|
6 | 6 | from scipy.stats import itemfreq
|
7 | 7 | import os
|
8 | 8 | import traceback
|
9 |
| -DEBUG_FLAG = True |
| 9 | + |
| 10 | +DEBUG_FLAG = False |
| 11 | +PREDICTION_VERBOSE = False |
10 | 12 |
|
11 | 13 | class AcousticIndices(object):
|
12 | 14 |
|
@@ -80,12 +82,6 @@ def _get_segments_above_noise(self):
|
80 | 82 | non_zero = envelope[np.nonzero(envelope)]
|
81 | 83 | data_log = 20*np.log10(non_zero)
|
82 | 84 |
|
83 |
| - # print(data_log.shape) |
84 |
| - # kernel = 1/256.0*np.ones(156) |
85 |
| - # |
86 |
| - # data_log = np.convolve(data_log,kernel) |
87 |
| - # print(data_log.shape) |
88 |
| - |
89 | 85 | ind = np.where(data_log > threshold)
|
90 | 86 |
|
91 | 87 | check_array = np.zeros(self.envelope.size)
|
@@ -183,14 +179,6 @@ def _get_spectral_entropy(self):
|
183 | 179 |
|
184 | 180 | self.spectral_entropy = AudioProcessing.get_entropy(pmf)/np.log2(N)
|
185 | 181 |
|
186 |
| - |
187 |
| - # stft = self.stft[np.nonzero(self.stft)] |
188 |
| - # stft = AudioProcessing.rescale(stft,(0,1)) |
189 |
| - # pdf,bins = AudioProcessing.get_histogram(stft,bins = np.arange(0,1 + 1.0/1000,1.0/1000)) |
190 |
| - # pdf = pdf[np.nonzero(pdf)] |
191 |
| - # spectral_entropy = AudioProcessing.get_entropy(pdf)/np.log2(self.data.size) |
192 |
| - # self.spectral_entropy = spectral_entropy |
193 |
| - |
194 | 182 | def get_spectral_entropy(self):
|
195 | 183 | return self.spectral_entropy
|
196 | 184 |
|
@@ -248,8 +236,6 @@ def get_acoustic_events_average_duration(self):
|
248 | 236 | average_segments_duration = np.mean(segments_duration)
|
249 | 237 | average_segments_duration_ms = (average_segments_duration/float(self.fs))*1000.0
|
250 | 238 |
|
251 |
| - # print(average_segments_duration_ms) |
252 |
| - |
253 | 239 | average_segments_duration_ms = AcousticIndices.get_normalized_value(average_segments_duration_ms,(0,3000))
|
254 | 240 |
|
255 | 241 | return average_segments_duration_ms
|
@@ -297,8 +283,6 @@ def get_spectral_average_variance_entropy(self):
|
297 | 283 | N = 2**10
|
298 | 284 |
|
299 | 285 | stft = np.copy(self.stft)
|
300 |
| - # stft = AudioProcessing.rescale(self.stft,(0,N)) |
301 |
| - # stft = stft.astype(np.uint16) |
302 | 286 |
|
303 | 287 | for segment in self.segments:
|
304 | 288 | start = int(float(segment[0])/self.n_fft)
|
@@ -353,17 +337,6 @@ def get_soundscape_indices(self,total_bins = 7):
|
353 | 337 | for i in range(0,max_bin,frequency_interval):
|
354 | 338 | bin = psd[i:i + frequency_interval, :]
|
355 | 339 | biophony_levels.append(np.sum(bin) / psd_sum)
|
356 |
| - # # while i < total_bins*frequency_interval : |
357 |
| - # |
358 |
| - # if i + frequency_interval > total_bins*frequency_interval: |
359 |
| - # bin = psd[i:, :] |
360 |
| - # else: |
361 |
| - # |
362 |
| - # bin = psd[i:i + frequency_interval, :] |
363 |
| - |
364 |
| - |
365 |
| - |
366 |
| - # i = i + frequency_interval |
367 | 340 |
|
368 | 341 | a = biophony_levels[0]
|
369 | 342 | b = np.max(biophony_levels[1:])
|
@@ -701,7 +674,8 @@ def getAcousticIndices(audiofile):
|
701 | 674 | acoustic_indices = acousticIndices.get_acoustic_indices()
|
702 | 675 |
|
703 | 676 | acoustic_indices = list(map(lambda x: round(x, 4), acoustic_indices))
|
704 |
| - print(acoustic_indices) |
| 677 | + if( PREDICTION_VERBOSE ): |
| 678 | + print(acoustic_indices) |
705 | 679 |
|
706 | 680 | acoustic_headers = acousticIndices.get_acoustic_indices_headers()
|
707 | 681 | acoustic_descs = acousticIndices.get_acoustic_indices_descs()
|
|
0 commit comments