forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCustomUniverseWithBenchmarkRegressionAlgorithm.cs
218 lines (203 loc) · 8.75 KB
/
CustomUniverseWithBenchmarkRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm with a custom universe and benchmark, both using the same security.
/// </summary>
public class CustomUniverseWithBenchmarkRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private const int ExpectedLeverage = 2;
private Symbol _spy;
private decimal _previousBenchmarkValue;
private DateTime _previousTime;
private decimal _previousSecurityValue;
private bool _universeSelected;
private bool _onDataWasCalled;
private int _benchmarkPriceDidNotChange;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2013, 10, 4);
SetEndDate(2013, 10, 11);
// Hour resolution
_spy = AddEquity("SPY", Resolution.Hour).Symbol;
// Minute resolution
AddUniverse("my-universe", x =>
{
if(x.Day % 2 == 0)
{
_universeSelected = true;
return new List<string> {"SPY"};
}
_universeSelected = false;
return Enumerable.Empty<string>();
}
);
// internal daily resolution
SetBenchmark("SPY");
Symbol symbol;
if (!SymbolCache.TryGetSymbol("SPY", out symbol)
|| !ReferenceEquals(_spy, symbol))
{
throw new Exception("We expected 'SPY' to be added to the Symbol cache," +
" since the algorithm is also using it");
}
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
var security = Securities[_spy];
_onDataWasCalled = true;
var bar = data.Bars.Values.Single();
if (_universeSelected)
{
if (bar.IsFillForward
|| bar.Period != TimeSpan.FromMinutes(1))
{
// bar should always be the Minute resolution one here
throw new Exception("Unexpected Bar error");
}
if (_previousTime.Date == data.Time.Date
&& (data.Time - _previousTime) != TimeSpan.FromMinutes(1))
{
throw new Exception("For the same date expected data updates every 1 minute");
}
}
else
{
if (data.Time.Minute == 0
&& _previousSecurityValue == security.Price)
{
throw new Exception($"Security Price error. Price should change every new hour");
}
if (data.Time.Minute != 0
&& _previousSecurityValue != security.Price)
{
throw new Exception($"Security Price error. Price should not change every minute");
}
}
_previousSecurityValue = security.Price;
// assert benchmark updates only on date change
var currentValue = Benchmark.Evaluate(data.Time);
if (_previousTime.Hour == data.Time.Hour)
{
if (currentValue != _previousBenchmarkValue)
{
throw new Exception($"Benchmark value error - expected: {_previousBenchmarkValue} {_previousTime}, actual: {currentValue} {data.Time}. " +
"Benchmark value should only change when there is a change in hours");
}
}
else
{
if (data.Time.Minute == 0)
{
if (currentValue == _previousBenchmarkValue)
{
_benchmarkPriceDidNotChange++;
// there are two consecutive equal data points so we give it some room
if (_benchmarkPriceDidNotChange > 1)
{
throw new Exception($"Benchmark value error - expected a new value, current {currentValue} {data.Time}" +
"Benchmark value should change when there is a change in hours");
}
}
else
{
_benchmarkPriceDidNotChange = 0;
}
}
}
_previousBenchmarkValue = currentValue;
_previousTime = data.Time;
// assert algorithm security is the correct one - not the internal one
if (security.Leverage != ExpectedLeverage)
{
throw new Exception($"Leverage error - expected: {ExpectedLeverage}, actual: {security.Leverage}");
}
}
public override void OnEndOfAlgorithm()
{
if (!_onDataWasCalled)
{
throw new Exception("OnData was not called");
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-2.53"},
{"Tracking Error", "0.211"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Fitness Score", "0"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "79228162514264337593543950335"},
{"Portfolio Turnover", "0"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}