forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRenkoConsolidatorAlgorithm.cs
161 lines (145 loc) · 6.54 KB
/
RenkoConsolidatorAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Interfaces;
using System.Collections.Generic;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Market;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Demonstration of how to initialize and use the RenkoConsolidator
/// </summary>
/// <meta name="tag" content="renko" />
/// <meta name="tag" content="indicators" />
/// <meta name="tag" content="using data" />
/// <meta name="tag" content="consolidating data" />
public class RenkoConsolidatorAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
/// <summary>
/// Initializes the algorithm state.
/// </summary>
public override void Initialize()
{
SetStartDate(2012, 01, 01);
SetEndDate(2013, 01, 01);
AddEquity("SPY", Resolution.Daily);
// this is the simple constructor that will perform the renko logic to the Value
// property of the data it receives.
// break SPY into $2.5 renko bricks and send that data to our 'OnRenkoBar' method
var renkoClose = new RenkoConsolidator(2.5m);
renkoClose.DataConsolidated += (sender, consolidated) =>
{
// call our event handler for renko data
HandleRenkoClose(consolidated);
};
// register the consolidator for updates
SubscriptionManager.AddConsolidator("SPY", renkoClose);
// this is the full constructor that can accept a value selector and a volume selector
// this allows us to perform the renko logic on values other than Close, even computed values!
// break SPY into (2*o + h + l + 3*c)/7
var renko7bar = new RenkoConsolidator<TradeBar>(2.5m, x => (2 * x.Open + x.High + x.Low + 3 * x.Close) / 7m, x => x.Volume);
renko7bar.DataConsolidated += (sender, consolidated) =>
{
HandleRenko7Bar(consolidated);
};
// register the consolidator for updates
SubscriptionManager.AddConsolidator("SPY", renko7bar);
}
/// <summary>
/// We're doing our analysis in the OnRenkoBar method, but the framework verifies that this method exists, so we define it.
/// </summary>
public void OnData(TradeBars data)
{
}
/// <summary>
/// This function is called by our renkoClose consolidator defined in Initialize()
/// </summary>
/// <param name="data">The new renko bar produced by the consolidator</param>
public void HandleRenkoClose(RenkoBar data)
{
if (!Portfolio.Invested)
{
SetHoldings(data.Symbol, 1.0);
}
Log($"CLOSE - {data.Time.ToIso8601Invariant()} - {data.Open} {data.Close}");
}
/// <summary>
/// This function is called by our renko7bar onsolidator defined in Initialize()
/// </summary>
/// <param name="data">The new renko bar produced by the consolidator</param>
public void HandleRenko7Bar(RenkoBar data)
{
if (Portfolio.Invested)
{
Liquidate(data.Symbol);
}
Log($"7BAR - {data.Time.ToIso8601Invariant()} - {data.Open} {data.Close}");
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "29"},
{"Average Win", "1.14%"},
{"Average Loss", "-1.76%"},
{"Compounding Annual Return", "-2.045%"},
{"Drawdown", "11.000%"},
{"Expectancy", "-0.059"},
{"Net Profit", "-2.050%"},
{"Sharpe Ratio", "-0.148"},
{"Probabilistic Sharpe Ratio", "10.284%"},
{"Loss Rate", "43%"},
{"Win Rate", "57%"},
{"Profit-Loss Ratio", "0.65"},
{"Alpha", "-0.013"},
{"Beta", "0.001"},
{"Annual Standard Deviation", "0.089"},
{"Annual Variance", "0.008"},
{"Information Ratio", "-1.032"},
{"Tracking Error", "0.145"},
{"Treynor Ratio", "-25.917"},
{"Total Fees", "$117.46"},
{"Fitness Score", "0.044"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "-0.219"},
{"Return Over Maximum Drawdown", "-0.185"},
{"Portfolio Turnover", "0.094"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "f6815165e259f48000413986baa32b75"}
};
}
}