-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathartistic_neural_net.py
216 lines (186 loc) · 6.68 KB
/
artistic_neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import utils
import torch
import numpy as np
import torch.optim as optim
from models import VGG19
from PIL import Image
from torchvision.transforms.functional import pil_to_tensor
from torchvision.transforms import Resize
from torchvision.utils import save_image
from torch.utils.tensorboard import SummaryWriter
# consider changing this to be chosen explicitly by user
device = {torch.has_cuda: "cuda", torch.has_mps: "mps"}.get(True, "cpu")
print(f"Using {device} device")
def generate_image(args):
summary = SummaryWriter()
content_img = pil_to_tensor(Image.open(args.content_image)).div(255.0)
style_img = pil_to_tensor(Image.open(args.style_image)).div(255.0)
if args.maintain_color:
content_yiq = utils.rgb_to_yiq(content_img)
content_iq = Resize(args.image_size)(content_yiq[1:3])
# must convert back to rgb because that is what model expects
content_img = utils.gs_to_rgb(content_yiq[0])
style_img = utils.gs_to_rgb(utils.rgb_to_yiq(style_img)[0])
# loading test images
content_img = utils.process_image(content_img, args.image_size).to(device)
style_img = utils.process_image(style_img, args.image_size).to(device)
# the forward call to this model returns the losses with respect these images
model = VGG19(
content_img,
style_img,
args.content_weight,
args.style_weight,
args.smoothness,
args.pooling,
args.content_layers,
args.style_layers,
device,
)
# initializing the input image to the content image
init_image_method = args.init
if args.init_image:
# not yet supported for no color transfer
gen_image = pil_to_tensor(Image.open(args.init_image)).div(255.0)
gen_image = utils.process_image(gen_image, args.image_size).to(device)
elif init_image_method == "content":
gen_image = content_img.clone()
elif init_image_method == "style":
# doesn't currently work because content error is spatially dependent
gen_image = style_img.clone()
elif init_image_method == "noise":
gen_image = torch.randn_like(content_img)
gen_image = gen_image.to(device)
# consider experimenting with Adam
# setting up for optimization
gen_image.requires_grad = True
optimizer = optim.LBFGS(
[gen_image], max_iter=args.iter, tolerance_change=-1, tolerance_grad=-1
)
step_cnt = [0]
# generating the target image
while step_cnt[0] < 1:
def optim_step():
optimizer.zero_grad()
content_losses, style_losses, tv_loss = model(gen_image)
content_loss = 0
style_loss = 0
for loss in content_losses:
content_loss += loss
for loss in style_losses:
style_loss += loss
if step_cnt[0] % args.disp_iter == 0:
print(
f"step {step_cnt[0]} \tcontent loss: {content_loss} \tstyle loss: {style_loss}"
)
# preparing and displaying the styled image
# deprocess the image
result = utils.deprocess_image(gen_image.detach().clone())
result = result.clamp(0, 1) * 255
result = result.cpu().numpy().astype(np.uint8).squeeze(0)
summary.add_image(
"styled_image",
result,
step_cnt[0],
)
loss = content_loss + style_loss + tv_loss
loss.backward()
# adding losses to tensorboard
summary.add_scalar(
"losses/content",
content_loss.item(),
step_cnt[0],
)
summary.add_scalar(
"losses/style",
style_loss.item(),
step_cnt[0],
)
summary.add_scalar(
"losses/tv",
tv_loss.item(),
step_cnt[0],
)
step_cnt[0] += 1
return loss
optimizer.step(optim_step)
gen_image = utils.deprocess_image(gen_image)
if args.maintain_color:
gen_image = gen_image.squeeze(0)[0].unsqueeze(0)
gen_image = torch.cat((gen_image.to("cpu"), content_iq), 0)
gen_image = utils.yiq_to_rgb(gen_image)
return gen_image
def main():
parser = argparse.ArgumentParser(description="parser for artistic neural net")
# consider specifying the default values in help
parser.add_argument(
"--content-image", required=True, help="path of the content image"
)
parser.add_argument("--style-image", required=True, help="path of the style image")
parser.add_argument(
"--save-path",
default="untitled.png",
help="name and path where generated image will be saved",
)
parser.add_argument(
"--image-size", type=int, default=256, help="the size of the generated image"
)
parser.add_argument(
"--content-weight", type=float, default=1, help="style loss weight"
)
parser.add_argument(
"--style-weight", type=float, default=1e4, help="style loss weight"
)
parser.add_argument(
"--smoothness",
type=float,
default=1e-4,
help="total variation loss weight to make image smoother",
)
# consider changing this to a more useful name
parser.add_argument(
"--init",
default="content",
help="initial image to be used",
choices=["content", "noise", "image"],
)
parser.add_argument(
"--init-image", default=None, help="specify path to initial image"
)
parser.add_argument(
"--maintain-color",
action="store_true",
help="include to maintain the original color of the content image",
)
parser.add_argument(
"--pooling",
default="max",
help="the pooling used in the network",
choices=["max", "avg"],
)
parser.add_argument(
"--iter", type=int, default=500, help="number of optimization steps"
)
parser.add_argument(
"--disp-iter",
type=int,
default=50,
help="number of optimization steps before error is displayed",
)
parser.add_argument(
"--content-layers",
nargs="+",
default=["relu4_2"],
help="specify the content layers, space separated",
)
parser.add_argument(
"--style-layers",
nargs="+",
default=["relu1_1", "relu2_1", "relu3_1", "relu4_1", "relu5_1"],
help="specify the style layers, space separated",
)
args = parser.parse_args()
image = generate_image(args)
save_image(image, args.save_path)
if __name__ == "__main__":
main()