-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
160 lines (125 loc) · 4.94 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import tensorflow as tf
import numpy as np
from PIL import Image
import segmentation_models as sm
from pathlib import Path
import math
tfkl = tf.keras.layers
sm.set_framework('tf.keras')
num_parallel_calls = 8
def unet(
backbone, decoder_filters, alpha, bn_momentum, l2_regularization, freeze_encoder,
):
tfk_kwargs = {
'backend': tf.keras.backend,
'layers': tf.keras.layers,
'models': tf.keras.models,
'utils': tf.keras.utils,
}
for k, v in tfk_kwargs.items():
setattr(sm.models.unet, k, v)
# monkey patch the UpSampling2D layer, so it selects bilinear interpolation
# edgetpu does not support nearest interpolation
old_upsampling = tf.keras.layers.UpSampling2D
def upsampling_bilinear(*args, **kwargs):
kwargs['interpolation'] = 'bilinear'
return old_upsampling(*args, **kwargs)
tf.keras.layers.UpSampling2D = upsampling_bilinear
if freeze_encoder:
for layer in backbone.layers:
if not isinstance(layer, tf.keras.layers.BatchNormalization):
layer.trainable = False
encoder_features = sm.Backbones.get_feature_layers('mobilenetv2', n=4)
num_stages = len(decoder_filters)
if num_stages < 5:
backbone = tf.keras.Model(
inputs=backbone.input,
outputs=backbone.get_layer(name=encoder_features[4 - num_stages]).output,
)
skip_layers = [
backbone.get_layer(name=n).output for n in encoder_features[5 - num_stages :]
]
skip_layers += [backbone.input]
x = backbone.output
for i in range(num_stages):
skip = skip_layers[i]
x = sm.models.unet.DecoderUpsamplingX2Block(
decoder_filters[i], stage=i, use_batchnorm=True
)(x, skip)
x = tfkl.Conv2D(
filters=1,
kernel_size=3,
padding='same',
use_bias=True,
activation='sigmoid',
name='final_conv',
)(x)
model = tf.keras.Model(inputs=backbone.input, outputs=x)
for layer in model.layers:
if isinstance(layer, tf.keras.layers.BatchNormalization):
layer.momentum = bn_momentum
# techically this is not needed because set_regularization carries this out
# keeping it for verbosity
updated_model = tf.keras.models.model_from_json(model.to_json())
updated_model.set_weights(model.get_weights())
updated_model = sm.utils.set_regularization(
updated_model, kernel_regularizer=tf.keras.regularizers.l2(l2_regularization)
)
return updated_model
def visualize_preds(images, labels, preds):
preds = np.transpose(preds > 0.5, [1, 0, 2, 3])
preds = np.reshape(preds, [preds.shape[0], -1, 1])
if labels is not None:
labels = np.transpose(labels, [1, 0, 2, 3])
labels = np.reshape(labels, [labels.shape[0], -1, 1])
img_pred = np.concatenate(
[labels * (1 - preds), preds * labels, preds * (1 - labels)], axis=-1
)
else:
img_pred = np.concatenate(
[np.zeros_like(preds), preds, np.zeros_like(preds)], axis=-1
)
img = np.transpose(images, [1, 0, 2, 3])
img = np.reshape(img, [img.shape[0], -1, 3])
result_vis = np.concatenate([img, img_pred], axis=0)
result_vis = (result_vis * 255).astype(np.uint8)
return result_vis
class VisualizePredsCallback(tf.keras.callbacks.Callback):
def __init__(self, log_dir, data, period, **kwargs):
super(VisualizePredsCallback, self).__init__(**kwargs)
self.period = period
self.data = data
self.writer = tf.summary.FileWriter(log_dir)
self.log_dir = Path(log_dir)
self.log_dir.mkdir(parents=True, exist_ok=True)
def on_epoch_end(self, epoch, logs):
super(VisualizePredsCallback, self).on_epoch_end(epoch, logs)
if not epoch or epoch % self.period:
return
sess = tf.keras.backend.get_session()
item = tf.compat.v1.data.make_one_shot_iterator(self.data).get_next()
images = []
labels = []
try:
while True:
item_result = sess.run(item)
images.append(item_result[0])
# store binary labels
labels.append(item_result[1])
except tf.errors.OutOfRangeError:
pass
images = np.concatenate(images, axis=0)
labels = np.concatenate(labels, axis=0)
preds = self.model.predict(images)
result_vis = visualize_preds(images=images, labels=labels, preds=preds)
Image.fromarray(result_vis).save(self.log_dir / f'epoch_{epoch}.png')
class MeanIoUFromBinary(tf.keras.metrics.MeanIoU):
def __init__(self, **kwargs):
super(MeanIoUFromBinary, self).__init__(
num_classes=2, name='mean_io_u', **kwargs
)
def update_state(self, y_true, y_pred, *args, **kwargs):
y_pred = tf.cast(y_pred > 0.5, tf.int32)
return super(MeanIoUFromBinary, self).update_state(
y_true, y_pred, *args, **kwargs
)