% Changelog
- Tests for plot module
- Import pandas in plot module
- Use type
pathlib.Path
for--out-{dendrogram,clusters}
- Parameter
use_names
inmake_label_mapper
0.6.0 - 2023/03/25
- Add basic summary statistics for pairwise distances
- Calculate basic summary statistics for pairwise distances, dump to file
- Add
__all__
to__init__.py
- Add
_version.py
,_plot.py
- Add tests for CLI entry point, etc:
test_basic.py
,test_cli.py
,test_clustering.py
,test_rwrtoolkit.py
,test_sample_data.py
- Split up
functional_partitioning
module:_cluster.py
,_datasets.py
,_metrics.py
,_plot.py
,_rwrtoolkit.py
,_utils.py
,_version.py
,functional_partitioning.py
->cli.py
- Makefile
get_scores_vs_ranks_curve
function for use withget_elbow
--no-clusters
option- Examples:
- Add example of
--cut-method
and--cut-threshold
- Add example using RWRtoolkit
- Add example of
- Allow passing
--cut-method=none
to return all clusterings - Clarify setting
out_{clusters,dendrogram}
variables - Move
calc_chi
function to_metrics.py
- Move
calc_threshold
function to_cluster.py
- Move
get_elbow
function to_metrics.py
- Move plotting functions to
_plot.py
- Rename
functional_partitioning.py
tocli.py
- Rename
get_top_ranked
function - Restructure package: prefix modules with underscore
- Replace
--threshold
with--cut-threshold
and--cut-method
- Use
__version__
as string instead ofget_version
- Wrap
_plot_dendrogram_{polar,rectangular}
w/draw_dendrogram
- Create the output directory (but not its parents)
- Attempt to clarify installation instructions
- Refactor tests (use class
unittest.TestCase
) - Include
dynamicTreeCut
in environment.yml for conda installations - Rank transformation of scores: use
method='first'
- Require dissimilarities as a condensed distance matrix
- Adjust dendrogram figsize depending on orientation
- Pass optimal_ordering to scipy's
hierarchy.linkage
fxn - Set
min_cluster_size_
to 1 instead of 3- Dynamic tree cut tries to assign genes that really should be singletons to clusters. This minimizes that behavior, but it's still a problem.
- Use
__version__
as string instead ofget_version
- Wrap
_plot_dendrogram_{polar,rectangular}
w/draw_dendrogram
- Clarify setting
out_{clusters,dendrogram}
variables - Move
calc_threshold
fxn tocluster
- Move
calc_chi
fxn tometrics
- Move
get_elbow
fxn tometrics
- Use the
HierarchicalClustering
class withdynamicTreeCut
(cutreeHybrid) as the default clustering method.
- Remove
get_top_ranked
fxn
- Get version from
_version.__version__
- Install
seaborn
import dynamicTreeCut from dynamicTreeCut
- Adhere to standard test name conventions
- Restructure package: prefix modules with underscore to avoid 'flat-layout' error:
error: Multiple top-level modules discovered in a flat-layout: ['metrics', 'datasets', 'cluster', 'functional_partitioning', 'rwrtoolkit'].
- Import modules with leading underscores
- Calculate the elbow using mean of scores-vs-ranks vectors
- Bug in elbow calculation introduced during recent refactoring.
- Sort mean scores before calculating elbow
- Modify package structure for install
- Write clusters to clusters.tsv file
0.5.1 - 2023/03/08
metric
parameter was added in sklearnAgglomerativeClustering
(upstream).dynamicTreeCut
dependency forHierarchicalClustering
check_symmetry
function to verify square (uncondensed) distance matrix
- Require
scikit-learn>=1.2.0
HierarchicalClustering
: Usescipy.cluster.hierarchy.{linkage,cut_tree}
to createlabels_
.HierarchicalClustering
: Usemetric
parameter instead ofaffinity
.HierarchicalClustering
: UsedynamicTreeCut.cutreeHybrid
as default method for creating clusters.
affinity
parameter was decrepated in sklearnAgglomerativeClustering
(upstream).
0.4.0 - 2023/01/09
Initial release.
- CHANGELOG.md
cluster.HierarchicalClustering
- RWRtoolkit wrapper functions (
rwrtoolkit.rwr_singletons
)
- Split loading 'fullranks' and converting it to 'X' matrix into separate functions
See also: