-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhoisting.rkt
222 lines (174 loc) · 6.04 KB
/
hoisting.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#lang racket
(require (prefix-in s. "./system-f-acc.rkt")
(prefix-in t. "./system-f-h.rkt")
(rename-in redex/reduction-semantics
[define-judgment-form define-judgement-form]
[judgment-holds judgement-holds]))
(module+ test
(require "./redex-chk.rkt"))
(provide compile)
;; HOISTING ;;
(define-union-language λH s.λF-ACC t.λF-H)
(default-language λH)
;; Unroll (λ* (a_1 ... a_n) e) into (L a_1 ... (L a_n e))
;; where (L ::= λ Λ) (a ::= [x : τ] α)
(define-metafunction/extension t.λ* λH
λ* : (any ...) e -> e)
;; Unroll (@ e a_1 ... a_n) into ((e a_1) ... a_n)
;; where (a ::= e [τ])
(define-metafunction/extension t.@ λH
@ : any ... -> e)
;; Unroll (let* ([x_1 e_1] ... [x_n e_n]) e) into (let [x_1 e_1] ... (let [x_n e_n] e))
(define-metafunction/extension t.let* λH
let* : ([x e] ...) e -> e)
;; Unroll (τ_1 → ... → τ_n) into (τ_1 → (... → τ_n))
(define-metafunction/extension t.→* λH
→* : τ ... τ -> τ)
;; Unroll (∀* (α_1 ... a_n) τ) as (∀ α_1 ... (∀ α_n τ))
(define-metafunction/extension t.∀* λH
∀* : (α ...) τ -> τ)
;; [τ] ↝ τ
;; During hoisting, this does nothing.
(define-judgement-form λH
#:contract (↝τ τ τ)
#:mode (↝τ I O)
[--------- "τ-var"
(↝τ α α)]
[(↝τ σ_s σ_t)
(↝τ τ_s τ_t)
----------------------------- "τ-fun"
(↝τ (→ σ_s τ_s) (→ σ_t τ_t))]
[(↝τ τ_s τ_t)
------------------------- "τ-poly"
(↝τ (∀ α τ_s) (∀ α τ_t))]
[--------------- "τ-bool"
(↝τ bool bool)])
;; [k] ↝ Φ l
(define-judgement-form λH
#:contract (↝k k Φ l)
#:mode (↝k I O O)
[(↝e e_s (p_e ...) e_t)
(where l ,(variable-not-in (term (let (p_e ...) (Λ (α ...) ([x : τ] ...) β e))) 'l))
(where p (l ↦ (α ...) ([x : τ] ...) (β : *) e_t))
---------------------------------------------------- "tcode"
(↝k (Λ (α ...) ([x : τ] ...) β e_s) (p_e ... p) l)]
[(↝e e_s (p_e ...) e_t)
(where l ,(variable-not-in (term (let (p_e ...) (λ (α ...) ([x : τ] ...) (y : σ) e))) 'l))
(where p (l ↦ (α ...) ([x : τ] ...) (y : σ) e_t))
---------------------------------------------------------- "vcode"
(↝k (λ (α ...) ([x : τ] ...) (y : σ) e_s) (p_e ... p) l)])
;; [v] ↝ Φ v
(define-judgement-form λH
#:contract (↝v v Φ v)
#:mode (↝v I O O)
[------------ "var"
(↝v x () x)]
[(↝k k Φ_k l)
(↝τ σ_s σ_t) ...
(↝v v_s Φ_v v_t) ...
(where Φ (concat (Φ_k Φ_v ...)))
--------------------------------------------------------------- "(poly)fun"
(↝v (⟨ k [σ_s ...] (v_s ...) ⟩) Φ (⟨ l [σ_t ...] (v_t ...) ⟩))]
[------------ "bool"
(↝v b () b)])
;; [c] ↝ Φ c
(define-judgement-form λH
#:contract (↝c c Φ c)
#:mode (↝c I O O)
[(↝v v_s Φ v_t)
-------------- "val"
(↝c v_s Φ v_t)]
[(↝v v_1s (p_1 ...) v_1t)
(↝v v_2s (p_2 ...) v_2t)
----------------------------------------------- "app"
(↝c (v_1s v_2s) (p_1 ... p_2 ...) (v_1t v_2t))]
[(↝τ σ_s σ_t)
(↝v v_s Φ v_t)
------------------------------- "polyapp"
(↝c (v_s [σ_s]) Φ (v_t [σ_t]))])
;; [e] ↝ Φ e
(define-judgement-form λH
#:contract (↝e e Φ e)
#:mode (↝e I O O)
[(↝c c_s Φ c_t)
--------------- "comp"
(↝e c_s Φ c_t)]
[(↝c c_s (p_c ...) c_t)
(↝e e_s (p_e ...) e_t)
----------------------------------------------------------- "let"
(↝e (let [x c_s] e_s) (p_c ... p_e ...) (let [x c_t] e_t))]
[(↝v v_s (p_v ...) v_t)
(↝e e_1s (p_e1 ...) e_1t)
(↝e e_2s (p_e2 ...) e_2t)
----------------------------------------------------------------------- "if"
(↝e (if v_s e_1s e_2s) (p_v ... p_e1 ... p_e2 ...) (if v_t e_1t e_2t))])
;; Compilation Convenience Metafunctions
(define-metafunction λH
compile : e -> P
[(compile e_s)
(let Φ e_t)
(judgement-holds (↝e e_s Φ e_t))])
(define-metafunction λH
compile-type : τ -> τ
[(compile-type τ_s)
τ_t (judgement-holds (↝τ τ_s τ_t))])
(module+ test
(define-term id
(⟨ (Λ () () a
(⟨ (λ (a) () (x : a) x) [a] () ⟩))
() () ⟩))
(define-term const
(⟨ (Λ () () a
(⟨ (Λ (a) () b
(⟨ (λ (a b) () (x : a)
(⟨ (λ (a b) ([x : a]) (y : b) x)
[a b] (x) ⟩))
[a b] () ⟩))
[a] () ⟩))
[] () ⟩))
(define-term id-id-term
(let* ([id-poly id]
[id-forall (id-poly [(∀ a (→ a a))])]
[id-id (id-forall id-poly)])
id-id))
(define-term id-H
(let ([l0 ↦ (a) () (x : a) x]
[l1 ↦ () () (a : *) (⟨ l0 [a] () ⟩)])
(⟨ l1 () () ⟩)))
(define-term const-H
(let ([l0 ↦ (a b) ([x : a]) (y : b) x]
[l1 ↦ (a b) () (x : a) (⟨ l0 [a b] (x) ⟩)]
[l2 ↦ (a) () (b : *) (⟨ l1 [a b] () ⟩)]
[l3 ↦ () () (a : *) (⟨ l2 [a] () ⟩)])
(⟨ l3 () () ⟩)))
(define-term id-id-term-H
(let ([l0 ↦ (a) () (x : a) x]
[l1 ↦ () () (a : *) (⟨ l0 [a] () ⟩)])
(let* ([id-poly (⟨ l1 () () ⟩)]
[id-forall (id-poly [(∀ a (→ a a))])]
[id-id (id-forall id-poly)])
id-id)))
(define-term id-compiled
(compile id))
(define-term const-compiled
(compile const))
(define-term id-id-term-compiled
(compile id-id-term))
;; See the Program Equality note in system-f-h.rkt for why
;; these tests lack a compiler correctness test
(redex-chk
#:eq id-compiled id-H
#:eq (t.infer id-compiled) (compile-type (s.infer id)))
(redex-chk
#:eq const-compiled const-H
#:eq (t.infer const-compiled) (compile-type (s.infer const)))
(redex-chk
#:eq id-id-term-compiled id-id-term-H
#:eq (t.infer id-id-term-compiled) (compile-type (s.infer id-id-term))))
;; Other Metafunctions
(define-metafunction λH
concat : ((p ...) ...) -> (p ...)
[(concat ()) ()]
[(concat ((p ...) any_r ...))
(p ... p_r ...)
(where (p_r ...) (concat (any_r ...)))])