forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAddFutureOptionSingleOptionChainSelectedInUniverseFilterRegressionAlgorithm.cs
244 lines (214 loc) · 9.14 KB
/
AddFutureOptionSingleOptionChainSelectedInUniverseFilterRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Interfaces;
using QuantConnect.Securities;
using QuantConnect.Securities.Future;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This regression algorithm tests that we only receive the option chain for a single future contract
/// in the option universe filter.
/// </summary>
public class AddFutureOptionSingleOptionChainSelectedInUniverseFilterRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private bool _invested;
private bool _onDataReached;
private bool _optionFilterRan;
private readonly HashSet<Symbol> _symbolsReceived = new HashSet<Symbol>();
private readonly HashSet<Symbol> _expectedSymbolsReceived = new HashSet<Symbol>();
private readonly Dictionary<Symbol, List<QuoteBar>> _dataReceived = new Dictionary<Symbol, List<QuoteBar>>();
private Future _es;
public override void Initialize()
{
SetStartDate(2020, 1, 5);
SetEndDate(2020, 1, 6);
_es = AddFuture(Futures.Indices.SP500EMini, Resolution.Minute, Market.CME);
_es.SetFilter((futureFilter) =>
{
return futureFilter.Expiration(0, 365).ExpirationCycle(new[] { 3, 6 });
});
AddFutureOption(_es.Symbol, optionContracts =>
{
_optionFilterRan = true;
var expiry = new HashSet<DateTime>(optionContracts.Select(x => x.Underlying.ID.Date)).SingleOrDefault();
// Cast to IEnumerable<Symbol> because OptionFilterContract overrides some LINQ operators like `Select` and `Where`
// and cause it to mutate the underlying Symbol collection when using those operators.
var symbol = new HashSet<Symbol>(((IEnumerable<Symbol>)optionContracts).Select(x => x.Underlying)).SingleOrDefault();
if (expiry == null || symbol == null)
{
throw new InvalidOperationException("Expected a single Option contract in the chain, found 0 contracts");
}
var enumerator = optionContracts.GetEnumerator();
while (enumerator.MoveNext())
{
_expectedSymbolsReceived.Add(enumerator.Current);
}
return optionContracts;
});
}
public override void OnData(Slice data)
{
if (!data.HasData)
{
return;
}
_onDataReached = true;
var hasOptionQuoteBars = false;
foreach (var qb in data.QuoteBars.Values)
{
if (qb.Symbol.SecurityType != SecurityType.FutureOption)
{
continue;
}
hasOptionQuoteBars = true;
_symbolsReceived.Add(qb.Symbol);
if (!_dataReceived.ContainsKey(qb.Symbol))
{
_dataReceived[qb.Symbol] = new List<QuoteBar>();
}
_dataReceived[qb.Symbol].Add(qb);
}
if (_invested || !hasOptionQuoteBars)
{
return;
}
foreach (var chain in data.OptionChains.Values)
{
var futureInvested = false;
var optionInvested = false;
foreach (var option in chain.Contracts.Keys)
{
if (futureInvested && optionInvested)
{
return;
}
var future = option.Underlying;
if (!optionInvested && data.ContainsKey(option))
{
MarketOrder(option, 1);
_invested = true;
optionInvested = true;
}
if (!futureInvested && data.ContainsKey(future))
{
MarketOrder(future, 1);
_invested = true;
futureInvested = true;
}
}
}
}
public override void OnEndOfAlgorithm()
{
base.OnEndOfAlgorithm();
if (!_optionFilterRan)
{
throw new InvalidOperationException("Option chain filter was never ran");
}
if (!_onDataReached)
{
throw new Exception("OnData() was never called.");
}
if (_symbolsReceived.Count != _expectedSymbolsReceived.Count)
{
throw new AggregateException($"Expected {_expectedSymbolsReceived.Count} option contracts Symbols, found {_symbolsReceived.Count}");
}
var missingSymbols = new List<Symbol>();
foreach (var expectedSymbol in _expectedSymbolsReceived)
{
if (!_symbolsReceived.Contains(expectedSymbol))
{
missingSymbols.Add(expectedSymbol);
}
}
if (missingSymbols.Count > 0)
{
throw new Exception($"Symbols: \"{string.Join(", ", missingSymbols)}\" were not found in OnData");
}
foreach (var expectedSymbol in _expectedSymbolsReceived)
{
var data = _dataReceived[expectedSymbol];
var nonDupeDataCount = data.Select(x =>
{
x.EndTime = default(DateTime);
return x;
}).Distinct().Count();
if (nonDupeDataCount < 1000)
{
throw new Exception($"Received too few data points. Expected >=1000, found {nonDupeDataCount} for {expectedSymbol}");
}
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "2"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "-15.625%"},
{"Drawdown", "0.200%"},
{"Expectancy", "0"},
{"Net Profit", "-0.093%"},
{"Sharpe Ratio", "-11.181"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.002"},
{"Beta", "-0.016"},
{"Annual Standard Deviation", "0.001"},
{"Annual Variance", "0"},
{"Information Ratio", "-14.343"},
{"Tracking Error", "0.044"},
{"Treynor Ratio", "0.479"},
{"Total Fees", "$3.70"},
{"Fitness Score", "0.41"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "-185.654"},
{"Portfolio Turnover", "0.821"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "9347e3b610cfa21f7cbd968a0135c8af"}
};
}
}