forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoarseFundamentalTop3Algorithm.cs
161 lines (142 loc) · 6.41 KB
/
CoarseFundamentalTop3Algorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Interfaces;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// In this algorithm we demonstrate how to use the coarse fundamental data to
/// define a universe as the top dollar volume
/// </summary>
/// <meta name="tag" content="using data" />
/// <meta name="tag" content="universes" />
/// <meta name="tag" content="coarse universes" />
/// <meta name="tag" content="regression test" />
public class CoarseFundamentalTop3Algorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int NumberOfSymbols = 3;
// initialize our changes to nothing
private SecurityChanges _changes = SecurityChanges.None;
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 03, 24);
SetEndDate(2014, 04, 07);
SetCash(50000);
// this add universe method accepts a single parameter that is a function that
// accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol>
AddUniverse(CoarseSelectionFunction);
}
// sort the data by daily dollar volume and take the top 'NumberOfSymbols'
public static IEnumerable<Symbol> CoarseSelectionFunction(IEnumerable<CoarseFundamental> coarse)
{
// sort descending by daily dollar volume
var sortedByDollarVolume = coarse.OrderByDescending(x => x.DollarVolume);
// take the top entries from our sorted collection
var top = sortedByDollarVolume.Take(NumberOfSymbols);
// we need to return only the symbol objects
return top.Select(x => x.Symbol);
}
//Data Event Handler: New data arrives here. "TradeBars" type is a dictionary of strings so you can access it by symbol.
public void OnData(TradeBars data)
{
Log($"OnData({UtcTime:o}): Keys: {string.Join(", ", data.Keys.OrderBy(x => x))}");
// if we have no changes, do nothing
if (_changes == SecurityChanges.None) return;
// liquidate removed securities
foreach (var security in _changes.RemovedSecurities)
{
if (security.Invested)
{
Liquidate(security.Symbol);
}
}
// we want 1/N allocation in each security in our universe
foreach (var security in _changes.AddedSecurities)
{
SetHoldings(security.Symbol, 1m / NumberOfSymbols);
}
_changes = SecurityChanges.None;
}
// this event fires whenever we have changes to our universe
public override void OnSecuritiesChanged(SecurityChanges changes)
{
_changes = changes;
Log($"OnSecuritiesChanged({UtcTime:o}):: {changes}");
}
public override void OnOrderEvent(OrderEvent fill)
{
Log($"OnOrderEvent({UtcTime:o}):: {fill}");
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "11"},
{"Average Win", "0.51%"},
{"Average Loss", "-0.33%"},
{"Compounding Annual Return", "-31.082%"},
{"Drawdown", "2.700%"},
{"Expectancy", "0.263"},
{"Net Profit", "-1.518%"},
{"Sharpe Ratio", "-2.118"},
{"Probabilistic Sharpe Ratio", "23.259%"},
{"Loss Rate", "50%"},
{"Win Rate", "50%"},
{"Profit-Loss Ratio", "1.53"},
{"Alpha", "-0.208"},
{"Beta", "0.415"},
{"Annual Standard Deviation", "0.119"},
{"Annual Variance", "0.014"},
{"Information Ratio", "-1.167"},
{"Tracking Error", "0.126"},
{"Treynor Ratio", "-0.607"},
{"Total Fees", "$11.63"},
{"Fitness Score", "0.013"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "-5.1"},
{"Return Over Maximum Drawdown", "-11.717"},
{"Portfolio Turnover", "0.282"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "3d1ae61492b34c39115b76757510c058"}
};
}
}