-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathforestOnFire.m
31 lines (25 loc) · 1.12 KB
/
forestOnFire.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
%% SVM主程序
clear;clc;
%% 对图片进行处理
% X存储图像数据,每一行为一幅图,不同的列代表不同的feature,Y为对应的0和1,1为onfire
% matlabpool local 4
tic
%processImg函数已经把X,Y数据保存在svmdata中了,直接load svmdata读取数据,不需要每次重新计算X和Y
% [X,Y]=processImg();
load svmdata
%% SVM using linear kernel
[C1, sigma1] = optParams(X,Y,'linearKernel');
[avgaccuracy1,avgoriginal1]=crossValidation(X,Y,7,'linearKernel',C1,sigma1);
fprintf('SVM model original data fitting precision using linear kernel: %2.2f%%\n',avgoriginal1*100);
fprintf('SVM model prediction precision using linear kernel: %2.2f%%\n',avgaccuracy1*100);
% figure(2)
% visualizeBoundaryLinear(X, Y, model);%size(X,1)=2, 2 feature
%% SVM using gaussian kernel
[C2, sigma2] = optParams(X,Y,'gaussianKernel');
[avgaccuracy2,avgoriginal2]=crossValidation(X,Y,7,'gaussianKernel',C2,sigma2);
fprintf('SVM model original data fitting precision using gaussian kernel: %2.2f%%\n',avgoriginal2*100);
fprintf('SVM model prediction precision using gaussian kernel: %2.2f%%\n',avgaccuracy2*100);
% figure(3)
% visualizeBoundary(X, Y, model);%size(X,1)=2, 2 feature
toc
% matlabpool close