-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask-1.lyx
651 lines (457 loc) · 10.3 KB
/
Task-1.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\begin_modules
knitr
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
LGM VIP Data Science Internship
\begin_inset Newline newline
\end_inset
Beginner Task-1: Iris Flowers Classification ML Project
\end_layout
\begin_layout Author
Name: Debartha Paul
\end_layout
\begin_layout Section*
Description:
\end_layout
\begin_layout Standard
The iris flowers dataset contains numeric attributes.
We have the attributes as:
\end_layout
\begin_layout Enumerate
sepal length in cm
\end_layout
\begin_layout Enumerate
sepal width in cm
\end_layout
\begin_layout Enumerate
petal length in cm
\end_layout
\begin_layout Enumerate
petal width in cm
\end_layout
\begin_layout Enumerate
class:
\end_layout
\begin_deeper
\begin_layout Enumerate
-- Iris Setosa
\end_layout
\begin_layout Enumerate
-- Iris Versicolour
\end_layout
\begin_layout Enumerate
-- Iris Virginica
\end_layout
\end_deeper
\begin_layout Standard
We have to classify them into different categories using ML.
\end_layout
\begin_layout Section*
Importing libraries and visualising the data
\end_layout
\begin_layout Standard
We first load the libraries required for our work and then we read the dataset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
library(class)#for the KNN function
\end_layout
\begin_layout Plain Layout
set.seed(200)#setting the seed
\end_layout
\begin_layout Plain Layout
df<-read.table('D:
\backslash
\backslash
Important Documents
\backslash
\backslash
Internship
\backslash
\backslash
LGM-VIP Aug21
\backslash
\backslash
Task-1
\backslash
\backslash
iris.data',
\end_layout
\begin_layout Plain Layout
sep=',',header=F)#reading the file
\end_layout
\begin_layout Plain Layout
head(df)#a sneak peek into the dataset
\end_layout
\begin_layout Plain Layout
names(df)<-c('sepal.len','sepal.wd','petal.len',
\end_layout
\begin_layout Plain Layout
'petal.wd','class')#setting the names of the columns
\end_layout
\begin_layout Plain Layout
dim(df)#the dimensions of the dataset
\end_layout
\begin_layout Plain Layout
summary(df)#a brief summary of the dataset
\end_layout
\begin_layout Plain Layout
classno<-ifelse(df$class=='Iris-setosa',1,
\end_layout
\begin_layout Plain Layout
ifelse(df$class=='Iris-virginica',2,3))#factoring on the basis of class
\end_layout
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
pairs(df[,-5],col=c('#943737','#599437','#375f94')[classno],
\end_layout
\begin_layout Plain Layout
main='Pairs plot of Iris',pch=16,oma=c(3,5,5,12))#plots of the data by
various attributes
\end_layout
\begin_layout Plain Layout
par(xpd=T)
\end_layout
\begin_layout Plain Layout
legend("bottomright",fill=c('#943737','#599437','#375f94'),
\end_layout
\begin_layout Plain Layout
legend=c('Iris-setosa','Iris-virginica','Iris-versicolor'),
\end_layout
\begin_layout Plain Layout
cex=0.5,title='Class')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Section*
Splitting the dataset into training and test set
\end_layout
\begin_layout Standard
We next split our dataset into training and testing sets.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
t_sample<-sample(nrow(df),0.8*nrow(df)) #contains the row numbers of the
training set
\end_layout
\begin_layout Plain Layout
train<-df[t_sample,];test<-df[-t_sample,]
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
We will use the K nearest neighbours to classify the dataset.
\end_layout
\begin_layout Section*
Value of k
\end_layout
\begin_layout Standard
First, we obtain the the number of neighbours that are to be considered.
We'll choose the
\family typewriter
k
\family default
which has the max accuracy.
We start by taking
\family typewriter
k
\family default
as 1 and then simulate the accuracy incrementing
\family typewriter
k
\family default
in each step.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
model_knn<-list();accuracy_knn<-numeric()
\end_layout
\begin_layout Plain Layout
for(i in 1:20)
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
model_knn[[i]]<-knn(train[,-5],test[,-5],train$class,k=i,prob=T)
\end_layout
\begin_layout Plain Layout
accuracy_knn[i]<-sum(model_knn[[i]]==test$class)/length(test$class)
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
plot(1:20,accuracy_knn,type='b',main='Accuracy vs.
k',ylab='Accuracy',xlab='k',col='#33435c',pch=16)
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
From the plot, we find that there are many values of
\family typewriter
k
\family default
which have maximum accuracy among all the values of
\family typewriter
k
\family default
.
\end_layout
\begin_layout Standard
We proceed to find the maximum accuracy.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
max(accuracy_knn)
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Thus, we find that the max accuracy that was obtained by this method is
\begin_inset Formula $96.67\%$
\end_inset
.
\end_layout
\begin_layout Standard
Further, we find the least vaue of
\family typewriter
k
\family default
with maximum accuracy.
This is due to the fact that a greater value of
\family typewriter
k
\family default
may lead to overfitting of the data.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
k<-min(which(accuracy_knn==max(accuracy_knn)))#min value of k which has
the max accuracy
\end_layout
\begin_layout Plain Layout
k
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Thus, we find the value of
\family typewriter
k
\family default
as
\begin_inset Formula $10$
\end_inset
with an accuracy level of
\begin_inset Formula $96.67\%$
\end_inset
.
\end_layout
\begin_layout Section*
Predictions
\end_layout
\begin_layout Standard
We finally classify the iris dataset into the respective classes.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
final_model <- knn(train[,-5], test[,-5], train$class, k, prob=TRUE)
\end_layout
\begin_layout Plain Layout
model_tab <- table(test$class, final_model)
\end_layout
\begin_layout Plain Layout
model_tab
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Standard
We find that, while
\family typewriter
Iris-setosa
\family default
was correctly classified,
\family typewriter
Iris-versicolor
\family default
and
\family typewriter
Iris-virginica
\family default
were not classified perfectly, as one of them was interchanged.
\end_layout
\begin_layout Standard
The below dataframe gives the details of the test set along with the original
and predicted classes:
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
cbind(test,final_model)
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\end_body
\end_document