We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
感谢大佬详尽的README和代码注释,我是第一次接触onnxruntime这个东西,官方写的api接口那些的看的头大,还好有大佬写的文档才能比较好的看明白代码和onnxruntime的基本使用方法,再次表示感谢
The text was updated successfully, but these errors were encountered:
嗯嗯 一起学习中
Sorry, something went wrong.
感谢作者的分享,让我在部署时少走了许多弯路,实际加载模型预测对结果处理的部分我改成了这样 for detection in pred: # 输出前判断一下目标框概率 boxConfidence=float(detection[4]) if boxConfidence>0.25: scores = detection[5:] classID = np.argmax(scores) confidence = float(scores[classID]) * boxConfidence # 置信度为类别的概率和目标框概率值得乘积 if confidence > self.threshold: box = detection[0:4] (centerX, centerY, width, height) = box.astype("int") x = int(centerX - (width / 2)) y = int(centerY - (height / 2)) boxes.append([x, y, int(width), int(height)]) classIds.append(classID) confidences.append(float(confidence)) 原来对结果的处理速度有些慢
No branches or pull requests
感谢大佬详尽的README和代码注释,我是第一次接触onnxruntime这个东西,官方写的api接口那些的看的头大,还好有大佬写的文档才能比较好的看明白代码和onnxruntime的基本使用方法,再次表示感谢
The text was updated successfully, but these errors were encountered: