forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathForexInternalFeedOnDataHigherResolutionRegressionAlgorithm.cs
178 lines (162 loc) · 7.34 KB
/
ForexInternalFeedOnDataHigherResolutionRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This algorithm is a test case for adding forex symbols at a higher resolution of an existing internal feed.
/// The second symbol is added in the OnData method.
/// </summary>
public class ForexInternalFeedOnDataHigherResolutionRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Dictionary<Symbol, int> _dataPointsPerSymbol = new Dictionary<Symbol, int>();
private bool _added;
private Symbol _eurusd;
private DateTime lastDataTime = DateTime.MinValue;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2013, 10, 7);
SetEndDate(2013, 10, 8);
SetCash(100000);
_eurusd = QuantConnect.Symbol.Create("EURUSD", SecurityType.Forex, Market.Oanda);
var eurgbp = AddForex("EURGBP", Resolution.Daily);
_dataPointsPerSymbol.Add(eurgbp.Symbol, 0);
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
if (lastDataTime == data.Time)
{
throw new Exception("Duplicate time for current data and last data slice");
}
lastDataTime = data.Time;
if (_added)
{
var eurUsdSubscription = SubscriptionManager.SubscriptionDataConfigService
.GetSubscriptionDataConfigs(_eurusd, includeInternalConfigs:true)
.Single();
if (eurUsdSubscription.IsInternalFeed)
{
throw new Exception("Unexpected internal 'EURUSD' Subscription");
}
}
if (!_added)
{
var eurUsdSubscription = SubscriptionManager.SubscriptionDataConfigService
.GetSubscriptionDataConfigs(_eurusd, includeInternalConfigs: true)
.Single();
if (!eurUsdSubscription.IsInternalFeed)
{
throw new Exception("Unexpected not internal 'EURUSD' Subscription");
}
AddForex("EURUSD", Resolution.Hour);
_dataPointsPerSymbol.Add(_eurusd, 0);
_added = true;
}
foreach (var kvp in data)
{
var symbol = kvp.Key;
_dataPointsPerSymbol[symbol]++;
Log($"{Time} {symbol.Value} {kvp.Value.Price} EndTime {kvp.Value.EndTime}");
}
}
/// <summary>
/// End of algorithm run event handler. This method is called at the end of a backtest or live trading operation. Intended for closing out logs.
/// </summary>
public override void OnEndOfAlgorithm()
{
// EURUSD has only one day of hourly data, because it was added on the first time step instead of during Initialize
var expectedDataPointsPerSymbol = new Dictionary<string, int>
{
{ "EURGBP", 3 },
{ "EURUSD", 28 }
};
foreach (var kvp in _dataPointsPerSymbol)
{
var symbol = kvp.Key;
var actualDataPoints = _dataPointsPerSymbol[symbol];
Log($"Data points for symbol {symbol.Value}: {actualDataPoints}");
if (actualDataPoints != expectedDataPointsPerSymbol[symbol.Value])
{
throw new Exception($"Data point count mismatch for symbol {symbol.Value}: expected: {expectedDataPointsPerSymbol[symbol.Value]}, actual: {actualDataPoints}");
}
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "0"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "0%"},
{"Drawdown", "0%"},
{"Expectancy", "0"},
{"Net Profit", "0%"},
{"Sharpe Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "5.853"},
{"Tracking Error", "0.107"},
{"Treynor Ratio", "0"},
{"Total Fees", "$0.00"},
{"Fitness Score", "0"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "79228162514264337593543950335"},
{"Portfolio Turnover", "0"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "d41d8cd98f00b204e9800998ecf8427e"}
};
}
}