forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScaledFillForwardDataRegressionAlgorithm.cs
143 lines (132 loc) · 5.83 KB
/
ScaledFillForwardDataRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Data;
using QuantConnect.Data.Market;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This regression test algorithm reproduces issue https://github.com/QuantConnect/Lean/issues/4834
/// fixed in PR https://github.com/QuantConnect/Lean/pull/4836
/// Adjusted data of fill forward bars should use original scale factor
/// </summary>
public class ScaledFillForwardDataRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private TradeBar _lastRealBar;
private Symbol _twx;
public override void Initialize()
{
SetStartDate(2014, 6, 5);
SetEndDate(2014, 6, 9);
_twx = AddEquity("TWX", Resolution.Minute, extendedMarketHours: true).Symbol;
Schedule.On(DateRules.EveryDay(_twx), TimeRules.Every(TimeSpan.FromHours(1)), PlotPrice);
}
private void PlotPrice()
{
Plot($"{_twx}", "Ask", Securities[_twx].AskPrice);
Plot($"{_twx}", "Bid", Securities[_twx].BidPrice);
Plot($"{_twx}", "Price", Securities[_twx].Price);
Plot("Portfolio.TPV", "Value", Portfolio.TotalPortfolioValue);
}
public override void OnData(Slice data)
{
var current = data.Bars.FirstOrDefault().Value;
if (current != null)
{
if (Time == new DateTime(2014, 06, 09, 4, 1, 0) && !Portfolio.Invested)
{
if (!current.IsFillForward)
{
throw new Exception($"Was expecting a first fill forward bar {Time}");
}
// trade on the first bar after a factor price scale change. +10 so we fill ASAP. Limit so it fills in extended market hours
LimitOrder(_twx, 1000, _lastRealBar.Close + 10);
}
if (_lastRealBar == null || !current.IsFillForward)
{
_lastRealBar = current;
}
else if (_lastRealBar.Close != current.Close)
{
throw new Exception($"FillForwarded data point at {Time} was scaled. Actual: {current.Close}; Expected: {_lastRealBar.Close}");
}
}
}
public override void OnEndOfAlgorithm()
{
if (_lastRealBar == null)
{
throw new Exception($"Not all expected data points were received.");
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "32.825%"},
{"Drawdown", "0.800%"},
{"Expectancy", "0"},
{"Net Profit", "0.377%"},
{"Sharpe Ratio", "8.953"},
{"Probabilistic Sharpe Ratio", "95.977%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "0.314"},
{"Beta", "-0.104"},
{"Annual Standard Deviation", "0.03"},
{"Annual Variance", "0.001"},
{"Information Ratio", "-3.498"},
{"Tracking Error", "0.05"},
{"Treynor Ratio", "-2.573"},
{"Total Fees", "$5.00"},
{"Fitness Score", "0.158"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "79228162514264337593543950335"},
{"Portfolio Turnover", "0.158"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "fb4a3d12fdcb4f06fa421f37c7942dd1"}
};
}
}