diff --git a/examples/nextjs-christmas-dinner-generator-challenge/.env.example b/examples/nextjs-christmas-dinner-generator-challenge/.env.example new file mode 100644 index 00000000..9bf519e0 --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/.env.example @@ -0,0 +1,2 @@ +POSTGRES_URL=your_neon_database_url_here +OPENAI_API_KEY=your_openai_api_key_here diff --git a/examples/nextjs-christmas-dinner-generator-challenge/.gitignore b/examples/nextjs-christmas-dinner-generator-challenge/.gitignore new file mode 100644 index 00000000..7b8da95f --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/.gitignore @@ -0,0 +1,42 @@ +# See https://help.github.com/articles/ignoring-files/ for more about ignoring files. + +# dependencies +/node_modules +/.pnp +.pnp.* +.yarn/* +!.yarn/patches +!.yarn/plugins +!.yarn/releases +!.yarn/versions + +# testing +/coverage + +# next.js +/.next/ +/out/ + +# production +/build + +# misc +.DS_Store +*.pem + +# debug +npm-debug.log* +yarn-debug.log* +yarn-error.log* +.pnpm-debug.log* + +# env files (can opt-in for committing if needed) +.env* +!.env.example + +# vercel +.vercel + +# typescript +*.tsbuildinfo +next-env.d.ts diff --git a/examples/nextjs-christmas-dinner-generator-challenge/README.md b/examples/nextjs-christmas-dinner-generator-challenge/README.md new file mode 100644 index 00000000..a010e175 --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/README.md @@ -0,0 +1,314 @@ +# Inngest Weekend challenge: Christmas Dinner AI Workflow + +Feeling adventurous this weekend? ⚡️ + +Let's build a Christmas dinner generator workflow using Inngest and Neon using the following Hugging Face datasets: + +- [`Thefoodprocessor/holiday`](https://huggingface.co/datasets/Thefoodprocessor/holiday) is a dataset of 74k meals paired with specific holidays (ex: “Christmas”) +- [`Thefoodprocessor/wine_type`](https://huggingface.co/datasets/Thefoodprocessor/wine_type) is a dataset 74k meal <> wine pairing (we’re in France! 🇫🇷) + +> [!NOTE] +> The above datasets have been chunked and translated to json files, available in the Getting started section. + +You will find below instructions to get Neon and Inngest up and running with the provided datasets to complete the challenge. + +Happy hacking! 🤖 🎄 + +## **Prerequisites** + +To complete this challenge, you will need: + +- Node.js and npm installed +- A valid OpenAI API key (for embeddings and prompts) +- A Neon account ([you can create one for free](https://console.neon.tech/) in under 2 minutes) + +## Getting started + +First, checkout this repository: + +```bash +git clone git@github.com:inngest/inngest-js.git +``` + +And run the following command: + +```bash +cd examples/nextjs-christmas-dinner-generator-challenge +npm install +``` + +You will notice the following: + +- a `data/` folder containing the datasets as JSON files +- a `scripts/` folder containing an `index.ts` + +Let’s start by indexing our datasets into a Neon vector database. + +### 1. **Setup our Neon vector database** + +Go to the [Neon console](https://console.neon.tech/) and open the SQL Editor to copy the following: + +```sql +CREATE EXTENSION IF NOT EXISTS vector; + +CREATE TABLE IF NOT EXISTS "holiday_recipes" ( + "id" serial PRIMARY KEY NOT NULL, + "content" text NOT NULL, + "metadata" jsonb NOT NULL, + "embedding" vector(512), + "created_at" timestamp with time zone DEFAULT now(), + "updated_at" timestamp with time zone DEFAULT now() +); + +CREATE TABLE IF NOT EXISTS "wine_pairings" ( + "id" serial PRIMARY KEY NOT NULL, + "content" text NOT NULL, + "metadata" jsonb NOT NULL, + "embedding" vector(512), + "created_at" timestamp with time zone DEFAULT now(), + "updated_at" timestamp with time zone DEFAULT now() +); + +CREATE INDEX IF NOT EXISTS "embedding_idx" +ON "holiday_recipes" +USING hnsw ("embedding" vector_cosine_ops); + +CREATE INDEX IF NOT EXISTS "embedding_idx" +ON "wine_pairings" +USING hnsw ("embedding" vector_cosine_ops); +``` + +### 2. **Index our datasets into our Neon vector database** + +First, copy the `.env.example` file to `.env.local`. + +Then, from your [Neon console](https://console.neon.tech/) project dashboard, grab your _DATABASE_URL_ and add it to your local `.env.local` file. + +Finally, do the same for your OpenAI API Key. + +You can now open the `scripts/index.ts` file. + +The interesting bit is the `processJsonFile()` function that takes each dataset’s JSON file and indexes it in the Neon vector database. + +You can now run the datasets indexing command by running: + +```bash +npm run index +``` + +This script takes up to 5 minutes to index the 20k records. + +In the meantime, let’s set up an Inngest workflow for our application. + +### **2. Setup Inngest and create a simple workflow** + +Our project comes with Inngest already installed and ready to be used in Next.js. + +Let’s walk through the main files: + +**`src/inngest/events.ts`** + +This file defines the events used to trigger our workflow. + +The project comes with the event later used in our example to trigger the Christmas dinner generation workflow. + +Events are composed of: + +- a mandatory `name` +- an optional object as `data` + +The events are created with [`zod`](https://zod.dev/) and passed to the Inngest client, enabling an E2E-typed experience. + +**`src/inngest/functions.ts`** + +This is where our workflow is defined, using `inngest.createFunction()`. + +[Inngest Functions](https://www.inngest.com/docs/features/inngest-functions?ref=ai-hack-night-paris-2024) are composed of multiple steps, enabling you to write workflows relying on independently retriable steps. + +Our first workflow is a simple example of multiple “hello worlds”. + +**`src/server.ts`** + +Inngest Functions are exposed to the Inngest Dev Server via a simple express server. + +Let’s give a try at our sample Inngest workflow by starting the following commands (in separate terminal windows or tabs): + +_Start the Next.js app:_ + +```bash +npm run dev +``` + +_Start the local Inngest Dev Server:_ + +```bash +npm run inngest +``` + +You can now open the Inngest Dev Server at [http://127.0.0.1:8288](http://127.0.0.1:8288/) and trigger the workflow from the “Functions” tab by clicking on the “Invoke” button using the following event: + +```json +{ + "data": { + "participantsCount": 2, + "preferences": ["chicken", "chocolate dessert"] + } +} +``` + +![Screenshot 2024-11-20 at 14.33.46.png](./readme-assets/Screenshot_2024-11-20_at_14.33.46.png) + +By switching to the “Runs” tab, you will see the workflow run in real-time, with all the information on each step input/output and status: + +![Screenshot 2024-11-20 at 14.34.24.png](./readme-assets/Screenshot_2024-11-20_at_14.34.24.png) + +> [!NOTE] +> The Inngest DevServer is useful to trigger and rerun your workflow, and inspecting steps. +> ⚠️ All `console.log()` performed in an Inngest Workflow are printed in the Express server terminal. + +Our datasets indexing should be complete; let’s update our Inngest Workflow by adding a sample Neon vector query and OpenAI call step! + +### **3. Add a first Neon vector query and OpenAI call in our Inngest workflow** + +Let’s now use our Neon vector database with some OpenAI calls into our Inngest workflow. + +We use Neon's `similaritySearchWithScore()` query method to perform a vector similarity search based on a query to find some Christmas recipes that match our preferences. + +Then, we use the search results to perform an OpenAI call to generate a meal plan. + +Replace the `src/inngest/functions.ts` with the following: + +```tsx +import { openai } from "inngest"; +import { inngest } from "./client"; +import { loadVectorStore } from "../lib/vectorStore"; + + +export const generateMeal = inngest.createFunction( + { id: "generate-meal" }, + { event: "meal.generate" }, + async ({ event, step }) => { + const { participantsCount, preferences } = event.data; + + const holidayRecipesVectorStore = await loadVectorStore("holiday_recipes"); + const winesPairingsVectorStore = await loadVectorStore("wine_pairings"); + + // Query relevant holiday recipes based on preferences using vector similarity + const relevantRecipes = await step.run("query-recipes", async () => { + const query = `Christmas dinner recipes ${preferences.join(", ")}`; + const results = await holidayRecipesVectorStore.similaritySearchWithScore( + query, + 10 + ); + + return results.map(([doc, score]) => ({ + recipe: doc.pageContent, + title: doc.metadata.title, + similarity: score, + })); + }); + + // Generate meal plan using step.ai.infer() + const mealPlan = await step.ai.infer("Generate a Christmas dinner menu", { + model: openai({ model: "gpt-4" }), + body: { + messages: [ + { + role: "system", + content: + "You are a professional chef and meal planner. Create a detailed Christmas dinner menu based on the provided recipes and requirements.", + }, + { + role: "user", + content: `Create a Christmas dinner menu for ${participantsCount} people with these preferences: ${preferences.join( + ", " + )}. + + Use these recipes as inspiration: + ${relevantRecipes.map((r) => r.recipe).join("\n\n")} + + Include: + 1. Appetizers + 2. Main course + 3. Side dishes + 4. Dessert + 5. Estimated preparation time + 6. Special instructions + + Format the response in a clear, organized way.`, + }, + ], + temperature: 0.7, + }, + }); + + // other steps... + + return { + mealPlan + } +); + +export const functions = [generateMeal]; +``` + +> [!NOTE] +> Take some time to familiarize yourself with the APIs and concepts used in the above example: +> +> - Neon's `holidayRecipesVectorStore.similaritySearchWithScore()` helps in finding matching meals +> - Inngest’s `step.ai.wrap()` helps getting better observability over your LLM calls, without having to `console.log()` them. + +Navigate back to the Inngest Dev Server at [http://127.0.0.1:8288](http://127.0.0.1:8288/) and rerun the last workflow run from the “Runs” tab. + +The Inngest Dev Server now highlights the steps relying on AI by showcasing some important information such as LLM inputs and outputs: + +![Screenshot 2024-11-20 at 14.59.42.png](./readme-assets/Screenshot_2024-11-20_at_14.59.42.png) + +### You’re all set! + +Your local project is now well set up and ready for action! You should also know enough to complete the next example. + +Feel free to pursue your own project if you feel inspired or adventurous! 🤘 + +## Challenge + +Now that you played with Neon vector queries and the Inngest workflow steps, let’s try to build the following complete Christmas dinner generator. + +By taking a `"meal.generate"` Inngest event containing the number of participants and some preferences (ex: `[“chicken", "chocolate dessert"]`); our workflow will generate a Christmas dinner menu matching the provided preferences, add some wines pairing (_”french touch”_) and generate the associated shopping list: + +![image.png](./readme-assets/image.png) + +### Complete our Christmas meal workflow + +Take inspiration from the two first steps implemented in the “Getting started” section to add the following: + +1. **Wine Pairing Enhancement** + - Secondary RAG process for wine recommendations + - Uses menu context to find relevant wines + - Generates personalized pairing explanations +2. **Shopping list generation** + - Uses menu context and suggests wines to generate a shopping list + +**Useful documentation links** + +- [Working with Inngest Workflow and steps](https://www.inngest.com/docs/features/inngest-functions/steps-workflows?ref=ai-hack-night-paris-2024) +- [Neon `pgvector` extension](https://neon.tech/docs/extensions/pgvector) + +### Some additional ideas + +Use the following suggestions to improve your project for the demo part! + +**Combine additional datasets from [Thefoodprocessor](https://huggingface.co/Thefoodprocessor) to improve the generation relevancy** + +The [https://huggingface.co/Thefoodprocessor](https://huggingface.co/Thefoodprocessor) project lists multiple other datasets, such as allergy and ingredient alternatives. You can download an additional `.parcel` file into the `data/` folder and run the `npm run generate-jsons` script to generate new JSON files. + +Then, you can run the `npm run index` script again and integrate the new Neon vector database into your Inngest workflow! 🚀 + +**Add more parameters to the `"meal.generate"` Inngest event and leverage Inngest step parallelism** + +Adding more input parameters to the workflow could also improve the relevancy of our Christmas meal generator. + +For example: + +- each participant could be an object with advanced criteria (food, wine, etc) +- then, the Inngest workflow would generate a menu per person ([leveraging step parallelism](https://www.inngest.com/docs/guides/step-parallelism?ref=ai-hack-night-paris-2024)) and merge the final results into a unique menu diff --git a/examples/nextjs-christmas-dinner-generator-challenge/app/actions.ts b/examples/nextjs-christmas-dinner-generator-challenge/app/actions.ts new file mode 100644 index 00000000..3c61376e --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/app/actions.ts @@ -0,0 +1,15 @@ +"use server"; +import { inngest } from "@/inngest/client"; + +export async function generateMeal(formData: FormData) { + const participantsCount = Number(formData.get("participantsCount")); + const preferences = + formData.get("preferences")?.toString().split("\n").filter(Boolean) || []; + + const { ids } = await inngest.send({ + name: "meal.generate", + data: { participantsCount, preferences }, + }); + + return ids[0]; +} diff --git a/examples/nextjs-christmas-dinner-generator-challenge/app/api/generationStatus/route.ts b/examples/nextjs-christmas-dinner-generator-challenge/app/api/generationStatus/route.ts new file mode 100644 index 00000000..2f250a93 --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/app/api/generationStatus/route.ts @@ -0,0 +1,38 @@ +import { NextResponse } from "next/server"; +import { NextRequest } from "next/server"; + +async function getRuns(eventId: string) { + const response = await fetch( + process.env.INNGEST_SIGNING_KEY + ? `https://api.inngest.com/v1/events/${eventId}/runs` + : `http://localhost:8288/v1/events/${eventId}/runs`, + { + ...(process.env.INNGEST_SIGNING_KEY + ? { + headers: { + Authorization: `Bearer ${process.env.INNGEST_SIGNING_KEY}`, + }, + } + : {}), + } + ); + const json = await response.json(); + return json.data; +} + +export async function GET(req: NextRequest) { + const id = req.nextUrl.searchParams.get("id"); + + const runs = await getRuns(id as string); + if (runs[0] && runs[0].output) { + const run = runs[0]; + console.log("run", JSON.stringify(run, null, 2)); + return NextResponse.json({ + menu: run.output.mealPlan.choices[0].message.content, + }); + } + + return NextResponse.json({ + menu: null, + }); +} diff --git a/examples/nextjs-christmas-dinner-generator-challenge/app/api/inngest/route.ts b/examples/nextjs-christmas-dinner-generator-challenge/app/api/inngest/route.ts new file mode 100644 index 00000000..8c8b364c --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/app/api/inngest/route.ts @@ -0,0 +1,9 @@ +import { serve } from "inngest/next"; +import { inngest } from "@/inngest/client"; +import { generateMeal } from "@/inngest/functions"; + +// Create an API route handler with all functions +export const { GET, POST, PUT } = serve({ + client: inngest, + functions: [generateMeal], +}); diff --git a/examples/nextjs-christmas-dinner-generator-challenge/app/components/home.tsx b/examples/nextjs-christmas-dinner-generator-challenge/app/components/home.tsx new file mode 100644 index 00000000..9b94c4a4 --- /dev/null +++ b/examples/nextjs-christmas-dinner-generator-challenge/app/components/home.tsx @@ -0,0 +1,144 @@ +"use client"; + +import { useState } from "react"; +import { generateMeal } from "../actions"; +import { + QueryClient, + QueryClientProvider, + useQuery, +} from "@tanstack/react-query"; + +async function fetchGenerationStatus(eventId: string | null) { + if (!eventId) return null; + const response = await fetch(`/api/generationStatus?id=${eventId}`); + if (!response.ok) return null; + return response.json(); +} + +export const HomeView = () => { + const [eventId, setEventId] = useState(null); + + const { data: generationResult, isLoading } = useQuery({ + queryKey: ["generationStatus", eventId], + queryFn: () => fetchGenerationStatus(eventId), + enabled: !!eventId, + refetchInterval: 1000, + }); + + const onSubmit = async (formData: FormData) => { + const id = await generateMeal(formData); + console.log("id", id); + setEventId(id); + }; + + return ( +
+
+
+

+ 🎄 Christmas Dinner Generator 🎅 +

+

+ Let AI plan your perfect holiday feast! +

+
+ + {!eventId ? ( +
+
+
+ + +
+ +
+ +