-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplot_nerv_eval.py
445 lines (361 loc) · 20.3 KB
/
plot_nerv_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
# Authored by Haeyong Kang
from __future__ import print_function
import argparse
import os
import random
import shutil
from datetime import datetime
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.utils.prune as prune
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
from tqdm import tqdm
from model_nerv import CustomDataSet, Generator
from model_subnet_nerv import SubnetGenerator, SubnetGeneratorMH
from utils import *
import glob
from copy import deepcopy
import wandb
from plots.confusion import conf_matrix, plot_acc_matrix, plot_capacity, plot_psnr, plot_psnr_bpp, plot_psnr_bit
#path = os.path.join(os.path.dirname(__file__), os.pardir)
#sys.path.append(path)
def get_consolidated_masks(per_task_masks, task_id, consolidated_masks=None):
if task_id == 0:
consolidated_masks = deepcopy(per_task_masks[task_id])
else:
for key in per_task_masks[task_id].keys():
# Or operation on sparsity
if consolidated_masks[key] is not None and per_task_masks[task_id][key] is not None:
consolidated_masks[key] = 1 - ((1 - consolidated_masks[key]) * (1 - per_task_masks[task_id][key]))
return consolidated_masks
def update_grad(model, consolidated_masks):
if consolidated_masks is not None and consolidated_masks != {}:
# if args.use_continual_masks:
for key in consolidated_masks.keys():
if (len(key.split('.')) == 3):
stem, module, attr = key.split('.')
module = getattr(getattr(model, stem), module)
elif (len(key.split('.')) == 4):
head, layer, module, attr = key.split('.')
module = getattr(getattr(getattr(model, head), layer), module)
elif (len(key.split('.')) == 5):
layers, layer, module1, module2, attr = key.split('.')
module = getattr(getattr(getattr(getattr(model, layers), layer), module1), module2)
# Zero-out gradients
if getattr(module, attr) is not None:
getattr(module, attr).grad[consolidated_masks[key] == 1] = 0
def main():
parser = argparse.ArgumentParser()
# dataset parameters
parser.add_argument('--vid', default=[None], type=int, nargs='+', help='video id list for training')
parser.add_argument('--scale', type=int, default=1, help='scale-up facotr for data transformation, added to suffix!!!!')
parser.add_argument('--frame_gap', type=int, default=1, help='frame selection gap')
parser.add_argument('--augment', type=int, default=0, help='augment frames between frames, added to suffix!!!!')
parser.add_argument('--dataset', type=str, default='UVG', help='dataset',)
parser.add_argument('--test_gap', default=1, type=int, help='evaluation gap')
# NERV architecture parameters
# embedding parameters
parser.add_argument('--embed', type=str, default='1.25_80', help='base value/embed length for position encoding')
# FC + Conv parameters
parser.add_argument('--stem_dim_num', type=str, default='1024_1', help='hidden dimension and length')
parser.add_argument('--fc_hw_dim', type=str, default='9_16_128', help='out size (h,w) for mlp')
parser.add_argument('--expansion', type=float, default=8, help='channel expansion from fc to conv')
parser.add_argument('--reduction', type=int, default=2)
parser.add_argument('--strides', type=int, nargs='+', default=[5, 3, 2, 2, 2], help='strides list')
parser.add_argument('--num-blocks', type=int, default=1)
parser.add_argument('--norm', default='none', type=str, help='norm layer for generator', choices=['none', 'bn', 'in'])
parser.add_argument('--act', type=str, default='gelu', help='activation to use', choices=['relu', 'leaky', 'leaky01', 'relu6', 'gelu', 'swish', 'softplus', 'hardswish'])
parser.add_argument('--lower-width', type=int, default=32, help='lowest channel width for output feature maps')
parser.add_argument("--single_res", action='store_true', help='single resolution, added to suffix!!!!')
parser.add_argument("--conv_type", default='conv', type=str, help='upscale methods, can add bilinear and deconvolution methods', choices=['conv', 'deconv', 'bilinear'])
# General training setups
parser.add_argument('-j', '--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('-b', '--batchSize', type=int, default=1, help='input batch size')
parser.add_argument('--not_resume_epoch', action='store_true', help='resuming start_epoch from checkpoint')
parser.add_argument('-e', '--epochs', type=int, default=150, help='number of epochs to train for')
parser.add_argument('--cycles', type=int, default=1, help='epoch cycles for training')
parser.add_argument('--warmup', type=float, default=0.2, help='warmup epoch ratio compared to the epochs, default=0.2, added to suffix!!!!')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate, default=0.0002')
parser.add_argument('--lr_type', type=str, default='cosine', help='learning rate type, default=cosine')
parser.add_argument('--lr_steps', default=[], type=float, nargs="+", metavar='LRSteps', help='epochs to decay learning rate by 10, added to suffix!!!!')
parser.add_argument('--beta', type=float, default=0.5, help='beta for adam. default=0.5, added to suffix!!!!')
parser.add_argument('--loss_type', type=str, default='L2', help='loss type, default=L2')
parser.add_argument('--lw', type=float, default=1.0, help='loss weight, added to suffix!!!!')
parser.add_argument('--sigmoid', action='store_true', help='using sigmoid for output prediction')
# evaluation parameters
parser.add_argument('--eval_only', action='store_true', default=False, help='do evaluation only')
parser.add_argument('--eval_freq', type=int, default=50, help='evaluation frequency, added to suffix!!!!')
parser.add_argument('--quant_bit', type=int, default=-1, help='bit length for model quantization')
parser.add_argument('--quant_axis', type=int, default=0, help='quantization axis (-1 means per tensor)')
parser.add_argument('--dump_images', action='store_true', default=False, help='dump the prediction images')
parser.add_argument('--eval_fps', action='store_true', default=False, help='fwd multiple times to test the fps ')
# pruning paramaters
parser.add_argument('--prune_steps', type=float, nargs='+', default=[0.,], help='prune steps')
parser.add_argument('--prune_ratio', type=float, default=1.0, help='pruning ratio')
# distribute learning parameters
parser.add_argument('--manualSeed', type=int, default=1, help='manual seed')
parser.add_argument('--init_method', default='tcp://127.0.0.1:9888', type=str,
help='url used to set up distributed training')
parser.add_argument('-d', '--distributed', action='store_true', default=False, help='distributed training, added to suffix!!!!')
# logging, output directory,
parser.add_argument('--debug', action='store_true', help='defbug status, earlier for train/eval')
parser.add_argument('-p', '--print-freq', default=50, type=int,)
parser.add_argument('--weight', default='None', type=str, help='pretrained weights for ininitialization')
parser.add_argument('--overwrite', action='store_true', help='overwrite the output dir if already exists')
parser.add_argument('--outf', default='unify', help='folder to output images and model checkpoints')
parser.add_argument('--suffix', default='', help="suffix str for outf")
parser.add_argument('--n_tasks', type=int, default=7, help='number of tasks')
parser.add_argument('--subnet', action='store_true', default=False, help='subnet')
parser.add_argument('--reinit', action='store_true', default=False, help='reinit')
parser.add_argument('--bias', action='store_true', default=False, help='bias')
parser.add_argument('--sparsity', '--sparsity', default=0.5, type=float,)
parser.add_argument('--freq', type=int, default=-1, help='freq')
parser.add_argument('--cat_size', type=int, default=1, help='cat_size')
parser.add_argument('--lin_type', type=str, default='linear', help='fc type')
parser.add_argument('--exp_name', type=str, default='baseline', help='exper name, default=baseline')
args = parser.parse_args()
args.warmup = int(args.warmup * args.epochs)
print(args)
torch.set_printoptions(precision=4)
if args.debug:
args.eval_freq = 1
args.outf = 'output/debug'
else:
args.outf = os.path.join('output', args.outf)
if args.prune_ratio < 1 and not args.eval_only:
prune_str = '_Prune{}_{}'.format(args.prune_ratio, ','.join([str(x) for x in args.prune_steps]))
else:
prune_str = ''
extra_str = '_Strd{}_{}Res{}{}'.format( ','.join([str(x) for x in args.strides]), 'Sin' if args.single_res else f'_lw{args.lw}_multi',
'_dist' if args.distributed else '', f'_eval' if args.eval_only else '')
norm_str = '' if args.norm == 'none' else args.norm
exp_id = f'{args.dataset}/embed{args.embed}_{args.stem_dim_num}_fc_{args.fc_hw_dim}__exp{args.expansion}_reduce{args.reduction}_low{args.lower_width}_blk{args.num_blocks}_cycle{args.cycles}' + \
f'_gap{args.frame_gap}_e{args.epochs}_warm{args.warmup}_b{args.batchSize}_{args.conv_type}_lr{args.lr}_{args.lr_type}' + \
f'_{args.loss_type}{norm_str}{extra_str}{prune_str}'
exp_id += f'_act{args.act}_{args.suffix}'
args.exp_id = exp_id
args.outf = os.path.join(args.outf, exp_id)
if args.overwrite and os.path.isdir(args.outf):
print('Will overwrite the existing output dir!')
shutil.rmtree(args.outf)
if not os.path.isdir(args.outf):
os.makedirs(args.outf)
port = hash(args.exp_id) % 20000 + 10000
args.init_method = f'tcp://127.0.0.1:{port}'
print(f'init_method: {args.init_method}', flush=True)
torch.set_printoptions(precision=2)
args.ngpus_per_node = torch.cuda.device_count()
exp_name = args.exp_name
if args.subnet:
if args.freq >= 0:
if args.cat_size > 0:
exp_name += '_cat{}'.format(args.cat_size)
else:
exp_name += '_sum'
args.sparsity = 1 - args.sparsity
exp_name += '_sparsity' + str(1-args.sparsity)
exp_name += '_{}'.format(args.lin_type)
if args.bias:
exp_name += '_bias'
if args.freq >= 0:
exp_name += '_freq{}'.format(args.freq)
exp_name += '_fc' + str(args.fc_hw_dim)
exp_name += '_' + str(args.loss_type)
if args.reinit:
exp_name += '_reinit'
args.exp_name = exp_name
if 'UVG17' in args.dataset:
proj_name = 'UVG17'
else:
proj_name = args.dataset
# make exp dir
os.makedirs('./output/{}'.format(args.exp_name), exist_ok=True)
if args.distributed and args.ngpus_per_node > 1:
mp.spawn(train, nprocs=args.ngpus_per_node, args=(args,))
else:
train(None, args)
def train(local_rank, args):
cudnn.benchmark = True
torch.manual_seed(args.manualSeed)
np.random.seed(args.manualSeed)
random.seed(args.manualSeed)
if args.dataset == 'UVG17A':
data_list = ['./data/bunny', './data/beauty' , './data/bosphorus', './data/bee',
'./data/jockey', './data/setgo', './data/shake', './data/yacht',
'./data/city', './data/focus', './data/kids', './data/pan',
'./data/lips', './data/race', './data/river', './data/sunbath',
'./data/twilight']
elif args.dataset == 'UVG17B':
data_list = [
'./data/bunny', './data/city', './data/beauty',
'./data/focus', './data/bosphorus', './data/kids',
'./data/bee', './data/pan', './data/jockey',
'./data/lips', './data/setgo', './data/race',
'./data/shake', './data/river', './data/yacht',
'./data/sunbath', './data/twilight'
]
elif args.dataset == 'UVG8':
data_list = ['./data/bunny', './data/beauty' , './data/bosphorus', './data/bee',
'./data/jockey', './data/setgo', './data/shake', './data/yacht']
args.n_tasks = len(data_list)
PE = PositionalEncoding(args.embed)
args.embed_length = PE.embed_length
# define task_masks
per_task_masks = {}
if args.subnet:
model = SubnetGeneratorMH(embed_length=args.embed_length, stem_dim_num=args.stem_dim_num,
fc_hw_dim=args.fc_hw_dim, expansion=args.expansion,
num_blocks=args.num_blocks, norm=args.norm, act=args.act,
bias=args.bias, reduction=args.reduction, conv_type=args.conv_type,
stride_list=args.strides, sin_res=args.single_res,
lower_width=args.lower_width, sigmoid=args.sigmoid,
sparsity=args.sparsity, n_tasks=args.n_tasks, device=local_rank,
freq=args.freq, cat_size=args.cat_size, lin_type=args.lin_type)
else:
model = Generator(embed_length=args.embed_length, stem_dim_num=args.stem_dim_num,
fc_hw_dim=args.fc_hw_dim, expansion=args.expansion,
num_blocks=args.num_blocks, norm=args.norm, act=args.act,
bias = True, reduction=args.reduction, conv_type=args.conv_type,
stride_list=args.strides, sin_res=args.single_res,
lower_width=args.lower_width, sigmoid=args.sigmoid,
subnet=args.subnet, sparsity=args.sparsity)
##### prune model params and flops #####
prune_net = args.prune_ratio < 1
if prune_net:
param_list = []
for k,v in model.named_parameters():
if 'weight' in k:
if 'stem' in k:
stem_ind = int(k.split('.')[1])
param_list.append(model.stem[stem_ind])
elif 'layers' in k[:6] and 'conv' in k:
layer_ind = int(k.split('.')[1])
param_list.append(model.layers[layer_ind].conv.conv)
param_to_prune = [(ele, 'weight') for ele in param_list]
prune_base_ratio = args.prune_ratio ** (1. / len(args.prune_steps))
args.prune_steps = [int(x * args.epochs) for x in args.prune_steps]
prune_num = 0
if args.eval_only:
prune.global_unstructured(
param_to_prune,
pruning_method=prune.L1Unstructured,
amount=1 - prune_base_ratio ** prune_num,
)
##### get model params and flops #####
total_params = sum([p.data.nelement() for p in model.parameters()]) / 1e6
if local_rank in [0, None]:
params = sum([p.data.nelement() for p in model.parameters()]) / 1e6
print(f'{args}\n {model}\n Model Params: {params}M')
with open('./output/{}/rank0.txt'.format(args.exp_name), 'a') as f:
f.write(str(model) + '\n' + f'Params: {params}M\n')
else:
writer = None
# distrite model to gpu or parallel
print("Use GPU: {} for training".format(local_rank))
if args.distributed and args.ngpus_per_node > 1:
torch.distributed.init_process_group(
backend='nccl',
init_method=args.init_method,
world_size=args.ngpus_per_node,
rank=local_rank,
)
torch.cuda.set_device(local_rank)
assert torch.distributed.is_initialized()
args.batchSize = int(args.batchSize / args.ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model.to(local_rank), device_ids=[local_rank], \
output_device=local_rank, find_unused_parameters=False)
elif args.ngpus_per_node > 1:
model = torch.nn.DataParallel(model).cuda() #model.cuda() #
else:
model = model.cuda()
# resume from args.weight
checkpoint = None
loc = 'cuda:{}'.format(local_rank if local_rank is not None else 0)
if args.weight != 'None':
print("=> loading checkpoint '{}'".format(args.weight))
checkpoint_path = args.weight
checkpoint = torch.load(checkpoint_path, map_location='cpu')
orig_ckt = checkpoint['state_dict']
new_ckt={k.replace('blocks.0.',''):v for k,v in orig_ckt.items()}
if 'module' in list(orig_ckt.keys())[0] and not hasattr(model, 'module'):
new_ckt={k.replace('module.',''):v for k,v in new_ckt.items()}
model.load_state_dict(new_ckt)
elif 'module' not in list(orig_ckt.keys())[0] and hasattr(model, 'module'):
model.module.load_state_dict(new_ckt)
else:
model.load_state_dict(new_ckt)
print("=> loaded checkpoint '{}' (epoch {})".format(args.weight, checkpoint['epoch']))
# resume from model_latest
checkpoint_path = os.path.join(args.outf, 'model_latest.pth')
if os.path.isfile(checkpoint_path) and False:
checkpoint = torch.load(checkpoint_path, map_location='cpu')
if prune_net:
prune.global_unstructured(
param_to_prune,
pruning_method=prune.L1Unstructured,
amount=1 - prune_base_ratio ** prune_num,
)
sparisity_num = 0.
for param in param_list:
sparisity_num += (param.weight == 0).sum()
print(f'Model sparsity at Epoch{args.start_epoch}: {sparisity_num / 1e6 / total_params}')
model.load_state_dict(checkpoint['state_dict'])
print("=> Auto resume loaded checkpoint '{}' (epoch {})".format(checkpoint_path, checkpoint['epoch']))
else:
print("=> No resume checkpoint found at '{}'".format(checkpoint_path))
args.start_epoch = 0
if checkpoint is not None:
args.start_epoch = checkpoint['epoch']
train_best_psnr = checkpoint['train_best_psnr'].to(torch.device(loc))
train_best_msssim = checkpoint['train_best_msssim'].to(torch.device(loc))
val_best_psnr = checkpoint['val_best_psnr'].to(torch.device(loc))
val_best_msssim = checkpoint['val_best_msssim'].to(torch.device(loc))
optimizer.load_state_dict(checkpoint['optimizer'])
if args.not_resume_epoch:
args.start_epoch = 0
# setup dataloader
img_transforms = transforms.ToTensor()
DataSet = CustomDataSet
psnr_matrix = np.zeros((args.n_tasks, args.n_tasks))
msssim_matrix = np.zeros((args.n_tasks, args.n_tasks))
taskcla = [(task_id, name.split('/')[-1])for task_id, name in enumerate(data_list)]
print('*' * 50)
print(taskcla)
psnr_matrix = safe_load('./output/{}/psnr_quant{}.npy'.format(args.exp_name, args.quant_bit))
msssim_matrix = safe_load('./output/{}/msssim_quant{}.npy'.format(args.exp_name, args.quant_bit))
# plots
ExNIR = psnr_matrix[-1]
plot_psnr(ExNIR, dataset=args.dataset)
com_used_init_sparsity = None
if True:
com_used_sparsity = safe_load('./output/{}/coused_sparsity.npy'.format(args.exp_name), True)
global_sparsity = safe_load('./output/{}/global_sparsity.npy'.format(args.exp_name), True)
reused_sparsity = safe_load('./output/{}/reused_sparsity.npy'.format(args.exp_name), True)
if False:
com_used_init_sparsity = safe_load('./output/{}/coused_sparsity_init.npy'.format(args.exp_name), True)
global_init_sparsity = safe_load('./output/{}/global_sparsity_init.npy'.format(args.exp_name), True)
reused_init_sparsity = safe_load('./output/{}/reused_sparsity_init.npy'.format(args.exp_name), True)
else:
com_used_init_sparsity = com_used_sparsity
global_init_sparsity = global_sparsity
reused_init_sparsity = reused_sparsity
exp_name = args.exp_name + '_psnr'
plot_acc_matrix(array=psnr_matrix, method=exp_name, dataset=args.dataset)
exp_name = args.exp_name + '_masssim'
plot_acc_matrix(array=msssim_matrix, method=exp_name, dataset=args.dataset)
# plot capacity
if com_used_init_sparsity is not None:
plot_capacity(global_sparsity, reused_sparsity, com_used_sparsity,
global_init_sparsity, reused_init_sparsity, com_used_init_sparsity,
dataset=args.dataset)
# plot psnr_bpp
plot_psnr_bpp(dataset=args.dataset)
plot_psnr_bit(dataset=args.dataset)
if __name__ == '__main__':
main()