forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVolumeWeightedAveragePriceExecutionModelRegressionAlgorithm.cs
119 lines (109 loc) · 5.18 KB
/
VolumeWeightedAveragePriceExecutionModelRegressionAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
/*
* QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
* Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
using System.Collections.Generic;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Orders;
using QuantConnect.Interfaces;
namespace QuantConnect.Algorithm.CSharp
{
/// <summary>
/// Regression algorithm for the VolumeWeightedAveragePriceExecutionModel.
/// This algorithm shows how the execution model works to split up orders and submit them only when
/// the price is on the favorable side of the intraday VWAP.
/// </summary>
public class VolumeWeightedAveragePriceExecutionModelRegressionAlgorithm : QCAlgorithm, IRegressionAlgorithmDefinition
{
public override void Initialize()
{
UniverseSettings.Resolution = Resolution.Minute;
SetStartDate(2013, 10, 07);
SetEndDate(2013, 10, 11);
SetCash(1000000);
SetUniverseSelection(new ManualUniverseSelectionModel(
QuantConnect.Symbol.Create("AIG", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("BAC", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("IBM", SecurityType.Equity, Market.USA),
QuantConnect.Symbol.Create("SPY", SecurityType.Equity, Market.USA)
));
// using hourly rsi to generate more insights
SetAlpha(new RsiAlphaModel(14, Resolution.Hour));
SetPortfolioConstruction(new EqualWeightingPortfolioConstructionModel());
SetExecution(new VolumeWeightedAveragePriceExecutionModel());
InsightsGenerated += (algorithm, data) => Log($"{Time}: {string.Join(" | ", data.Insights)}");
}
public override void OnOrderEvent(OrderEvent orderEvent)
{
Log($"{Time}: {orderEvent}");
}
/// <summary>
/// This is used by the regression test system to indicate if the open source Lean repository has the required data to run this algorithm.
/// </summary>
public bool CanRunLocally { get; } = true;
/// <summary>
/// This is used by the regression test system to indicate which languages this algorithm is written in.
/// </summary>
public Language[] Languages { get; } = { Language.CSharp, Language.Python };
/// <summary>
/// This is used by the regression test system to indicate what the expected statistics are from running the algorithm
/// </summary>
public Dictionary<string, string> ExpectedStatistics => new Dictionary<string, string>
{
{"Total Trades", "268"},
{"Average Win", "0.04%"},
{"Average Loss", "-0.01%"},
{"Compounding Annual Return", "453.616%"},
{"Drawdown", "1.200%"},
{"Expectancy", "2.224"},
{"Net Profit", "2.212%"},
{"Sharpe Ratio", "12.474"},
{"Probabilistic Sharpe Ratio", "71.923%"},
{"Loss Rate", "31%"},
{"Win Rate", "69%"},
{"Profit-Loss Ratio", "3.67"},
{"Alpha", "1.052"},
{"Beta", "1.041"},
{"Annual Standard Deviation", "0.245"},
{"Annual Variance", "0.06"},
{"Information Ratio", "12.783"},
{"Tracking Error", "0.088"},
{"Treynor Ratio", "2.937"},
{"Total Fees", "$399.57"},
{"Fitness Score", "0.936"},
{"Kelly Criterion Estimate", "34.534"},
{"Kelly Criterion Probability Value", "0.444"},
{"Sortino Ratio", "79228162514264337593543950335"},
{"Return Over Maximum Drawdown", "518.681"},
{"Portfolio Turnover", "0.936"},
{"Total Insights Generated", "5"},
{"Total Insights Closed", "3"},
{"Total Insights Analysis Completed", "3"},
{"Long Insight Count", "3"},
{"Short Insight Count", "2"},
{"Long/Short Ratio", "150.0%"},
{"Estimated Monthly Alpha Value", "$732515.0932"},
{"Total Accumulated Estimated Alpha Value", "$118016.3206"},
{"Mean Population Estimated Insight Value", "$39338.7735"},
{"Mean Population Direction", "100%"},
{"Mean Population Magnitude", "0%"},
{"Rolling Averaged Population Direction", "100%"},
{"Rolling Averaged Population Magnitude", "0%"},
{"OrderListHash", "c53191469aa4ad2f0e7a35e02a218e02"}
};
}
}