-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTask-2.lyx
1108 lines (773 loc) · 18.8 KB
/
Task-2.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\begin_modules
knitr
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
LGM VIP Data Science Internship
\begin_inset Newline newline
\end_inset
Intermediate Task-1: Exploratory Data Analysis - Terrorism
\end_layout
\begin_layout Author
Name: Debartha Paul
\end_layout
\begin_layout Section*
Description:
\end_layout
\begin_layout Standard
The dataset contains details regarding terrorism from 1970 till 2017.
We have to perform Exploratory Data Analysis of this dataset and as a security/
defense analyst, we have to try and find out the hot zone of terrorism.
\end_layout
\begin_layout Section*
Importing libraries and visualising the data
\end_layout
\begin_layout Standard
We first load the libraries required for our work and then read the dataset.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
#Fortunately, we do not need to load any other library for this work
\end_layout
\begin_layout Plain Layout
df<-read.csv('D:
\backslash
\backslash
Important Documents
\backslash
\backslash
Internship
\backslash
\backslash
LGM-VIP Aug21
\backslash
\backslash
Task-2
\backslash
\backslash
globalterrorismdb_0718dist.csv',
\end_layout
\begin_layout Plain Layout
header=T)#reading the dataset
\end_layout
\begin_layout Plain Layout
dim(df)#dimensions of the dataset
\end_layout
\begin_layout Plain Layout
length(is.na(df))#number of 'na' values
\end_layout
\begin_layout Plain Layout
names(df)
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Section*
Exploratory Data Analysis
\end_layout
\begin_layout Standard
We now move forward to our Exploratory Data Analysis part.
\end_layout
\begin_layout Subsection*
Attacks by Year:
\end_layout
\begin_layout Standard
The below chart describes the number of attacks by year
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
attack_year<-table(df$iyear)
\end_layout
\begin_layout Plain Layout
plot(attack_year,type='b',main='Terrorism by Year',
\end_layout
\begin_layout Plain Layout
xlab='Year',ylab='No.
of Incidents',pch=19)
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
From the above chart, we observe that no.
of attacks increased over the years since 1970 till the early 90s.
However, there was a decline in the no.
of attacks till the late 90s.
Moving further, we obseve a steep incline in the no.
of attacks since the late 90s till 2014(which also has the highest number
of attacks in a calender year) and we note a decline in the no.
of attacks since then.
\end_layout
\begin_layout Subsection*
Type of Attack by Year:
\end_layout
\begin_layout Standard
We next look at the frequency of attacks over the years by their type
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
type_year<-cbind(unique(df$iyear),table(df$iyear,df$attacktype1_txt))
\end_layout
\begin_layout Plain Layout
type_year<-type_year[order(type_year[,1]),]
\end_layout
\begin_layout Plain Layout
par(mfrow=c(3,3))
\end_layout
\begin_layout Plain Layout
for(i in 2:ncol(type_year))
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
plot(x=type_year[,1],y=type_year[,i],main=colnames(type_year)[i],
\end_layout
\begin_layout Plain Layout
xlab='Year',ylab='Incidents',type='l',cex.main=0.95,
\end_layout
\begin_layout Plain Layout
col=hcl.colors(9,'dark 2')[i-1])
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We notice some interesting patterns in the type of attacks over the years.
\series bold
Armed Assault
\series default
saw an overall growth till the mid 90s with the no.
of cases dipping before rising steeply from the mid 2000s till 2014 and
then declining again.
\series bold
Assassination
\series default
was very popular since the beginning with the no.
of cases rising in the till the early 90s before this type of attack faced
a drop.
However, since the late 90s, the no.
of cases corresponding to this type of attack increased (almost) exponentially
till the mid 2010s.
\series bold
Bombings/Explosions
\series default
were somewhat common till the mid 2000s before gaining popularity as the
no.
of cases soared up till the mid 2010s.
It has seen a decline since then.
\series bold
Facility/Infrastructure Attacks
\series default
gained popularity just before the 90s and then again since the mid 2000s.
\series bold
Hijacking
\series default
has an uneven history with sometimes gaining popularity and sometimes not.
\series bold
Hostage Taking (Barricade Incident)
\series default
was initially a very common form of attack until the mid 90s when these
incidents were significantly reduced.
However, since 2010, the no.
or these events rose at an increasing rate.
\series bold
Hostage Taking (Kidnapping)
\series default
was initially a not-so-common form of attack.
However, it saw a steady increase and the no.
of cases leaped at a tremendous pace since the early 2000s.
\series bold
Unarmed Assault
\series default
was very common in the mid 90s before subsiding in the 2000s.
However, since 2010, the no.
of cases of this type is on the rise.
\series bold
Unknown
\series default
attacks gained popularity since the 2010s and has been on the rise since
then.
\end_layout
\begin_layout Subsection*
Attack by Region:
\end_layout
\begin_layout Standard
We next look at the frequency of attacks based on regions
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
attack_reg<-table(df$region_txt)
\end_layout
\begin_layout Plain Layout
par(mar=c(10,4,4,1)+.1)
\end_layout
\begin_layout Plain Layout
barplot(attack_reg,las=2,cex.names=0.8,
\end_layout
\begin_layout Plain Layout
col=hcl.colors(nrow(attack_reg),'set 2'),
\end_layout
\begin_layout Plain Layout
ylab='Count',main='Attacks by Region')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We find that the most affected region by terrorism in the world is
\series bold
Middle East & North Africa
\series default
followed closely by
\series bold
South Asia
\series default
.
The third most affected region is
\series bold
South America
\series default
, however, there's a big gap between the first second and the third.
\end_layout
\begin_layout Subsection*
Target type:
\end_layout
\begin_layout Standard
We next look at the most common targets of the terrorists by type
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
par(mar=c(10,4,4,1)+.1)
\end_layout
\begin_layout Plain Layout
targ_type<-table(df$targtype1_txt)
\end_layout
\begin_layout Plain Layout
max_targ_type<-tail(sort(targ_type),5)
\end_layout
\begin_layout Plain Layout
barplot(max_targ_type,col=hcl.colors(5,'warm'),las=2,
\end_layout
\begin_layout Plain Layout
cex.names=0.8,main='Top 5 Targets')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We observe that
\series bold
Private Citizens & Properties
\series default
is the most popular target type for the terrorists.
However, violence against
\series bold
Military
\series default
,
\series bold
Police
\series default
,
\series bold
Government(General)
\series default
and
\series bold
Business
\series default
are also not uncommon.
\end_layout
\begin_layout Subsection*
Attacks by Region over the years:
\end_layout
\begin_layout Standard
We now look at the attacks over the years on various regions
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
reg_year<-table(df$region_txt,df$iyear)
\end_layout
\begin_layout Plain Layout
plot(x=colnames(reg_year),y=reg_year[1,],type='l',lwd=1.5,
\end_layout
\begin_layout Plain Layout
ylim=c(min(reg_year),max(reg_year)),xlim=c(1970,2017),
\end_layout
\begin_layout Plain Layout
col=hcl.colors(nrow(reg_year),'dark 2')[1],
\end_layout
\begin_layout Plain Layout
xlab='Year',ylab='No.
of Incidents',
\end_layout
\begin_layout Plain Layout
main='Incidents by Region')
\end_layout
\begin_layout Plain Layout
for(i in 2:nrow(reg_year))
\end_layout
\begin_layout Plain Layout
{
\end_layout
\begin_layout Plain Layout
par(new=T)
\end_layout
\begin_layout Plain Layout
plot(x=colnames(reg_year),y=reg_year[i,],type='l',lwd=1.5,
\end_layout
\begin_layout Plain Layout
ylim=c(min(reg_year),max(reg_year)),xlim=c(1970,2017),
\end_layout
\begin_layout Plain Layout
xaxt='n',yaxt='n',xlab=NA,ylab=NA,
\end_layout
\begin_layout Plain Layout
col=hcl.colors(nrow(reg_year),'dark 2')[i])
\end_layout
\begin_layout Plain Layout
}
\end_layout
\begin_layout Plain Layout
legend(x=1970,y=7000,rownames(reg_year),lwd=1.5,
\end_layout
\begin_layout Plain Layout
col=hcl.colors(nrow(reg_year),'dark 2'),
\end_layout
\begin_layout Plain Layout
cex=0.5,title='Region')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We notice an interesting trend of attacks in various regions over the years.
While initially,
\series bold
South America
\series default
saw more unrests in the period between 1980 to 2000,
\series bold
South Asia
\series default
and
\series bold
Middle East & North Africa
\series default
saw a huge rise in terror activities.
We also notice that in the year 2014, there has been a global unrest, which
cause every single region to have a spike in the annual uprisings.
\end_layout
\begin_layout Subsection*
Affected Country:
\end_layout
\begin_layout Standard
The below graph shows the most attacked countries
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
country<-table(df$country_txt)
\end_layout
\begin_layout Plain Layout
max_country<-tail(sort(country),5)
\end_layout
\begin_layout Plain Layout
barplot(max_country,col=hcl.colors(5,'warm'),
\end_layout
\begin_layout Plain Layout
las=2,cex.names=0.8,main='Top 5 Countries by Attacks')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We find that
\series bold
Iraq
\series default
is the most affected country in the world.
It has a huge gap with
\series bold
Pakistan
\series default
which is placed second in the list.
\end_layout
\begin_layout Subsection*
Weapons Used:
\end_layout
\begin_layout Standard
In the below given graph, we aim to look at the weapons used by the terrorists
to carry out the attacks
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
weapon<-table(df$weaptype1_txt)
\end_layout
\begin_layout Plain Layout
barplot(weapon,xaxt='n',col=hcl.colors(length(unique(df$weaptype1_txt)),'dynamic'
),
\end_layout
\begin_layout Plain Layout
main='Weapon Type')
\end_layout
\begin_layout Plain Layout
legend('topright',rownames(weapon),
\end_layout
\begin_layout Plain Layout
fill=hcl.colors(length(unique(df$weaptype1_txt)),'dynamic'),
\end_layout
\begin_layout Plain Layout
cex=0.5,title='Weapon Type')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We note from the graph that the most common weapon used was
\series bold
Explosives
\series default
, followed by
\series bold
Firearms
\series default
.
These two itself consisted of the max percentage of weapons used for the
attacks.
\end_layout
\begin_layout Subsection*
Casualties by Year:
\end_layout
\begin_layout Standard
Finally, we look at the casualties by year globally
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
df[is.na(df$nkill),]$nkill<-0
\end_layout
\begin_layout Plain Layout
year_kill<-tapply(df$nkill,df$iyear,sum)
\end_layout
\begin_layout Plain Layout
year_kill<-as.table(year_kill)
\end_layout
\begin_layout Plain Layout
barplot(year_kill,las=2,cex.names=0.7,main='No.
of kills',
\end_layout
\begin_layout Plain Layout
xlab='Year',ylab='Kills',col='#a1383a')
\end_layout
\begin_layout Plain Layout
@
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection*
Conclusions
\end_layout
\begin_layout Standard
We find that in the year 2014, maximum number of deaths occurred across
the world.
This is in keeping with the fact that there was an increase in global terrorism
in that particular year.
\end_layout
\begin_layout Standard
Further, looking at this graph, we can relate it to the graph of the Attacks
by Year.
We proceed to further find a correlation between the number of deaths and
the number of attacks in a calendar year.
\end_layout
\begin_layout Subsection*
Correlation:
\end_layout
\begin_layout Standard
We find the correlation coefficient between Casualties and No.
of Attacks
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\end_layout
\begin_layout Plain Layout
<<>>=
\end_layout
\begin_layout Plain Layout
attack_kill<-cbind(year_kill,attack_year)
\end_layout
\begin_layout Plain Layout
atk_cor<-cor(attack_kill)
\end_layout
\begin_layout Plain Layout
atk_cor
\end_layout