Skip to content

Commit 998fb34

Browse files
cleaned up code, removed unused imports, etc
1 parent 599a4d0 commit 998fb34

9 files changed

+32
-151
lines changed

snaw-backend/acousticIndices.py

+5-31
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,9 @@
66
from scipy.stats import itemfreq
77
import os
88
import traceback
9-
DEBUG_FLAG = True
9+
10+
DEBUG_FLAG = False
11+
PREDICTION_VERBOSE = False
1012

1113
class AcousticIndices(object):
1214

@@ -80,12 +82,6 @@ def _get_segments_above_noise(self):
8082
non_zero = envelope[np.nonzero(envelope)]
8183
data_log = 20*np.log10(non_zero)
8284

83-
# print(data_log.shape)
84-
# kernel = 1/256.0*np.ones(156)
85-
#
86-
# data_log = np.convolve(data_log,kernel)
87-
# print(data_log.shape)
88-
8985
ind = np.where(data_log > threshold)
9086

9187
check_array = np.zeros(self.envelope.size)
@@ -183,14 +179,6 @@ def _get_spectral_entropy(self):
183179

184180
self.spectral_entropy = AudioProcessing.get_entropy(pmf)/np.log2(N)
185181

186-
187-
# stft = self.stft[np.nonzero(self.stft)]
188-
# stft = AudioProcessing.rescale(stft,(0,1))
189-
# pdf,bins = AudioProcessing.get_histogram(stft,bins = np.arange(0,1 + 1.0/1000,1.0/1000))
190-
# pdf = pdf[np.nonzero(pdf)]
191-
# spectral_entropy = AudioProcessing.get_entropy(pdf)/np.log2(self.data.size)
192-
# self.spectral_entropy = spectral_entropy
193-
194182
def get_spectral_entropy(self):
195183
return self.spectral_entropy
196184

@@ -248,8 +236,6 @@ def get_acoustic_events_average_duration(self):
248236
average_segments_duration = np.mean(segments_duration)
249237
average_segments_duration_ms = (average_segments_duration/float(self.fs))*1000.0
250238

251-
# print(average_segments_duration_ms)
252-
253239
average_segments_duration_ms = AcousticIndices.get_normalized_value(average_segments_duration_ms,(0,3000))
254240

255241
return average_segments_duration_ms
@@ -297,8 +283,6 @@ def get_spectral_average_variance_entropy(self):
297283
N = 2**10
298284

299285
stft = np.copy(self.stft)
300-
# stft = AudioProcessing.rescale(self.stft,(0,N))
301-
# stft = stft.astype(np.uint16)
302286

303287
for segment in self.segments:
304288
start = int(float(segment[0])/self.n_fft)
@@ -353,17 +337,6 @@ def get_soundscape_indices(self,total_bins = 7):
353337
for i in range(0,max_bin,frequency_interval):
354338
bin = psd[i:i + frequency_interval, :]
355339
biophony_levels.append(np.sum(bin) / psd_sum)
356-
# # while i < total_bins*frequency_interval :
357-
#
358-
# if i + frequency_interval > total_bins*frequency_interval:
359-
# bin = psd[i:, :]
360-
# else:
361-
#
362-
# bin = psd[i:i + frequency_interval, :]
363-
364-
365-
366-
# i = i + frequency_interval
367340

368341
a = biophony_levels[0]
369342
b = np.max(biophony_levels[1:])
@@ -701,7 +674,8 @@ def getAcousticIndices(audiofile):
701674
acoustic_indices = acousticIndices.get_acoustic_indices()
702675

703676
acoustic_indices = list(map(lambda x: round(x, 4), acoustic_indices))
704-
print(acoustic_indices)
677+
if( PREDICTION_VERBOSE ):
678+
print(acoustic_indices)
705679

706680
acoustic_headers = acousticIndices.get_acoustic_indices_headers()
707681
acoustic_descs = acousticIndices.get_acoustic_indices_descs()

snaw-backend/analysis_driver.py

+9-10
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,4 @@
11
from keras.models import load_model
2-
import keras
3-
from keras.models import Sequential
4-
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, LSTM, Activation
5-
from keras.utils import to_categorical
6-
import wandb
7-
from wandb.keras import WandbCallback
82
import matplotlib.pyplot as plt
93
import sklearn.metrics as metrics
104
import librosa
@@ -16,7 +10,12 @@
1610
from get_spectrogram import runScript as run_spectrogram
1711
from acousticIndices import getAcousticIndices as run_indices
1812

19-
DEBUG_FLAG = True
13+
DEBUG_FLAG = False
14+
15+
# Path to each CNN model (Example format: 'model\\anthro\\model.h5)
16+
ANTHRO_CNN_MODEL = 'model\\anthro\\ant_cnn_model.h5'
17+
BIO_CNN_MODEL = 'model\\bio\\bio_cnn_model.h5'
18+
GEO_CNN_MODEL = 'model\\geo\\geo_cnn_model.h5'
2019

2120
def run_driver(personalID) :
2221
if DEBUG_FLAG : print("[WORKING] Attempting to run analysis driver - analysis_driver.py")
@@ -27,9 +26,9 @@ def run_driver(personalID) :
2726
fileCount = 0
2827

2928
if DEBUG_FLAG : print("[WORKING] Loading CNN Models..")
30-
all_models = [ load_model('model\\anthro\\ant_cnn_model.h5'),
31-
load_model('model\\bio\\bio_cnn_model.h5'),
32-
load_model('model\\geo\\geo_cnn_model.h5') ]
29+
all_models = [ load_model(ANTHRO_CNN_MODEL),
30+
load_model(BIO_CNN_MODEL),
31+
load_model(GEO_CNN_MODEL) ]
3332
if DEBUG_FLAG : print("[SUCCESS] Loaded CNN Models..")
3433

3534
try:

snaw-backend/api.py

+1-2
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@
2222
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
2323
app.secret_key = 'secret key'
2424
app.config['SESSION_TYPE'] = 'filesystem'
25-
DEBUG_FLAG = True
25+
DEBUG_FLAG = False
2626
'''
2727
###------------------------------------------------------###
2828
App Routing: '/'
@@ -176,7 +176,6 @@ def closeUserFolder():
176176

177177

178178

179-
#print('Starting Flask!')
180179
app.run(debug=True)
181180

182181

snaw-backend/classification.py

+3-17
Original file line numberDiff line numberDiff line change
@@ -16,22 +16,11 @@ def classify_file( audiofile, model, model_type, model_color ):
1616
frames = f.getnframes()
1717
rate = f.getframerate()
1818
duration = frames / float(rate)
19-
print(duration)
20-
21-
# only used for console output, can be removed to speed up runtime
22-
# function will throw error because of true flag at end,
23-
# console log is still displayed in spite of
24-
#try:
25-
# aS.mtFileClassification(audiofile, model,"svm", True)
26-
#except TypeError:
27-
# print("TypeError")
19+
if( DEBUG_FLAG ):
20+
print(duration)
2821

2922
# pulls all the data given from the classification function
3023
[flagsInd, classesAll, acc, CM] = aS.mtFileClassification(audiofile, model,"svm")
31-
# print( flagsInd )
32-
# print( classesAll )
33-
# print( acc )
34-
# print( CM )
3524

3625
flag_len = len(flagsInd) # amount of segments made
3726
segment = duration / flag_len # length of each time segment
@@ -56,17 +45,14 @@ def classify_file( audiofile, model, model_type, model_color ):
5645
return classify_dict
5746

5847
def anthro_model():
59-
# for filename in os.listdir('model/anthro'):
6048
modelfile = 'model/anthro/svmAnthroClassModel'
6149
return modelfile
6250

6351
def bio_model():
64-
# for filename in os.listdir('model/bio'):
6552
modelfile = 'model/bio/svmBioClassModel'
6653
return modelfile
6754

6855
def geo_model():
69-
#for filename in os.listdir('model/geo'):
7056
modelfile = 'model/geo/svmGeoClassModel'
7157
return modelfile
7258

@@ -75,8 +61,8 @@ def runScript():
7561
if( DEBUG_FLAG ):
7662
print("[WORKING] Attempting to run SVM classification calculator - classification_svm.py")
7763
# Create dictionary for storing return information
78-
# Create a counter for files
7964
finalResult = {}
65+
# Create a counter for files
8066
fileCount = 0
8167

8268
try:

snaw-backend/classification_cnn.py

+4-16
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,3 @@
1-
from keras.models import load_model
2-
import keras
3-
from keras.models import Sequential
4-
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D, LSTM, Activation
5-
from keras.utils import to_categorical
6-
import wandb
7-
from wandb.keras import WandbCallback
81
import matplotlib.pyplot as plt
92
import sklearn.metrics as metrics
103
import librosa
@@ -13,12 +6,9 @@
136
import os
147
import json
158

16-
DEBUG_FLAG = True
9+
DEBUG_FLAG = False
1710
PREDICTION_VERBOSE = False
1811

19-
def get_category( label ) :
20-
switch
21-
2212
def get_category( label ):
2313
return {
2414
"AAT" : "Air Traffic",
@@ -44,8 +34,6 @@ def get_category( label ):
4434
}.get(label, "Label Missing")
4535

4636
def classify_file( audio_file, all_models ) :
47-
# load the models
48-
4937

5038
all_labels = [ ["AAT", "AHV", "AMA", "ART", "ASI", "AVH", "AVT"],
5139
["BRA", "BAM", "BBI", "BMA", "BIN"],
@@ -64,9 +52,9 @@ def classify_file( audio_file, all_models ) :
6452

6553
## Running the models
6654

67-
n_mfcc = 128 # bucket size !!SUBJECT TO CHANGE!!
68-
max_len = 32 # max_len size !!SUBJECT TO CHANGE!!
69-
channels = 1 # channels !!SUBJECT TO CHANGE!!
55+
n_mfcc = 128 # bucket size
56+
max_len = 32 # max_len size
57+
channels = 1 # channels
7058

7159
# convert file to wav2mfcc
7260
# Mel-frequency cepstral coefficients

snaw-backend/get_spectrogram.py

+3-2
Original file line numberDiff line numberDiff line change
@@ -119,8 +119,9 @@ def plotstft(data, audiopath, binsize=2**10, plotpath=None, colormap="jet"):
119119
# get prediction value from label, divide by 100 to get percent,
120120
# multiply by negative and add .33 to get reasonable opacity level
121121
alpha_val = int(cat[-3:-1]) / 100 * -1 + .5
122-
print(alpha_val)
123-
print(int(cat[-3:-1]))
122+
if( DEBUG_FLAG ):
123+
print(alpha_val)
124+
print(int(cat[-3:-1]))
124125
plt.fill([x,x+x_size,x+x_size,x], [0,0,freqbins,freqbins], 'r', alpha=alpha_val)
125126
plt.text(x+5, 5, cat[-3:], rotation=90, color="white")
126127
plt.text(x+5, 40, cat[:-4], rotation=90, color="white")

snaw-backend/output.py

-62
This file was deleted.

snaw-frontend/src/App.js

+1-5
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,7 @@ const customtheme = createMuiTheme({
3838
}
3939
})
4040

41+
// Configure toast (notifications on top-right corner of web application)
4142
toast.configure()
4243

4344
class App extends React.Component {
@@ -162,7 +163,6 @@ class App extends React.Component {
162163
})
163164
}
164165

165-
166166
getFileByteSize(size){
167167
let result = 0;
168168
if(size >= 1024 && size < 1048576){
@@ -172,21 +172,17 @@ class App extends React.Component {
172172
else if(size >= 1048576 && size < 1073741824){
173173
result = Number.parseFloat(String(size/1048576)).toFixed(2);
174174
return String(result + " MB")
175-
176175
}
177176
else if(size >= 1073741824){
178177
result = Number.parseFloat(String(size/1073741824)).toFixed(2);
179178
return String(result + " GB")
180-
181179
}
182180
else{
183181
return 0;
184182
}
185183
}
186184

187185
removeFile(file, filename){
188-
189-
console.log(file);
190186
let currentFiles = this.state.selectedFile;
191187
let newFileList = [];
192188
console.log("REMOVING FILE....");

snaw-frontend/src/Information.js

+6-6
Original file line numberDiff line numberDiff line change
@@ -121,12 +121,12 @@ function Information() {
121121
</MuiThemeProvider>
122122
</Container>
123123
<footer>
124-
<Container>
125-
<br/><br/>
126-
<Typography variant='subtitle1' style={{marginLeft: 'auto', marginRight: 'auto', marginTop: '50px'}}>Created by NAU Capstone Team IntelliChirp · <a href="https://www.ceias.nau.edu/capstone/projects/CS/2020/IntelliChirp-S20/">Visit project website</a> · <a href="https://soundscapes2landscapes.org/">Visit our sponsor</a></Typography>
127-
<br/>
128-
</Container>
129-
</footer>
124+
<Container>
125+
<br/><br/>
126+
<Typography variant='subtitle1' style={{marginLeft: 'auto', marginRight: 'auto'}}>Created by NAU Capstone Team IntelliChirp · <a href="https://www.ceias.nau.edu/capstone/projects/CS/2020/IntelliChirp-S20/">Visit project website</a> · <a href="https://soundscapes2landscapes.org/">Visit our sponsor</a></Typography>
127+
<br/>
128+
</Container>
129+
</footer>
130130
</div>
131131
)
132132
}

0 commit comments

Comments
 (0)