Skip to content

Latest commit

 

History

History
142 lines (102 loc) · 5.66 KB

README.md

File metadata and controls

142 lines (102 loc) · 5.66 KB

mdai-utils

Utility functions for MD.ai. Download and upload 2D and 3D segmentation images.

Download data

  • Download all data: dicoms and annotations.
python -m mdai_utils.download_annotations \
--parameters myparameters.json \
-o ./data \
--download_dicoms

Dicoms will be downloaded with the default md.ai structure:

- data/mdai_uab_project_L1NprBvP_images_dataset_D_odXMLm_2023-12-13-152228/
    - 1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421/
      - 1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453/
            1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414630768.dcm
            1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414645741.dcm
            1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414662833.dcm
            1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414677861.dcm
            1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414694890.dcm

If the dataset is big, it will be split in parts. To merge all of them into one single folder:

python -m mdai_utils.merge_downloaded_parts \
  --part_folder /path/mdai_uab_project_7YNdkRbz_images_dataset_D_vbqBVJ_2023-12-05-204930_part3of3 \
  --remove_zip_files

If the option --create_volumes is added (to cli or the parameters file), a 3D image will be generated in parallel to the .dcm files:

            image.nii.gz
            volume_metadata.json

The annotations/segmentations from md.ai are stored in json file.

./data/mdai_uab_project_L1NprBvP_annotations_dataset_D_odXMLm_labelgroup_G_2Jy2yZ_2023-12-13-152213.json

and the masks/images are stored in a folder:

./data/mdai_uab_project_L1NprBvP_annotations_dataset_D_odXMLm_labelgroup_G_2Jy2yZ_2023-12-13-152213_segmentations_2023-12-14-114011/

with structure:

mylabel__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414630768.nii.gz
mylabel__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414645741.nii.gz
mylabel__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414662833.nii.gz
mylabel__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414677861.nii.gz
mylabel__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286421__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610384286453__1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414694890.nii.gz
pair_data.json
volumes/ # Only generated with --create_volumes option

Once dicoms are downloaded locally, and they are not changed in md.ai, do not pass the --download_dicoms option to avoid re-downloading them.

Upload 2D segmentations

To upload a single image or slice, we need its sop_instance_uid.

python -m mdai_utils.upload_annotation_slice \
 --parameters ./tests/test_local_parameters.json \
 --sop_instance_uid "1.2.826.0.1.3680043.2.1125.1.75064541463040.2005072610414630768" \
 --label_name mylabel \
 -i ./tests/fixtures/humanct_0002_1000_seg.nii.gz

Upload 3D segmentations

MD.ai works with dicoms, and use the SOPInstanceUID as the key to match slices. Your algorithm might work with 3D volumes, (.nrrd, .nii.gz, etc). You can convert an input dicom_folder to a 3D volume, and also store the mapping between the new volume indices and the original dicom file, with its SOPInstanceUID.

python -m mdai_utils.dicom_to_volume -i ./tests/fixtures/humanct_0002_1000_1004 -o /tmp/humanct_0002_1000_1004.nrrd

Parallel to the output image location, a {image_filename}_SOPInstanceUIDs.json will be saved with the slice mappings.

This json will be used in upload_annotation_volume:

python -m mdai_utils.upload_annotation_volume \
 --parameters ./tests/test_local_parameters.json \
 --sop_instance_uids_file ./tests/fixtures/humanct_0002_1000_1004_SOPInstanceUIDs.json \
 --label_name mylabel \
 -i ./tests/fixtures/humanct_0002_1000_1004_seg.nii.gz

Development

For information about building, running, and contributing to this code base, please read the CONTRIBUTING page.

Data

Sample data for testing acquired from: PROJECT: HumanCT > SUBJECT: VHFCT1mm-Pelvis > 000-000-002 and manually segmented using Slicer3D.

Tests

Create a copy of the test_parameters where you will provide the mdai ids needed to upload and download the test data.

cp tests/test_parameters.json tests/test_local_parameters.json

We provide a tiny dataset that you can upload to a test dataset in your md.ai instance. Only needed to run once: pytest tests -rP --upload-only.

Contact

innolitis_logo_primaryw400

You can contact us directly through our website.

If you find a bug or have suggestions for improvement, please open a GitHub issue or make a pull request.