-
Notifications
You must be signed in to change notification settings - Fork 267
/
Copy pathmap.py
203 lines (168 loc) · 8.79 KB
/
map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
"""Utilities wrapped around cartopy/matplotlib for maps."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, Joshua Zahner, Jun 2022 #
############################################################
# Recommend import:
# from mintpy.utils.map import draw_lalo_label, draw_scalebar
# from mintpy.utils import plot as pp
import numpy as np
import pyproj
from cartopy import crs as ccrs
from cartopy.mpl import ticker as cticker
from matplotlib import pyplot as plt
########################################## Lat/Lon Labels ##########################################
def draw_lalo_label(ax, geo_box, lalo_step=None, lalo_loc=[1, 0, 0, 1], lalo_max_num=4, lalo_offset=None,
projection=ccrs.PlateCarree(), font_size=None, print_msg=True):
"""Auto draw lat/lon label/tick based on coverage from geo_box
Parameters: ax : cartopy axes.
geo_box : 4-tuple of float, (W, N, E, S) in degree
lalo_step : float, major tick interval for X/Y axes
lalo_loc : list of 4 bool, positions where the labels are drawn as in [left, right, top, bottom]
default: [1,0,0,1]
lalo_max_num : int, maximum number of major ticks for X/Y axes
lalo_offset : float, distance in points between tick and label.
Set to negative value to move the ticklabel inside the plot.
projection : cartopy.crs object
...
Example: geo_box = (128.0, 37.0, 138.0, 30.0)
m.draw_lalo_label(geo_box)
"""
# default lat/lon sequences
lats, lons, lalo_step, digit = auto_lalo_sequence(geo_box,
lalo_step=lalo_step,
lalo_max_num=lalo_max_num)
if print_msg:
print(f'plot lat/lon label in step of {lalo_step} and location of {lalo_loc}')
# ticklabel/tick style
ax.tick_params(which='both', direction='in', labelsize=font_size,
left=True, right=True, top=True, bottom=True,
labelleft=lalo_loc[0], labelright=lalo_loc[1],
labeltop=lalo_loc[2], labelbottom=lalo_loc[3])
# custom padding to move the tick labels inside axis
if lalo_offset:
ax.tick_params(axis='x', which='major', pad=lalo_offset[1])
ax.tick_params(axis='y', which='major', pad=lalo_offset[0])
# ticklabel symbol style
dec_digit = max(0, 0-digit)
lon_formatter = cticker.LongitudeFormatter(number_format=f'.{dec_digit}f')
lat_formatter = cticker.LatitudeFormatter(number_format=f'.{dec_digit}f')
ax.xaxis.set_major_formatter(lon_formatter)
ax.yaxis.set_major_formatter(lat_formatter)
# plot ticks & tick labels
ax.set_xticks(lons, crs=projection)
ax.set_yticks(lats, crs=projection)
return ax
def auto_lalo_sequence(geo_box, lalo_step=None, lalo_max_num=4, step_candidate=[1, 2, 3, 4, 5]):
"""Auto calculate lat/lon label sequence based on input geo_box
Parameters: geo_box : 4-tuple of float, defining UL_lon, UL_lat, LR_lon, LR_lat coordinate
lalo_step : float
lalo_max_num : int, rough major tick number along the longer axis
step_candidate : list of int, candidate list for the significant number of step
Returns: lats/lons : np.array of float, sequence of lat/lon auto calculated from input geo_box
lalo_step : float, lat/lon label step
Example: geo_box = (128.0, 37.0, 138.0, 30.0)
lats, lons, step = m.auto_lalo_sequence(geo_box)
"""
# check input arguments
if geo_box[1] <= geo_box[3] or geo_box[2] < geo_box[0]:
raise ValueError(f'Input geo_box {geo_box} has N <= S or E <= W! Check the order of (W, N, E, S).')
if lalo_step and lalo_step <= 0:
raise ValueError(f'Input lalo_step ({lalo_step}) must be positive!')
max_lalo_dist = max([geo_box[1] - geo_box[3], geo_box[2] - geo_box[0]])
if not lalo_step:
# Initial tick step
lalo_step = round_to_1(max_lalo_dist / lalo_max_num)
# reduce decimal if it ends with 8/9
digit = int(np.floor(np.log10(lalo_step)))
if str(lalo_step)[-1] in ['8','9']:
digit += 1
lalo_step = round(lalo_step, digit)
# Final tick step - choose from candidate list
lalo_step_candidate = [i*10**digit for i in step_candidate]
distance = [(i - max_lalo_dist / lalo_max_num) ** 2 for i in lalo_step_candidate]
lalo_step = lalo_step_candidate[distance.index(min(distance))]
digit = int(np.floor(np.log10(lalo_step)))
# Auto tick sequence
lat_major = np.ceil( geo_box[3] / 10**(digit+1) ) * 10**(digit+1)
lon_major = np.ceil( geo_box[0] / 10**(digit+1) ) * 10**(digit+1)
lats = np.hstack((np.arange(lat_major, lat_major - 10.*max_lalo_dist, -lalo_step),
np.arange(lat_major, lat_major + 10.*max_lalo_dist, lalo_step)))
lons = np.hstack((np.arange(lon_major, lon_major - 10.*max_lalo_dist, -lalo_step),
np.arange(lon_major, lon_major + 10.*max_lalo_dist, lalo_step)))
lats = np.sort(np.unique(lats))
lons = np.sort(np.unique(lons))
lats = lats[np.where(np.logical_and(lats >= geo_box[3], lats <= geo_box[1]))]
lons = lons[np.where(np.logical_and(lons >= geo_box[0], lons <= geo_box[2]))]
return lats, lons, lalo_step, digit
############################################ Scale Bar #############################################
def draw_scalebar(ax, geo_box, unit='degrees', loc=[0.2, 0.2, 0.1], labelpad=0.05, font_size=12,
color='k', linewidth=2):
"""draw a simple map scale from x1,y to x2,y in map projection coordinates, label it with actual distance
ref_link: http://matplotlib.1069221.n5.nabble.com/basemap-scalebar-td14133.html
Parameters: ax : matplotlib.pyplot.axes object
geo_box : tuple of 4 float in (x0, y0, x1, y1) for (W, N, E, S) in degrees / meters
unit : str, coordinate unit - degrees or meters
loc : list of 3 float in (length, y, x) of scale bar location:
length = ratio of the total width
y / x = axes fraction of the scale bar center
labelpad : float
Returns: ax : matplotlib.pyplot.axes object
Example: from mintpy.utils import plot as pp
pp.draw_scale_bar(ax, geo_box)
"""
geod = pyproj.Geod(ellps='WGS84')
ax = ax if ax else plt.gca()
## location - center
lon_c = geo_box[0] + loc[1] * (geo_box[2] - geo_box[0])
lat_c = geo_box[3] + loc[2] * (geo_box[1] - geo_box[3])
## length
# 1. calc scene width in meters
if unit.startswith('meter'):
scene_width = geo_box[2] - geo_box[0]
elif unit.startswith('deg'):
scene_width = geod.inv(geo_box[0], geo_box[3],
geo_box[2], geo_box[3])[2]
# do not plot scalebar if the longitude span > 30 deg
if (geo_box[2] - geo_box[0]) > 30:
return ax
# 2. convert length ratio to length in meters
length_meter = round_to_1(scene_width * loc[0])
# round to the nearest km
if length_meter > 1000.0:
length_meter = np.rint(length_meter/1000.0)*1000.0
# 3. convert length in meters to length in display coord unit
if unit.startswith('deg'):
lon_c2 = geod.fwd(lon_c, lat_c, 90, length_meter)[0]
length_disp = np.abs(lon_c - lon_c2)
elif unit.startswith('meter'):
length_disp = length_meter
## starting/ending longitude
lon0 = lon_c - length_disp / 2.0
lon1 = lon_c + length_disp / 2.0
## plot scale bar
kwargs = dict(color=color, linewidth=linewidth)
ax.plot([lon0, lon1], [lat_c, lat_c], **kwargs)
ax.plot([lon0, lon0], [lat_c, lat_c + 0.1*length_disp], **kwargs)
ax.plot([lon1, lon1], [lat_c, lat_c + 0.1*length_disp], **kwargs)
## plot scale bar label
unit = 'm'
if length_meter >= 1000.0:
unit = 'km'
length_meter *= 0.001
txt_offset = (geo_box[1] - geo_box[3]) * labelpad
ax.text(x=lon0+length_disp/2.0,
y=lat_c+txt_offset,
s=f'{length_meter:.0f} {unit}',
va='center',
ha='center',
fontsize=font_size,
color=color)
return ax
############################################## Utils ###############################################
# copied from utils.util0.py to simplify the module dependency
def round_to_1(x):
"""Return the most significant digit of input number"""
digit = int(np.floor(np.log10(abs(x))))
return round(x, -digit)