forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScheduledEventsOrderRegressionAlgorithm.cs
183 lines (170 loc) · 7.42 KB
/
ScheduledEventsOrderRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using System;
using System.Collections.Generic;
using QuantConnect.Data;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm which reproduces GH issue 4131, we assert order events are executed in order
/// event outside market ours
/// </summary>
public class ScheduledEventsOrderRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private int _scheduledEventCount;
private Symbol _spy;
private DateTime _lastTime = DateTime.MinValue;
/// <summary>
/// Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.
/// </summary>
public override void Initialize()
{
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
_spy = AddEquity("SPY").Symbol;
var test = 0;
var dateRule = DateRules.EveryDay(_spy);
var aEventCount = 0;
var bEventCount = 0;
var cEventCount = 0;
// we add each twice and assert the order in which they are added is also respected for events at the same time
for (var i = 0; i < 2; i++)
{
var id = i;
Schedule.On(dateRule, TimeRules.At(9, 25), (name, time) =>
{
// for id 0 event count should always be 0, for id 1 should be 1
if (aEventCount != id)
{
throw new Exception($"Scheduled event triggered out of order: {Time} expected id {id} but was {aEventCount}");
}
aEventCount++;
// goes from 0 to 1
aEventCount %= 2;
AssertScheduledEventTime();
Debug($"{Time} :: Test: {test}"); test++;
});
Schedule.On(dateRule, TimeRules.BeforeMarketClose(_spy, 5), (name, time) =>
{
// for id 0 event count should always be 0, for id 1 should be 1
if (bEventCount != id)
{
throw new Exception($"Scheduled event triggered out of order: {Time} expected id {id} but was {bEventCount}");
}
bEventCount++;
// goes from 0 to 1
bEventCount %= 2;
AssertScheduledEventTime();
Debug($"{Time} :: Test: {test}"); test++;
});
Schedule.On(dateRule, TimeRules.At(16, 5), (name, time) =>
{
// for id 0 event count should always be 0, for id 1 should be 1
if (cEventCount != id)
{
throw new Exception($"Scheduled event triggered out of order: {Time} expected id {id} but was {cEventCount}");
}
cEventCount++;
// goes from 0 to 1
cEventCount %= 2;
AssertScheduledEventTime();
Debug($"{Time} :: Test: {test}"); test = 0;
});
}
}
private void AssertScheduledEventTime()
{
if (_lastTime > Time)
{
throw new Exception($"Scheduled event time shouldn't go backwards, last time {_lastTime}, current {Time}");
}
_lastTime = Time;
_scheduledEventCount++;
}
public override void OnEndOfAlgorithm()
{
if (_scheduledEventCount != 28)
{
throw new Exception($"OnEndOfAlgorithm expected scheduled events but was {_scheduledEventCount}");
}
}
/// <summary>
/// OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here.
/// </summary>
/// <param name="data">Slice object keyed by symbol containing the stock data</param>
public override void OnData(Slice data)
{
if (!Portfolio.Invested)
{
SetHoldings(_spy, 1);
}
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "1"},
{"Average Win", "0%"},
{"Average Loss", "0%"},
{"Compounding Annual Return", "264.819%"},
{"Drawdown", "2.200%"},
{"Expectancy", "0"},
{"Net Profit", "1.668%"},
{"Sharpe Ratio", "8.749"},
{"Probabilistic Sharpe Ratio", "67.311%"},
{"Loss Rate", "0%"},
{"Win Rate", "0%"},
{"Profit-Loss Ratio", "0"},
{"Alpha", "-0.005"},
{"Beta", "0.996"},
{"Annual Standard Deviation", "0.219"},
{"Annual Variance", "0.048"},
{"Information Ratio", "-14.189"},
{"Tracking Error", "0.001"},
{"Treynor Ratio", "1.922"},
{"Total Fees", "$3.26"},
{"Fitness Score", "0.248"},
{"Kelly Criterion Estimate", "0"},
{"Kelly Criterion Probability Value", "0"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "93.761"},
{"Portfolio Turnover", "0.248"},
{"Total Insights Generated", "0"},
{"Total Insights Closed", "0"},
{"Total Insights Analysis Completed", "0"},
{"Long Insight Count", "0"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$0"},
{"Total Accumulated Estimated Alpha Value", "$0"},
{"Mean Population Estimated Insight Value", "$0"},
{"Mean Population Direction", "0%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "0%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "25885f979ca8c7b44f5d0f7daf00b241"}
};
}
}