forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAddUniverseSelectionModelAlgorithm.cs
128 lines (119 loc) · 5.82 KB
/
AddUniverseSelectionModelAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Test algorithm using <see cref="QCAlgorithm.AddUniverseSelection(IUniverseSelectionModel)"/>
/// </summary>
public class AddUniverseSelectionModelAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2013, 10, 08); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// set algorithm framework models
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, null));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
SetExecution(new ImmediateExecutionModel());
SetUniverseSelection(new ManualUniverseSelectionModel(QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA)));
AddUniverseSelection(new ManualUniverseSelectionModel(QuantConnect.Symbol.Create("AAPL", SecurityType.Equity, Market.USA)));
AddUniverseSelection(new ManualUniverseSelectionModel(
QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA), // duplicate will be ignored
QuantConnect.Symbol.Create("FB", SecurityType.Equity, Market.USA)));
}
public override void OnEndOfAlgorithm()
{
if (UniverseManager.Count != 3)
{
throw new Exception("Unexpected universe count");
}
if (UniverseManager.ActiveSecurities.Count != 3
|| UniverseManager.ActiveSecurities.Keys.All(symbol => symbol.Value != "SPY")
|| UniverseManager.ActiveSecurities.Keys.All(symbol => symbol.Value != "AAPL")
|| UniverseManager.ActiveSecurities.Keys.All(symbol => symbol.Value != "FB"))
{
throw new Exception("Unexpected active securities");
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "10"},
{"Average Win", "0%"},
{"Average Loss", "-0.01%"},
{"Compounding Annual Return", "-14.333%"},
{"Drawdown", "3.300%"},
{"Expectancy", "-1"},
{"Net Profit", "-0.169%"},
{"Sharpe Ratio", "-0.131"},
{"Probabilistic Sharpe Ratio", "45.057%"},
{"Loss Rate", "100%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-3.068"},
{"Beta", "0.595"},
{"Annual Standard Deviation", "0.382"},
{"Annual Variance", "0.146"},
{"Information Ratio", "-13.618"},
{"Tracking Error", "0.376"},
{"Treynor Ratio", "-0.084"},
{"Total Fees", "$13.98"},
{"Fitness Score", "0.146"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "1"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "-4.398"},
{"Portfolio Turnover", "0.268"},
{"Total Insights Generated", "15"},
{"Total Insights Closed", "12"},
{"Total Insights Analysis Completed", "12"},
{"Long Insight Count", "15"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "8971c92ba163cec8526379865d9b9ee4"}
};
}
}