forked from F8LEFT/SoFixer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathElfReader.cpp
678 lines (580 loc) · 22.8 KB
/
ElfReader.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
//===------------------------------------------------------------*- C++ -*-===//
//
// Created by F8LEFT on 2017/6/3.
// Copyright (c) 2017. All rights reserved.
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "ElfReader.h"
#include "elf.h"
#include "FDebug.h"
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <vector>
/**
TECHNICAL NOTE ON ELF LOADING.
An ELF file's program header table contains one or more PT_LOAD
segments, which corresponds to portions of the file that need to
be mapped into the process' address space.
Each loadable segment has the following important properties:
p_offset -> segment file offset
p_filesz -> segment file size
p_memsz -> segment memory size (always >= p_filesz)
p_vaddr -> segment's virtual address
p_flags -> segment flags (e.g. readable, writable, executable)
We will ignore the p_paddr and p_align fields of Elf32_Phdr for now.
The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
ranges of virtual addresses. A few rules apply:
- the virtual address ranges should not overlap.
- if a segment's p_filesz is smaller than its p_memsz, the extra bytes
between them should always be initialized to 0.
- ranges do not necessarily start or end at page boundaries. Two distinct
segments can have their start and end on the same page. In this case, the
page inherits the mapping flags of the latter segment.
Finally, the real load addrs of each segment is not p_vaddr. Instead the
loader decides where to load the first segment, then will load all others
relative to the first one to respect the initial range layout.
For example, consider the following list:
[ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
[ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
This corresponds to two segments that cover these virtual address ranges:
0x30000...0x34000
0x40000...0x48000
If the loader decides to load the first segment at address 0xa0000000
then the segments' load address ranges will be:
0xa0030000...0xa0034000
0xa0040000...0xa0048000
In other words, all segments must be loaded at an address that has the same
constant offset from their p_vaddr value. This offset is computed as the
difference between the first segment's load address, and its p_vaddr value.
However, in practice, segments do _not_ start at page boundaries. Since we
can only memory-map at page boundaries, this means that the bias is
computed as:
load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
(NOTE: The value must be used as a 32-bit unsigned integer, to deal with
possible wrap around UINT32_MAX for possible large p_vaddr values).
And that the phdr0_load_address must start at a page boundary, with
the segment's real content starting at:
phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
Note that ELF requires the following condition to make the mmap()-ing work:
PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
The load_bias must be added to any p_vaddr value read from the ELF file to
determine the corresponding memory address.
**/
#define MAYBE_MAP_FLAG(x,from,to) (((x) & (from)) ? (to) : 0)
#define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
ElfReader::ElfReader()
: source_(nullptr), name_(nullptr),
phdr_num_(0), phdr_mmap_(NULL), phdr_table_(NULL), phdr_size_(0),
load_start_(NULL), load_size_(0), load_bias_(0),
loaded_phdr_(NULL) {
}
ElfReader::~ElfReader() {
if (phdr_mmap_ != NULL) {
delete [](uint8_t*)phdr_mmap_;
}
if(load_start_ != nullptr) {
delete [](uint8_t*)load_start_;
}
if (source_ != nullptr) {
delete source_;
}
}
bool ElfReader::Load() {
// try open
return ReadElfHeader() &&
VerifyElfHeader() &&
ReadProgramHeader() &&
// TODO READ dynamic from SECTION header (>= __ANDROID_API_O__)
ReserveAddressSpace() &&
LoadSegments() &&
FindPhdr();
}
bool ElfReader::ReadElfHeader() {
auto rc = source_->Read(&header_, sizeof(header_));
if (rc != sizeof(header_)) {
FLOGE("\"%s\" is too small to be an ELF executable", name_);
return false;
}
return true;
}
bool ElfReader::VerifyElfHeader() {
if (header_.e_ident[EI_MAG0] != ELFMAG0 ||
header_.e_ident[EI_MAG1] != ELFMAG1 ||
header_.e_ident[EI_MAG2] != ELFMAG2 ||
header_.e_ident[EI_MAG3] != ELFMAG3) {
FLOGE("\"%s\" has bad ELF magic", name_);
return false;
}
#ifndef __SO64__
if (header_.e_ident[EI_CLASS] != ELFCLASS32) {
FLOGE("\"%s\" not 32-bit: %d", name_, header_.e_ident[EI_CLASS]);
return false;
}
#else
if (header_.e_ident[EI_CLASS] != ELFCLASS64) {
FLOGE("\"%s\" not 64-bit: %d", name_, header_.e_ident[EI_CLASS]);
return false;
}
#endif
if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
FLOGE("\"%s\" not little-endian: %d", name_, header_.e_ident[EI_DATA]);
return false;
}
// if (header_.e_type != ET_DYN) {
// FLOGE("\"%s\" has unexpected e_type: %d", name_, header_.e_type);
// return false;
// }
if (header_.e_version != EV_CURRENT) {
FLOGE("\"%s\" has unexpected e_version: %d", name_, header_.e_version);
return false;
}
return true;
}
// Loads the program header table from an ELF file into a read-only private
// anonymous mmap-ed block.
bool ElfReader::ReadProgramHeader() {
phdr_num_ = header_.e_phnum;
// Like the kernel, we only accept program header tables that
// are smaller than 64KiB.
if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(Elf_Phdr)) {
FLOGE("\"%s\" has invalid e_phnum: %zu", name_, phdr_num_);
return false;
}
phdr_size_ = phdr_num_ * sizeof(Elf_Phdr);
void* mmap_result = new uint8_t[phdr_size_];
if(!source_->Read(mmap_result, phdr_size_, header_.e_phoff)) {
FLOGE("\"%s\" has no valid phdr data", name_);
return false;
}
phdr_mmap_ = mmap_result;
phdr_table_ = reinterpret_cast<Elf_Phdr*>(reinterpret_cast<char*>(mmap_result));
return true;
}
/* Returns the size of the extent of all the possibly non-contiguous
* loadable segments in an ELF program header table. This corresponds
* to the page-aligned size in bytes that needs to be reserved in the
* process' address space. If there are no loadable segments, 0 is
* returned.
*
* If out_min_vaddr or out_max_vaddr are non-NULL, they will be
* set to the minimum and maximum addresses of pages to be reserved,
* or 0 if there is nothing to load.
*/
size_t phdr_table_get_load_size(const Elf_Phdr* phdr_table,
size_t phdr_count,
Elf_Addr* out_min_vaddr,
Elf_Addr* out_max_vaddr)
{
#ifdef __SO64__
Elf_Addr min_vaddr = 0xFFFFFFFFFFFFFFFFU;
#else
Elf_Addr min_vaddr = 0xFFFFFFFFU;
#endif
Elf_Addr max_vaddr = 0x00000000U;
bool found_pt_load = false;
for (size_t i = 0; i < phdr_count; ++i) {
const Elf_Phdr* phdr = &phdr_table[i];
if (phdr->p_type != PT_LOAD) {
continue;
}
found_pt_load = true;
if (phdr->p_vaddr < min_vaddr) {
min_vaddr = phdr->p_vaddr;
}
if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
max_vaddr = phdr->p_vaddr + phdr->p_memsz;
}
}
if (!found_pt_load) {
min_vaddr = 0x00000000U;
}
min_vaddr = PAGE_START(min_vaddr);
max_vaddr = PAGE_END(max_vaddr);
if (out_min_vaddr != NULL) {
*out_min_vaddr = min_vaddr;
}
if (out_max_vaddr != NULL) {
*out_max_vaddr = max_vaddr;
}
return max_vaddr - min_vaddr;
}
// Reserve a virtual address range big enough to hold all loadable
// segments of a program header table. This is done by creating a
// private anonymous mmap() with PROT_NONE.
bool ElfReader::ReserveAddressSpace(uint32_t padding_size) {
Elf_Addr min_vaddr;
load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
if (load_size_ == 0) {
FLOGE("\"%s\" has no loadable segments", name_);
return false;
}
pad_size_ = padding_size;
uint32_t alloc_size = load_size_ + pad_size_;
uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
// alloc map data, and load in addr
uint8_t * start = new uint8_t[alloc_size];
memset(start, 0, alloc_size);
load_start_ = start;
// the first loaded phdr data should be loaded in the start of load_start
// (load_bias_ + phdr.vaddr), so load_bias_ = load_start - phdr.vaddr(min_addr)
load_bias_ = reinterpret_cast<uint8_t *>(reinterpret_cast<uintptr_t >(start)
- reinterpret_cast<uintptr_t >(addr));
return true;
}
// Map all loadable segments in process' address space.
// This assumes you already called phdr_table_reserve_memory to
// reserve the address space range for the library.
// TODO: assert assumption.
bool ElfReader::LoadSegments() {
// TODO fix file dada load error, file data between LOAD seg should be loaded
for (size_t i = 0; i < phdr_num_; ++i) {
const Elf_Phdr* phdr = &phdr_table_[i];
if (phdr->p_type != PT_LOAD) {
continue;
}
// Segment addresses in memory.
Elf_Addr seg_start = phdr->p_vaddr;
Elf_Addr seg_end = seg_start + phdr->p_memsz;
// Elf_Addr seg_page_start = PAGE_START(seg_start);
// Elf_Addr seg_page_end = PAGE_END(seg_end);
Elf_Addr seg_file_end = seg_start + phdr->p_filesz;
// File offsets.
Elf_Addr file_start = phdr->p_offset;
Elf_Addr file_end = file_start + phdr->p_filesz;
// Elf_Addr file_page_start = PAGE_START(file_start);
Elf_Addr file_length = file_end - file_start;
if (file_length != 0) {
// memory data loading
void* load_point = seg_start + reinterpret_cast<uint8_t *>(load_bias_);
if(!source_->Read(load_point, file_length, file_start)) {
FLOGE("couldn't map \"%s\" segment %zu: %s", name_, i, strerror(errno));
return false;
}
}
// if the segment is writable, and does not end on a page boundary,
// zero-fill it until the page limit.
// if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
// memset(seg_file_end + reinterpret_cast<uint8_t *>(load_bias_), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
// }
// seg_file_end = PAGE_END(seg_file_end);
// seg_file_end is now the first page address after the file
// content. If seg_end is larger, we need to zero anything
// between them. This is done by using a private anonymous
// map for all extra pages.
// since data has been clear, just skip this step
// if (seg_page_end > seg_file_end) {
// void* load_point = (uint8_t*)load_bias_ + seg_file_end;
// memset(load_point, 0, seg_page_end - seg_file_end);
// }
}
return true;
}
/* Used internally. Used to set the protection bits of all loaded segments
* with optional extra flags (i.e. really PROT_WRITE). Used by
* phdr_table_protect_segments and phdr_table_unprotect_segments.
*/
static int
_phdr_table_set_load_prot(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias,
int extra_prot_flags)
{
const Elf_Phdr* phdr = phdr_table;
const Elf_Phdr* phdr_limit = phdr + phdr_count;
for (; phdr < phdr_limit; phdr++) {
if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0)
continue;
auto seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
auto seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
auto ret = 0;
// int ret = mprotect((void*)seg_page_start,
// seg_page_end - seg_page_start,
// PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags);
// if (ret < 0) {
// return -1;
// }
}
return 0;
}
/* Restore the original protection modes for all loadable segments.
* You should only call this after phdr_table_unprotect_segments and
* applying all relocations.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Return:
* 0 on error, -1 on failure (error code in errno).
*/
int
phdr_table_protect_segments(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias)
{
return _phdr_table_set_load_prot(phdr_table, phdr_count,
load_bias, 0);
}
/* Change the protection of all loaded segments in memory to writable.
* This is useful before performing relocations. Once completed, you
* will have to call phdr_table_protect_segments to restore the original
* protection flags on all segments.
*
* Note that some writable segments can also have their content turned
* to read-only by calling phdr_table_protect_gnu_relro. This is no
* performed here.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Return:
* 0 on error, -1 on failure (error code in errno).
*/
int
phdr_table_unprotect_segments(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias)
{
return _phdr_table_set_load_prot(phdr_table, phdr_count,
load_bias, /*PROT_WRITE*/0);
}
/* Used internally by phdr_table_protect_gnu_relro and
* phdr_table_unprotect_gnu_relro.
*/
static int
_phdr_table_set_gnu_relro_prot(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias,
int prot_flags)
{
const Elf_Phdr* phdr = phdr_table;
const Elf_Phdr* phdr_limit = phdr + phdr_count;
for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
// if (phdr->p_type != PT_GNU_RELRO)
// continue;
/* Tricky: what happens when the relro segment does not start
* or end at page boundaries?. We're going to be over-protective
* here and put every page touched by the segment as read-only.
*
* This seems to match Ian Lance Taylor's description of the
* feature at http://www.airs.com/blog/archives/189.
*
* Extract:
* Note that the current dynamic linker code will only work
* correctly if the PT_GNU_RELRO segment starts on a page
* boundary. This is because the dynamic linker rounds the
* p_vaddr field down to the previous page boundary. If
* there is anything on the page which should not be read-only,
* the program is likely to fail at runtime. So in effect the
* linker must only emit a PT_GNU_RELRO segment if it ensures
* that it starts on a page boundary.
*/
auto seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
auto seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
auto ret = 0;
// int ret = mprotect((void*)seg_page_start,
// seg_page_end - seg_page_start,
// prot_flags);
// if (ret < 0) {
// return -1;
// }
}
return 0;
}
/* Apply GNU relro protection if specified by the program header. This will
* turn some of the pages of a writable PT_LOAD segment to read-only, as
* specified by one or more PT_GNU_RELRO segments. This must be always
* performed after relocations.
*
* The areas typically covered are .got and .data.rel.ro, these are
* read-only from the program's POV, but contain absolute addresses
* that need to be relocated before use.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Return:
* 0 on error, -1 on failure (error code in errno).
*/
int
phdr_table_protect_gnu_relro(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias)
{
return _phdr_table_set_gnu_relro_prot(phdr_table,
phdr_count,
load_bias,
/*PROT_READ*/0);
}
# ifndef PT_ARM_EXIDX
# define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */
# endif
/* Return the address and size of the .ARM.exidx section in memory,
* if present.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Output:
* arm_exidx -> address of table in memory (NULL on failure).
* arm_exidx_count -> number of items in table (0 on failure).
* Return:
* 0 on error, -1 on failure (_no_ error code in errno)
*/
int
phdr_table_get_arm_exidx(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t * load_bias,
Elf_Addr** arm_exidx,
unsigned* arm_exidx_count)
{
const Elf_Phdr* phdr = phdr_table;
const Elf_Phdr* phdr_limit = phdr + phdr_count;
for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
if (phdr->p_type != PT_ARM_EXIDX)
continue;
*arm_exidx = (Elf_Addr*)((uint8_t *)load_bias + phdr->p_vaddr);
*arm_exidx_count = (unsigned)(phdr->p_memsz / sizeof(Elf_Addr));
return 0;
}
*arm_exidx = NULL;
*arm_exidx_count = 0;
return -1;
}
/* Return the address and size of the ELF file's .dynamic section in memory,
* or NULL if missing.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Output:
* dynamic -> address of table in memory (NULL on failure).
* dynamic_count -> number of items in table (0 on failure).
* dynamic_flags -> protection flags for section (unset on failure)
* Return:
* void
*/
void
phdr_table_get_dynamic_section(const Elf_Phdr* phdr_table,
int phdr_count,
uint8_t *load_bias,
Elf_Dyn** dynamic,
size_t* dynamic_count,
Elf_Word* dynamic_flags)
{
const Elf_Phdr* phdr = phdr_table;
const Elf_Phdr* phdr_limit = phdr + phdr_count;
for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
if (phdr->p_type != PT_DYNAMIC) {
continue;
}
*dynamic = reinterpret_cast<Elf_Dyn*>(load_bias + phdr->p_vaddr);
if (dynamic_count) {
*dynamic_count = (unsigned)(phdr->p_memsz / sizeof(Elf_Dyn));
}
if (dynamic_flags) {
*dynamic_flags = phdr->p_flags;
}
return;
}
*dynamic = NULL;
if (dynamic_count) {
*dynamic_count = 0;
}
}
// Returns the address of the program header table as it appears in the loaded
// segments in memory. This is in contrast with 'phdr_table_' which
// is temporary and will be released before the library is relocated.
bool ElfReader::FindPhdr() {
const Elf_Phdr* phdr_limit = phdr_table_ + phdr_num_;
// If there is a PT_PHDR, use it directly.
for (const Elf_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
if (phdr->p_type == PT_PHDR) {
return CheckPhdr((uint8_t*)load_bias_ + phdr->p_vaddr);
}
}
// Otherwise, check the first loadable segment. If its file offset
// is 0, it starts with the ELF header, and we can trivially find the
// loaded program header from it.
for (const Elf_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
if (phdr->p_type == PT_LOAD) {
if (phdr->p_offset == 0) {
uint8_t *elf_addr = (uint8_t*)load_bias_ + phdr->p_vaddr;
const Elf_Ehdr* ehdr = (const Elf_Ehdr*)(void*)elf_addr;
Elf_Addr offset = ehdr->e_phoff;
return CheckPhdr((uint8_t*)ehdr + offset);
}
break;
}
}
FLOGE("can't find loaded phdr for \"%s\"", name_);
return false;
}
// Ensures that our program header is actually within a loadable
// segment. This should help catch badly-formed ELF files that
// would cause the linker to crash later when trying to access it.
bool ElfReader::CheckPhdr(uint8_t * loaded) {
const Elf_Phdr* phdr_limit = phdr_table_ + phdr_num_;
auto loaded_end = loaded + (phdr_num_ * sizeof(Elf_Phdr));
for (Elf_Phdr* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
if (phdr->p_type != PT_LOAD) {
continue;
}
auto seg_start = phdr->p_vaddr + (uint8_t*)load_bias_;
auto seg_end = phdr->p_filesz + seg_start;
if (seg_start <= loaded && loaded_end <= seg_end) {
loaded_phdr_ = reinterpret_cast<const Elf_Phdr*>(loaded);
return true;
}
}
FLOGE("\"%s\" loaded phdr %p not in loadable segment", name_, loaded);
return false;
}
void ElfReader::ApplyPhdrTable() {
const Elf_Phdr* phdr_limit = phdr_table_ + phdr_num_;
memcpy((void*)loaded_phdr_, (void*)phdr_table_, (uintptr_t)phdr_limit - (uintptr_t)phdr_table_ );
return ;
}
bool ElfReader::setSource(const char *source) {
name_ = source;
auto fr = new FileReader(source);
if (!fr->Open()) {
delete fr;
return false;
}
file_size = fr->FileSize();
source_ = fr;
return true;
}
void ElfReader::GetDynamicSection(Elf_Dyn **dynamic, size_t *dynamic_count, Elf_Word *dynamic_flags) {
const Elf_Phdr* phdr = phdr_table_;
const Elf_Phdr* phdr_limit = phdr + phdr_num_;
for (phdr = phdr_table_; phdr < phdr_limit; phdr++) {
if (phdr->p_type != PT_DYNAMIC) {
continue;
}
*dynamic = reinterpret_cast<Elf_Dyn*>(load_bias_ + phdr->p_vaddr);
if (dynamic_count) {
*dynamic_count = (unsigned)(phdr->p_memsz / sizeof(Elf_Dyn));
}
if (dynamic_flags) {
*dynamic_flags = phdr->p_flags;
}
return;
}
*dynamic = NULL;
if (dynamic_count) {
*dynamic_count = 0;
}
}