-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfoster.py
780 lines (706 loc) · 40.8 KB
/
foster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
"""FedAvg"""
import os, argparse, copy, time
import numpy as np
import wandb
import torch
from torch import nn, optim
# federated
from learning import train, test
# utils
from utils.utils import set_seed, AverageMeter, CosineAnnealingLR, \
MultiStepLR, LocalMaskCrossEntropyLoss, str2bool
from utils.config import CHECKPOINT_ROOT
import torchvision.transforms as trn
# NOTE import desired federation
from core import _Federation as Federation
from core import AdversaryCreator
#models
from models.allconv import AllConvNet
from models.wrn_virtual import WideResNet, linear_classifier, WideResNet_Tin, WideResNet_stl, WideResNet_Domain
from VOS_virtual import VOS_train, VOS_train2, VOS_train_prox, inversion_train, topk_inversion_train, topk_inversion_train_prox, visualization, visualization2, visualization_external, get_weights
from VOS_evaluate import VOS_evaluate
from torch.utils.data import Dataset
from oodgen import CentralGen
if __package__ is None:
import sys
from os import path
sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
from utilsood.tinyimages_80mn_loader import TinyImages
class SimpleDataSet(Dataset):
""" load synthetic time series data"""
def __init__(self, x, y):
self.x = x
self.y = y
def __len__(self):
return self.x.shape[0]
def __dim__(self):
if len(self.x.shape) > 2:
raise Exception("only handles single channel data")
else:
return self.x.shape[1]
def __getitem__(self, idx):
return (
self.x[idx],
self.y[idx],
)
def render_run_name(args, exp_folder):
"""Return a unique run_name from given args."""
if args.model == 'default':
args.model = {'Digits': 'digit', 'Cifar10': 'preresnet18', 'DomainNet': 'alex'}[args.data]
run_name = f'{args.model}'
if args.width_scale != 1.: run_name += f'x{args.width_scale}'
run_name += Federation.render_run_name(args)
# log non-default args
if args.seed != 1: run_name += f'__seed_{args.seed}'
# opt
if args.lr_sch != 'none': run_name += f'__lrs_{args.lr_sch}'
if args.opt != 'sgd': run_name += f'__opt_{args.opt}'
if args.batch != 32: run_name += f'__batch_{args.batch}'
if args.wk_iters != 1: run_name += f'__wk_iters_{args.wk_iters}'
# slimmable
if args.no_track_stat: run_name += f"__nts"
if args.no_mask_loss: run_name += f'__nml'
# adv train
if args.adv_lmbd > 0:
run_name += f'__at{args.adv_lmbd}'
run_name += f'__at{args.loss_weight}'
run_name += f'__ex{args.use_external}'
if args.select_generator != None:
run_name += f'__ex{args.select_generator}'
if args.method != 'OE':
run_name += f'__m{args.method}'
args.save_path = os.path.join(CHECKPOINT_ROOT, exp_folder)
if args.score != 'OE':
run_name += f'__score{args.method}'
if args.sample_number != 1000:
run_name += f'__sample{args.sample_number}'
if args.soft != 0:
run_name += f'__{args.soft}'
if args.fl != 'fedavg':
run_name += f'__m{args.fl}'
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
SAVE_FILE = os.path.join(args.save_path, run_name)
return run_name, SAVE_FILE
def get_model_fh(data, model, num_classes=10):
if data == 'Digits':
if model in ['digit']:
from nets.models import DigitModel
ModelClass = DigitModel
else:
raise ValueError(f"Invalid model: {model}")
elif data in ['DomainNet', 'ImageNet']:
if model in ['alex']:
from nets.models import AlexNet
ModelClass = AlexNet
elif model == 'wrn':
ModelClass = WideResNet_Domain
else:
raise ValueError(f"Invalid model: {model}")
elif data == 'Cifar10' or data == 'Cifar100':
if model in ['preresnet18']: # From heteroFL
from nets.HeteFL.preresne import resnet18
ModelClass = resnet18
elif model == 'allconv':
ModelClass = AllConvNet(num_classes)
elif model == 'wrn':
ModelClass = WideResNet
else:
raise ValueError(f"Invalid model: {model}")
elif data == 'tin':
if model in ['preresnet18']: # From heteroFL
from nets.HeteFL.preresne import resnet18
ModelClass = resnet18
elif model == 'allconv':
ModelClass = AllConvNet(num_classes)
elif model == 'wrn':
ModelClass = WideResNet_Tin
else:
raise ValueError(f"Invalid model: {model}")
elif data == 'stl':
if model in ['preresnet18']: # From heteroFL
from nets.HeteFL.preresne import resnet18
ModelClass = resnet18
elif model == 'allconv':
ModelClass = AllConvNet(num_classes)
elif model == 'wrn':
ModelClass = WideResNet_stl
else:
raise ValueError(f"Invalid model: {model}")
else:
raise ValueError(f"Unknown dataset: {data}")
return ModelClass
def fed_test(fed, running_model, val_loaders, verbose, adversary=None):
mark = 's' if adversary is None else 'r'
val_acc_list = [None for _ in range(fed.client_num)]
val_loss_mt = AverageMeter()
for client_idx in range(fed.client_num):
fed.download(running_model, client_idx)
# Test
val_loss, val_acc = test(running_model, val_loaders[client_idx], loss_fun, device,
adversary=adversary)
# Log
val_loss_mt.append(val_loss)
val_acc_list[client_idx] = val_acc
if verbose > 0:
print(' {:<19s} Val {:s}Loss: {:.4f} | Val {:s}Acc: {:.4f}'.format(
'User-'+fed.clients[client_idx], mark.upper(), val_loss, mark.upper(), val_acc))
wandb.log({
f"{fed.clients[client_idx]} val_{mark}-acc": val_acc,
}, commit=False)
return val_acc_list, val_loss_mt.avg
def cosine_annealing(step, total_steps, lr_max, lr_min):
return lr_min + (lr_max - lr_min) * 0.5 * (
1 + np.cos(step / total_steps * np.pi))
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
# basic problem setting
parser.add_argument('--seed', type=int, default=1, help='random seed')
parser.add_argument('--data', type=str, default='Digits', help='data name')
parser.add_argument('--model', type=str.lower, default='default', help='model name')
parser.add_argument('--width_scale', type=float, default=1., help='model width scale')
parser.add_argument('--no_track_stat', action='store_true', help='disable BN tracking')
parser.add_argument('--no_mask_loss', action='store_true', help='disable masked loss for class'
' niid')
parser.add_argument('--fl', choices=['fedavg', 'fedprox'], default='fedavg')
# control
parser.add_argument('--no_log', action='store_true', help='disable wandb log')
parser.add_argument('--test', action='store_true', help='test the pretrained model')
parser.add_argument('--resume', action='store_true', help='resume training from checkpoint')
parser.add_argument('--verbose', type=int, default=0, help='verbose level: 0 or 1')
# federated
Federation.add_argument(parser)
# optimization
parser.add_argument('--lr', type=float, default=0.1, help='learning rate')
parser.add_argument('--lr_sch', type=str, default='multi_step', help='learning rate schedule')
parser.add_argument('--opt', type=str.lower, default='sgd', help='optimizer')
parser.add_argument('--iters', type=int, default=300, help='#iterations for communication')
parser.add_argument('--wk_iters', type=int, default=1, help='#epochs in local train')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', '-d', type=float, default=0.0005, help='Weight decay (L2 penalty).')
# adversarial train
parser.add_argument('--adv_lmbd', type=float, default=0.,
help='adv coefficient in [0,1]; default 0 for standard training.')
parser.add_argument('--test_noise', choices=['none', 'LinfPGD'], default='none')
# energy reg
parser.add_argument('--start_iter', type=int, default=1000)
parser.add_argument('--sample_number', type=int, default=1000)
parser.add_argument('--select', type=int, default=1)
parser.add_argument('--select_generator', type=int, default=None)
parser.add_argument('--sample_from', type=int, default=10000)
parser.add_argument('--loss_weight', type=float, default=0.1)
# WRN Architecture
parser.add_argument('--layers', default=40, type=int, help='total number of layers')
parser.add_argument('--widen-factor', default=2, type=int, help='widen factor')
parser.add_argument('--droprate', default=0.3, type=float, help='dropout probability')
# Setup for OOD evaluation
parser.add_argument('--num_to_avg', type=int, default=1, help='Average measures across num_to_avg runs.')
parser.add_argument('--validate', '-v', action='store_true',
help='Evaluate performance on validation distributions.')
parser.add_argument('--use_xent', '-x', action='store_true', help='Use cross entropy scoring instead of the MSP.')
parser.add_argument('--method_name', '-m', type=str, default='cifar10_wrn_baseline_0.1_50_40_1_10000_0.08',
help='Method name.')
# EG and benchmark details
parser.add_argument('--out_as_pos', action='store_true', help='OE define OOD data as positive.')
parser.add_argument('--T', default=1., type=float, help='temperature: energy|Odin')
parser.add_argument('--noise', type=float, default=0, help='noise for Odin')
parser.add_argument('--model_name', default='res', type=str)
parser.add_argument('--use_external', type=str, default='None', help='None|class|dataset|gen_inverse')
parser.add_argument('--oe_batch_size', type=int, default=1000, help='ood Batch size.')
parser.add_argument('--prefetch', type=int, default=4, help='Pre-fetching threads.')
parser.add_argument('--m_in', type=float, default=-25.,
help='margin for in-distribution; above this value will be penalized')
parser.add_argument('--m_out', type=float, default=-7.,
help='margin for out-distribution; below this value will be penalized')
parser.add_argument('--score', type=str, default='energy', help='OE|energy|energy_VOS')
parser.add_argument('--method', type=str, default='energy', help='OE|energy|crossentropy')
parser.add_argument('--evaluation_score', type=str, default='energy', help='energy|msp|odin')
parser.add_argument('--soft', type=float, default=0, help='If >0, use soft label for generator')
parser.add_argument('--visualization', type=bool, default=False, help='If True, visualize')
args = parser.parse_args()
set_seed(args.seed)
# set experiment files, wandb
exp_folder = os.path.basename(os.path.splitext(__file__)[0]) + f'_{args.data}'
run_name, SAVE_FILE = render_run_name(args, exp_folder)
wandb.init(group=run_name[:120], project=exp_folder,
mode='offline' if args.no_log else 'online',
config={**vars(args), 'save_file': SAVE_FILE})
state = {k: v for k, v in args._get_kwargs()}
print(state)
# /////////////////////////////////
# ///// Fed Dataset and Model /////
# /////////////////////////////////
fed = Federation(args.data, args)
# Data
train_loaders, val_loaders, test_loaders = fed.get_data()
mean_batch_iters = int(np.mean([len(tl) for tl in train_loaders]))
print(f" mean_batch_iters: {mean_batch_iters}")
# Model
ModelClass = get_model_fh(args.data, args.model)
if args.model == 'wrn' or args.model == 'allconv':
running_model = ModelClass(args.layers, fed.num_classes, args.widen_factor, dropRate=args.droprate, track_running_stats=not args.no_track_stat).to(device)
global_model = ModelClass(args.layers, fed.num_classes, args.widen_factor, dropRate=args.droprate,
track_running_stats=not args.no_track_stat).to(device)
else:
running_model = ModelClass(
track_running_stats=not args.no_track_stat, num_classes=fed.num_classes,
width_scale=args.width_scale,
).to(device)
global_model = ModelClass(
track_running_stats=not args.no_track_stat, num_classes=fed.num_classes,
width_scale=args.width_scale,
).to(device)
if args.model == 'wrn':
user_classifier = linear_classifier(fed.num_classes, args.widen_factor).to(device)
elif args.model == 'preresnet18':
user_classifier = linear_classifier(fed.num_classes, model=args.model).to(device)
elif args.model == 'alex':
user_classifier = copy.deepcopy(running_model.get_fc())
if args.use_external == 'dataset':
# mean and standard deviation of channels of tinnyimage
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
std = [x / 255 for x in [63.0, 62.1, 66.7]]
ood_data = TinyImages(transform=trn.Compose(
[trn.ToTensor(), trn.ToPILImage(), trn.RandomCrop(32, padding=4),
trn.RandomHorizontalFlip(), trn.ToTensor(), trn.Normalize(mean, std)]))
train_loader_out = torch.utils.data.DataLoader(
ood_data,
batch_size=args.oe_batch_size, shuffle=False,
num_workers=args.prefetch, pin_memory=True)
train_loader_out.dataset.offset = 1000
user_class = {}
userlogistic = {}
weight_energy = {}
privacy_engine = {}
Running_model = {}
# prepare external class set
for client_idx in range(fed.client_num):
## get class for this client
len_train = len(train_loaders[client_idx])
label = []
count = 0
for batch_id, (data, y) in enumerate(train_loaders[client_idx]):
count += y.shape[0]
for j in range(y.shape[0]):
if y[j] not in label:
label.append(y[j])
user_class[client_idx] = label
userlogistic[client_idx] = torch.nn.Linear(1, 2)
userlogistic[client_idx] = userlogistic[client_idx].cuda()
weight_energy[client_idx] = torch.nn.Linear(args.pu_nclass, 1).cuda()
torch.nn.init.uniform_(weight_energy[client_idx].weight)
if args.model == 'wrn' or args.model == 'allconv':
Running_model[client_idx] = ModelClass(args.layers, fed.num_classes, args.widen_factor,
dropRate=args.droprate,
track_running_stats=not args.no_track_stat).to(device)
else:
Running_model[client_idx] = ModelClass(
track_running_stats=not args.no_track_stat, num_classes=fed.num_classes,
width_scale=args.width_scale,
).to(device)
# adversary
if args.adv_lmbd > 0. or args.test:
make_adv = AdversaryCreator(args.test_noise if args.test else 'LinfPGD')
adversary = make_adv(running_model)
else:
adversary = None
# Loss
if args.pu_nclass > 0 and not args.no_mask_loss: # niid
loss_fun = LocalMaskCrossEntropyLoss(fed.num_classes)
else:
loss_fun = nn.CrossEntropyLoss()
# Use running model to init a fed aggregator
fed.make_aggregator(running_model, local_fc=args.local_fc)
# /////////////////
# //// Resume /////
# /////////////////
# log the best for each model on all datasets
best_epoch = 0
best_acc = [0. for j in range(fed.client_num)]
train_elapsed = [[] for _ in range(fed.client_num)]
start_epoch = 0
if args.resume or args.test:
if os.path.exists(SAVE_FILE):
print(f'Loading chkpt from {SAVE_FILE}')
checkpoint = torch.load(SAVE_FILE)
best_epoch, best_acc = checkpoint['best_epoch'], checkpoint['best_acc']
train_elapsed = checkpoint['train_elapsed']
start_epoch = int(checkpoint['a_iter']) + 1
fed.model_accum.load_state_dict(checkpoint['server_model'])
print('Resume training from epoch {} with best acc:'.format(start_epoch))
for client_idx, acc in enumerate(best_acc):
print(' Best user-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format(
fed.clients[client_idx], best_epoch, acc))
else:
if args.test:
raise FileNotFoundError(f"Not found checkpoint at {SAVE_FILE}")
else:
print(f"Not found checkpoint at {SAVE_FILE}\n **Continue without resume.**")
# ///////////////
# //// Test /////
# ///////////////
if args.test:
wandb.summary[f'best_epoch'] = best_epoch
# Set up model with specified width
print(f" Test model: {args.model}x{args.width_scale}"
+ ('' if args.test_noise == 'none' else f'with {args.test_noise} noise'))
# Test on clients
if args.data == 'Cifar10':
dataset_name = ["Texture", "Places365", "LSUN_C", "LSUN_Resize", "iSUN", "CIFAR100"]
else:
dataset_name = ["Texture", "Places365", "LSUN_C", "LSUN_Resize", "iSUN"]
auroc_mt, aupr_mt, test_acc_mt = AverageMeter(), AverageMeter(), AverageMeter()
auroc_detail, aupr_detail = {}, {}
for i in range(len(dataset_name)):
auroc_detail[dataset_name[i]], aupr_detail[dataset_name[i]] = AverageMeter(), AverageMeter()
if args.data == 'tin':
test_loaders = val_loaders
for test_idx, test_loader in enumerate(test_loaders):
fed.download(running_model, test_idx)
_, test_acc = test(running_model, test_loader, loss_fun, device,
adversary=adversary)
print(' {:<11s}| Test Acc: {:.4f}'.format(fed.clients[test_idx], test_acc))
auroc, aupr, auroc_list, aupr_list = VOS_evaluate(args, args.out_as_pos, args.num_to_avg, args.use_xent, args.method_name, args.evaluation_score, args.test_batch, args.T, args.noise, running_model,
test_loader, train_loaders[test_idx], user_class[test_idx], data_name=args.data, m_name=args.use_external, client_id=test_idx)
wandb.summary[f'{fed.clients[test_idx]} test acc'] = test_acc
test_acc_mt.append(test_acc)
wandb.summary[f'{fed.clients[test_idx]} auroc'] = auroc
wandb.summary[f'{fed.clients[test_idx]} aupr'] = aupr
auroc_mt.append(auroc)
aupr_mt.append(aupr)
for i in range(len(dataset_name)):
auroc_detail[dataset_name[i]].append(auroc_list[i])
aupr_detail[dataset_name[i]].append(aupr_list[i])
# Profile model FLOPs, sizes (#param)
from nets.profile_func import profile_model
flops, params = profile_model(running_model, device=device)
wandb.summary['GFLOPs'] = flops / 1e9
wandb.summary['model size (MB)'] = params / 1e6
print('GFLOPS: %.4f, model size: %.4fMB' % (flops / 1e9, params / 1e6))
print(f"\n Average Test auroc: {auroc_mt.avg}")
print(f"\n Average Test aupr: {aupr_mt.avg}")
print(f"\n Average Test Acc: {test_acc_mt.avg}")
wandb.summary[f'avg test acc'] = test_acc_mt.avg
wandb.summary[f'avg test auroc'] = auroc_mt.avg
wandb.summary[f'avg test aupr'] = aupr_mt.avg
print("Show detail:")
for i in range(len(dataset_name)):
print("{} detection".format(dataset_name[i]))
print("auroc: {}, aupr: {}".format(auroc_detail[dataset_name[i]].avg, aupr_detail[dataset_name[i]].avg))
wandb.finish()
exit(0)
if args.use_external == 'class':
#if 1:
if os.path.exists("external_loader2.pth"):
print("load external classifier2!")
external_loader = torch.load("external_loader2.pth")
else:
external_loader = {}
# prepare external class set
for client_idx in range(fed.client_num):
start = False
for c in range(fed.client_num):
if c != client_idx:
for batch_id, (data, y) in enumerate(train_loaders[c]):
select_id = [idx for idx in range(y.shape[0]) if y[idx] not in user_class[client_idx]]
if start == False:
external_x = data[select_id]
external_y = y[select_id]
start = True
else:
external_x = torch.cat((external_x, data[select_id]), dim=0)
external_y = torch.cat((external_y, y[select_id]), dim=0)
external_set = SimpleDataSet(external_x, external_y)
print("external class size", len(external_set))
print("external label", torch.unique(external_y))
#externalclass_loader = torch.utils.data.DataLoader(external_set, batch_size=args.oe_batch_size,
# shuffle=True,
# num_workers=args.prefetch, pin_memory=True)
externalclass_loader = torch.utils.data.DataLoader(external_set, batch_size=args.batch,
shuffle=True,
num_workers=args.prefetch, pin_memory=True)
external_loader[client_idx] = externalclass_loader
torch.save(external_loader, "external_loader2.pth")
if args.use_external == 'gen_inverse':
max_iter = mean_batch_iters * args.wk_iters
Central_gen = CentralGen(args, max_iter, fed.num_classes, model=args.model)
# ////////////////
# //// Train /////
# ////////////////
# LR scheduler
if args.lr_sch == 'cos':
lr_sch = CosineAnnealingLR(args.iters, eta_max=args.lr, last_epoch=start_epoch)
elif args.lr_sch == 'multi_step':
lr_sch = MultiStepLR(args.lr, milestones=[150, 250], gamma=0.1, last_epoch=start_epoch)
else:
assert args.lr_sch == 'none', f'Invalid lr_sch: {args.lr_sch}'
lr_sch = None
total_iter = torch.zeros((fed.client_num))
for a_iter in range(start_epoch, args.iters):
# set global lr
global_lr = args.lr if lr_sch is None else lr_sch.step()
wandb.log({'global lr': global_lr}, commit=False)
##get global fc
global_fc = fed.get_global_fc()
global_model.load_state_dict(fed.model_accum.server_state_dict)
##train central generator
if args.use_external == 'gen_inverse':
for k, v in user_classifier.state_dict().items():
if 'fc.weight' in k:
user_classifier.state_dict()[k].copy_(global_fc[0])
if 'fc.bias' in k:
user_classifier.state_dict()[k].copy_(global_fc[1])
Central_gen.train_generator(args, user_classifier)
# ----------- Train Client ---------------
train_loss_mt = AverageMeter()
epsilon_mt = AverageMeter()
best_alpha_mt = AverageMeter()
print("============ Train epoch {} ============".format(a_iter))
for client_idx in fed.client_sampler.iter():
start_time = time.process_time()
running_model = Running_model[client_idx]
fed.download(running_model, client_idx)
#prepare for VOS
num_classes = fed.num_classes
data_dim = 128
if args.model == 'preresnet18':
data_dim = 512
elif args.model == 'alex':
data_dim = int(4096*args.width_scale)
data_dict = torch.zeros(num_classes, args.sample_number, data_dim).cuda()
number_dict = {}
for i in range(num_classes):
number_dict[i] = 0
eye_matrix = torch.eye(data_dim, device='cuda')
fc_head = running_model.get_fc()
fc_para = list(fc_head.parameters())
optimizer_fc = torch.optim.SGD(
fc_para, global_lr, momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
local_para = list(running_model.parameters())
for i in range(len(fc_para)):
for j in range(len(local_para)):
if fc_para[i].equal(local_para[j]):
local_para.pop(j)
break
#print("para numnber: local para {}, fc para {}, rest para {}".format(len(list(running_model.parameters())), len(list(fc_head.parameters())), len(local_para)))
optimizer_local = torch.optim.SGD(
local_para + list(weight_energy[client_idx].parameters()) + \
list(userlogistic[client_idx].parameters()), global_lr, momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer = torch.optim.SGD(
list(running_model.parameters()) + list(weight_energy[client_idx].parameters()) + \
list(userlogistic[client_idx].parameters()), global_lr, momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
#train for VOS
if args.partition_mode != 'uni':
max_iter = mean_batch_iters * args.wk_iters
else:
max_iter = len(train_loaders[client_idx]) * args.wk_iters
if args.use_external == 'None':
if (args.fl == 'fedprox') and (a_iter > start_epoch):
train_loss, total_iter[client_idx] = VOS_train_prox(user_class[client_idx], args.model,
total_iter[client_idx], state, max_iter, global_model,
running_model, train_loaders[client_idx],
fed.num_classes, number_dict, args.sample_number,
args.start_iter, data_dict,
eye_matrix, userlogistic[client_idx], optimizer,
args.loss_weight, weight_energy[client_idx],
args.sample_from, args.select, verbose=args.verbose)
else:
train_loss, total_iter[client_idx] = VOS_train(user_class[client_idx], args.model, total_iter[client_idx], state, max_iter, running_model, train_loaders[client_idx], fed.num_classes, number_dict, args.sample_number, args.start_iter, data_dict,
eye_matrix, userlogistic[client_idx], optimizer, args.loss_weight, weight_energy[client_idx], args.sample_from, args.select, verbose=args.verbose)
elif args.use_external == 'dataset':
train_loss, total_iter[client_idx] = VOS_train2(args.model, total_iter[client_idx], state, max_iter, running_model, train_loaders[client_idx], train_loader_out, fed.num_classes, number_dict, args.sample_number, args.start_iter, data_dict,
eye_matrix, userlogistic[client_idx], optimizer, args.loss_weight, weight_energy[client_idx], args.sample_from, args.select, verbose=args.verbose)
elif args.use_external == 'class':
train_loss, total_iter[client_idx] = VOS_train2(args.model, total_iter[client_idx], state, max_iter,
running_model, train_loaders[client_idx],
external_loader[client_idx], fed.num_classes, number_dict,
args.sample_number, args.start_iter, data_dict,
eye_matrix, userlogistic[client_idx], optimizer,
args.loss_weight, weight_energy[client_idx], args.sample_from,
args.select, verbose=args.verbose)
elif args.use_external == 'gen_inverse':
if args.select_generator != None:
if (args.fl == 'fedprox') and (a_iter > start_epoch):
train_loss, total_iter[client_idx] = topk_inversion_train_prox(num_classes, number_dict, data_dict,
args.sample_number, eye_matrix,
args.sample_from,
Central_gen.generative_model,
total_iter[client_idx],
user_class[client_idx], args.score,
args.m_in,
args.m_out, a_iter,
user_classifier,
total_iter[client_idx], state,
max_iter, global_model,
running_model,
train_loaders[client_idx], optimizer,
verbose=args.verbose,
logistic_regression=userlogistic[
client_idx],
weight_energy=weight_energy[
client_idx],
select=args.select_generator,
soft=args.soft,
optimizer_fc=optimizer_fc,
optimizer_local=optimizer_local)
else:
train_loss, total_iter[client_idx] = topk_inversion_train(num_classes, number_dict, data_dict,
args.sample_number, eye_matrix,
args.sample_from,
Central_gen.generative_model,
total_iter[client_idx],
user_class[client_idx], args.score,
args.m_in,
args.m_out, a_iter,
user_classifier,
total_iter[client_idx], state, max_iter,
running_model,
train_loaders[client_idx], optimizer,
verbose=args.verbose,
logistic_regression=userlogistic[
client_idx],
weight_energy=weight_energy[client_idx],
select=args.select_generator,
soft=args.soft, optimizer_fc=optimizer_fc, optimizer_local=optimizer_local)
if args.score == 'energy_VOS':
train_loss, total_iter[client_idx] = inversion_train(Central_gen.generative_model,
total_iter[client_idx],
user_class[client_idx], args.score,
args.m_in,
args.m_out, a_iter,
user_classifier, args.oe_batch_size,
total_iter[client_idx], state, max_iter,
running_model,
train_loaders[client_idx], optimizer,
verbose=args.verbose,
logistic_regression=userlogistic[
client_idx],
weight_energy=weight_energy[client_idx])
else:
train_loss, total_iter[client_idx] = inversion_train(Central_gen.generative_model,
total_iter[client_idx],
user_class[client_idx],
args.score, args.m_in, args.m_out, a_iter,
user_classifier, args.oe_batch_size,
total_iter[client_idx], state, max_iter,
running_model,
train_loaders[client_idx], optimizer,
verbose=args.verbose, )
# Upload
fed.upload(running_model, client_idx)
# Log
client_name = fed.clients[client_idx]
elapsed = time.process_time() - start_time
wandb.log({f'{client_name}_train_elapsed': elapsed}, commit=False)
train_elapsed[client_idx].append(elapsed)
train_loss_mt.append(train_loss)
print(f' User-{client_name:<10s} Train | Loss: {train_loss:.4f} |'
f' Elapsed: {elapsed:.2f} s')
wandb.log({
f"{client_name} train_loss": train_loss,
}, commit=False)
# Use accumulated model to update server model
fed.aggregate()
# ----------- Validation ---------------
val_acc_list, val_loss = fed_test(fed, running_model, val_loaders, args.verbose)
if args.adv_lmbd > 0:
print(f' Avg Val SAcc {np.mean(val_acc_list) * 100:.2f}%')
wandb.log({'val_sacc': np.mean(val_acc_list)}, commit=False)
val_racc_list, val_rloss = fed_test(fed, running_model, val_loaders, args.verbose,
adversary=adversary)
print(f' Avg Val RAcc {np.mean(val_racc_list) * 100:.2f}%')
wandb.log({'val_racc': np.mean(val_racc_list)}, commit=False)
val_acc_list = [(1 - args.adv_lmbd) * sa_ + args.adv_lmbd * ra_
for sa_, ra_ in zip(val_acc_list, val_racc_list)]
val_loss = (1 - args.adv_lmbd) * val_loss + args.adv_lmbd * val_rloss
# Log averaged
print(f' [Overall] Train Loss {train_loss_mt.avg:.4f} '
f' | Val Acc {np.mean(val_acc_list) * 100:.2f}%')
wandb.log({
f"train_loss": train_loss_mt.avg,
f"val_loss": val_loss,
f"val_acc": np.mean(val_acc_list),
}, commit=False)
# ----------- Save checkpoint -----------
if np.mean(val_acc_list) > np.mean(best_acc):
best_epoch = a_iter
for client_idx in range(fed.client_num):
best_acc[client_idx] = val_acc_list[client_idx]
if args.verbose > 0:
print(' Best site-{:<10s}| Epoch:{} | Val Acc: {:.4f}'.format(
fed.clients[client_idx], best_epoch, best_acc[client_idx]))
print(' [Best Val] Acc {:.4f}'.format(np.mean(val_acc_list)))
# Save
print(f' Saving the local and server checkpoint to {SAVE_FILE}')
save_dict = {
'server_model': fed.model_accum.state_dict(),
'best_epoch': best_epoch,
'best_acc': best_acc,
'a_iter': a_iter,
'all_domains': fed.all_domains,
'train_elapsed': train_elapsed,
}
if args.visualization == False:
torch.save(save_dict, SAVE_FILE)
wandb.log({
f"best_val_acc": np.mean(best_acc),
}, commit=True)
if args.visualization:
print("Start visualization!")
global_fc = fed.get_global_fc()
for k, v in user_classifier.state_dict().items():
if 'fc.weight' in k:
user_classifier.state_dict()[k] = global_fc[0]
if 'fc.bias' in k:
user_classifier.state_dict()[k] = global_fc[1]
Central_gen = CentralGen(args, 10000, fed.num_classes, model=args.model)
Central_gen.train_generator(args, user_classifier)
Central_gen2 = CentralGen(args, 10000, fed.num_classes, model=args.model)
Central_gen2.generative_model.load_state_dict(get_weights(Central_gen.generative_model))
for client_idx in fed.client_sampler.iter():
num_classes = fed.num_classes
data_dim = 128
if args.model == 'preresnet18':
data_dim = 512
data_dict = torch.zeros(num_classes, args.sample_number, data_dim).cuda()
number_dict = {}
for i in range(num_classes):
number_dict[i] = 0
eye_matrix = torch.eye(data_dim, device='cuda')
fed.download(running_model, client_idx)
#_, test_acc = test(running_model, client_idx, loss_fun, device,
# adversary=adversary)
#print(' {:<11s}| Test Acc: {:.4f}'.format(fed.clients[client_idx], test_acc))
from nets.profile_func import count_params_by_state
gen_params = count_params_by_state(Central_gen2.generative_model)
print('gen_model size: %.4fMB' % (gen_params / 1e6))
params = count_params_by_state(running_model)
print('model size: %.4fMB' % (params / 1e6))
visualization(client_idx, num_classes, number_dict, data_dict, args.sample_number, eye_matrix,
100000, Central_gen2.generative_model,
total_iter[client_idx],
user_class[client_idx],
user_classifier,
total_iter[client_idx], state, max_iter,
running_model,
train_loaders[client_idx],
verbose=args.verbose,
logistic_regression=userlogistic[
client_idx],
weight_energy=weight_energy[client_idx], select=1, soft=args.soft)
#visualization_external(client_idx, num_classes, number_dict, data_dict, args.sample_number, eye_matrix,
# 100000, Central_gen2.generative_model,
# total_iter[client_idx],
# user_class[client_idx],
# user_classifier,
# total_iter[client_idx], state, max_iter,
# running_model,
# train_loaders[client_idx],
# verbose=args.verbose,
# logistic_regression=userlogistic[
# client_idx],
# weight_energy=weight_energy[client_idx], select=1, soft=args.soft, external_loader=external_loader[client_idx])