_type=hf \
3643
dense_config.passage_encoder_config.hf_config.model_path=facebook/contriever-msmarco \
@@ -41,26 +48,55 @@ python -m flexrag.entrypoints.prepare_index \
4148
dense_config.log_interval=100000
4249
```
4350

44-
Similarly, you can run the following command to build the `sparse retriever`:
51+
Similarly, you can run the following command to build the `ElasticRetriever`:
52+
4553
```bash
4654
python -m flexrag.entrypoints.prepare_index \
4755
retriever_type=elastic \
48-
corpus_path=[text-list-100-sec.jsonl,infobox.jsonl] \
49-
saving_fields=[text] \
56+
file_paths=[text-list-100-sec.jsonl,infobox.jsonl] \
57+
saving_fields=[title,section,text] \
58+
id_field=id \
5059
elastic_config.host='http://127.0.0.1:9200/' \
5160
elastic_config.index_name=wikipedia \
5261
elastic_config.batch_size=512 \
53-
elastic_config.log_interval=100 \
62+
elastic_config.log_interval=100000 \
5463
reinit=True
5564
```
5665

5766
> **Notice:**
58-
> You need to setup the elasticsearch server first. You can follow the instruction [here](https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html) to install the elasticsearch server.
67+
> Before building the `ElasticRetriever`, you need to setup the elasticsearch server. You can follow the instruction [here](https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html) to install the elasticsearch server.
68+
69+
Using the `WebRetriever` does not require index construction. However, you need to prepare the Bing Search API_KEY in advance. You can visit [Bing Search API](https://www.microsoft.com/en-us/bing/apis) to get the API_KEY.
70+
71+
### Prepare the Genereator
72+
LevelRAG uses the `Qwen2-7B-Instruct` as the generator. You can deploy the generator using `vllm` by running the following command:
73+
74+
```bash
75+
python -m vllm.entrypoints.openai.api_server \
76+
--model Qwen2-7B-Instruct \
77+
--gpu-memory-utilization 0.95 \
78+
--tensor-parallel-size 4 \
79+
--port 8000 \
80+
--host 0.0.0.0 \
81+
--trust-remote-code
82+
```
83+
84+
This command will deploy the `Qwen2-7B-Instruct` using 4 GPUs. You can adjust the `--tensor-parallel-size` and the `--gpu-memory-utilization` according to your own GPU configuration.
85+
86+
87+
### Run the LevelRAG Evaluation Script
88+
After preparing the retriever, you can run the LevelRAG by running the scripts in the `scripts` folder. Before running the scripts, make sure you have substituted the placeholder variables in the scripts with the correct values.
5989

90+
- LEVELRAG_PATH: The path to the LevelRAG repository.
91+
- DENSE_PATH: The path to the `DenseRetriever`.
92+
- BING_KEY: The Bing Search API_KEY.
6093

61-
### Run the LevelRAG
62-
After preparing the retriever, you can run the LevelRAG by running the scripts in the `scripts` folder.
94+
### Run the LevelRAG GUI Demo
95+
We also provide a GUI demo for LevelRAG. You can run the GUI demo by running the `run_highlevel_gui.sh` script in the `scripts` folder. In the GUI, you can input the query and view the output of LevelRAG.
6396

97+
## Running the Simple LevelRAG
98+
If you think building the retriever is too complicated, you can run the simple version of LevelRAG by running the
99+
`run_simple.sh` script in the `scripts` folder. The simple version of LevelRAG only uses the `DenseRetriever` and does not require the `WebRetriever` and the `ElasticRetriever`. Thanks to the good multi-hop problem decomposition and sub-query adaptivity optimization, LevelRAG can achieve good performance even with a single retriever, and the running speed is faster. You can also run the `run_simple_gui.sh` script to start the GUI application of the simple version of LevelRAG.
64100

65101
## Citation
66102
If you find our work useful, please consider citing our paper:

assets/LevelRAG-ch.png

1.5 MB
Loading

assets/LevelRAG.png

1.45 MB
Loading

assets/levelrag.png

-2.6 MB
Binary file not shown.

scripts/build_dense_wiki.sh

+3-2
Original file line numberDiff line numberDiff line change
@@ -9,8 +9,9 @@ ENCODER_PATH=facebook/contriever-msmarco
99

1010
python -m flexrag.entrypoints.prepare_index \
1111
retriever_type=dense \
12-
corpus_path=[$WIKI_FILE,$WIKI_INFOBOX] \
13-
saving_fields=[text] \
12+
file_paths=[$WIKI_FILE,$WIKI_INFOBOX] \
13+
saving_fields=[title,section,text] \
14+
id_field=id \
1415
dense_config.database_path=$DENSE_PATH \
1516
dense_config.passage_encoder_config.encoder_type=hf \
1617
dense_config.passage_encoder_config.hf_config.model_path=$ENCODER_PATH \

scripts/build_elastic_wiki.sh

+3-2
Original file line numberDiff line numberDiff line change
@@ -8,8 +8,9 @@ ELASTIC_HOST=http://127.0.0.1:9200/
88

99
python -m flexrag.entrypoints.prepare_index \
1010
retriever_type=elastic \
11-
corpus_path=[$WIKI_FILE,$WIKI_INFOBOX] \
12-
saving_fields=[text] \
11+
file_paths=[$WIKI_FILE,$WIKI_INFOBOX] \
12+
saving_fields=[title,section,text] \
13+
id_field=id \
1314
elastic_config.host=$ELASTIC_HOST \
1415
elastic_config.index_name=wiki \
1516
elastic_config.batch_size=512 \

scripts/run_highlevel.sh

+2-2
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
LEVELRAG_PATH="<path_to_levelrag>"
44
MODEL_NAME="Qwen2-7B-Instruct"
55
BASE_URL="http://127.0.0.1:8000/v1"
6-
DATA_PATH=popqa/dev.jsonl
76
ELASTIC_HOST=http://127.0.0.1:9200/
87
DENSE_PATH=<path_to_your_dense_retriever_database>
98
ENCODER_PATH=facebook/contriever-msmarco
@@ -12,7 +11,8 @@ BING_KEY="<your_bing_search_subscription_key>"
1211

1312
python -m flexrag.entrypoints.run_assistant \
1413
user_module=$LEVELRAG_PATH/searchers \
15-
data_path=$DATA_PATH \
14+
name=nq \
15+
split=test \
1616
assistant_type=highlevel \
1717
highlevel_config.searchers=[keyword,web,dense] \
1818
highlevel_config.decompose=True \

scripts/run_highlevel_gui.sh

+50
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
#!/bin/bash
2+
3+
LEVELRAG_PATH="<path_to_levelrag>"
4+
MODEL_NAME="Qwen2-7B-Instruct"
5+
BASE_URL="http://127.0.0.1:8000/v1"
6+
ELASTIC_HOST=http://127.0.0.1:9200/
7+
DENSE_PATH=<path_to_your_dense_retriever_database>
8+
ENCODER_PATH=facebook/contriever-msmarco
9+
BING_KEY="<your_bing_search_subscription_key>"
10+
11+
12+
python -m flexrag.entrypoints.run_interactive \
13+
user_module=$LEVELRAG_PATH/searchers \
14+
assistant_type=highlevel \
15+
highlevel_config.searchers=[keyword,web,dense] \
16+
highlevel_config.decompose=True \
17+
highlevel_config.summarize_for_decompose=True \
18+
highlevel_config.summarize_for_answer=True \
19+
highlevel_config.keyword_config.rewrite_query=adaptive \
20+
highlevel_config.keyword_config.feedback_depth=3 \
21+
highlevel_config.keyword_config.response_type=short \
22+
highlevel_config.keyword_config.generator_type=openai \
23+
highlevel_config.keyword_config.openai_config.model_name=$MODEL_NAME \
24+
highlevel_config.keyword_config.openai_config.base_url=$BASE_URL \
25+
highlevel_config.keyword_config.gen_cfg.do_sample=False \
26+
highlevel_config.keyword_config.host=$ELASTIC_HOST \
27+
highlevel_config.keyword_config.index_name=wiki_2021 \
28+
highlevel_config.dense_config.rewrite_query=adaptive \
29+
highlevel_config.dense_config.response_type=short \
30+
highlevel_config.dense_config.generator_type=openai \
31+
highlevel_config.dense_config.openai_config.model_name=$MODEL_NAME \
32+
highlevel_config.dense_config.openai_config.base_url=$BASE_URL \
33+
highlevel_config.dense_config.gen_cfg.do_sample=False \
34+
highlevel_config.dense_config.database_path=$DENSE_PATH \
35+
highlevel_config.dense_config.index_type=faiss \
36+
highlevel_config.dense_config.query_encoder_config.encoder_type=hf \
37+
highlevel_config.dense_config.query_encoder_config.hf_config.model_path=$ENCODER_PATH \
38+
highlevel_config.dense_config.query_encoder_config.hf_config.device_id=[0] \
39+
highlevel_config.web_config.rewrite_query=False \
40+
highlevel_config.web_config.response_type=short \
41+
highlevel_config.web_config.generator_type=openai \
42+
highlevel_config.web_config.openai_config.model_name=$MODEL_NAME \
43+
highlevel_config.web_config.openai_config.base_url=$BASE_URL \
44+
highlevel_config.web_config.gen_cfg.do_sample=False \
45+
highlevel_config.web_config.subscription_key=$BING_KEY \
46+
highlevel_config.response_type=short \
47+
highlevel_config.generator_type=openai \
48+
highlevel_config.openai_config.model_name=$MODEL_NAME \
49+
highlevel_config.openai_config.base_url=$BASE_URL \
50+
highlevel_config.gen_cfg.do_sample=False

scripts/run_hybrid.sh

-53
This file was deleted.

0 commit comments

Comments
 (0)