forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConfidenceWeightedFrameworkAlgorithm.cs
119 lines (111 loc) · 5.43 KB
/
ConfidenceWeightedFrameworkAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Test algorithm using <see cref="ConfidenceWeightedPortfolioConstructionModel"/> and <see cref="ConstantAlphaModel"/>
/// generating a constant <see cref="Insight"/> with a 0.25 confidence
/// </summary>
public class ConfidenceWeightedFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Minute;
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// set algorithm framework models
SetUniverseSelection(new ManualUniverseSelectionModel(QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA)));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, TimeSpan.FromMinutes(20), 0.025, 0.25));
SetPortfolioConstruction(new ConfidenceWeightedPortfolioConstructionModel());
SetExecution(new ImmediateExecutionModel());
}
public override void OnEndOfAlgorithm()
{
if (// holdings value should be 0.25 - to avoid price fluctuation issue we compare with 0.28 and 0.23
Portfolio.TotalHoldingsValue > Portfolio.TotalPortfolioValue * 0.28m
||
Portfolio.TotalHoldingsValue < Portfolio.TotalPortfolioValue * 0.23m)
{
throw new Exception($"Unexpected Total Holdings Value: {Portfolio.TotalHoldingsValue}");
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "6"},
{"Average Win", "0.00%"},
{"Average Loss", "0.00%"},
{"Compounding Annual Return", "38.059%"},
{"Drawdown", "0.600%"},
{"Expectancy", "-0.502"},
{"Net Profit", "0.413%"},
{"Sharpe Ratio", "5.518"},
{"Probabilistic Sharpe Ratio", "66.933%"},
{"Loss Rate", "67%"},
{"Win Rate", "33%"},
{"Profit-Loss Ratio", "0.50"},
{"Alpha", "-0.178"},
{"Beta", "0.249"},
{"Annual Standard Deviation", "0.055"},
{"Annual Variance", "0.003"},
{"Information Ratio", "-9.844"},
{"Tracking Error", "0.165"},
{"Treynor Ratio", "1.212"},
{"Total Fees", "$6.00"},
{"Fitness Score", "0.063"},
{"Kelly Criterion Estimate", "38.64"},
{"Kelly Criterion Probability Value", "0.229"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "70.188"},
{"Portfolio Turnover", "0.063"},
{"Total Insights Generated", "100"},
{"Total Insights Closed", "99"},
{"Total Insights Analysis Completed", "99"},
{"Long Insight Count", "100"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$126657.6305"},
{"Total Accumulated Estimated Alpha Value", "$20405.9516"},
{"Mean Population Estimated Insight Value", "$206.1207"},
{"Mean Population Direction", "54.5455%"},
{"Mean Population Magnitude", "54.5455%"},
{"Rolling Averaged Population Direction", "59.8056%"},
{"Rolling Averaged Population Magnitude", "59.8056%"},
{"OrderListHash", "07eb3e2c199575b547459a534057eb5e"}
};
}
}