forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFutureOptionMultipleContractsInDifferentContractMonthsWithSameUnderlyingFutureRegressionAlgorithm.cs
147 lines (135 loc) · 6.04 KB
/
FutureOptionMultipleContractsInDifferentContractMonthsWithSameUnderlyingFutureRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This regression test tests for the loading of futures options contracts with a contract month of 2020-03 can live
/// and be loaded from the same ZIP file that the 2020-04 contract month Future Option contract lives in.
/// </summary>
public class FutureOptionMultipleContractsInDifferentContractMonthsWithSameUnderlyingFutureRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Dictionary<Symbol, bool> _expectedSymbols = new Dictionary<Symbol, bool>
{
{ CreateOption(new DateTime(2020, 3, 26), OptionRight.Call, 1650), false },
{ CreateOption(new DateTime(2020, 3, 26), OptionRight.Put, 1540), false },
{ CreateOption(new DateTime(2020, 2, 25), OptionRight.Call, 1600), false },
{ CreateOption(new DateTime(2020, 2, 25), OptionRight.Put, 1545), false }
};
public override void Initialize()
{
SetStartDate(2020, 1, 5);
SetEndDate(2020, 1, 6);
var goldFutures = AddFuture("GC", Resolution.Minute, Market.COMEX);
goldFutures.SetFilter(0, 365);
AddFutureOption(goldFutures.Symbol);
}
public override void OnData(Slice data)
{
foreach (var symbol in data.QuoteBars.Keys)
{
if (_expectedSymbols.ContainsKey(symbol))
{
var invested = _expectedSymbols[symbol];
if (!invested)
{
MarketOrder(symbol, 1);
}
_expectedSymbols[symbol] = true;
}
}
}
public override void OnEndOfAlgorithm()
{
var notEncountered = _expectedSymbols.Where(kvp => !kvp.Value).ToList();
if (notEncountered.Any())
{
throw new Exception($"Expected all Symbols encountered and invested in, but the following were not found: {string.Join(", ", notEncountered.Select(kvp => kvp.Value.ToStringInvariant()))}");
}
if (!Portfolio.Invested)
{
throw new Exception("Expected holdings at the end of algorithm, but none were found.");
}
}
private static Symbol CreateOption(DateTime expiry, OptionRight optionRight, decimal strikePrice)
{
return QuantConnect.Symbol.CreateOption(
QuantConnect.Symbol.CreateFuture("GC", Market.COMEX, new DateTime(2020, 4, 28)),
Market.COMEX,
OptionStyle.American,
optionRight,
strikePrice,
expiry);
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "4"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "-8.289%"},
{"Drawdown", "3.500%"},
{"Expectancy", "0"},
{"Net Profit", "-0.047%"},
{"Sharpe Ratio", "0"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0"},
{"Beta", "0"},
{"Annual Standard Deviation", "0"},
{"Annual Variance", "0"},
{"Information Ratio", "-14.395"},
{"Tracking Error", "0.043"},
{"Treynor Ratio", "0"},
{"Total Fees", "$7.40"},
{"Fitness Score", "0.019"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "-194.237"},
{"Portfolio Turnover", "0.038"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "979e3995c0dbedc46eaf3705e0438bf5"}
};
}
}