ResNeXt-101 32x8d (v12&v13) with LSTM |
480 |
5, 5, 5, 5 |
LSTM 12X |
v12 0 1 2- hflip transpose; v13 0 - hflip |
0 1 2 0 (v13) |
0.05705 0.05866 0.05645 0.05690 |
0.057 |
Hidden 2048, bag12 epochs, resnextv12/run_train1024lstmdeltattasum.sh resnextv12/run_train1024lstmdeltattasum.sh & eda/val_lstm_v14.py |
ResNeXt-101 32x8d (v12&v13) with LSTM |
480 |
5, 5, 5, 5, 5 |
LSTM 12X |
v12 0 1 2- hflip transpose; v13 0 1 - hflip |
0 1 2 0 (v13) |
0.05687 0.05859 0.05651 0.05685 0.05839 |
0.057 |
Hidden 2048, bag12 epochs, resnextv12/run_train1024lstmdeltattasum.sh resnextv12/run_train1024lstmdeltattasum.sh & eda/val_lstm_v16.py |
ResNeXt-101 32x8d (v12) with LSTM |
480 |
5, 5, 5 |
LSTM 12X |
all folds 0-hflip, 1 2 - transpose |
0 1 2 |
0.05705 0.05866 0.05645 |
0.057 |
Increase hidden units to 2048, bag12 epochs, scripts/resnextv12/run_train1024lstmdeltatta.sh & eda/val_lstm_v13.py , bsize 4 patients |
ResNeXt-101 32x8d (v12) with LSTM |
480 |
5 |
9X |
HFlip TTA on fold0 only |
0 1 2 |
0.05730 0.05899 0.05681 |
0.057 |
Concat delta to prev and delta to next, bag9 epochs, scripts/resnextv12/trainlstmdelta.py & eda/val_lstm_v11.py , bsize 4 patients |
ResNeXt-101 32x8d (v12) with LSTM |
480 |
6 |
5X |
None |
0 |
0.0574 |
0.059 |
Concat delta to prev and delta to next, bag4 epochs, scripts/resnextv12/trainlstmdelta.py , bsize 4 patients |
ResNeXt-101 32x8d (v11) with LSTM |
384 |
5, 5, 6 |
5X |
None |
0, 1, 2 |
0.05780, 0.05914, 0.05666 |
0.059 |
2X LSTM 1024 hidden units, bag4 epochs, scripts/resnextv11/trainlstmdeep.py & eda/val_lstm_v9.py , bsize 4 patients |
ResNeXt-101 32x8d (v12) with LSTM |
480 |
5 |
5X |
None |
0 |
0.05758 |
0.059 |
2X LSTM 1024 hidden units, bag4 epochs, scripts/resnextv12/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v6) with LSTM |
384 |
7, 5, 7 |
6X, 4X, 6X |
None |
0, 1, 2 |
0.5836, 0.6060, 0.5728 |
0.060 |
2X LSTM 256 hidden units, bag4 epochs, scripts/resnextv11/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v11) with LSTM |
384 |
5 |
5X |
None |
0 |
0.05780 |
0.060 |
2X LSTM 1024 hidden units, bag4 epochs, scripts/resnextv11/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v6) with LSTM |
384 |
7 |
5X |
None |
0 |
0.05811 |
0.061 |
2X LSTM 256 hidden units, bag4 epochs, scripts/resnextv6/trainlstmdeep.py , bsize 4 patients |
SEResNeXt-50 32x8d (v3) with LSTM(1024HU) |
448 |
4 |
3X |
None |
0, 1, 2, 3 |
0.05876, 0.06073, 0.05847, 0.06079 |
0.061 |
2X LSTM 1024 hidden units, bag8 epochs, scripts/resnextv6/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v6) with LSTM |
384 |
7 |
3X |
None |
0 |
0.05844 |
0.061 |
2X LSTM 256 hidden units, bag4 epochs, scripts/resnextv6/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v8) with LSTM |
384 |
7 |
6X |
None |
0 |
----- |
0.062 |
2X LSTM 256 hidden units, bag4 epochs, scripts/resnextv8/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v4) with LSTM |
256 |
7 |
5X |
None |
0 |
0.06119 |
0.064 |
2X LSTM 256 hidden units, bag4 epochs, scripts/resnextv4/trainlstmdeep.py , bsize 4 patients |
ResNeXt-101 32x8d (v4) with LSTM |
256 |
7 |
5X |
None |
0 |
0.06217 |
0.065 |
LSTM 64 hidden units, bag 5 epochs, scripts/resnextv4/trainlstm.py , bsize 4 patients |
ResNeXt-101 32x8d (v8) |
384 |
7 |
5X |
None |
5 (all) |
----- |
0.066 |
Weighted [0.6, 1.8, 0.6] rolling mean win3, transpose, submission_v6.py , bsize 128 |
ResNeXt-101 32x8d (v8) |
384 |
7 |
4X |
None |
5 (all) |
----- |
0.067 |
Weighted [0.6, 1.8, 0.6] rolling mean win3, transpose, submission_v6.py , bsize 128 |
ResNeXt-101 32x8d (v6) |
384 |
7 |
5X |
None |
0 |
0.06336 |
0.068 |
Weighted [0.6, 1.8, 0.6] rolling mean win3, transpose, submission_v5.py , bsize 32 |
ResNeXt-101 32x8d (v4) |
256 |
7 |
5X |
None |
0 |
0.06489 |
0.070 |
Weighted [0.6, 1.8, 0.6] rolling mean win3, transpose, submission_v4.py , bsize 64 |
ResNeXt-101 32x8d (v4) |
256 |
7 |
5X |
None |
0 |
0.06582 |
0.070 |
Rolling mean window 3, transpose, submission_v3.py , bsize 64 |
ResNeXt-101 32x8d (v4) |
256 |
4 |
3X |
None |
0 |
0.06874 |
0.074 |
Rolling mean window 3, transpose, submission_v3.py , bsize 64 |
EfficientnetV0 (v8) |
256 |
6 |
3X |
None |
0 |
0.07416 |
0.081 |
Rolling mean window 3, no transpose, submission_v2.py , bsize 64 |
EfficientnetV0 (v8) |
384 |
4 |
2X |
None |
0 |
0.07661 |
0.085 |
With transpose augmentation |
LSTM on logits from ResNeXt-101 32x8d (v4) |
256 |
3 |
3X |
None |
0 |
0.063 |
0.082 |
LSTM on sequence of patients logits, bsize 4 patients |
EfficientnetV0 (v8) |
384 |
2 |
1X |
None |
0 |
0.07931 |
0.088 |
With transpose augmentation |
EfficientnetV0 (v8) |
384 |
11 |
2X |
None |
0 |
0.08330 |
0.093 |
With transpose augmentation |
EfficientnetV0 |
224 |
4 |
2X |
None |
0 |
0.08047 |
???? |
Without transpose augmentation |
EfficientnetV0 |
224 |
4 |
2X |
None |
0 |
0.08267 |
???? |
With transpose augmentation |
EfficientnetV0 |
224 |
2 |
1X |
None |
0 |
0.08519 |
???? |
With transpose augmentation |
EfficientnetV0 |
224 |
11 |
2X |
None |
0 |
0.08607 |
???? |
With transpose augmentation |