forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMeanVarianceOptimizationFrameworkAlgorithm.cs
128 lines (116 loc) · 5.48 KB
/
MeanVarianceOptimizationFrameworkAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System.Collections.Generic;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Interfaces;
using System.Linq;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
namespace QuantConnect.Algorithm.CSharp
{
public class MeanVarianceOptimizationFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private IEnumerable<Symbol> _symbols = (new[] { "AIG", "BAC", "IBM", "SPY" }).Select(s => QuantConnect.Symbol.Create(s, SecurityType.Equity, Market.USA));
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Minute;
Settings.RebalancePortfolioOnInsightChanges = false;
SetStartDate(2013, 10, 07); //Set Start Date
SetEndDate(2013, 10, 11); //Set End Date
SetCash(100000); //Set Strategy Cash
// Find more symbols here: http://quantconnect.com/data
// Forex, CFD, Equities Resolutions: Tick, Second, Minute, Hour, Daily.
// Futures Resolution: Tick, Second, Minute
// Options Resolution: Minute Only.
// set algorithm framework models
SetUniverseSelection(new CoarseFundamentalUniverseSelectionModel(CoarseSelector));
SetAlpha(new HistoricalReturnsAlphaModel(resolution: Resolution.Daily));
SetPortfolioConstruction(new MeanVarianceOptimizationPortfolioConstructionModel());
SetExecution(new ImmediateExecutionModel());
SetRiskManagement(new NullRiskManagementModel());
}
public IEnumerable<Symbol> CoarseSelector(IEnumerable<CoarseFundamental> coarse)
{
int last = Time.Day > 8 ? 3 : _symbols.Count();
return _symbols.Take(last);
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status == OrderStatus.Filled)
{
Log($"{orderEvent}");
}
}
public bool CanRunLocally => true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "14"},
{"Average Win", "0.10%"},
{"Average Loss", "-0.71%"},
{"Compounding Annual Return", "548.214%"},
{"Drawdown", "1.700%"},
{"Expectancy", "-0.313"},
{"Net Profit", "2.593%"},
{"Sharpe Ratio", "14.773"},
{"Probabilistic Sharpe Ratio", "75.542%"},
{"Loss Rate", "40%"},
{"Win Rate", "60%"},
{"Profit-Loss Ratio", "0.15"},
{"Alpha", "1.587"},
{"Beta", "0.812"},
{"Annual Standard Deviation", "0.182"},
{"Annual Variance", "0.033"},
{"Information Ratio", "13.284"},
{"Tracking Error", "0.1"},
{"Treynor Ratio", "3.315"},
{"Total Fees", "$27.72"},
{"Fitness Score", "0.688"},
{"Kelly Criterion Estimate", "13.656"},
{"Kelly Criterion Probability Value", "0.228"},
{"Sortino Ratio", "41.923"},
{"Return Over Maximum Drawdown", "466.055"},
{"Portfolio Turnover", "0.689"},
{"Total Insights Generated", "17"},
{"Total Insights Closed", "14"},
{"Total Insights Analysis Completed", "14"},
{"Long Insight Count", "6"},
{"Short Insight Count", "7"},
{"Long/Short Ratio", "85.71%"},
{"Estimated Monthly Alpha Value", "$72447.6813"},
{"Total Accumulated Estimated Alpha Value", "$12477.1007"},
{"Mean Population Estimated Insight Value", "$891.2215"},
{"Mean Population Direction", "50%"},
{"Mean Population Magnitude", "50%"},
{"Rolling Averaged Population Direction", "12.6429%"},
{"Rolling Averaged Population Magnitude", "12.6429%"},
{"OrderListHash", "9584528827f0d9ece29c16dcffefbb96"}
};
}
}