forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDropboxBaseDataUniverseSelectionAlgorithm.cs
229 lines (210 loc) · 10 KB
/
DropboxBaseDataUniverseSelectionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// In this algortihm we show how you can easily use the universe selection feature to fetch symbols
/// to be traded using the BaseData custom data system in combination with the AddUniverse{T} method.
/// AddUniverse{T} requires a function that will return the symbols to be traded.
/// </summary>
/// <meta name="tag" content="using data" />
/// <meta name="tag" content="universes" />
/// <meta name="tag" content="custom universes" />
public class DropboxBaseDataUniverseSelectionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
// the changes from the previous universe selection
private SecurityChanges _changes = SecurityChanges.None;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
/// <seealso cref="QCAlgorithm.SetStartDate(System.DateTime)"/>
/// <seealso cref="QCAlgorithm.SetEndDate(System.DateTime)"/>
/// <seealso cref="QCAlgorithm.SetCash(decimal)"/>
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2017, 07, 04);
SetEndDate(2018, 07, 04);
AddUniverse<StockDataSource>("my-stock-data-source", stockDataSource =>
{
return stockDataSource.SelectMany(x => x.Symbols);
});
}
/// <summary>
/// Event - v3.0 DATA EVENT HANDLER: (Pattern) Basic template for user to override for receiving all subscription data in a single event
/// </summary>
/// <code>
/// TradeBars bars = slice.Bars;
/// Ticks ticks = slice.Ticks;
/// TradeBar spy = slice["SPY"];
/// List{Tick} aaplTicks = slice["AAPL"]
/// Quandl oil = slice["OIL"]
/// dynamic anySymbol = slice[symbol];
/// DataDictionary{Quandl} allQuandlData = slice.Get{Quand}
/// Quandl oil = slice.Get{Quandl}("OIL")
/// </code>
/// <param name="slice">The current slice of data keyed by symbol string</param>
public override void OnData(Slice slice)
{
if (slice.Bars.Count == 0) return;
if (_changes == SecurityChanges.None) return;
// start fresh
Liquidate();
var percentage = 1m / slice.Bars.Count;
foreach (var tradeBar in slice.Bars.Values)
{
SetHoldings(tradeBar.Symbol, percentage);
}
// reset changes
_changes = SecurityChanges.None;
}
/// <summary>
/// Event fired each time the we add/remove securities from the data feed
/// </summary>
/// <param name="changes"></param>
public override void OnSecuritiesChanged(SecurityChanges changes)
{
// each time our securities change we'll be notified here
_changes = changes;
}
/// <summary>
/// Our custom data type that defines where to get and how to read our backtest and live data.
/// </summary>
class StockDataSource : BaseData
{
private const string LiveUrl = @"https://www.dropbox.com/s/2l73mu97gcehmh7/daily-stock-picker-live.csv?dl=1";
private const string BacktestUrl = @"https://www.dropbox.com/s/ae1couew5ir3z9y/daily-stock-picker-backtest.csv?dl=1";
/// <summary>
/// The symbols to be selected
/// </summary>
public List<string> Symbols { get; set; }
/// <summary>
/// Required default constructor
/// </summary>
public StockDataSource()
{
// initialize our list to empty
Symbols = new List<string>();
}
/// <summary>
/// Return the URL string source of the file. This will be converted to a stream
/// </summary>
/// <param name="config">Configuration object</param>
/// <param name="date">Date of this source file</param>
/// <param name="isLiveMode">true if we're in live mode, false for backtesting mode</param>
/// <returns>String URL of source file.</returns>
public override SubscriptionDataSource GetSource(SubscriptionDataConfig config, DateTime date, bool isLiveMode)
{
var url = isLiveMode ? LiveUrl : BacktestUrl;
return new SubscriptionDataSource(url, SubscriptionTransportMedium.RemoteFile);
}
/// <summary>
/// Reader converts each line of the data source into BaseData objects. Each data type creates its own factory method, and returns a new instance of the object
/// each time it is called. The returned object is assumed to be time stamped in the config.ExchangeTimeZone.
/// </summary>
/// <param name="config">Subscription data config setup object</param>
/// <param name="line">Line of the source document</param>
/// <param name="date">Date of the requested data</param>
/// <param name="isLiveMode">true if we're in live mode, false for backtesting mode</param>
/// <returns>Instance of the T:BaseData object generated by this line of the CSV</returns>
public override BaseData Reader(SubscriptionDataConfig config, string line, DateTime date, bool isLiveMode)
{
try
{
// create a new StockDataSource and set the symbol using config.Symbol
var stocks = new StockDataSource {Symbol = config.Symbol};
// break our line into csv pieces
var csv = line.ToCsv();
if (isLiveMode)
{
// our live mode format does not have a date in the first column, so use date parameter
stocks.Time = date;
stocks.Symbols.AddRange(csv);
}
else
{
// our backtest mode format has the first column as date, parse it
stocks.Time = DateTime.ParseExact(csv[0], "yyyyMMdd", null);
// any following comma separated values are symbols, save them off
stocks.Symbols.AddRange(csv.Skip(1));
}
return stocks;
}
// return null if we encounter any errors
catch { return null; }
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "6441"},
{"Average Win", "0.07%"},
{"Average Loss", "-0.07%"},
{"Compounding Annual Return", "13.331%"},
{"Drawdown", "10.700%"},
{"Expectancy", "0.061"},
{"Net Profit", "13.331%"},
{"Sharpe Ratio", "0.963"},
{"Probabilistic Sharpe Ratio", "46.232%"},
{"Loss Rate", "46%"},
{"Win Rate", "54%"},
{"Profit-Loss Ratio", "0.97"},
{"Alpha", "0.124"},
{"Beta", "-0.066"},
{"Annual Standard Deviation", "0.121"},
{"Annual Variance", "0.015"},
{"Information Ratio", "0.006"},
{"Tracking Error", "0.171"},
{"Treynor Ratio", "-1.761"},
{"Total Fees", "$8669.41"},
{"Fitness Score", "0.675"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "1.127"},
{"Return Over Maximum Drawdown", "1.246"},
{"Portfolio Turnover", "1.64"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "0b6746b5759ecd45ab21360fd40858bb"}
};
}
}