forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSectorWeightingFrameworkAlgorithm.cs
153 lines (137 loc) · 6.73 KB
/
SectorWeightingFrameworkAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
using System;
using System.Collections.Generic;
using System.Linq;
using QuantConnect.Securities;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// This example algorithm defines its own custom coarse/fine fundamental selection model
/// with sector weighted portfolio
/// </summary>
public class SectorWeightingFrameworkAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
private readonly Dictionary<Symbol, decimal> _targets = new Dictionary<Symbol, decimal>();
public override void Initialize()
{
// Set requested data resolution
UniverseSettings.Resolution = Resolution.Daily;
SetStartDate(2014, 04, 03);
SetEndDate(2014, 04, 06);
SetCash(100000);
SetUniverseSelection(new FineFundamentalUniverseSelectionModel(SelectCoarse, SelectFine));
SetAlpha(new ConstantAlphaModel(InsightType.Price, InsightDirection.Up, QuantConnect.Time.OneDay));
SetPortfolioConstruction(new SectorWeightingPortfolioConstructionModel());
Func<string, Symbol> toSymbol = t => QuantConnect.Symbol.Create(t, SecurityType.Equity, Market.USA);
_targets.Add(toSymbol("AAPL"), .25m);
_targets.Add(toSymbol("AIG"), .5m);
_targets.Add(toSymbol("IBM"), .25m);
_targets.Add(toSymbol("GOOG"), .5m);
_targets.Add(toSymbol("BAC"), .5m);
_targets.Add(toSymbol("SPY"), 0);
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
if (orderEvent.Status.IsFill())
{
var symbol = orderEvent.Symbol;
var security = Securities[symbol];
var absoluteBuyingPower = security.BuyingPowerModel
.GetReservedBuyingPowerForPosition(new ReservedBuyingPowerForPositionParameters(security))
.AbsoluteUsedBuyingPower // See GH issue 4107
* security.BuyingPowerModel.GetLeverage(security);
var portfolioShare = absoluteBuyingPower / Portfolio.TotalPortfolioValue;
Debug($"Order event: {orderEvent}. Absolute buying power: {absoluteBuyingPower}");
// Checks whether the portfolio share of a given symbol matches its target
// Only considers the buy orders, because holding value is zero otherwise
if (Math.Abs(_targets[symbol] - portfolioShare) > 0.01m && orderEvent.Direction == OrderDirection.Buy)
{
throw new Exception($"Target for {symbol}: expected {_targets[symbol]}, actual: {portfolioShare}");
}
}
}
private IEnumerable<Symbol> SelectCoarse(IEnumerable<CoarseFundamental> coarse)
{
return Time.Date < new DateTime(2014, 4, 4)
// IndustryTemplateCode of AAPL and IBM is N and AIG is I
? _targets.Keys.Take(3)
// IndustryTemplateCode of GOOG is N and BAC is B. SPY have no fundamentals
: _targets.Keys.Skip(3);
}
private IEnumerable<Symbol> SelectFine(IEnumerable<FineFundamental> fine) => fine.Select(f => f.Symbol);
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "8"},
{"Average Win", "0.41%"},
{"Average Loss", "-0.05%"},
{"Compounding Annual Return", "-99.922%"},
{"Drawdown", "3.800%"},
{"Expectancy", "2.193"},
{"Net Profit", "-3.845%"},
{"Sharpe Ratio", "-2.572"},
{"Probabilistic Sharpe Ratio", "0%"},
{"Loss Rate", "67%"},
{"Win Rate", "33%"},
{"Profit-Loss Ratio", "8.58"},
{"Alpha", "-3.254"},
{"Beta", "-2.921"},
{"Annual Standard Deviation", "0.386"},
{"Annual Variance", "0.149"},
{"Information Ratio", "-0.422"},
{"Tracking Error", "0.518"},
{"Treynor Ratio", "0.34"},
{"Total Fees", "$32.42"},
{"Fitness Score", "0.093"},
{"Kelly Criterion Estimate", "-50.377"},
{"Kelly Criterion Probability Value", "0.689"},
{"Sortino Ratio", "-2.589"},
{"Return Over Maximum Drawdown", "-25.984"},
{"Portfolio Turnover", "1.539"},
{"Total Insights Generated", "7"},
{"Total Insights Closed", "3"},
{"Total Insights Analysis Completed", "3"},
{"Long Insight Count", "7"},
{"Short Insight Count", "0"},
{"Long/Short Ratio", "100%"},
{"Estimated Monthly Alpha Value", "$-731497.1"},
{"Total Accumulated Estimated Alpha Value", "$-52830.34"},
{"Mean Population Estimated Insight Value", "$-17610.11"},
{"Mean Population Direction", "33.3333%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "33.3333%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "55ea591f69e39b0cbb9d9bc2f9fe2f10"}
};
}
}