Skip to content

Latest commit

 

History

History
209 lines (159 loc) · 8.63 KB

README.md

File metadata and controls

209 lines (159 loc) · 8.63 KB

TinyEarn - Webscraper for Zacks.com

Fork Details

Refreshed version in 2021

  • Fixed problem where the original was using the local Geckodriver version instead of the PATH one
  • Fixed a redirecting path on Zacks.com
  • Removed table columns that can be calculated manually
  • Added the "Announcement Time" column

Original

TinyEarn is an simple selenium-based webscaper to pull earnings data from zacks.com. It navigates to zacks.com/stock/research/{TICKER}/earnings-announcements and scrapes the earnings data from the present table and the table on the sales tab.

Requirements:

  • Python3
  • Firefox Browser
  • geckodriver

Packages:

  • pandas>=0.24
  • numpy>=1.15.4
  • selenium>=3.3.0
  • requests>=2.23
  • beautifulsoup4>=4.9.0
  • geckodriver_autoinstaller>=0.1

Get Started

Step 1

Simply install the package using pip in your command line.

pip install TinyEarn

Step 2

Install the Firefox Webdriver dependency, geckodriver, in your system file PATH. For some users, this will already be satisfied.

A simple tutorial on how to do this can be found on selenium's website here. This process is different based on your specific system.

Usage

There is one public function in the TinyEarn() Class: get_earnings(). It stores no private variables so the same TinyEarn() class can be used across mutliple tickers.

get_earnings() - Scrapes zacks.com/stock/research/{TICKER}/earnings-announcements to get earnings data. NaN values are filled in for missing data. Dollar values and percentages are expressed as floating point decimals.

Parameters:

  • ticker (str): The stock ticker for the company you'd like to pull data for.
  • start (datetime.date or str): Only pull data from earnings reported after this date.
  • end (datetime.date or str): Only pull data from earnings reported before this date. Defaults to the current date.
  • pandas(bool, optional): If true, this function returns a pandas dataframe. If False, it returns a dictionary. Defaults to True.
  • delay (int): Time to wait (in seconds) in between page changes. Defaults to 1.

Returns: Returns data from each earnings report by the specified company within the specified date range. Each row or key represents an earnings call with the following attributes:

  • Period Ending: The month that marks the last month of the quarter being reported on. ie, 3/2017 is refering to the Q1 2017 earnings report.
  • Reported_EPS: Earnings Per Share reported by the company for that quarter.
  • Estimated_EPS: The consensus estimated Earnings Per Share.
  • Surprise_EPS: The surprise in EPS. The difference between the estimated EPS and the reported one.
  • Surprise_%_EPS: The surprise expressed as a percentage.
  • Reported_Revenue: Total Revenue reported by the company for that quarter.
  • Estimated_Revenue: The consensus estimated Revenue.
  • Surprise_Revenue: The surprise in Revenue. The difference between the estimated Revenue and the reported one.
  • Surprise_%_Revenue: The surprise expressed as a percentage.

Examples

A few examples of how this class can be used:

import TinyEarn as ty

scraper = ty.TinyEarn()
tsla = scraper.get_earnings('TSLA', start = '04/23/2017', pandas=True, delay=0) # Get earnings from April 23rd 2017 to today.
tsla[['Period Ending','Estimated_EPS','Reported_EPS','Surprise_EPS','Estimated_Revenue','Reported_Revenue']]
Period Ending Estimated_EPS Reported_EPS Surprise_EPS Estimated_Revenue Reported_Revenue
2020-04-29 2020-03-01 -0.22 1.24 1.46 5374.87 5985.00
2020-01-29 2019-12-01 1.62 2.14 0.52 7046.82 7384.00
2019-10-23 2019-09-01 -0.15 1.86 2.01 6517.00 6303.00
2019-07-24 2019-06-01 -0.54 -1.12 -0.58 6375.49 6349.68
2019-04-24 2019-03-01 -1.21 -2.90 -1.69 5778.73 4541.46
2019-01-30 2018-12-01 2.08 1.93 -0.15 7139.45 7225.87
2018-10-24 2018-09-01 -0.55 2.90 3.45 5666.67 6824.41
2018-08-01 2018-06-01 -2.78 -3.06 -0.28 3802.96 4002.23
2018-05-02 2018-03-01 -3.37 -3.35 0.02 3169.77 3408.75
2018-02-07 2017-12-01 -3.19 -3.04 0.15 3298.70 3288.25
2017-11-01 2017-09-01 -2.45 -2.92 -0.47 2916.96 2984.68
2017-08-02 2017-06-01 -1.94 -1.33 0.61 2548.22 2789.56
2017-05-03 2017-03-01 -0.55 -1.33 -0.78 2561.14 2696.27
tsla.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 13 entries, 2020-04-29 to 2017-05-03
Data columns (total 9 columns):
Period Ending         13 non-null datetime64[ns]
Estimated_EPS         13 non-null float64
Reported_EPS          13 non-null float64
Surprise_EPS          13 non-null float64
Surprise_%_EPS        13 non-null float64
Estimated_Revenue     13 non-null float64
Reported_Revenue      13 non-null float64
Surprise_Revenue      13 non-null float64
Surprise_%_Revenue    13 non-null float64
dtypes: datetime64[ns](1), float64(8)
memory usage: 1.0 KB
import TinyEarn as ty

scraper = ty.TinyEarn()
msft = scraper.get_earnings('MSFT', start = '01/01/2018',end='01/23/2019', delay=0)
msft[['Reported_EPS','Reported_Revenue']]
Reported_EPS Reported_Revenue
2018-10-24 1.14 29084.0
2018-07-19 1.13 30085.0
2018-04-26 0.95 26819.0
2018-01-31 0.96 28918.0
import TinyEarn as ty

scraper = ty.TinyEarn()
JPM = scraper.get_earnings('JPM', start = '04/23/2017', pandas=False, delay=0) #Testing Return as Dict
print(JPM)
{Timestamp('2020-04-14 00:00:00'):
	{'Period Ending': Timestamp('2020-03-01 00:00:00'),
	'Estimated_EPS': 1.7,
	'Reported_EPS': 0.78,
	'Surprise_EPS': -0.92,
	'Surprise_%_EPS': -0.5412,
	'Estimated_Revenue': 29152.0,
	'Reported_Revenue': 28251.0,
	'Surprise_Revenue': -901.0,
	'Surprise_%_Revenue': -0.030899999999999997},
Timestamp('2020-01-14 00:00:00'):
	{'Period Ending': Timestamp('2019-12-01 00:00:00'),
	'Estimated_EPS': 2.32,
	'Reported_EPS': 2.57,
	'Surprise_EPS': 0.25,
	'Surprise_%_EPS': 0.10779999999999999,
	'Estimated_Revenue': 27261.0,
	'Reported_Revenue': 28331.0,
	'Surprise_Revenue': 1070.0,
	'Surprise_%_Revenue': 0.0393},
Timestamp('2019-10-15 00:00:00'):
	{'Period Ending': Timestamp('2019-09-01 00:00:00'),
	'Estimated_EPS': 2.44,
	'Reported_EPS': 2.68,
	'Surprise_EPS': 0.24,
	'Surprise_%_EPS': 0.0984,
	'Estimated_Revenue': 28403.0,
	'Reported_Revenue': 29341.0,
	'Surprise_Revenue': 938.0,
	'Surprise_%_Revenue': 0.033},
Timestamp('2019-07-16 00:00:00'):
	{'Period Ending': Timestamp('2019-06-01 00:00:00'),
	'Estimated_EPS': 2.5,
	'Reported_EPS': 2.59,
	'Surprise_EPS': 0.09,
	'Surprise_%_EPS': 0.036000000000000004,
	'Estimated_Revenue': 28416.5,
	'Reported_Revenue': 28832.0,
	'Surprise_Revenue': 415.5,
	'Surprise_%_Revenue': 0.0146}}

Troubleshooting

Lack of dependencies

The package dependencies are auto-installed when you install TinyEarn. If this problem persists for you, download source code and run the following code in the package path to install dependencies.

pip install -r requirements.txt

'geckodriver.exe' executable needs to be in PATH

This error is raised because geckodriver is not installed in the right system PATH. If you have already done step 2 in the installation process, here are a few useful Stackoverflow responses to help with troubleshooting:

Permission denied on geckodriver.log

Your geckodriver is not compatible with the version of Firefox you have. One of them needs to be updated.